1 // SPDX-License-Identifier: GPL-2.0
3 * Copyright (C) 2007 Oracle. All rights reserved.
6 #include <linux/kernel.h>
8 #include <linux/buffer_head.h>
9 #include <linux/file.h>
11 #include <linux/pagemap.h>
12 #include <linux/highmem.h>
13 #include <linux/time.h>
14 #include <linux/init.h>
15 #include <linux/string.h>
16 #include <linux/backing-dev.h>
17 #include <linux/writeback.h>
18 #include <linux/compat.h>
19 #include <linux/xattr.h>
20 #include <linux/posix_acl.h>
21 #include <linux/falloc.h>
22 #include <linux/slab.h>
23 #include <linux/ratelimit.h>
24 #include <linux/btrfs.h>
25 #include <linux/blkdev.h>
26 #include <linux/posix_acl_xattr.h>
27 #include <linux/uio.h>
28 #include <linux/magic.h>
29 #include <linux/iversion.h>
30 #include <linux/swap.h>
31 #include <linux/migrate.h>
32 #include <linux/sched/mm.h>
33 #include <asm/unaligned.h>
37 #include "transaction.h"
38 #include "btrfs_inode.h"
39 #include "print-tree.h"
40 #include "ordered-data.h"
44 #include "compression.h"
46 #include "free-space-cache.h"
47 #include "inode-map.h"
50 #include "delalloc-space.h"
51 #include "block-group.h"
53 struct btrfs_iget_args
{
54 struct btrfs_key
*location
;
55 struct btrfs_root
*root
;
58 struct btrfs_dio_data
{
60 u64 unsubmitted_oe_range_start
;
61 u64 unsubmitted_oe_range_end
;
65 static const struct inode_operations btrfs_dir_inode_operations
;
66 static const struct inode_operations btrfs_symlink_inode_operations
;
67 static const struct inode_operations btrfs_special_inode_operations
;
68 static const struct inode_operations btrfs_file_inode_operations
;
69 static const struct address_space_operations btrfs_aops
;
70 static const struct file_operations btrfs_dir_file_operations
;
71 static const struct extent_io_ops btrfs_extent_io_ops
;
73 static struct kmem_cache
*btrfs_inode_cachep
;
74 struct kmem_cache
*btrfs_trans_handle_cachep
;
75 struct kmem_cache
*btrfs_path_cachep
;
76 struct kmem_cache
*btrfs_free_space_cachep
;
77 struct kmem_cache
*btrfs_free_space_bitmap_cachep
;
79 static int btrfs_setsize(struct inode
*inode
, struct iattr
*attr
);
80 static int btrfs_truncate(struct inode
*inode
, bool skip_writeback
);
81 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent
*ordered_extent
);
82 static noinline
int cow_file_range(struct inode
*inode
,
83 struct page
*locked_page
,
84 u64 start
, u64 end
, int *page_started
,
85 unsigned long *nr_written
, int unlock
);
86 static struct extent_map
*create_io_em(struct inode
*inode
, u64 start
, u64 len
,
87 u64 orig_start
, u64 block_start
,
88 u64 block_len
, u64 orig_block_len
,
89 u64 ram_bytes
, int compress_type
,
92 static void __endio_write_update_ordered(struct inode
*inode
,
93 const u64 offset
, const u64 bytes
,
97 * Cleanup all submitted ordered extents in specified range to handle errors
98 * from the btrfs_run_delalloc_range() callback.
100 * NOTE: caller must ensure that when an error happens, it can not call
101 * extent_clear_unlock_delalloc() to clear both the bits EXTENT_DO_ACCOUNTING
102 * and EXTENT_DELALLOC simultaneously, because that causes the reserved metadata
103 * to be released, which we want to happen only when finishing the ordered
104 * extent (btrfs_finish_ordered_io()).
106 static inline void btrfs_cleanup_ordered_extents(struct inode
*inode
,
107 struct page
*locked_page
,
108 u64 offset
, u64 bytes
)
110 unsigned long index
= offset
>> PAGE_SHIFT
;
111 unsigned long end_index
= (offset
+ bytes
- 1) >> PAGE_SHIFT
;
112 u64 page_start
= page_offset(locked_page
);
113 u64 page_end
= page_start
+ PAGE_SIZE
- 1;
117 while (index
<= end_index
) {
118 page
= find_get_page(inode
->i_mapping
, index
);
122 ClearPagePrivate2(page
);
127 * In case this page belongs to the delalloc range being instantiated
128 * then skip it, since the first page of a range is going to be
129 * properly cleaned up by the caller of run_delalloc_range
131 if (page_start
>= offset
&& page_end
<= (offset
+ bytes
- 1)) {
136 return __endio_write_update_ordered(inode
, offset
, bytes
, false);
139 static int btrfs_dirty_inode(struct inode
*inode
);
141 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
142 void btrfs_test_inode_set_ops(struct inode
*inode
)
144 BTRFS_I(inode
)->io_tree
.ops
= &btrfs_extent_io_ops
;
148 static int btrfs_init_inode_security(struct btrfs_trans_handle
*trans
,
149 struct inode
*inode
, struct inode
*dir
,
150 const struct qstr
*qstr
)
154 err
= btrfs_init_acl(trans
, inode
, dir
);
156 err
= btrfs_xattr_security_init(trans
, inode
, dir
, qstr
);
161 * this does all the hard work for inserting an inline extent into
162 * the btree. The caller should have done a btrfs_drop_extents so that
163 * no overlapping inline items exist in the btree
165 static int insert_inline_extent(struct btrfs_trans_handle
*trans
,
166 struct btrfs_path
*path
, int extent_inserted
,
167 struct btrfs_root
*root
, struct inode
*inode
,
168 u64 start
, size_t size
, size_t compressed_size
,
170 struct page
**compressed_pages
)
172 struct extent_buffer
*leaf
;
173 struct page
*page
= NULL
;
176 struct btrfs_file_extent_item
*ei
;
178 size_t cur_size
= size
;
179 unsigned long offset
;
181 ASSERT((compressed_size
> 0 && compressed_pages
) ||
182 (compressed_size
== 0 && !compressed_pages
));
184 if (compressed_size
&& compressed_pages
)
185 cur_size
= compressed_size
;
187 inode_add_bytes(inode
, size
);
189 if (!extent_inserted
) {
190 struct btrfs_key key
;
193 key
.objectid
= btrfs_ino(BTRFS_I(inode
));
195 key
.type
= BTRFS_EXTENT_DATA_KEY
;
197 datasize
= btrfs_file_extent_calc_inline_size(cur_size
);
198 path
->leave_spinning
= 1;
199 ret
= btrfs_insert_empty_item(trans
, root
, path
, &key
,
204 leaf
= path
->nodes
[0];
205 ei
= btrfs_item_ptr(leaf
, path
->slots
[0],
206 struct btrfs_file_extent_item
);
207 btrfs_set_file_extent_generation(leaf
, ei
, trans
->transid
);
208 btrfs_set_file_extent_type(leaf
, ei
, BTRFS_FILE_EXTENT_INLINE
);
209 btrfs_set_file_extent_encryption(leaf
, ei
, 0);
210 btrfs_set_file_extent_other_encoding(leaf
, ei
, 0);
211 btrfs_set_file_extent_ram_bytes(leaf
, ei
, size
);
212 ptr
= btrfs_file_extent_inline_start(ei
);
214 if (compress_type
!= BTRFS_COMPRESS_NONE
) {
217 while (compressed_size
> 0) {
218 cpage
= compressed_pages
[i
];
219 cur_size
= min_t(unsigned long, compressed_size
,
222 kaddr
= kmap_atomic(cpage
);
223 write_extent_buffer(leaf
, kaddr
, ptr
, cur_size
);
224 kunmap_atomic(kaddr
);
228 compressed_size
-= cur_size
;
230 btrfs_set_file_extent_compression(leaf
, ei
,
233 page
= find_get_page(inode
->i_mapping
,
234 start
>> PAGE_SHIFT
);
235 btrfs_set_file_extent_compression(leaf
, ei
, 0);
236 kaddr
= kmap_atomic(page
);
237 offset
= offset_in_page(start
);
238 write_extent_buffer(leaf
, kaddr
+ offset
, ptr
, size
);
239 kunmap_atomic(kaddr
);
242 btrfs_mark_buffer_dirty(leaf
);
243 btrfs_release_path(path
);
246 * We align size to sectorsize for inline extents just for simplicity
249 size
= ALIGN(size
, root
->fs_info
->sectorsize
);
250 ret
= btrfs_inode_set_file_extent_range(BTRFS_I(inode
), start
, size
);
255 * we're an inline extent, so nobody can
256 * extend the file past i_size without locking
257 * a page we already have locked.
259 * We must do any isize and inode updates
260 * before we unlock the pages. Otherwise we
261 * could end up racing with unlink.
263 BTRFS_I(inode
)->disk_i_size
= inode
->i_size
;
264 ret
= btrfs_update_inode(trans
, root
, inode
);
272 * conditionally insert an inline extent into the file. This
273 * does the checks required to make sure the data is small enough
274 * to fit as an inline extent.
276 static noinline
int cow_file_range_inline(struct inode
*inode
, u64 start
,
277 u64 end
, size_t compressed_size
,
279 struct page
**compressed_pages
)
281 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
282 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
283 struct btrfs_trans_handle
*trans
;
284 u64 isize
= i_size_read(inode
);
285 u64 actual_end
= min(end
+ 1, isize
);
286 u64 inline_len
= actual_end
- start
;
287 u64 aligned_end
= ALIGN(end
, fs_info
->sectorsize
);
288 u64 data_len
= inline_len
;
290 struct btrfs_path
*path
;
291 int extent_inserted
= 0;
292 u32 extent_item_size
;
295 data_len
= compressed_size
;
298 actual_end
> fs_info
->sectorsize
||
299 data_len
> BTRFS_MAX_INLINE_DATA_SIZE(fs_info
) ||
301 (actual_end
& (fs_info
->sectorsize
- 1)) == 0) ||
303 data_len
> fs_info
->max_inline
) {
307 path
= btrfs_alloc_path();
311 trans
= btrfs_join_transaction(root
);
313 btrfs_free_path(path
);
314 return PTR_ERR(trans
);
316 trans
->block_rsv
= &BTRFS_I(inode
)->block_rsv
;
318 if (compressed_size
&& compressed_pages
)
319 extent_item_size
= btrfs_file_extent_calc_inline_size(
322 extent_item_size
= btrfs_file_extent_calc_inline_size(
325 ret
= __btrfs_drop_extents(trans
, root
, inode
, path
,
326 start
, aligned_end
, NULL
,
327 1, 1, extent_item_size
, &extent_inserted
);
329 btrfs_abort_transaction(trans
, ret
);
333 if (isize
> actual_end
)
334 inline_len
= min_t(u64
, isize
, actual_end
);
335 ret
= insert_inline_extent(trans
, path
, extent_inserted
,
337 inline_len
, compressed_size
,
338 compress_type
, compressed_pages
);
339 if (ret
&& ret
!= -ENOSPC
) {
340 btrfs_abort_transaction(trans
, ret
);
342 } else if (ret
== -ENOSPC
) {
347 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC
, &BTRFS_I(inode
)->runtime_flags
);
348 btrfs_drop_extent_cache(BTRFS_I(inode
), start
, aligned_end
- 1, 0);
351 * Don't forget to free the reserved space, as for inlined extent
352 * it won't count as data extent, free them directly here.
353 * And at reserve time, it's always aligned to page size, so
354 * just free one page here.
356 btrfs_qgroup_free_data(inode
, NULL
, 0, PAGE_SIZE
);
357 btrfs_free_path(path
);
358 btrfs_end_transaction(trans
);
362 struct async_extent
{
367 unsigned long nr_pages
;
369 struct list_head list
;
374 struct page
*locked_page
;
377 unsigned int write_flags
;
378 struct list_head extents
;
379 struct cgroup_subsys_state
*blkcg_css
;
380 struct btrfs_work work
;
385 /* Number of chunks in flight; must be first in the structure */
387 struct async_chunk chunks
[];
390 static noinline
int add_async_extent(struct async_chunk
*cow
,
391 u64 start
, u64 ram_size
,
394 unsigned long nr_pages
,
397 struct async_extent
*async_extent
;
399 async_extent
= kmalloc(sizeof(*async_extent
), GFP_NOFS
);
400 BUG_ON(!async_extent
); /* -ENOMEM */
401 async_extent
->start
= start
;
402 async_extent
->ram_size
= ram_size
;
403 async_extent
->compressed_size
= compressed_size
;
404 async_extent
->pages
= pages
;
405 async_extent
->nr_pages
= nr_pages
;
406 async_extent
->compress_type
= compress_type
;
407 list_add_tail(&async_extent
->list
, &cow
->extents
);
412 * Check if the inode has flags compatible with compression
414 static inline bool inode_can_compress(struct inode
*inode
)
416 if (BTRFS_I(inode
)->flags
& BTRFS_INODE_NODATACOW
||
417 BTRFS_I(inode
)->flags
& BTRFS_INODE_NODATASUM
)
423 * Check if the inode needs to be submitted to compression, based on mount
424 * options, defragmentation, properties or heuristics.
426 static inline int inode_need_compress(struct inode
*inode
, u64 start
, u64 end
)
428 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
430 if (!inode_can_compress(inode
)) {
431 WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG
),
432 KERN_ERR
"BTRFS: unexpected compression for ino %llu\n",
433 btrfs_ino(BTRFS_I(inode
)));
437 if (btrfs_test_opt(fs_info
, FORCE_COMPRESS
))
440 if (BTRFS_I(inode
)->defrag_compress
)
442 /* bad compression ratios */
443 if (BTRFS_I(inode
)->flags
& BTRFS_INODE_NOCOMPRESS
)
445 if (btrfs_test_opt(fs_info
, COMPRESS
) ||
446 BTRFS_I(inode
)->flags
& BTRFS_INODE_COMPRESS
||
447 BTRFS_I(inode
)->prop_compress
)
448 return btrfs_compress_heuristic(inode
, start
, end
);
452 static inline void inode_should_defrag(struct btrfs_inode
*inode
,
453 u64 start
, u64 end
, u64 num_bytes
, u64 small_write
)
455 /* If this is a small write inside eof, kick off a defrag */
456 if (num_bytes
< small_write
&&
457 (start
> 0 || end
+ 1 < inode
->disk_i_size
))
458 btrfs_add_inode_defrag(NULL
, inode
);
462 * we create compressed extents in two phases. The first
463 * phase compresses a range of pages that have already been
464 * locked (both pages and state bits are locked).
466 * This is done inside an ordered work queue, and the compression
467 * is spread across many cpus. The actual IO submission is step
468 * two, and the ordered work queue takes care of making sure that
469 * happens in the same order things were put onto the queue by
470 * writepages and friends.
472 * If this code finds it can't get good compression, it puts an
473 * entry onto the work queue to write the uncompressed bytes. This
474 * makes sure that both compressed inodes and uncompressed inodes
475 * are written in the same order that the flusher thread sent them
478 static noinline
int compress_file_range(struct async_chunk
*async_chunk
)
480 struct inode
*inode
= async_chunk
->inode
;
481 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
482 u64 blocksize
= fs_info
->sectorsize
;
483 u64 start
= async_chunk
->start
;
484 u64 end
= async_chunk
->end
;
488 struct page
**pages
= NULL
;
489 unsigned long nr_pages
;
490 unsigned long total_compressed
= 0;
491 unsigned long total_in
= 0;
494 int compress_type
= fs_info
->compress_type
;
495 int compressed_extents
= 0;
498 inode_should_defrag(BTRFS_I(inode
), start
, end
, end
- start
+ 1,
502 * We need to save i_size before now because it could change in between
503 * us evaluating the size and assigning it. This is because we lock and
504 * unlock the page in truncate and fallocate, and then modify the i_size
507 * The barriers are to emulate READ_ONCE, remove that once i_size_read
511 i_size
= i_size_read(inode
);
513 actual_end
= min_t(u64
, i_size
, end
+ 1);
516 nr_pages
= (end
>> PAGE_SHIFT
) - (start
>> PAGE_SHIFT
) + 1;
517 BUILD_BUG_ON((BTRFS_MAX_COMPRESSED
% PAGE_SIZE
) != 0);
518 nr_pages
= min_t(unsigned long, nr_pages
,
519 BTRFS_MAX_COMPRESSED
/ PAGE_SIZE
);
522 * we don't want to send crud past the end of i_size through
523 * compression, that's just a waste of CPU time. So, if the
524 * end of the file is before the start of our current
525 * requested range of bytes, we bail out to the uncompressed
526 * cleanup code that can deal with all of this.
528 * It isn't really the fastest way to fix things, but this is a
529 * very uncommon corner.
531 if (actual_end
<= start
)
532 goto cleanup_and_bail_uncompressed
;
534 total_compressed
= actual_end
- start
;
537 * skip compression for a small file range(<=blocksize) that
538 * isn't an inline extent, since it doesn't save disk space at all.
540 if (total_compressed
<= blocksize
&&
541 (start
> 0 || end
+ 1 < BTRFS_I(inode
)->disk_i_size
))
542 goto cleanup_and_bail_uncompressed
;
544 total_compressed
= min_t(unsigned long, total_compressed
,
545 BTRFS_MAX_UNCOMPRESSED
);
550 * we do compression for mount -o compress and when the
551 * inode has not been flagged as nocompress. This flag can
552 * change at any time if we discover bad compression ratios.
554 if (inode_need_compress(inode
, start
, end
)) {
556 pages
= kcalloc(nr_pages
, sizeof(struct page
*), GFP_NOFS
);
558 /* just bail out to the uncompressed code */
563 if (BTRFS_I(inode
)->defrag_compress
)
564 compress_type
= BTRFS_I(inode
)->defrag_compress
;
565 else if (BTRFS_I(inode
)->prop_compress
)
566 compress_type
= BTRFS_I(inode
)->prop_compress
;
569 * we need to call clear_page_dirty_for_io on each
570 * page in the range. Otherwise applications with the file
571 * mmap'd can wander in and change the page contents while
572 * we are compressing them.
574 * If the compression fails for any reason, we set the pages
575 * dirty again later on.
577 * Note that the remaining part is redirtied, the start pointer
578 * has moved, the end is the original one.
581 extent_range_clear_dirty_for_io(inode
, start
, end
);
585 /* Compression level is applied here and only here */
586 ret
= btrfs_compress_pages(
587 compress_type
| (fs_info
->compress_level
<< 4),
588 inode
->i_mapping
, start
,
595 unsigned long offset
= offset_in_page(total_compressed
);
596 struct page
*page
= pages
[nr_pages
- 1];
599 /* zero the tail end of the last page, we might be
600 * sending it down to disk
603 kaddr
= kmap_atomic(page
);
604 memset(kaddr
+ offset
, 0,
606 kunmap_atomic(kaddr
);
613 /* lets try to make an inline extent */
614 if (ret
|| total_in
< actual_end
) {
615 /* we didn't compress the entire range, try
616 * to make an uncompressed inline extent.
618 ret
= cow_file_range_inline(inode
, start
, end
, 0,
619 BTRFS_COMPRESS_NONE
, NULL
);
621 /* try making a compressed inline extent */
622 ret
= cow_file_range_inline(inode
, start
, end
,
624 compress_type
, pages
);
627 unsigned long clear_flags
= EXTENT_DELALLOC
|
628 EXTENT_DELALLOC_NEW
| EXTENT_DEFRAG
|
629 EXTENT_DO_ACCOUNTING
;
630 unsigned long page_error_op
;
632 page_error_op
= ret
< 0 ? PAGE_SET_ERROR
: 0;
635 * inline extent creation worked or returned error,
636 * we don't need to create any more async work items.
637 * Unlock and free up our temp pages.
639 * We use DO_ACCOUNTING here because we need the
640 * delalloc_release_metadata to be done _after_ we drop
641 * our outstanding extent for clearing delalloc for this
644 extent_clear_unlock_delalloc(inode
, start
, end
, NULL
,
652 for (i
= 0; i
< nr_pages
; i
++) {
653 WARN_ON(pages
[i
]->mapping
);
664 * we aren't doing an inline extent round the compressed size
665 * up to a block size boundary so the allocator does sane
668 total_compressed
= ALIGN(total_compressed
, blocksize
);
671 * one last check to make sure the compression is really a
672 * win, compare the page count read with the blocks on disk,
673 * compression must free at least one sector size
675 total_in
= ALIGN(total_in
, PAGE_SIZE
);
676 if (total_compressed
+ blocksize
<= total_in
) {
677 compressed_extents
++;
680 * The async work queues will take care of doing actual
681 * allocation on disk for these compressed pages, and
682 * will submit them to the elevator.
684 add_async_extent(async_chunk
, start
, total_in
,
685 total_compressed
, pages
, nr_pages
,
688 if (start
+ total_in
< end
) {
694 return compressed_extents
;
699 * the compression code ran but failed to make things smaller,
700 * free any pages it allocated and our page pointer array
702 for (i
= 0; i
< nr_pages
; i
++) {
703 WARN_ON(pages
[i
]->mapping
);
708 total_compressed
= 0;
711 /* flag the file so we don't compress in the future */
712 if (!btrfs_test_opt(fs_info
, FORCE_COMPRESS
) &&
713 !(BTRFS_I(inode
)->prop_compress
)) {
714 BTRFS_I(inode
)->flags
|= BTRFS_INODE_NOCOMPRESS
;
717 cleanup_and_bail_uncompressed
:
719 * No compression, but we still need to write the pages in the file
720 * we've been given so far. redirty the locked page if it corresponds
721 * to our extent and set things up for the async work queue to run
722 * cow_file_range to do the normal delalloc dance.
724 if (async_chunk
->locked_page
&&
725 (page_offset(async_chunk
->locked_page
) >= start
&&
726 page_offset(async_chunk
->locked_page
)) <= end
) {
727 __set_page_dirty_nobuffers(async_chunk
->locked_page
);
728 /* unlocked later on in the async handlers */
732 extent_range_redirty_for_io(inode
, start
, end
);
733 add_async_extent(async_chunk
, start
, end
- start
+ 1, 0, NULL
, 0,
734 BTRFS_COMPRESS_NONE
);
735 compressed_extents
++;
737 return compressed_extents
;
740 static void free_async_extent_pages(struct async_extent
*async_extent
)
744 if (!async_extent
->pages
)
747 for (i
= 0; i
< async_extent
->nr_pages
; i
++) {
748 WARN_ON(async_extent
->pages
[i
]->mapping
);
749 put_page(async_extent
->pages
[i
]);
751 kfree(async_extent
->pages
);
752 async_extent
->nr_pages
= 0;
753 async_extent
->pages
= NULL
;
757 * phase two of compressed writeback. This is the ordered portion
758 * of the code, which only gets called in the order the work was
759 * queued. We walk all the async extents created by compress_file_range
760 * and send them down to the disk.
762 static noinline
void submit_compressed_extents(struct async_chunk
*async_chunk
)
764 struct inode
*inode
= async_chunk
->inode
;
765 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
766 struct async_extent
*async_extent
;
768 struct btrfs_key ins
;
769 struct extent_map
*em
;
770 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
771 struct extent_io_tree
*io_tree
= &BTRFS_I(inode
)->io_tree
;
775 while (!list_empty(&async_chunk
->extents
)) {
776 async_extent
= list_entry(async_chunk
->extents
.next
,
777 struct async_extent
, list
);
778 list_del(&async_extent
->list
);
781 lock_extent(io_tree
, async_extent
->start
,
782 async_extent
->start
+ async_extent
->ram_size
- 1);
783 /* did the compression code fall back to uncompressed IO? */
784 if (!async_extent
->pages
) {
785 int page_started
= 0;
786 unsigned long nr_written
= 0;
788 /* allocate blocks */
789 ret
= cow_file_range(inode
, async_chunk
->locked_page
,
791 async_extent
->start
+
792 async_extent
->ram_size
- 1,
793 &page_started
, &nr_written
, 0);
798 * if page_started, cow_file_range inserted an
799 * inline extent and took care of all the unlocking
800 * and IO for us. Otherwise, we need to submit
801 * all those pages down to the drive.
803 if (!page_started
&& !ret
)
804 extent_write_locked_range(inode
,
806 async_extent
->start
+
807 async_extent
->ram_size
- 1,
809 else if (ret
&& async_chunk
->locked_page
)
810 unlock_page(async_chunk
->locked_page
);
816 ret
= btrfs_reserve_extent(root
, async_extent
->ram_size
,
817 async_extent
->compressed_size
,
818 async_extent
->compressed_size
,
819 0, alloc_hint
, &ins
, 1, 1);
821 free_async_extent_pages(async_extent
);
823 if (ret
== -ENOSPC
) {
824 unlock_extent(io_tree
, async_extent
->start
,
825 async_extent
->start
+
826 async_extent
->ram_size
- 1);
829 * we need to redirty the pages if we decide to
830 * fallback to uncompressed IO, otherwise we
831 * will not submit these pages down to lower
834 extent_range_redirty_for_io(inode
,
836 async_extent
->start
+
837 async_extent
->ram_size
- 1);
844 * here we're doing allocation and writeback of the
847 em
= create_io_em(inode
, async_extent
->start
,
848 async_extent
->ram_size
, /* len */
849 async_extent
->start
, /* orig_start */
850 ins
.objectid
, /* block_start */
851 ins
.offset
, /* block_len */
852 ins
.offset
, /* orig_block_len */
853 async_extent
->ram_size
, /* ram_bytes */
854 async_extent
->compress_type
,
855 BTRFS_ORDERED_COMPRESSED
);
857 /* ret value is not necessary due to void function */
858 goto out_free_reserve
;
861 ret
= btrfs_add_ordered_extent_compress(inode
,
864 async_extent
->ram_size
,
866 BTRFS_ORDERED_COMPRESSED
,
867 async_extent
->compress_type
);
869 btrfs_drop_extent_cache(BTRFS_I(inode
),
871 async_extent
->start
+
872 async_extent
->ram_size
- 1, 0);
873 goto out_free_reserve
;
875 btrfs_dec_block_group_reservations(fs_info
, ins
.objectid
);
878 * clear dirty, set writeback and unlock the pages.
880 extent_clear_unlock_delalloc(inode
, async_extent
->start
,
881 async_extent
->start
+
882 async_extent
->ram_size
- 1,
883 NULL
, EXTENT_LOCKED
| EXTENT_DELALLOC
,
884 PAGE_UNLOCK
| PAGE_CLEAR_DIRTY
|
886 if (btrfs_submit_compressed_write(inode
,
888 async_extent
->ram_size
,
890 ins
.offset
, async_extent
->pages
,
891 async_extent
->nr_pages
,
892 async_chunk
->write_flags
,
893 async_chunk
->blkcg_css
)) {
894 struct page
*p
= async_extent
->pages
[0];
895 const u64 start
= async_extent
->start
;
896 const u64 end
= start
+ async_extent
->ram_size
- 1;
898 p
->mapping
= inode
->i_mapping
;
899 btrfs_writepage_endio_finish_ordered(p
, start
, end
, 0);
902 extent_clear_unlock_delalloc(inode
, start
, end
,
906 free_async_extent_pages(async_extent
);
908 alloc_hint
= ins
.objectid
+ ins
.offset
;
914 btrfs_dec_block_group_reservations(fs_info
, ins
.objectid
);
915 btrfs_free_reserved_extent(fs_info
, ins
.objectid
, ins
.offset
, 1);
917 extent_clear_unlock_delalloc(inode
, async_extent
->start
,
918 async_extent
->start
+
919 async_extent
->ram_size
- 1,
920 NULL
, EXTENT_LOCKED
| EXTENT_DELALLOC
|
921 EXTENT_DELALLOC_NEW
|
922 EXTENT_DEFRAG
| EXTENT_DO_ACCOUNTING
,
923 PAGE_UNLOCK
| PAGE_CLEAR_DIRTY
|
924 PAGE_SET_WRITEBACK
| PAGE_END_WRITEBACK
|
926 free_async_extent_pages(async_extent
);
931 static u64
get_extent_allocation_hint(struct inode
*inode
, u64 start
,
934 struct extent_map_tree
*em_tree
= &BTRFS_I(inode
)->extent_tree
;
935 struct extent_map
*em
;
938 read_lock(&em_tree
->lock
);
939 em
= search_extent_mapping(em_tree
, start
, num_bytes
);
942 * if block start isn't an actual block number then find the
943 * first block in this inode and use that as a hint. If that
944 * block is also bogus then just don't worry about it.
946 if (em
->block_start
>= EXTENT_MAP_LAST_BYTE
) {
948 em
= search_extent_mapping(em_tree
, 0, 0);
949 if (em
&& em
->block_start
< EXTENT_MAP_LAST_BYTE
)
950 alloc_hint
= em
->block_start
;
954 alloc_hint
= em
->block_start
;
958 read_unlock(&em_tree
->lock
);
964 * when extent_io.c finds a delayed allocation range in the file,
965 * the call backs end up in this code. The basic idea is to
966 * allocate extents on disk for the range, and create ordered data structs
967 * in ram to track those extents.
969 * locked_page is the page that writepage had locked already. We use
970 * it to make sure we don't do extra locks or unlocks.
972 * *page_started is set to one if we unlock locked_page and do everything
973 * required to start IO on it. It may be clean and already done with
976 static noinline
int cow_file_range(struct inode
*inode
,
977 struct page
*locked_page
,
978 u64 start
, u64 end
, int *page_started
,
979 unsigned long *nr_written
, int unlock
)
981 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
982 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
985 unsigned long ram_size
;
986 u64 cur_alloc_size
= 0;
987 u64 blocksize
= fs_info
->sectorsize
;
988 struct btrfs_key ins
;
989 struct extent_map
*em
;
991 unsigned long page_ops
;
992 bool extent_reserved
= false;
995 if (btrfs_is_free_space_inode(BTRFS_I(inode
))) {
1001 num_bytes
= ALIGN(end
- start
+ 1, blocksize
);
1002 num_bytes
= max(blocksize
, num_bytes
);
1003 ASSERT(num_bytes
<= btrfs_super_total_bytes(fs_info
->super_copy
));
1005 inode_should_defrag(BTRFS_I(inode
), start
, end
, num_bytes
, SZ_64K
);
1008 /* lets try to make an inline extent */
1009 ret
= cow_file_range_inline(inode
, start
, end
, 0,
1010 BTRFS_COMPRESS_NONE
, NULL
);
1013 * We use DO_ACCOUNTING here because we need the
1014 * delalloc_release_metadata to be run _after_ we drop
1015 * our outstanding extent for clearing delalloc for this
1018 extent_clear_unlock_delalloc(inode
, start
, end
, NULL
,
1019 EXTENT_LOCKED
| EXTENT_DELALLOC
|
1020 EXTENT_DELALLOC_NEW
| EXTENT_DEFRAG
|
1021 EXTENT_DO_ACCOUNTING
, PAGE_UNLOCK
|
1022 PAGE_CLEAR_DIRTY
| PAGE_SET_WRITEBACK
|
1023 PAGE_END_WRITEBACK
);
1024 *nr_written
= *nr_written
+
1025 (end
- start
+ PAGE_SIZE
) / PAGE_SIZE
;
1028 } else if (ret
< 0) {
1033 alloc_hint
= get_extent_allocation_hint(inode
, start
, num_bytes
);
1034 btrfs_drop_extent_cache(BTRFS_I(inode
), start
,
1035 start
+ num_bytes
- 1, 0);
1037 while (num_bytes
> 0) {
1038 cur_alloc_size
= num_bytes
;
1039 ret
= btrfs_reserve_extent(root
, cur_alloc_size
, cur_alloc_size
,
1040 fs_info
->sectorsize
, 0, alloc_hint
,
1044 cur_alloc_size
= ins
.offset
;
1045 extent_reserved
= true;
1047 ram_size
= ins
.offset
;
1048 em
= create_io_em(inode
, start
, ins
.offset
, /* len */
1049 start
, /* orig_start */
1050 ins
.objectid
, /* block_start */
1051 ins
.offset
, /* block_len */
1052 ins
.offset
, /* orig_block_len */
1053 ram_size
, /* ram_bytes */
1054 BTRFS_COMPRESS_NONE
, /* compress_type */
1055 BTRFS_ORDERED_REGULAR
/* type */);
1060 free_extent_map(em
);
1062 ret
= btrfs_add_ordered_extent(inode
, start
, ins
.objectid
,
1063 ram_size
, cur_alloc_size
, 0);
1065 goto out_drop_extent_cache
;
1067 if (root
->root_key
.objectid
==
1068 BTRFS_DATA_RELOC_TREE_OBJECTID
) {
1069 ret
= btrfs_reloc_clone_csums(inode
, start
,
1072 * Only drop cache here, and process as normal.
1074 * We must not allow extent_clear_unlock_delalloc()
1075 * at out_unlock label to free meta of this ordered
1076 * extent, as its meta should be freed by
1077 * btrfs_finish_ordered_io().
1079 * So we must continue until @start is increased to
1080 * skip current ordered extent.
1083 btrfs_drop_extent_cache(BTRFS_I(inode
), start
,
1084 start
+ ram_size
- 1, 0);
1087 btrfs_dec_block_group_reservations(fs_info
, ins
.objectid
);
1089 /* we're not doing compressed IO, don't unlock the first
1090 * page (which the caller expects to stay locked), don't
1091 * clear any dirty bits and don't set any writeback bits
1093 * Do set the Private2 bit so we know this page was properly
1094 * setup for writepage
1096 page_ops
= unlock
? PAGE_UNLOCK
: 0;
1097 page_ops
|= PAGE_SET_PRIVATE2
;
1099 extent_clear_unlock_delalloc(inode
, start
,
1100 start
+ ram_size
- 1,
1102 EXTENT_LOCKED
| EXTENT_DELALLOC
,
1104 if (num_bytes
< cur_alloc_size
)
1107 num_bytes
-= cur_alloc_size
;
1108 alloc_hint
= ins
.objectid
+ ins
.offset
;
1109 start
+= cur_alloc_size
;
1110 extent_reserved
= false;
1113 * btrfs_reloc_clone_csums() error, since start is increased
1114 * extent_clear_unlock_delalloc() at out_unlock label won't
1115 * free metadata of current ordered extent, we're OK to exit.
1123 out_drop_extent_cache
:
1124 btrfs_drop_extent_cache(BTRFS_I(inode
), start
, start
+ ram_size
- 1, 0);
1126 btrfs_dec_block_group_reservations(fs_info
, ins
.objectid
);
1127 btrfs_free_reserved_extent(fs_info
, ins
.objectid
, ins
.offset
, 1);
1129 clear_bits
= EXTENT_LOCKED
| EXTENT_DELALLOC
| EXTENT_DELALLOC_NEW
|
1130 EXTENT_DEFRAG
| EXTENT_CLEAR_META_RESV
;
1131 page_ops
= PAGE_UNLOCK
| PAGE_CLEAR_DIRTY
| PAGE_SET_WRITEBACK
|
1134 * If we reserved an extent for our delalloc range (or a subrange) and
1135 * failed to create the respective ordered extent, then it means that
1136 * when we reserved the extent we decremented the extent's size from
1137 * the data space_info's bytes_may_use counter and incremented the
1138 * space_info's bytes_reserved counter by the same amount. We must make
1139 * sure extent_clear_unlock_delalloc() does not try to decrement again
1140 * the data space_info's bytes_may_use counter, therefore we do not pass
1141 * it the flag EXTENT_CLEAR_DATA_RESV.
1143 if (extent_reserved
) {
1144 extent_clear_unlock_delalloc(inode
, start
,
1145 start
+ cur_alloc_size
,
1149 start
+= cur_alloc_size
;
1153 extent_clear_unlock_delalloc(inode
, start
, end
, locked_page
,
1154 clear_bits
| EXTENT_CLEAR_DATA_RESV
,
1160 * work queue call back to started compression on a file and pages
1162 static noinline
void async_cow_start(struct btrfs_work
*work
)
1164 struct async_chunk
*async_chunk
;
1165 int compressed_extents
;
1167 async_chunk
= container_of(work
, struct async_chunk
, work
);
1169 compressed_extents
= compress_file_range(async_chunk
);
1170 if (compressed_extents
== 0) {
1171 btrfs_add_delayed_iput(async_chunk
->inode
);
1172 async_chunk
->inode
= NULL
;
1177 * work queue call back to submit previously compressed pages
1179 static noinline
void async_cow_submit(struct btrfs_work
*work
)
1181 struct async_chunk
*async_chunk
= container_of(work
, struct async_chunk
,
1183 struct btrfs_fs_info
*fs_info
= btrfs_work_owner(work
);
1184 unsigned long nr_pages
;
1186 nr_pages
= (async_chunk
->end
- async_chunk
->start
+ PAGE_SIZE
) >>
1189 /* atomic_sub_return implies a barrier */
1190 if (atomic_sub_return(nr_pages
, &fs_info
->async_delalloc_pages
) <
1192 cond_wake_up_nomb(&fs_info
->async_submit_wait
);
1195 * ->inode could be NULL if async_chunk_start has failed to compress,
1196 * in which case we don't have anything to submit, yet we need to
1197 * always adjust ->async_delalloc_pages as its paired with the init
1198 * happening in cow_file_range_async
1200 if (async_chunk
->inode
)
1201 submit_compressed_extents(async_chunk
);
1204 static noinline
void async_cow_free(struct btrfs_work
*work
)
1206 struct async_chunk
*async_chunk
;
1208 async_chunk
= container_of(work
, struct async_chunk
, work
);
1209 if (async_chunk
->inode
)
1210 btrfs_add_delayed_iput(async_chunk
->inode
);
1211 if (async_chunk
->blkcg_css
)
1212 css_put(async_chunk
->blkcg_css
);
1214 * Since the pointer to 'pending' is at the beginning of the array of
1215 * async_chunk's, freeing it ensures the whole array has been freed.
1217 if (atomic_dec_and_test(async_chunk
->pending
))
1218 kvfree(async_chunk
->pending
);
1221 static int cow_file_range_async(struct inode
*inode
,
1222 struct writeback_control
*wbc
,
1223 struct page
*locked_page
,
1224 u64 start
, u64 end
, int *page_started
,
1225 unsigned long *nr_written
)
1227 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
1228 struct cgroup_subsys_state
*blkcg_css
= wbc_blkcg_css(wbc
);
1229 struct async_cow
*ctx
;
1230 struct async_chunk
*async_chunk
;
1231 unsigned long nr_pages
;
1233 u64 num_chunks
= DIV_ROUND_UP(end
- start
, SZ_512K
);
1235 bool should_compress
;
1237 const unsigned int write_flags
= wbc_to_write_flags(wbc
);
1239 unlock_extent(&BTRFS_I(inode
)->io_tree
, start
, end
);
1241 if (BTRFS_I(inode
)->flags
& BTRFS_INODE_NOCOMPRESS
&&
1242 !btrfs_test_opt(fs_info
, FORCE_COMPRESS
)) {
1244 should_compress
= false;
1246 should_compress
= true;
1249 nofs_flag
= memalloc_nofs_save();
1250 ctx
= kvmalloc(struct_size(ctx
, chunks
, num_chunks
), GFP_KERNEL
);
1251 memalloc_nofs_restore(nofs_flag
);
1254 unsigned clear_bits
= EXTENT_LOCKED
| EXTENT_DELALLOC
|
1255 EXTENT_DELALLOC_NEW
| EXTENT_DEFRAG
|
1256 EXTENT_DO_ACCOUNTING
;
1257 unsigned long page_ops
= PAGE_UNLOCK
| PAGE_CLEAR_DIRTY
|
1258 PAGE_SET_WRITEBACK
| PAGE_END_WRITEBACK
|
1261 extent_clear_unlock_delalloc(inode
, start
, end
, locked_page
,
1262 clear_bits
, page_ops
);
1266 async_chunk
= ctx
->chunks
;
1267 atomic_set(&ctx
->num_chunks
, num_chunks
);
1269 for (i
= 0; i
< num_chunks
; i
++) {
1270 if (should_compress
)
1271 cur_end
= min(end
, start
+ SZ_512K
- 1);
1276 * igrab is called higher up in the call chain, take only the
1277 * lightweight reference for the callback lifetime
1280 async_chunk
[i
].pending
= &ctx
->num_chunks
;
1281 async_chunk
[i
].inode
= inode
;
1282 async_chunk
[i
].start
= start
;
1283 async_chunk
[i
].end
= cur_end
;
1284 async_chunk
[i
].write_flags
= write_flags
;
1285 INIT_LIST_HEAD(&async_chunk
[i
].extents
);
1288 * The locked_page comes all the way from writepage and its
1289 * the original page we were actually given. As we spread
1290 * this large delalloc region across multiple async_chunk
1291 * structs, only the first struct needs a pointer to locked_page
1293 * This way we don't need racey decisions about who is supposed
1298 * Depending on the compressibility, the pages might or
1299 * might not go through async. We want all of them to
1300 * be accounted against wbc once. Let's do it here
1301 * before the paths diverge. wbc accounting is used
1302 * only for foreign writeback detection and doesn't
1303 * need full accuracy. Just account the whole thing
1304 * against the first page.
1306 wbc_account_cgroup_owner(wbc
, locked_page
,
1308 async_chunk
[i
].locked_page
= locked_page
;
1311 async_chunk
[i
].locked_page
= NULL
;
1314 if (blkcg_css
!= blkcg_root_css
) {
1316 async_chunk
[i
].blkcg_css
= blkcg_css
;
1318 async_chunk
[i
].blkcg_css
= NULL
;
1321 btrfs_init_work(&async_chunk
[i
].work
, async_cow_start
,
1322 async_cow_submit
, async_cow_free
);
1324 nr_pages
= DIV_ROUND_UP(cur_end
- start
, PAGE_SIZE
);
1325 atomic_add(nr_pages
, &fs_info
->async_delalloc_pages
);
1327 btrfs_queue_work(fs_info
->delalloc_workers
, &async_chunk
[i
].work
);
1329 *nr_written
+= nr_pages
;
1330 start
= cur_end
+ 1;
1336 static noinline
int csum_exist_in_range(struct btrfs_fs_info
*fs_info
,
1337 u64 bytenr
, u64 num_bytes
)
1340 struct btrfs_ordered_sum
*sums
;
1343 ret
= btrfs_lookup_csums_range(fs_info
->csum_root
, bytenr
,
1344 bytenr
+ num_bytes
- 1, &list
, 0);
1345 if (ret
== 0 && list_empty(&list
))
1348 while (!list_empty(&list
)) {
1349 sums
= list_entry(list
.next
, struct btrfs_ordered_sum
, list
);
1350 list_del(&sums
->list
);
1359 * when nowcow writeback call back. This checks for snapshots or COW copies
1360 * of the extents that exist in the file, and COWs the file as required.
1362 * If no cow copies or snapshots exist, we write directly to the existing
1365 static noinline
int run_delalloc_nocow(struct inode
*inode
,
1366 struct page
*locked_page
,
1367 const u64 start
, const u64 end
,
1368 int *page_started
, int force
,
1369 unsigned long *nr_written
)
1371 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
1372 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1373 struct btrfs_path
*path
;
1374 u64 cow_start
= (u64
)-1;
1375 u64 cur_offset
= start
;
1377 bool check_prev
= true;
1378 const bool freespace_inode
= btrfs_is_free_space_inode(BTRFS_I(inode
));
1379 u64 ino
= btrfs_ino(BTRFS_I(inode
));
1381 u64 disk_bytenr
= 0;
1383 path
= btrfs_alloc_path();
1385 extent_clear_unlock_delalloc(inode
, start
, end
, locked_page
,
1386 EXTENT_LOCKED
| EXTENT_DELALLOC
|
1387 EXTENT_DO_ACCOUNTING
|
1388 EXTENT_DEFRAG
, PAGE_UNLOCK
|
1390 PAGE_SET_WRITEBACK
|
1391 PAGE_END_WRITEBACK
);
1396 struct btrfs_key found_key
;
1397 struct btrfs_file_extent_item
*fi
;
1398 struct extent_buffer
*leaf
;
1408 ret
= btrfs_lookup_file_extent(NULL
, root
, path
, ino
,
1414 * If there is no extent for our range when doing the initial
1415 * search, then go back to the previous slot as it will be the
1416 * one containing the search offset
1418 if (ret
> 0 && path
->slots
[0] > 0 && check_prev
) {
1419 leaf
= path
->nodes
[0];
1420 btrfs_item_key_to_cpu(leaf
, &found_key
,
1421 path
->slots
[0] - 1);
1422 if (found_key
.objectid
== ino
&&
1423 found_key
.type
== BTRFS_EXTENT_DATA_KEY
)
1428 /* Go to next leaf if we have exhausted the current one */
1429 leaf
= path
->nodes
[0];
1430 if (path
->slots
[0] >= btrfs_header_nritems(leaf
)) {
1431 ret
= btrfs_next_leaf(root
, path
);
1433 if (cow_start
!= (u64
)-1)
1434 cur_offset
= cow_start
;
1439 leaf
= path
->nodes
[0];
1442 btrfs_item_key_to_cpu(leaf
, &found_key
, path
->slots
[0]);
1444 /* Didn't find anything for our INO */
1445 if (found_key
.objectid
> ino
)
1448 * Keep searching until we find an EXTENT_ITEM or there are no
1449 * more extents for this inode
1451 if (WARN_ON_ONCE(found_key
.objectid
< ino
) ||
1452 found_key
.type
< BTRFS_EXTENT_DATA_KEY
) {
1457 /* Found key is not EXTENT_DATA_KEY or starts after req range */
1458 if (found_key
.type
> BTRFS_EXTENT_DATA_KEY
||
1459 found_key
.offset
> end
)
1463 * If the found extent starts after requested offset, then
1464 * adjust extent_end to be right before this extent begins
1466 if (found_key
.offset
> cur_offset
) {
1467 extent_end
= found_key
.offset
;
1473 * Found extent which begins before our range and potentially
1476 fi
= btrfs_item_ptr(leaf
, path
->slots
[0],
1477 struct btrfs_file_extent_item
);
1478 extent_type
= btrfs_file_extent_type(leaf
, fi
);
1480 ram_bytes
= btrfs_file_extent_ram_bytes(leaf
, fi
);
1481 if (extent_type
== BTRFS_FILE_EXTENT_REG
||
1482 extent_type
== BTRFS_FILE_EXTENT_PREALLOC
) {
1483 disk_bytenr
= btrfs_file_extent_disk_bytenr(leaf
, fi
);
1484 extent_offset
= btrfs_file_extent_offset(leaf
, fi
);
1485 extent_end
= found_key
.offset
+
1486 btrfs_file_extent_num_bytes(leaf
, fi
);
1488 btrfs_file_extent_disk_num_bytes(leaf
, fi
);
1490 * If the extent we got ends before our current offset,
1491 * skip to the next extent.
1493 if (extent_end
<= cur_offset
) {
1498 if (disk_bytenr
== 0)
1500 /* Skip compressed/encrypted/encoded extents */
1501 if (btrfs_file_extent_compression(leaf
, fi
) ||
1502 btrfs_file_extent_encryption(leaf
, fi
) ||
1503 btrfs_file_extent_other_encoding(leaf
, fi
))
1506 * If extent is created before the last volume's snapshot
1507 * this implies the extent is shared, hence we can't do
1508 * nocow. This is the same check as in
1509 * btrfs_cross_ref_exist but without calling
1510 * btrfs_search_slot.
1512 if (!freespace_inode
&&
1513 btrfs_file_extent_generation(leaf
, fi
) <=
1514 btrfs_root_last_snapshot(&root
->root_item
))
1516 if (extent_type
== BTRFS_FILE_EXTENT_REG
&& !force
)
1518 /* If extent is RO, we must COW it */
1519 if (btrfs_extent_readonly(fs_info
, disk_bytenr
))
1521 ret
= btrfs_cross_ref_exist(root
, ino
,
1523 extent_offset
, disk_bytenr
);
1526 * ret could be -EIO if the above fails to read
1530 if (cow_start
!= (u64
)-1)
1531 cur_offset
= cow_start
;
1535 WARN_ON_ONCE(freespace_inode
);
1538 disk_bytenr
+= extent_offset
;
1539 disk_bytenr
+= cur_offset
- found_key
.offset
;
1540 num_bytes
= min(end
+ 1, extent_end
) - cur_offset
;
1542 * If there are pending snapshots for this root, we
1543 * fall into common COW way
1545 if (!freespace_inode
&& atomic_read(&root
->snapshot_force_cow
))
1548 * force cow if csum exists in the range.
1549 * this ensure that csum for a given extent are
1550 * either valid or do not exist.
1552 ret
= csum_exist_in_range(fs_info
, disk_bytenr
,
1556 * ret could be -EIO if the above fails to read
1560 if (cow_start
!= (u64
)-1)
1561 cur_offset
= cow_start
;
1564 WARN_ON_ONCE(freespace_inode
);
1567 if (!btrfs_inc_nocow_writers(fs_info
, disk_bytenr
))
1570 } else if (extent_type
== BTRFS_FILE_EXTENT_INLINE
) {
1571 extent_end
= found_key
.offset
+ ram_bytes
;
1572 extent_end
= ALIGN(extent_end
, fs_info
->sectorsize
);
1573 /* Skip extents outside of our requested range */
1574 if (extent_end
<= start
) {
1579 /* If this triggers then we have a memory corruption */
1584 * If nocow is false then record the beginning of the range
1585 * that needs to be COWed
1588 if (cow_start
== (u64
)-1)
1589 cow_start
= cur_offset
;
1590 cur_offset
= extent_end
;
1591 if (cur_offset
> end
)
1597 btrfs_release_path(path
);
1600 * COW range from cow_start to found_key.offset - 1. As the key
1601 * will contain the beginning of the first extent that can be
1602 * NOCOW, following one which needs to be COW'ed
1604 if (cow_start
!= (u64
)-1) {
1605 ret
= cow_file_range(inode
, locked_page
,
1606 cow_start
, found_key
.offset
- 1,
1607 page_started
, nr_written
, 1);
1610 btrfs_dec_nocow_writers(fs_info
,
1614 cow_start
= (u64
)-1;
1617 if (extent_type
== BTRFS_FILE_EXTENT_PREALLOC
) {
1618 u64 orig_start
= found_key
.offset
- extent_offset
;
1619 struct extent_map
*em
;
1621 em
= create_io_em(inode
, cur_offset
, num_bytes
,
1623 disk_bytenr
, /* block_start */
1624 num_bytes
, /* block_len */
1625 disk_num_bytes
, /* orig_block_len */
1626 ram_bytes
, BTRFS_COMPRESS_NONE
,
1627 BTRFS_ORDERED_PREALLOC
);
1630 btrfs_dec_nocow_writers(fs_info
,
1635 free_extent_map(em
);
1636 ret
= btrfs_add_ordered_extent(inode
, cur_offset
,
1637 disk_bytenr
, num_bytes
,
1639 BTRFS_ORDERED_PREALLOC
);
1641 btrfs_drop_extent_cache(BTRFS_I(inode
),
1643 cur_offset
+ num_bytes
- 1,
1648 ret
= btrfs_add_ordered_extent(inode
, cur_offset
,
1649 disk_bytenr
, num_bytes
,
1651 BTRFS_ORDERED_NOCOW
);
1657 btrfs_dec_nocow_writers(fs_info
, disk_bytenr
);
1660 if (root
->root_key
.objectid
==
1661 BTRFS_DATA_RELOC_TREE_OBJECTID
)
1663 * Error handled later, as we must prevent
1664 * extent_clear_unlock_delalloc() in error handler
1665 * from freeing metadata of created ordered extent.
1667 ret
= btrfs_reloc_clone_csums(inode
, cur_offset
,
1670 extent_clear_unlock_delalloc(inode
, cur_offset
,
1671 cur_offset
+ num_bytes
- 1,
1672 locked_page
, EXTENT_LOCKED
|
1674 EXTENT_CLEAR_DATA_RESV
,
1675 PAGE_UNLOCK
| PAGE_SET_PRIVATE2
);
1677 cur_offset
= extent_end
;
1680 * btrfs_reloc_clone_csums() error, now we're OK to call error
1681 * handler, as metadata for created ordered extent will only
1682 * be freed by btrfs_finish_ordered_io().
1686 if (cur_offset
> end
)
1689 btrfs_release_path(path
);
1691 if (cur_offset
<= end
&& cow_start
== (u64
)-1)
1692 cow_start
= cur_offset
;
1694 if (cow_start
!= (u64
)-1) {
1696 ret
= cow_file_range(inode
, locked_page
, cow_start
, end
,
1697 page_started
, nr_written
, 1);
1704 btrfs_dec_nocow_writers(fs_info
, disk_bytenr
);
1706 if (ret
&& cur_offset
< end
)
1707 extent_clear_unlock_delalloc(inode
, cur_offset
, end
,
1708 locked_page
, EXTENT_LOCKED
|
1709 EXTENT_DELALLOC
| EXTENT_DEFRAG
|
1710 EXTENT_DO_ACCOUNTING
, PAGE_UNLOCK
|
1712 PAGE_SET_WRITEBACK
|
1713 PAGE_END_WRITEBACK
);
1714 btrfs_free_path(path
);
1718 static inline int need_force_cow(struct inode
*inode
, u64 start
, u64 end
)
1721 if (!(BTRFS_I(inode
)->flags
& BTRFS_INODE_NODATACOW
) &&
1722 !(BTRFS_I(inode
)->flags
& BTRFS_INODE_PREALLOC
))
1726 * @defrag_bytes is a hint value, no spinlock held here,
1727 * if is not zero, it means the file is defragging.
1728 * Force cow if given extent needs to be defragged.
1730 if (BTRFS_I(inode
)->defrag_bytes
&&
1731 test_range_bit(&BTRFS_I(inode
)->io_tree
, start
, end
,
1732 EXTENT_DEFRAG
, 0, NULL
))
1739 * Function to process delayed allocation (create CoW) for ranges which are
1740 * being touched for the first time.
1742 int btrfs_run_delalloc_range(struct inode
*inode
, struct page
*locked_page
,
1743 u64 start
, u64 end
, int *page_started
, unsigned long *nr_written
,
1744 struct writeback_control
*wbc
)
1747 int force_cow
= need_force_cow(inode
, start
, end
);
1749 if (BTRFS_I(inode
)->flags
& BTRFS_INODE_NODATACOW
&& !force_cow
) {
1750 ret
= run_delalloc_nocow(inode
, locked_page
, start
, end
,
1751 page_started
, 1, nr_written
);
1752 } else if (BTRFS_I(inode
)->flags
& BTRFS_INODE_PREALLOC
&& !force_cow
) {
1753 ret
= run_delalloc_nocow(inode
, locked_page
, start
, end
,
1754 page_started
, 0, nr_written
);
1755 } else if (!inode_can_compress(inode
) ||
1756 !inode_need_compress(inode
, start
, end
)) {
1757 ret
= cow_file_range(inode
, locked_page
, start
, end
,
1758 page_started
, nr_written
, 1);
1760 set_bit(BTRFS_INODE_HAS_ASYNC_EXTENT
,
1761 &BTRFS_I(inode
)->runtime_flags
);
1762 ret
= cow_file_range_async(inode
, wbc
, locked_page
, start
, end
,
1763 page_started
, nr_written
);
1766 btrfs_cleanup_ordered_extents(inode
, locked_page
, start
,
1771 void btrfs_split_delalloc_extent(struct inode
*inode
,
1772 struct extent_state
*orig
, u64 split
)
1776 /* not delalloc, ignore it */
1777 if (!(orig
->state
& EXTENT_DELALLOC
))
1780 size
= orig
->end
- orig
->start
+ 1;
1781 if (size
> BTRFS_MAX_EXTENT_SIZE
) {
1786 * See the explanation in btrfs_merge_delalloc_extent, the same
1787 * applies here, just in reverse.
1789 new_size
= orig
->end
- split
+ 1;
1790 num_extents
= count_max_extents(new_size
);
1791 new_size
= split
- orig
->start
;
1792 num_extents
+= count_max_extents(new_size
);
1793 if (count_max_extents(size
) >= num_extents
)
1797 spin_lock(&BTRFS_I(inode
)->lock
);
1798 btrfs_mod_outstanding_extents(BTRFS_I(inode
), 1);
1799 spin_unlock(&BTRFS_I(inode
)->lock
);
1803 * Handle merged delayed allocation extents so we can keep track of new extents
1804 * that are just merged onto old extents, such as when we are doing sequential
1805 * writes, so we can properly account for the metadata space we'll need.
1807 void btrfs_merge_delalloc_extent(struct inode
*inode
, struct extent_state
*new,
1808 struct extent_state
*other
)
1810 u64 new_size
, old_size
;
1813 /* not delalloc, ignore it */
1814 if (!(other
->state
& EXTENT_DELALLOC
))
1817 if (new->start
> other
->start
)
1818 new_size
= new->end
- other
->start
+ 1;
1820 new_size
= other
->end
- new->start
+ 1;
1822 /* we're not bigger than the max, unreserve the space and go */
1823 if (new_size
<= BTRFS_MAX_EXTENT_SIZE
) {
1824 spin_lock(&BTRFS_I(inode
)->lock
);
1825 btrfs_mod_outstanding_extents(BTRFS_I(inode
), -1);
1826 spin_unlock(&BTRFS_I(inode
)->lock
);
1831 * We have to add up either side to figure out how many extents were
1832 * accounted for before we merged into one big extent. If the number of
1833 * extents we accounted for is <= the amount we need for the new range
1834 * then we can return, otherwise drop. Think of it like this
1838 * So we've grown the extent by a MAX_SIZE extent, this would mean we
1839 * need 2 outstanding extents, on one side we have 1 and the other side
1840 * we have 1 so they are == and we can return. But in this case
1842 * [MAX_SIZE+4k][MAX_SIZE+4k]
1844 * Each range on their own accounts for 2 extents, but merged together
1845 * they are only 3 extents worth of accounting, so we need to drop in
1848 old_size
= other
->end
- other
->start
+ 1;
1849 num_extents
= count_max_extents(old_size
);
1850 old_size
= new->end
- new->start
+ 1;
1851 num_extents
+= count_max_extents(old_size
);
1852 if (count_max_extents(new_size
) >= num_extents
)
1855 spin_lock(&BTRFS_I(inode
)->lock
);
1856 btrfs_mod_outstanding_extents(BTRFS_I(inode
), -1);
1857 spin_unlock(&BTRFS_I(inode
)->lock
);
1860 static void btrfs_add_delalloc_inodes(struct btrfs_root
*root
,
1861 struct inode
*inode
)
1863 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
1865 spin_lock(&root
->delalloc_lock
);
1866 if (list_empty(&BTRFS_I(inode
)->delalloc_inodes
)) {
1867 list_add_tail(&BTRFS_I(inode
)->delalloc_inodes
,
1868 &root
->delalloc_inodes
);
1869 set_bit(BTRFS_INODE_IN_DELALLOC_LIST
,
1870 &BTRFS_I(inode
)->runtime_flags
);
1871 root
->nr_delalloc_inodes
++;
1872 if (root
->nr_delalloc_inodes
== 1) {
1873 spin_lock(&fs_info
->delalloc_root_lock
);
1874 BUG_ON(!list_empty(&root
->delalloc_root
));
1875 list_add_tail(&root
->delalloc_root
,
1876 &fs_info
->delalloc_roots
);
1877 spin_unlock(&fs_info
->delalloc_root_lock
);
1880 spin_unlock(&root
->delalloc_lock
);
1884 void __btrfs_del_delalloc_inode(struct btrfs_root
*root
,
1885 struct btrfs_inode
*inode
)
1887 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
1889 if (!list_empty(&inode
->delalloc_inodes
)) {
1890 list_del_init(&inode
->delalloc_inodes
);
1891 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST
,
1892 &inode
->runtime_flags
);
1893 root
->nr_delalloc_inodes
--;
1894 if (!root
->nr_delalloc_inodes
) {
1895 ASSERT(list_empty(&root
->delalloc_inodes
));
1896 spin_lock(&fs_info
->delalloc_root_lock
);
1897 BUG_ON(list_empty(&root
->delalloc_root
));
1898 list_del_init(&root
->delalloc_root
);
1899 spin_unlock(&fs_info
->delalloc_root_lock
);
1904 static void btrfs_del_delalloc_inode(struct btrfs_root
*root
,
1905 struct btrfs_inode
*inode
)
1907 spin_lock(&root
->delalloc_lock
);
1908 __btrfs_del_delalloc_inode(root
, inode
);
1909 spin_unlock(&root
->delalloc_lock
);
1913 * Properly track delayed allocation bytes in the inode and to maintain the
1914 * list of inodes that have pending delalloc work to be done.
1916 void btrfs_set_delalloc_extent(struct inode
*inode
, struct extent_state
*state
,
1919 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
1921 if ((*bits
& EXTENT_DEFRAG
) && !(*bits
& EXTENT_DELALLOC
))
1924 * set_bit and clear bit hooks normally require _irqsave/restore
1925 * but in this case, we are only testing for the DELALLOC
1926 * bit, which is only set or cleared with irqs on
1928 if (!(state
->state
& EXTENT_DELALLOC
) && (*bits
& EXTENT_DELALLOC
)) {
1929 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1930 u64 len
= state
->end
+ 1 - state
->start
;
1931 u32 num_extents
= count_max_extents(len
);
1932 bool do_list
= !btrfs_is_free_space_inode(BTRFS_I(inode
));
1934 spin_lock(&BTRFS_I(inode
)->lock
);
1935 btrfs_mod_outstanding_extents(BTRFS_I(inode
), num_extents
);
1936 spin_unlock(&BTRFS_I(inode
)->lock
);
1938 /* For sanity tests */
1939 if (btrfs_is_testing(fs_info
))
1942 percpu_counter_add_batch(&fs_info
->delalloc_bytes
, len
,
1943 fs_info
->delalloc_batch
);
1944 spin_lock(&BTRFS_I(inode
)->lock
);
1945 BTRFS_I(inode
)->delalloc_bytes
+= len
;
1946 if (*bits
& EXTENT_DEFRAG
)
1947 BTRFS_I(inode
)->defrag_bytes
+= len
;
1948 if (do_list
&& !test_bit(BTRFS_INODE_IN_DELALLOC_LIST
,
1949 &BTRFS_I(inode
)->runtime_flags
))
1950 btrfs_add_delalloc_inodes(root
, inode
);
1951 spin_unlock(&BTRFS_I(inode
)->lock
);
1954 if (!(state
->state
& EXTENT_DELALLOC_NEW
) &&
1955 (*bits
& EXTENT_DELALLOC_NEW
)) {
1956 spin_lock(&BTRFS_I(inode
)->lock
);
1957 BTRFS_I(inode
)->new_delalloc_bytes
+= state
->end
+ 1 -
1959 spin_unlock(&BTRFS_I(inode
)->lock
);
1964 * Once a range is no longer delalloc this function ensures that proper
1965 * accounting happens.
1967 void btrfs_clear_delalloc_extent(struct inode
*vfs_inode
,
1968 struct extent_state
*state
, unsigned *bits
)
1970 struct btrfs_inode
*inode
= BTRFS_I(vfs_inode
);
1971 struct btrfs_fs_info
*fs_info
= btrfs_sb(vfs_inode
->i_sb
);
1972 u64 len
= state
->end
+ 1 - state
->start
;
1973 u32 num_extents
= count_max_extents(len
);
1975 if ((state
->state
& EXTENT_DEFRAG
) && (*bits
& EXTENT_DEFRAG
)) {
1976 spin_lock(&inode
->lock
);
1977 inode
->defrag_bytes
-= len
;
1978 spin_unlock(&inode
->lock
);
1982 * set_bit and clear bit hooks normally require _irqsave/restore
1983 * but in this case, we are only testing for the DELALLOC
1984 * bit, which is only set or cleared with irqs on
1986 if ((state
->state
& EXTENT_DELALLOC
) && (*bits
& EXTENT_DELALLOC
)) {
1987 struct btrfs_root
*root
= inode
->root
;
1988 bool do_list
= !btrfs_is_free_space_inode(inode
);
1990 spin_lock(&inode
->lock
);
1991 btrfs_mod_outstanding_extents(inode
, -num_extents
);
1992 spin_unlock(&inode
->lock
);
1995 * We don't reserve metadata space for space cache inodes so we
1996 * don't need to call delalloc_release_metadata if there is an
1999 if (*bits
& EXTENT_CLEAR_META_RESV
&&
2000 root
!= fs_info
->tree_root
)
2001 btrfs_delalloc_release_metadata(inode
, len
, false);
2003 /* For sanity tests. */
2004 if (btrfs_is_testing(fs_info
))
2007 if (root
->root_key
.objectid
!= BTRFS_DATA_RELOC_TREE_OBJECTID
&&
2008 do_list
&& !(state
->state
& EXTENT_NORESERVE
) &&
2009 (*bits
& EXTENT_CLEAR_DATA_RESV
))
2010 btrfs_free_reserved_data_space_noquota(
2014 percpu_counter_add_batch(&fs_info
->delalloc_bytes
, -len
,
2015 fs_info
->delalloc_batch
);
2016 spin_lock(&inode
->lock
);
2017 inode
->delalloc_bytes
-= len
;
2018 if (do_list
&& inode
->delalloc_bytes
== 0 &&
2019 test_bit(BTRFS_INODE_IN_DELALLOC_LIST
,
2020 &inode
->runtime_flags
))
2021 btrfs_del_delalloc_inode(root
, inode
);
2022 spin_unlock(&inode
->lock
);
2025 if ((state
->state
& EXTENT_DELALLOC_NEW
) &&
2026 (*bits
& EXTENT_DELALLOC_NEW
)) {
2027 spin_lock(&inode
->lock
);
2028 ASSERT(inode
->new_delalloc_bytes
>= len
);
2029 inode
->new_delalloc_bytes
-= len
;
2030 spin_unlock(&inode
->lock
);
2035 * btrfs_bio_fits_in_stripe - Checks whether the size of the given bio will fit
2036 * in a chunk's stripe. This function ensures that bios do not span a
2039 * @page - The page we are about to add to the bio
2040 * @size - size we want to add to the bio
2041 * @bio - bio we want to ensure is smaller than a stripe
2042 * @bio_flags - flags of the bio
2044 * return 1 if page cannot be added to the bio
2045 * return 0 if page can be added to the bio
2046 * return error otherwise
2048 int btrfs_bio_fits_in_stripe(struct page
*page
, size_t size
, struct bio
*bio
,
2049 unsigned long bio_flags
)
2051 struct inode
*inode
= page
->mapping
->host
;
2052 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
2053 u64 logical
= (u64
)bio
->bi_iter
.bi_sector
<< 9;
2057 struct btrfs_io_geometry geom
;
2059 if (bio_flags
& EXTENT_BIO_COMPRESSED
)
2062 length
= bio
->bi_iter
.bi_size
;
2063 map_length
= length
;
2064 ret
= btrfs_get_io_geometry(fs_info
, btrfs_op(bio
), logical
, map_length
,
2069 if (geom
.len
< length
+ size
)
2075 * in order to insert checksums into the metadata in large chunks,
2076 * we wait until bio submission time. All the pages in the bio are
2077 * checksummed and sums are attached onto the ordered extent record.
2079 * At IO completion time the cums attached on the ordered extent record
2080 * are inserted into the btree
2082 static blk_status_t
btrfs_submit_bio_start(void *private_data
, struct bio
*bio
,
2085 struct inode
*inode
= private_data
;
2086 blk_status_t ret
= 0;
2088 ret
= btrfs_csum_one_bio(inode
, bio
, 0, 0);
2089 BUG_ON(ret
); /* -ENOMEM */
2094 * extent_io.c submission hook. This does the right thing for csum calculation
2095 * on write, or reading the csums from the tree before a read.
2097 * Rules about async/sync submit,
2098 * a) read: sync submit
2100 * b) write without checksum: sync submit
2102 * c) write with checksum:
2103 * c-1) if bio is issued by fsync: sync submit
2104 * (sync_writers != 0)
2106 * c-2) if root is reloc root: sync submit
2107 * (only in case of buffered IO)
2109 * c-3) otherwise: async submit
2111 static blk_status_t
btrfs_submit_bio_hook(struct inode
*inode
, struct bio
*bio
,
2113 unsigned long bio_flags
)
2116 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
2117 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
2118 enum btrfs_wq_endio_type metadata
= BTRFS_WQ_ENDIO_DATA
;
2119 blk_status_t ret
= 0;
2121 int async
= !atomic_read(&BTRFS_I(inode
)->sync_writers
);
2123 skip_sum
= BTRFS_I(inode
)->flags
& BTRFS_INODE_NODATASUM
;
2125 if (btrfs_is_free_space_inode(BTRFS_I(inode
)))
2126 metadata
= BTRFS_WQ_ENDIO_FREE_SPACE
;
2128 if (bio_op(bio
) != REQ_OP_WRITE
) {
2129 ret
= btrfs_bio_wq_end_io(fs_info
, bio
, metadata
);
2133 if (bio_flags
& EXTENT_BIO_COMPRESSED
) {
2134 ret
= btrfs_submit_compressed_read(inode
, bio
,
2138 } else if (!skip_sum
) {
2139 ret
= btrfs_lookup_bio_sums(inode
, bio
, (u64
)-1, NULL
);
2144 } else if (async
&& !skip_sum
) {
2145 /* csum items have already been cloned */
2146 if (root
->root_key
.objectid
== BTRFS_DATA_RELOC_TREE_OBJECTID
)
2148 /* we're doing a write, do the async checksumming */
2149 ret
= btrfs_wq_submit_bio(fs_info
, bio
, mirror_num
, bio_flags
,
2150 0, inode
, btrfs_submit_bio_start
);
2152 } else if (!skip_sum
) {
2153 ret
= btrfs_csum_one_bio(inode
, bio
, 0, 0);
2159 ret
= btrfs_map_bio(fs_info
, bio
, mirror_num
);
2163 bio
->bi_status
= ret
;
2170 * given a list of ordered sums record them in the inode. This happens
2171 * at IO completion time based on sums calculated at bio submission time.
2173 static noinline
int add_pending_csums(struct btrfs_trans_handle
*trans
,
2174 struct inode
*inode
, struct list_head
*list
)
2176 struct btrfs_ordered_sum
*sum
;
2179 list_for_each_entry(sum
, list
, list
) {
2180 trans
->adding_csums
= true;
2181 ret
= btrfs_csum_file_blocks(trans
,
2182 BTRFS_I(inode
)->root
->fs_info
->csum_root
, sum
);
2183 trans
->adding_csums
= false;
2190 int btrfs_set_extent_delalloc(struct inode
*inode
, u64 start
, u64 end
,
2191 unsigned int extra_bits
,
2192 struct extent_state
**cached_state
)
2194 WARN_ON(PAGE_ALIGNED(end
));
2195 return set_extent_delalloc(&BTRFS_I(inode
)->io_tree
, start
, end
,
2196 extra_bits
, cached_state
);
2199 /* see btrfs_writepage_start_hook for details on why this is required */
2200 struct btrfs_writepage_fixup
{
2202 struct inode
*inode
;
2203 struct btrfs_work work
;
2206 static void btrfs_writepage_fixup_worker(struct btrfs_work
*work
)
2208 struct btrfs_writepage_fixup
*fixup
;
2209 struct btrfs_ordered_extent
*ordered
;
2210 struct extent_state
*cached_state
= NULL
;
2211 struct extent_changeset
*data_reserved
= NULL
;
2213 struct inode
*inode
;
2217 bool free_delalloc_space
= true;
2219 fixup
= container_of(work
, struct btrfs_writepage_fixup
, work
);
2221 inode
= fixup
->inode
;
2222 page_start
= page_offset(page
);
2223 page_end
= page_offset(page
) + PAGE_SIZE
- 1;
2226 * This is similar to page_mkwrite, we need to reserve the space before
2227 * we take the page lock.
2229 ret
= btrfs_delalloc_reserve_space(inode
, &data_reserved
, page_start
,
2235 * Before we queued this fixup, we took a reference on the page.
2236 * page->mapping may go NULL, but it shouldn't be moved to a different
2239 if (!page
->mapping
|| !PageDirty(page
) || !PageChecked(page
)) {
2241 * Unfortunately this is a little tricky, either
2243 * 1) We got here and our page had already been dealt with and
2244 * we reserved our space, thus ret == 0, so we need to just
2245 * drop our space reservation and bail. This can happen the
2246 * first time we come into the fixup worker, or could happen
2247 * while waiting for the ordered extent.
2248 * 2) Our page was already dealt with, but we happened to get an
2249 * ENOSPC above from the btrfs_delalloc_reserve_space. In
2250 * this case we obviously don't have anything to release, but
2251 * because the page was already dealt with we don't want to
2252 * mark the page with an error, so make sure we're resetting
2253 * ret to 0. This is why we have this check _before_ the ret
2254 * check, because we do not want to have a surprise ENOSPC
2255 * when the page was already properly dealt with.
2258 btrfs_delalloc_release_extents(BTRFS_I(inode
),
2260 btrfs_delalloc_release_space(inode
, data_reserved
,
2261 page_start
, PAGE_SIZE
,
2269 * We can't mess with the page state unless it is locked, so now that
2270 * it is locked bail if we failed to make our space reservation.
2275 lock_extent_bits(&BTRFS_I(inode
)->io_tree
, page_start
, page_end
,
2278 /* already ordered? We're done */
2279 if (PagePrivate2(page
))
2282 ordered
= btrfs_lookup_ordered_range(BTRFS_I(inode
), page_start
,
2285 unlock_extent_cached(&BTRFS_I(inode
)->io_tree
, page_start
,
2286 page_end
, &cached_state
);
2288 btrfs_start_ordered_extent(inode
, ordered
, 1);
2289 btrfs_put_ordered_extent(ordered
);
2293 ret
= btrfs_set_extent_delalloc(inode
, page_start
, page_end
, 0,
2299 * Everything went as planned, we're now the owner of a dirty page with
2300 * delayed allocation bits set and space reserved for our COW
2303 * The page was dirty when we started, nothing should have cleaned it.
2305 BUG_ON(!PageDirty(page
));
2306 free_delalloc_space
= false;
2308 btrfs_delalloc_release_extents(BTRFS_I(inode
), PAGE_SIZE
);
2309 if (free_delalloc_space
)
2310 btrfs_delalloc_release_space(inode
, data_reserved
, page_start
,
2312 unlock_extent_cached(&BTRFS_I(inode
)->io_tree
, page_start
, page_end
,
2317 * We hit ENOSPC or other errors. Update the mapping and page
2318 * to reflect the errors and clean the page.
2320 mapping_set_error(page
->mapping
, ret
);
2321 end_extent_writepage(page
, ret
, page_start
, page_end
);
2322 clear_page_dirty_for_io(page
);
2325 ClearPageChecked(page
);
2329 extent_changeset_free(data_reserved
);
2331 * As a precaution, do a delayed iput in case it would be the last iput
2332 * that could need flushing space. Recursing back to fixup worker would
2335 btrfs_add_delayed_iput(inode
);
2339 * There are a few paths in the higher layers of the kernel that directly
2340 * set the page dirty bit without asking the filesystem if it is a
2341 * good idea. This causes problems because we want to make sure COW
2342 * properly happens and the data=ordered rules are followed.
2344 * In our case any range that doesn't have the ORDERED bit set
2345 * hasn't been properly setup for IO. We kick off an async process
2346 * to fix it up. The async helper will wait for ordered extents, set
2347 * the delalloc bit and make it safe to write the page.
2349 int btrfs_writepage_cow_fixup(struct page
*page
, u64 start
, u64 end
)
2351 struct inode
*inode
= page
->mapping
->host
;
2352 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
2353 struct btrfs_writepage_fixup
*fixup
;
2355 /* this page is properly in the ordered list */
2356 if (TestClearPagePrivate2(page
))
2360 * PageChecked is set below when we create a fixup worker for this page,
2361 * don't try to create another one if we're already PageChecked()
2363 * The extent_io writepage code will redirty the page if we send back
2366 if (PageChecked(page
))
2369 fixup
= kzalloc(sizeof(*fixup
), GFP_NOFS
);
2374 * We are already holding a reference to this inode from
2375 * write_cache_pages. We need to hold it because the space reservation
2376 * takes place outside of the page lock, and we can't trust
2377 * page->mapping outside of the page lock.
2380 SetPageChecked(page
);
2382 btrfs_init_work(&fixup
->work
, btrfs_writepage_fixup_worker
, NULL
, NULL
);
2384 fixup
->inode
= inode
;
2385 btrfs_queue_work(fs_info
->fixup_workers
, &fixup
->work
);
2390 static int insert_reserved_file_extent(struct btrfs_trans_handle
*trans
,
2391 struct inode
*inode
, u64 file_pos
,
2392 u64 disk_bytenr
, u64 disk_num_bytes
,
2393 u64 num_bytes
, u64 ram_bytes
,
2394 u8 compression
, u8 encryption
,
2395 u16 other_encoding
, int extent_type
)
2397 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
2398 struct btrfs_file_extent_item
*fi
;
2399 struct btrfs_path
*path
;
2400 struct extent_buffer
*leaf
;
2401 struct btrfs_key ins
;
2403 int extent_inserted
= 0;
2406 path
= btrfs_alloc_path();
2411 * we may be replacing one extent in the tree with another.
2412 * The new extent is pinned in the extent map, and we don't want
2413 * to drop it from the cache until it is completely in the btree.
2415 * So, tell btrfs_drop_extents to leave this extent in the cache.
2416 * the caller is expected to unpin it and allow it to be merged
2419 ret
= __btrfs_drop_extents(trans
, root
, inode
, path
, file_pos
,
2420 file_pos
+ num_bytes
, NULL
, 0,
2421 1, sizeof(*fi
), &extent_inserted
);
2425 if (!extent_inserted
) {
2426 ins
.objectid
= btrfs_ino(BTRFS_I(inode
));
2427 ins
.offset
= file_pos
;
2428 ins
.type
= BTRFS_EXTENT_DATA_KEY
;
2430 path
->leave_spinning
= 1;
2431 ret
= btrfs_insert_empty_item(trans
, root
, path
, &ins
,
2436 leaf
= path
->nodes
[0];
2437 fi
= btrfs_item_ptr(leaf
, path
->slots
[0],
2438 struct btrfs_file_extent_item
);
2439 btrfs_set_file_extent_generation(leaf
, fi
, trans
->transid
);
2440 btrfs_set_file_extent_type(leaf
, fi
, extent_type
);
2441 btrfs_set_file_extent_disk_bytenr(leaf
, fi
, disk_bytenr
);
2442 btrfs_set_file_extent_disk_num_bytes(leaf
, fi
, disk_num_bytes
);
2443 btrfs_set_file_extent_offset(leaf
, fi
, 0);
2444 btrfs_set_file_extent_num_bytes(leaf
, fi
, num_bytes
);
2445 btrfs_set_file_extent_ram_bytes(leaf
, fi
, ram_bytes
);
2446 btrfs_set_file_extent_compression(leaf
, fi
, compression
);
2447 btrfs_set_file_extent_encryption(leaf
, fi
, encryption
);
2448 btrfs_set_file_extent_other_encoding(leaf
, fi
, other_encoding
);
2450 btrfs_mark_buffer_dirty(leaf
);
2451 btrfs_release_path(path
);
2453 inode_add_bytes(inode
, num_bytes
);
2455 ins
.objectid
= disk_bytenr
;
2456 ins
.offset
= disk_num_bytes
;
2457 ins
.type
= BTRFS_EXTENT_ITEM_KEY
;
2459 ret
= btrfs_inode_set_file_extent_range(BTRFS_I(inode
), file_pos
,
2465 * Release the reserved range from inode dirty range map, as it is
2466 * already moved into delayed_ref_head
2468 ret
= btrfs_qgroup_release_data(inode
, file_pos
, ram_bytes
);
2472 ret
= btrfs_alloc_reserved_file_extent(trans
, root
,
2473 btrfs_ino(BTRFS_I(inode
)),
2474 file_pos
, qg_released
, &ins
);
2476 btrfs_free_path(path
);
2481 static void btrfs_release_delalloc_bytes(struct btrfs_fs_info
*fs_info
,
2484 struct btrfs_block_group
*cache
;
2486 cache
= btrfs_lookup_block_group(fs_info
, start
);
2489 spin_lock(&cache
->lock
);
2490 cache
->delalloc_bytes
-= len
;
2491 spin_unlock(&cache
->lock
);
2493 btrfs_put_block_group(cache
);
2496 /* as ordered data IO finishes, this gets called so we can finish
2497 * an ordered extent if the range of bytes in the file it covers are
2500 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent
*ordered_extent
)
2502 struct inode
*inode
= ordered_extent
->inode
;
2503 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
2504 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
2505 struct btrfs_trans_handle
*trans
= NULL
;
2506 struct extent_io_tree
*io_tree
= &BTRFS_I(inode
)->io_tree
;
2507 struct extent_state
*cached_state
= NULL
;
2509 int compress_type
= 0;
2511 u64 logical_len
= ordered_extent
->num_bytes
;
2512 bool freespace_inode
;
2513 bool truncated
= false;
2514 bool range_locked
= false;
2515 bool clear_new_delalloc_bytes
= false;
2516 bool clear_reserved_extent
= true;
2517 unsigned int clear_bits
;
2519 start
= ordered_extent
->file_offset
;
2520 end
= start
+ ordered_extent
->num_bytes
- 1;
2522 if (!test_bit(BTRFS_ORDERED_NOCOW
, &ordered_extent
->flags
) &&
2523 !test_bit(BTRFS_ORDERED_PREALLOC
, &ordered_extent
->flags
) &&
2524 !test_bit(BTRFS_ORDERED_DIRECT
, &ordered_extent
->flags
))
2525 clear_new_delalloc_bytes
= true;
2527 freespace_inode
= btrfs_is_free_space_inode(BTRFS_I(inode
));
2529 if (test_bit(BTRFS_ORDERED_IOERR
, &ordered_extent
->flags
)) {
2534 btrfs_free_io_failure_record(BTRFS_I(inode
), start
, end
);
2536 if (test_bit(BTRFS_ORDERED_TRUNCATED
, &ordered_extent
->flags
)) {
2538 logical_len
= ordered_extent
->truncated_len
;
2539 /* Truncated the entire extent, don't bother adding */
2544 if (test_bit(BTRFS_ORDERED_NOCOW
, &ordered_extent
->flags
)) {
2545 BUG_ON(!list_empty(&ordered_extent
->list
)); /* Logic error */
2548 * For mwrite(mmap + memset to write) case, we still reserve
2549 * space for NOCOW range.
2550 * As NOCOW won't cause a new delayed ref, just free the space
2552 btrfs_qgroup_free_data(inode
, NULL
, start
,
2553 ordered_extent
->num_bytes
);
2554 btrfs_inode_safe_disk_i_size_write(inode
, 0);
2555 if (freespace_inode
)
2556 trans
= btrfs_join_transaction_spacecache(root
);
2558 trans
= btrfs_join_transaction(root
);
2559 if (IS_ERR(trans
)) {
2560 ret
= PTR_ERR(trans
);
2564 trans
->block_rsv
= &BTRFS_I(inode
)->block_rsv
;
2565 ret
= btrfs_update_inode_fallback(trans
, root
, inode
);
2566 if (ret
) /* -ENOMEM or corruption */
2567 btrfs_abort_transaction(trans
, ret
);
2571 range_locked
= true;
2572 lock_extent_bits(io_tree
, start
, end
, &cached_state
);
2574 if (freespace_inode
)
2575 trans
= btrfs_join_transaction_spacecache(root
);
2577 trans
= btrfs_join_transaction(root
);
2578 if (IS_ERR(trans
)) {
2579 ret
= PTR_ERR(trans
);
2584 trans
->block_rsv
= &BTRFS_I(inode
)->block_rsv
;
2586 if (test_bit(BTRFS_ORDERED_COMPRESSED
, &ordered_extent
->flags
))
2587 compress_type
= ordered_extent
->compress_type
;
2588 if (test_bit(BTRFS_ORDERED_PREALLOC
, &ordered_extent
->flags
)) {
2589 BUG_ON(compress_type
);
2590 btrfs_qgroup_free_data(inode
, NULL
, start
,
2591 ordered_extent
->num_bytes
);
2592 ret
= btrfs_mark_extent_written(trans
, BTRFS_I(inode
),
2593 ordered_extent
->file_offset
,
2594 ordered_extent
->file_offset
+
2597 BUG_ON(root
== fs_info
->tree_root
);
2598 ret
= insert_reserved_file_extent(trans
, inode
, start
,
2599 ordered_extent
->disk_bytenr
,
2600 ordered_extent
->disk_num_bytes
,
2601 logical_len
, logical_len
,
2602 compress_type
, 0, 0,
2603 BTRFS_FILE_EXTENT_REG
);
2605 clear_reserved_extent
= false;
2606 btrfs_release_delalloc_bytes(fs_info
,
2607 ordered_extent
->disk_bytenr
,
2608 ordered_extent
->disk_num_bytes
);
2611 unpin_extent_cache(&BTRFS_I(inode
)->extent_tree
,
2612 ordered_extent
->file_offset
,
2613 ordered_extent
->num_bytes
, trans
->transid
);
2615 btrfs_abort_transaction(trans
, ret
);
2619 ret
= add_pending_csums(trans
, inode
, &ordered_extent
->list
);
2621 btrfs_abort_transaction(trans
, ret
);
2625 btrfs_inode_safe_disk_i_size_write(inode
, 0);
2626 ret
= btrfs_update_inode_fallback(trans
, root
, inode
);
2627 if (ret
) { /* -ENOMEM or corruption */
2628 btrfs_abort_transaction(trans
, ret
);
2633 clear_bits
= EXTENT_DEFRAG
;
2635 clear_bits
|= EXTENT_LOCKED
;
2636 if (clear_new_delalloc_bytes
)
2637 clear_bits
|= EXTENT_DELALLOC_NEW
;
2638 clear_extent_bit(&BTRFS_I(inode
)->io_tree
, start
, end
, clear_bits
,
2639 (clear_bits
& EXTENT_LOCKED
) ? 1 : 0, 0,
2643 btrfs_end_transaction(trans
);
2645 if (ret
|| truncated
) {
2646 u64 unwritten_start
= start
;
2649 unwritten_start
+= logical_len
;
2650 clear_extent_uptodate(io_tree
, unwritten_start
, end
, NULL
);
2652 /* Drop the cache for the part of the extent we didn't write. */
2653 btrfs_drop_extent_cache(BTRFS_I(inode
), unwritten_start
, end
, 0);
2656 * If the ordered extent had an IOERR or something else went
2657 * wrong we need to return the space for this ordered extent
2658 * back to the allocator. We only free the extent in the
2659 * truncated case if we didn't write out the extent at all.
2661 * If we made it past insert_reserved_file_extent before we
2662 * errored out then we don't need to do this as the accounting
2663 * has already been done.
2665 if ((ret
|| !logical_len
) &&
2666 clear_reserved_extent
&&
2667 !test_bit(BTRFS_ORDERED_NOCOW
, &ordered_extent
->flags
) &&
2668 !test_bit(BTRFS_ORDERED_PREALLOC
, &ordered_extent
->flags
)) {
2670 * Discard the range before returning it back to the
2673 if (ret
&& btrfs_test_opt(fs_info
, DISCARD_SYNC
))
2674 btrfs_discard_extent(fs_info
,
2675 ordered_extent
->disk_bytenr
,
2676 ordered_extent
->disk_num_bytes
,
2678 btrfs_free_reserved_extent(fs_info
,
2679 ordered_extent
->disk_bytenr
,
2680 ordered_extent
->disk_num_bytes
, 1);
2685 * This needs to be done to make sure anybody waiting knows we are done
2686 * updating everything for this ordered extent.
2688 btrfs_remove_ordered_extent(inode
, ordered_extent
);
2691 btrfs_put_ordered_extent(ordered_extent
);
2692 /* once for the tree */
2693 btrfs_put_ordered_extent(ordered_extent
);
2698 static void finish_ordered_fn(struct btrfs_work
*work
)
2700 struct btrfs_ordered_extent
*ordered_extent
;
2701 ordered_extent
= container_of(work
, struct btrfs_ordered_extent
, work
);
2702 btrfs_finish_ordered_io(ordered_extent
);
2705 void btrfs_writepage_endio_finish_ordered(struct page
*page
, u64 start
,
2706 u64 end
, int uptodate
)
2708 struct inode
*inode
= page
->mapping
->host
;
2709 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
2710 struct btrfs_ordered_extent
*ordered_extent
= NULL
;
2711 struct btrfs_workqueue
*wq
;
2713 trace_btrfs_writepage_end_io_hook(page
, start
, end
, uptodate
);
2715 ClearPagePrivate2(page
);
2716 if (!btrfs_dec_test_ordered_pending(inode
, &ordered_extent
, start
,
2717 end
- start
+ 1, uptodate
))
2720 if (btrfs_is_free_space_inode(BTRFS_I(inode
)))
2721 wq
= fs_info
->endio_freespace_worker
;
2723 wq
= fs_info
->endio_write_workers
;
2725 btrfs_init_work(&ordered_extent
->work
, finish_ordered_fn
, NULL
, NULL
);
2726 btrfs_queue_work(wq
, &ordered_extent
->work
);
2729 static int __readpage_endio_check(struct inode
*inode
,
2730 struct btrfs_io_bio
*io_bio
,
2731 int icsum
, struct page
*page
,
2732 int pgoff
, u64 start
, size_t len
)
2734 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
2735 SHASH_DESC_ON_STACK(shash
, fs_info
->csum_shash
);
2737 u16 csum_size
= btrfs_super_csum_size(fs_info
->super_copy
);
2739 u8 csum
[BTRFS_CSUM_SIZE
];
2741 csum_expected
= ((u8
*)io_bio
->csum
) + icsum
* csum_size
;
2743 kaddr
= kmap_atomic(page
);
2744 shash
->tfm
= fs_info
->csum_shash
;
2746 crypto_shash_init(shash
);
2747 crypto_shash_update(shash
, kaddr
+ pgoff
, len
);
2748 crypto_shash_final(shash
, csum
);
2750 if (memcmp(csum
, csum_expected
, csum_size
))
2753 kunmap_atomic(kaddr
);
2756 btrfs_print_data_csum_error(BTRFS_I(inode
), start
, csum
, csum_expected
,
2757 io_bio
->mirror_num
);
2758 memset(kaddr
+ pgoff
, 1, len
);
2759 flush_dcache_page(page
);
2760 kunmap_atomic(kaddr
);
2765 * when reads are done, we need to check csums to verify the data is correct
2766 * if there's a match, we allow the bio to finish. If not, the code in
2767 * extent_io.c will try to find good copies for us.
2769 static int btrfs_readpage_end_io_hook(struct btrfs_io_bio
*io_bio
,
2770 u64 phy_offset
, struct page
*page
,
2771 u64 start
, u64 end
, int mirror
)
2773 size_t offset
= start
- page_offset(page
);
2774 struct inode
*inode
= page
->mapping
->host
;
2775 struct extent_io_tree
*io_tree
= &BTRFS_I(inode
)->io_tree
;
2776 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
2778 if (PageChecked(page
)) {
2779 ClearPageChecked(page
);
2783 if (BTRFS_I(inode
)->flags
& BTRFS_INODE_NODATASUM
)
2786 if (root
->root_key
.objectid
== BTRFS_DATA_RELOC_TREE_OBJECTID
&&
2787 test_range_bit(io_tree
, start
, end
, EXTENT_NODATASUM
, 1, NULL
)) {
2788 clear_extent_bits(io_tree
, start
, end
, EXTENT_NODATASUM
);
2792 phy_offset
>>= inode
->i_sb
->s_blocksize_bits
;
2793 return __readpage_endio_check(inode
, io_bio
, phy_offset
, page
, offset
,
2794 start
, (size_t)(end
- start
+ 1));
2798 * btrfs_add_delayed_iput - perform a delayed iput on @inode
2800 * @inode: The inode we want to perform iput on
2802 * This function uses the generic vfs_inode::i_count to track whether we should
2803 * just decrement it (in case it's > 1) or if this is the last iput then link
2804 * the inode to the delayed iput machinery. Delayed iputs are processed at
2805 * transaction commit time/superblock commit/cleaner kthread.
2807 void btrfs_add_delayed_iput(struct inode
*inode
)
2809 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
2810 struct btrfs_inode
*binode
= BTRFS_I(inode
);
2812 if (atomic_add_unless(&inode
->i_count
, -1, 1))
2815 atomic_inc(&fs_info
->nr_delayed_iputs
);
2816 spin_lock(&fs_info
->delayed_iput_lock
);
2817 ASSERT(list_empty(&binode
->delayed_iput
));
2818 list_add_tail(&binode
->delayed_iput
, &fs_info
->delayed_iputs
);
2819 spin_unlock(&fs_info
->delayed_iput_lock
);
2820 if (!test_bit(BTRFS_FS_CLEANER_RUNNING
, &fs_info
->flags
))
2821 wake_up_process(fs_info
->cleaner_kthread
);
2824 static void run_delayed_iput_locked(struct btrfs_fs_info
*fs_info
,
2825 struct btrfs_inode
*inode
)
2827 list_del_init(&inode
->delayed_iput
);
2828 spin_unlock(&fs_info
->delayed_iput_lock
);
2829 iput(&inode
->vfs_inode
);
2830 if (atomic_dec_and_test(&fs_info
->nr_delayed_iputs
))
2831 wake_up(&fs_info
->delayed_iputs_wait
);
2832 spin_lock(&fs_info
->delayed_iput_lock
);
2835 static void btrfs_run_delayed_iput(struct btrfs_fs_info
*fs_info
,
2836 struct btrfs_inode
*inode
)
2838 if (!list_empty(&inode
->delayed_iput
)) {
2839 spin_lock(&fs_info
->delayed_iput_lock
);
2840 if (!list_empty(&inode
->delayed_iput
))
2841 run_delayed_iput_locked(fs_info
, inode
);
2842 spin_unlock(&fs_info
->delayed_iput_lock
);
2846 void btrfs_run_delayed_iputs(struct btrfs_fs_info
*fs_info
)
2849 spin_lock(&fs_info
->delayed_iput_lock
);
2850 while (!list_empty(&fs_info
->delayed_iputs
)) {
2851 struct btrfs_inode
*inode
;
2853 inode
= list_first_entry(&fs_info
->delayed_iputs
,
2854 struct btrfs_inode
, delayed_iput
);
2855 run_delayed_iput_locked(fs_info
, inode
);
2857 spin_unlock(&fs_info
->delayed_iput_lock
);
2861 * btrfs_wait_on_delayed_iputs - wait on the delayed iputs to be done running
2862 * @fs_info - the fs_info for this fs
2863 * @return - EINTR if we were killed, 0 if nothing's pending
2865 * This will wait on any delayed iputs that are currently running with KILLABLE
2866 * set. Once they are all done running we will return, unless we are killed in
2867 * which case we return EINTR. This helps in user operations like fallocate etc
2868 * that might get blocked on the iputs.
2870 int btrfs_wait_on_delayed_iputs(struct btrfs_fs_info
*fs_info
)
2872 int ret
= wait_event_killable(fs_info
->delayed_iputs_wait
,
2873 atomic_read(&fs_info
->nr_delayed_iputs
) == 0);
2880 * This creates an orphan entry for the given inode in case something goes wrong
2881 * in the middle of an unlink.
2883 int btrfs_orphan_add(struct btrfs_trans_handle
*trans
,
2884 struct btrfs_inode
*inode
)
2888 ret
= btrfs_insert_orphan_item(trans
, inode
->root
, btrfs_ino(inode
));
2889 if (ret
&& ret
!= -EEXIST
) {
2890 btrfs_abort_transaction(trans
, ret
);
2898 * We have done the delete so we can go ahead and remove the orphan item for
2899 * this particular inode.
2901 static int btrfs_orphan_del(struct btrfs_trans_handle
*trans
,
2902 struct btrfs_inode
*inode
)
2904 return btrfs_del_orphan_item(trans
, inode
->root
, btrfs_ino(inode
));
2908 * this cleans up any orphans that may be left on the list from the last use
2911 int btrfs_orphan_cleanup(struct btrfs_root
*root
)
2913 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
2914 struct btrfs_path
*path
;
2915 struct extent_buffer
*leaf
;
2916 struct btrfs_key key
, found_key
;
2917 struct btrfs_trans_handle
*trans
;
2918 struct inode
*inode
;
2919 u64 last_objectid
= 0;
2920 int ret
= 0, nr_unlink
= 0;
2922 if (cmpxchg(&root
->orphan_cleanup_state
, 0, ORPHAN_CLEANUP_STARTED
))
2925 path
= btrfs_alloc_path();
2930 path
->reada
= READA_BACK
;
2932 key
.objectid
= BTRFS_ORPHAN_OBJECTID
;
2933 key
.type
= BTRFS_ORPHAN_ITEM_KEY
;
2934 key
.offset
= (u64
)-1;
2937 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
2942 * if ret == 0 means we found what we were searching for, which
2943 * is weird, but possible, so only screw with path if we didn't
2944 * find the key and see if we have stuff that matches
2948 if (path
->slots
[0] == 0)
2953 /* pull out the item */
2954 leaf
= path
->nodes
[0];
2955 btrfs_item_key_to_cpu(leaf
, &found_key
, path
->slots
[0]);
2957 /* make sure the item matches what we want */
2958 if (found_key
.objectid
!= BTRFS_ORPHAN_OBJECTID
)
2960 if (found_key
.type
!= BTRFS_ORPHAN_ITEM_KEY
)
2963 /* release the path since we're done with it */
2964 btrfs_release_path(path
);
2967 * this is where we are basically btrfs_lookup, without the
2968 * crossing root thing. we store the inode number in the
2969 * offset of the orphan item.
2972 if (found_key
.offset
== last_objectid
) {
2974 "Error removing orphan entry, stopping orphan cleanup");
2979 last_objectid
= found_key
.offset
;
2981 found_key
.objectid
= found_key
.offset
;
2982 found_key
.type
= BTRFS_INODE_ITEM_KEY
;
2983 found_key
.offset
= 0;
2984 inode
= btrfs_iget(fs_info
->sb
, &found_key
, root
);
2985 ret
= PTR_ERR_OR_ZERO(inode
);
2986 if (ret
&& ret
!= -ENOENT
)
2989 if (ret
== -ENOENT
&& root
== fs_info
->tree_root
) {
2990 struct btrfs_root
*dead_root
;
2991 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
2992 int is_dead_root
= 0;
2995 * this is an orphan in the tree root. Currently these
2996 * could come from 2 sources:
2997 * a) a snapshot deletion in progress
2998 * b) a free space cache inode
2999 * We need to distinguish those two, as the snapshot
3000 * orphan must not get deleted.
3001 * find_dead_roots already ran before us, so if this
3002 * is a snapshot deletion, we should find the root
3003 * in the dead_roots list
3005 spin_lock(&fs_info
->trans_lock
);
3006 list_for_each_entry(dead_root
, &fs_info
->dead_roots
,
3008 if (dead_root
->root_key
.objectid
==
3009 found_key
.objectid
) {
3014 spin_unlock(&fs_info
->trans_lock
);
3016 /* prevent this orphan from being found again */
3017 key
.offset
= found_key
.objectid
- 1;
3024 * If we have an inode with links, there are a couple of
3025 * possibilities. Old kernels (before v3.12) used to create an
3026 * orphan item for truncate indicating that there were possibly
3027 * extent items past i_size that needed to be deleted. In v3.12,
3028 * truncate was changed to update i_size in sync with the extent
3029 * items, but the (useless) orphan item was still created. Since
3030 * v4.18, we don't create the orphan item for truncate at all.
3032 * So, this item could mean that we need to do a truncate, but
3033 * only if this filesystem was last used on a pre-v3.12 kernel
3034 * and was not cleanly unmounted. The odds of that are quite
3035 * slim, and it's a pain to do the truncate now, so just delete
3038 * It's also possible that this orphan item was supposed to be
3039 * deleted but wasn't. The inode number may have been reused,
3040 * but either way, we can delete the orphan item.
3042 if (ret
== -ENOENT
|| inode
->i_nlink
) {
3045 trans
= btrfs_start_transaction(root
, 1);
3046 if (IS_ERR(trans
)) {
3047 ret
= PTR_ERR(trans
);
3050 btrfs_debug(fs_info
, "auto deleting %Lu",
3051 found_key
.objectid
);
3052 ret
= btrfs_del_orphan_item(trans
, root
,
3053 found_key
.objectid
);
3054 btrfs_end_transaction(trans
);
3062 /* this will do delete_inode and everything for us */
3065 /* release the path since we're done with it */
3066 btrfs_release_path(path
);
3068 root
->orphan_cleanup_state
= ORPHAN_CLEANUP_DONE
;
3070 if (test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED
, &root
->state
)) {
3071 trans
= btrfs_join_transaction(root
);
3073 btrfs_end_transaction(trans
);
3077 btrfs_debug(fs_info
, "unlinked %d orphans", nr_unlink
);
3081 btrfs_err(fs_info
, "could not do orphan cleanup %d", ret
);
3082 btrfs_free_path(path
);
3087 * very simple check to peek ahead in the leaf looking for xattrs. If we
3088 * don't find any xattrs, we know there can't be any acls.
3090 * slot is the slot the inode is in, objectid is the objectid of the inode
3092 static noinline
int acls_after_inode_item(struct extent_buffer
*leaf
,
3093 int slot
, u64 objectid
,
3094 int *first_xattr_slot
)
3096 u32 nritems
= btrfs_header_nritems(leaf
);
3097 struct btrfs_key found_key
;
3098 static u64 xattr_access
= 0;
3099 static u64 xattr_default
= 0;
3102 if (!xattr_access
) {
3103 xattr_access
= btrfs_name_hash(XATTR_NAME_POSIX_ACL_ACCESS
,
3104 strlen(XATTR_NAME_POSIX_ACL_ACCESS
));
3105 xattr_default
= btrfs_name_hash(XATTR_NAME_POSIX_ACL_DEFAULT
,
3106 strlen(XATTR_NAME_POSIX_ACL_DEFAULT
));
3110 *first_xattr_slot
= -1;
3111 while (slot
< nritems
) {
3112 btrfs_item_key_to_cpu(leaf
, &found_key
, slot
);
3114 /* we found a different objectid, there must not be acls */
3115 if (found_key
.objectid
!= objectid
)
3118 /* we found an xattr, assume we've got an acl */
3119 if (found_key
.type
== BTRFS_XATTR_ITEM_KEY
) {
3120 if (*first_xattr_slot
== -1)
3121 *first_xattr_slot
= slot
;
3122 if (found_key
.offset
== xattr_access
||
3123 found_key
.offset
== xattr_default
)
3128 * we found a key greater than an xattr key, there can't
3129 * be any acls later on
3131 if (found_key
.type
> BTRFS_XATTR_ITEM_KEY
)
3138 * it goes inode, inode backrefs, xattrs, extents,
3139 * so if there are a ton of hard links to an inode there can
3140 * be a lot of backrefs. Don't waste time searching too hard,
3141 * this is just an optimization
3146 /* we hit the end of the leaf before we found an xattr or
3147 * something larger than an xattr. We have to assume the inode
3150 if (*first_xattr_slot
== -1)
3151 *first_xattr_slot
= slot
;
3156 * read an inode from the btree into the in-memory inode
3158 static int btrfs_read_locked_inode(struct inode
*inode
,
3159 struct btrfs_path
*in_path
)
3161 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
3162 struct btrfs_path
*path
= in_path
;
3163 struct extent_buffer
*leaf
;
3164 struct btrfs_inode_item
*inode_item
;
3165 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
3166 struct btrfs_key location
;
3171 bool filled
= false;
3172 int first_xattr_slot
;
3174 ret
= btrfs_fill_inode(inode
, &rdev
);
3179 path
= btrfs_alloc_path();
3184 memcpy(&location
, &BTRFS_I(inode
)->location
, sizeof(location
));
3186 ret
= btrfs_lookup_inode(NULL
, root
, path
, &location
, 0);
3188 if (path
!= in_path
)
3189 btrfs_free_path(path
);
3193 leaf
= path
->nodes
[0];
3198 inode_item
= btrfs_item_ptr(leaf
, path
->slots
[0],
3199 struct btrfs_inode_item
);
3200 inode
->i_mode
= btrfs_inode_mode(leaf
, inode_item
);
3201 set_nlink(inode
, btrfs_inode_nlink(leaf
, inode_item
));
3202 i_uid_write(inode
, btrfs_inode_uid(leaf
, inode_item
));
3203 i_gid_write(inode
, btrfs_inode_gid(leaf
, inode_item
));
3204 btrfs_i_size_write(BTRFS_I(inode
), btrfs_inode_size(leaf
, inode_item
));
3205 btrfs_inode_set_file_extent_range(BTRFS_I(inode
), 0,
3206 round_up(i_size_read(inode
), fs_info
->sectorsize
));
3208 inode
->i_atime
.tv_sec
= btrfs_timespec_sec(leaf
, &inode_item
->atime
);
3209 inode
->i_atime
.tv_nsec
= btrfs_timespec_nsec(leaf
, &inode_item
->atime
);
3211 inode
->i_mtime
.tv_sec
= btrfs_timespec_sec(leaf
, &inode_item
->mtime
);
3212 inode
->i_mtime
.tv_nsec
= btrfs_timespec_nsec(leaf
, &inode_item
->mtime
);
3214 inode
->i_ctime
.tv_sec
= btrfs_timespec_sec(leaf
, &inode_item
->ctime
);
3215 inode
->i_ctime
.tv_nsec
= btrfs_timespec_nsec(leaf
, &inode_item
->ctime
);
3217 BTRFS_I(inode
)->i_otime
.tv_sec
=
3218 btrfs_timespec_sec(leaf
, &inode_item
->otime
);
3219 BTRFS_I(inode
)->i_otime
.tv_nsec
=
3220 btrfs_timespec_nsec(leaf
, &inode_item
->otime
);
3222 inode_set_bytes(inode
, btrfs_inode_nbytes(leaf
, inode_item
));
3223 BTRFS_I(inode
)->generation
= btrfs_inode_generation(leaf
, inode_item
);
3224 BTRFS_I(inode
)->last_trans
= btrfs_inode_transid(leaf
, inode_item
);
3226 inode_set_iversion_queried(inode
,
3227 btrfs_inode_sequence(leaf
, inode_item
));
3228 inode
->i_generation
= BTRFS_I(inode
)->generation
;
3230 rdev
= btrfs_inode_rdev(leaf
, inode_item
);
3232 BTRFS_I(inode
)->index_cnt
= (u64
)-1;
3233 BTRFS_I(inode
)->flags
= btrfs_inode_flags(leaf
, inode_item
);
3237 * If we were modified in the current generation and evicted from memory
3238 * and then re-read we need to do a full sync since we don't have any
3239 * idea about which extents were modified before we were evicted from
3242 * This is required for both inode re-read from disk and delayed inode
3243 * in delayed_nodes_tree.
3245 if (BTRFS_I(inode
)->last_trans
== fs_info
->generation
)
3246 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC
,
3247 &BTRFS_I(inode
)->runtime_flags
);
3250 * We don't persist the id of the transaction where an unlink operation
3251 * against the inode was last made. So here we assume the inode might
3252 * have been evicted, and therefore the exact value of last_unlink_trans
3253 * lost, and set it to last_trans to avoid metadata inconsistencies
3254 * between the inode and its parent if the inode is fsync'ed and the log
3255 * replayed. For example, in the scenario:
3258 * ln mydir/foo mydir/bar
3261 * echo 2 > /proc/sys/vm/drop_caches # evicts inode
3262 * xfs_io -c fsync mydir/foo
3264 * mount fs, triggers fsync log replay
3266 * We must make sure that when we fsync our inode foo we also log its
3267 * parent inode, otherwise after log replay the parent still has the
3268 * dentry with the "bar" name but our inode foo has a link count of 1
3269 * and doesn't have an inode ref with the name "bar" anymore.
3271 * Setting last_unlink_trans to last_trans is a pessimistic approach,
3272 * but it guarantees correctness at the expense of occasional full
3273 * transaction commits on fsync if our inode is a directory, or if our
3274 * inode is not a directory, logging its parent unnecessarily.
3276 BTRFS_I(inode
)->last_unlink_trans
= BTRFS_I(inode
)->last_trans
;
3279 if (inode
->i_nlink
!= 1 ||
3280 path
->slots
[0] >= btrfs_header_nritems(leaf
))
3283 btrfs_item_key_to_cpu(leaf
, &location
, path
->slots
[0]);
3284 if (location
.objectid
!= btrfs_ino(BTRFS_I(inode
)))
3287 ptr
= btrfs_item_ptr_offset(leaf
, path
->slots
[0]);
3288 if (location
.type
== BTRFS_INODE_REF_KEY
) {
3289 struct btrfs_inode_ref
*ref
;
3291 ref
= (struct btrfs_inode_ref
*)ptr
;
3292 BTRFS_I(inode
)->dir_index
= btrfs_inode_ref_index(leaf
, ref
);
3293 } else if (location
.type
== BTRFS_INODE_EXTREF_KEY
) {
3294 struct btrfs_inode_extref
*extref
;
3296 extref
= (struct btrfs_inode_extref
*)ptr
;
3297 BTRFS_I(inode
)->dir_index
= btrfs_inode_extref_index(leaf
,
3302 * try to precache a NULL acl entry for files that don't have
3303 * any xattrs or acls
3305 maybe_acls
= acls_after_inode_item(leaf
, path
->slots
[0],
3306 btrfs_ino(BTRFS_I(inode
)), &first_xattr_slot
);
3307 if (first_xattr_slot
!= -1) {
3308 path
->slots
[0] = first_xattr_slot
;
3309 ret
= btrfs_load_inode_props(inode
, path
);
3312 "error loading props for ino %llu (root %llu): %d",
3313 btrfs_ino(BTRFS_I(inode
)),
3314 root
->root_key
.objectid
, ret
);
3316 if (path
!= in_path
)
3317 btrfs_free_path(path
);
3320 cache_no_acl(inode
);
3322 switch (inode
->i_mode
& S_IFMT
) {
3324 inode
->i_mapping
->a_ops
= &btrfs_aops
;
3325 BTRFS_I(inode
)->io_tree
.ops
= &btrfs_extent_io_ops
;
3326 inode
->i_fop
= &btrfs_file_operations
;
3327 inode
->i_op
= &btrfs_file_inode_operations
;
3330 inode
->i_fop
= &btrfs_dir_file_operations
;
3331 inode
->i_op
= &btrfs_dir_inode_operations
;
3334 inode
->i_op
= &btrfs_symlink_inode_operations
;
3335 inode_nohighmem(inode
);
3336 inode
->i_mapping
->a_ops
= &btrfs_aops
;
3339 inode
->i_op
= &btrfs_special_inode_operations
;
3340 init_special_inode(inode
, inode
->i_mode
, rdev
);
3344 btrfs_sync_inode_flags_to_i_flags(inode
);
3349 * given a leaf and an inode, copy the inode fields into the leaf
3351 static void fill_inode_item(struct btrfs_trans_handle
*trans
,
3352 struct extent_buffer
*leaf
,
3353 struct btrfs_inode_item
*item
,
3354 struct inode
*inode
)
3356 struct btrfs_map_token token
;
3358 btrfs_init_map_token(&token
, leaf
);
3360 btrfs_set_token_inode_uid(leaf
, item
, i_uid_read(inode
), &token
);
3361 btrfs_set_token_inode_gid(leaf
, item
, i_gid_read(inode
), &token
);
3362 btrfs_set_token_inode_size(leaf
, item
, BTRFS_I(inode
)->disk_i_size
,
3364 btrfs_set_token_inode_mode(leaf
, item
, inode
->i_mode
, &token
);
3365 btrfs_set_token_inode_nlink(leaf
, item
, inode
->i_nlink
, &token
);
3367 btrfs_set_token_timespec_sec(leaf
, &item
->atime
,
3368 inode
->i_atime
.tv_sec
, &token
);
3369 btrfs_set_token_timespec_nsec(leaf
, &item
->atime
,
3370 inode
->i_atime
.tv_nsec
, &token
);
3372 btrfs_set_token_timespec_sec(leaf
, &item
->mtime
,
3373 inode
->i_mtime
.tv_sec
, &token
);
3374 btrfs_set_token_timespec_nsec(leaf
, &item
->mtime
,
3375 inode
->i_mtime
.tv_nsec
, &token
);
3377 btrfs_set_token_timespec_sec(leaf
, &item
->ctime
,
3378 inode
->i_ctime
.tv_sec
, &token
);
3379 btrfs_set_token_timespec_nsec(leaf
, &item
->ctime
,
3380 inode
->i_ctime
.tv_nsec
, &token
);
3382 btrfs_set_token_timespec_sec(leaf
, &item
->otime
,
3383 BTRFS_I(inode
)->i_otime
.tv_sec
, &token
);
3384 btrfs_set_token_timespec_nsec(leaf
, &item
->otime
,
3385 BTRFS_I(inode
)->i_otime
.tv_nsec
, &token
);
3387 btrfs_set_token_inode_nbytes(leaf
, item
, inode_get_bytes(inode
),
3389 btrfs_set_token_inode_generation(leaf
, item
, BTRFS_I(inode
)->generation
,
3391 btrfs_set_token_inode_sequence(leaf
, item
, inode_peek_iversion(inode
),
3393 btrfs_set_token_inode_transid(leaf
, item
, trans
->transid
, &token
);
3394 btrfs_set_token_inode_rdev(leaf
, item
, inode
->i_rdev
, &token
);
3395 btrfs_set_token_inode_flags(leaf
, item
, BTRFS_I(inode
)->flags
, &token
);
3396 btrfs_set_token_inode_block_group(leaf
, item
, 0, &token
);
3400 * copy everything in the in-memory inode into the btree.
3402 static noinline
int btrfs_update_inode_item(struct btrfs_trans_handle
*trans
,
3403 struct btrfs_root
*root
, struct inode
*inode
)
3405 struct btrfs_inode_item
*inode_item
;
3406 struct btrfs_path
*path
;
3407 struct extent_buffer
*leaf
;
3410 path
= btrfs_alloc_path();
3414 path
->leave_spinning
= 1;
3415 ret
= btrfs_lookup_inode(trans
, root
, path
, &BTRFS_I(inode
)->location
,
3423 leaf
= path
->nodes
[0];
3424 inode_item
= btrfs_item_ptr(leaf
, path
->slots
[0],
3425 struct btrfs_inode_item
);
3427 fill_inode_item(trans
, leaf
, inode_item
, inode
);
3428 btrfs_mark_buffer_dirty(leaf
);
3429 btrfs_set_inode_last_trans(trans
, inode
);
3432 btrfs_free_path(path
);
3437 * copy everything in the in-memory inode into the btree.
3439 noinline
int btrfs_update_inode(struct btrfs_trans_handle
*trans
,
3440 struct btrfs_root
*root
, struct inode
*inode
)
3442 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
3446 * If the inode is a free space inode, we can deadlock during commit
3447 * if we put it into the delayed code.
3449 * The data relocation inode should also be directly updated
3452 if (!btrfs_is_free_space_inode(BTRFS_I(inode
))
3453 && root
->root_key
.objectid
!= BTRFS_DATA_RELOC_TREE_OBJECTID
3454 && !test_bit(BTRFS_FS_LOG_RECOVERING
, &fs_info
->flags
)) {
3455 btrfs_update_root_times(trans
, root
);
3457 ret
= btrfs_delayed_update_inode(trans
, root
, inode
);
3459 btrfs_set_inode_last_trans(trans
, inode
);
3463 return btrfs_update_inode_item(trans
, root
, inode
);
3466 noinline
int btrfs_update_inode_fallback(struct btrfs_trans_handle
*trans
,
3467 struct btrfs_root
*root
,
3468 struct inode
*inode
)
3472 ret
= btrfs_update_inode(trans
, root
, inode
);
3474 return btrfs_update_inode_item(trans
, root
, inode
);
3479 * unlink helper that gets used here in inode.c and in the tree logging
3480 * recovery code. It remove a link in a directory with a given name, and
3481 * also drops the back refs in the inode to the directory
3483 static int __btrfs_unlink_inode(struct btrfs_trans_handle
*trans
,
3484 struct btrfs_root
*root
,
3485 struct btrfs_inode
*dir
,
3486 struct btrfs_inode
*inode
,
3487 const char *name
, int name_len
)
3489 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
3490 struct btrfs_path
*path
;
3492 struct btrfs_dir_item
*di
;
3494 u64 ino
= btrfs_ino(inode
);
3495 u64 dir_ino
= btrfs_ino(dir
);
3497 path
= btrfs_alloc_path();
3503 path
->leave_spinning
= 1;
3504 di
= btrfs_lookup_dir_item(trans
, root
, path
, dir_ino
,
3505 name
, name_len
, -1);
3506 if (IS_ERR_OR_NULL(di
)) {
3507 ret
= di
? PTR_ERR(di
) : -ENOENT
;
3510 ret
= btrfs_delete_one_dir_name(trans
, root
, path
, di
);
3513 btrfs_release_path(path
);
3516 * If we don't have dir index, we have to get it by looking up
3517 * the inode ref, since we get the inode ref, remove it directly,
3518 * it is unnecessary to do delayed deletion.
3520 * But if we have dir index, needn't search inode ref to get it.
3521 * Since the inode ref is close to the inode item, it is better
3522 * that we delay to delete it, and just do this deletion when
3523 * we update the inode item.
3525 if (inode
->dir_index
) {
3526 ret
= btrfs_delayed_delete_inode_ref(inode
);
3528 index
= inode
->dir_index
;
3533 ret
= btrfs_del_inode_ref(trans
, root
, name
, name_len
, ino
,
3537 "failed to delete reference to %.*s, inode %llu parent %llu",
3538 name_len
, name
, ino
, dir_ino
);
3539 btrfs_abort_transaction(trans
, ret
);
3543 ret
= btrfs_delete_delayed_dir_index(trans
, dir
, index
);
3545 btrfs_abort_transaction(trans
, ret
);
3549 ret
= btrfs_del_inode_ref_in_log(trans
, root
, name
, name_len
, inode
,
3551 if (ret
!= 0 && ret
!= -ENOENT
) {
3552 btrfs_abort_transaction(trans
, ret
);
3556 ret
= btrfs_del_dir_entries_in_log(trans
, root
, name
, name_len
, dir
,
3561 btrfs_abort_transaction(trans
, ret
);
3564 * If we have a pending delayed iput we could end up with the final iput
3565 * being run in btrfs-cleaner context. If we have enough of these built
3566 * up we can end up burning a lot of time in btrfs-cleaner without any
3567 * way to throttle the unlinks. Since we're currently holding a ref on
3568 * the inode we can run the delayed iput here without any issues as the
3569 * final iput won't be done until after we drop the ref we're currently
3572 btrfs_run_delayed_iput(fs_info
, inode
);
3574 btrfs_free_path(path
);
3578 btrfs_i_size_write(dir
, dir
->vfs_inode
.i_size
- name_len
* 2);
3579 inode_inc_iversion(&inode
->vfs_inode
);
3580 inode_inc_iversion(&dir
->vfs_inode
);
3581 inode
->vfs_inode
.i_ctime
= dir
->vfs_inode
.i_mtime
=
3582 dir
->vfs_inode
.i_ctime
= current_time(&inode
->vfs_inode
);
3583 ret
= btrfs_update_inode(trans
, root
, &dir
->vfs_inode
);
3588 int btrfs_unlink_inode(struct btrfs_trans_handle
*trans
,
3589 struct btrfs_root
*root
,
3590 struct btrfs_inode
*dir
, struct btrfs_inode
*inode
,
3591 const char *name
, int name_len
)
3594 ret
= __btrfs_unlink_inode(trans
, root
, dir
, inode
, name
, name_len
);
3596 drop_nlink(&inode
->vfs_inode
);
3597 ret
= btrfs_update_inode(trans
, root
, &inode
->vfs_inode
);
3603 * helper to start transaction for unlink and rmdir.
3605 * unlink and rmdir are special in btrfs, they do not always free space, so
3606 * if we cannot make our reservations the normal way try and see if there is
3607 * plenty of slack room in the global reserve to migrate, otherwise we cannot
3608 * allow the unlink to occur.
3610 static struct btrfs_trans_handle
*__unlink_start_trans(struct inode
*dir
)
3612 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
3615 * 1 for the possible orphan item
3616 * 1 for the dir item
3617 * 1 for the dir index
3618 * 1 for the inode ref
3621 return btrfs_start_transaction_fallback_global_rsv(root
, 5, 5);
3624 static int btrfs_unlink(struct inode
*dir
, struct dentry
*dentry
)
3626 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
3627 struct btrfs_trans_handle
*trans
;
3628 struct inode
*inode
= d_inode(dentry
);
3631 trans
= __unlink_start_trans(dir
);
3633 return PTR_ERR(trans
);
3635 btrfs_record_unlink_dir(trans
, BTRFS_I(dir
), BTRFS_I(d_inode(dentry
)),
3638 ret
= btrfs_unlink_inode(trans
, root
, BTRFS_I(dir
),
3639 BTRFS_I(d_inode(dentry
)), dentry
->d_name
.name
,
3640 dentry
->d_name
.len
);
3644 if (inode
->i_nlink
== 0) {
3645 ret
= btrfs_orphan_add(trans
, BTRFS_I(inode
));
3651 btrfs_end_transaction(trans
);
3652 btrfs_btree_balance_dirty(root
->fs_info
);
3656 static int btrfs_unlink_subvol(struct btrfs_trans_handle
*trans
,
3657 struct inode
*dir
, struct dentry
*dentry
)
3659 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
3660 struct btrfs_inode
*inode
= BTRFS_I(d_inode(dentry
));
3661 struct btrfs_path
*path
;
3662 struct extent_buffer
*leaf
;
3663 struct btrfs_dir_item
*di
;
3664 struct btrfs_key key
;
3665 const char *name
= dentry
->d_name
.name
;
3666 int name_len
= dentry
->d_name
.len
;
3670 u64 dir_ino
= btrfs_ino(BTRFS_I(dir
));
3672 if (btrfs_ino(inode
) == BTRFS_FIRST_FREE_OBJECTID
) {
3673 objectid
= inode
->root
->root_key
.objectid
;
3674 } else if (btrfs_ino(inode
) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID
) {
3675 objectid
= inode
->location
.objectid
;
3681 path
= btrfs_alloc_path();
3685 di
= btrfs_lookup_dir_item(trans
, root
, path
, dir_ino
,
3686 name
, name_len
, -1);
3687 if (IS_ERR_OR_NULL(di
)) {
3688 ret
= di
? PTR_ERR(di
) : -ENOENT
;
3692 leaf
= path
->nodes
[0];
3693 btrfs_dir_item_key_to_cpu(leaf
, di
, &key
);
3694 WARN_ON(key
.type
!= BTRFS_ROOT_ITEM_KEY
|| key
.objectid
!= objectid
);
3695 ret
= btrfs_delete_one_dir_name(trans
, root
, path
, di
);
3697 btrfs_abort_transaction(trans
, ret
);
3700 btrfs_release_path(path
);
3703 * This is a placeholder inode for a subvolume we didn't have a
3704 * reference to at the time of the snapshot creation. In the meantime
3705 * we could have renamed the real subvol link into our snapshot, so
3706 * depending on btrfs_del_root_ref to return -ENOENT here is incorret.
3707 * Instead simply lookup the dir_index_item for this entry so we can
3708 * remove it. Otherwise we know we have a ref to the root and we can
3709 * call btrfs_del_root_ref, and it _shouldn't_ fail.
3711 if (btrfs_ino(inode
) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID
) {
3712 di
= btrfs_search_dir_index_item(root
, path
, dir_ino
,
3714 if (IS_ERR_OR_NULL(di
)) {
3719 btrfs_abort_transaction(trans
, ret
);
3723 leaf
= path
->nodes
[0];
3724 btrfs_item_key_to_cpu(leaf
, &key
, path
->slots
[0]);
3726 btrfs_release_path(path
);
3728 ret
= btrfs_del_root_ref(trans
, objectid
,
3729 root
->root_key
.objectid
, dir_ino
,
3730 &index
, name
, name_len
);
3732 btrfs_abort_transaction(trans
, ret
);
3737 ret
= btrfs_delete_delayed_dir_index(trans
, BTRFS_I(dir
), index
);
3739 btrfs_abort_transaction(trans
, ret
);
3743 btrfs_i_size_write(BTRFS_I(dir
), dir
->i_size
- name_len
* 2);
3744 inode_inc_iversion(dir
);
3745 dir
->i_mtime
= dir
->i_ctime
= current_time(dir
);
3746 ret
= btrfs_update_inode_fallback(trans
, root
, dir
);
3748 btrfs_abort_transaction(trans
, ret
);
3750 btrfs_free_path(path
);
3755 * Helper to check if the subvolume references other subvolumes or if it's
3758 static noinline
int may_destroy_subvol(struct btrfs_root
*root
)
3760 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
3761 struct btrfs_path
*path
;
3762 struct btrfs_dir_item
*di
;
3763 struct btrfs_key key
;
3767 path
= btrfs_alloc_path();
3771 /* Make sure this root isn't set as the default subvol */
3772 dir_id
= btrfs_super_root_dir(fs_info
->super_copy
);
3773 di
= btrfs_lookup_dir_item(NULL
, fs_info
->tree_root
, path
,
3774 dir_id
, "default", 7, 0);
3775 if (di
&& !IS_ERR(di
)) {
3776 btrfs_dir_item_key_to_cpu(path
->nodes
[0], di
, &key
);
3777 if (key
.objectid
== root
->root_key
.objectid
) {
3780 "deleting default subvolume %llu is not allowed",
3784 btrfs_release_path(path
);
3787 key
.objectid
= root
->root_key
.objectid
;
3788 key
.type
= BTRFS_ROOT_REF_KEY
;
3789 key
.offset
= (u64
)-1;
3791 ret
= btrfs_search_slot(NULL
, fs_info
->tree_root
, &key
, path
, 0, 0);
3797 if (path
->slots
[0] > 0) {
3799 btrfs_item_key_to_cpu(path
->nodes
[0], &key
, path
->slots
[0]);
3800 if (key
.objectid
== root
->root_key
.objectid
&&
3801 key
.type
== BTRFS_ROOT_REF_KEY
)
3805 btrfs_free_path(path
);
3809 /* Delete all dentries for inodes belonging to the root */
3810 static void btrfs_prune_dentries(struct btrfs_root
*root
)
3812 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
3813 struct rb_node
*node
;
3814 struct rb_node
*prev
;
3815 struct btrfs_inode
*entry
;
3816 struct inode
*inode
;
3819 if (!test_bit(BTRFS_FS_STATE_ERROR
, &fs_info
->fs_state
))
3820 WARN_ON(btrfs_root_refs(&root
->root_item
) != 0);
3822 spin_lock(&root
->inode_lock
);
3824 node
= root
->inode_tree
.rb_node
;
3828 entry
= rb_entry(node
, struct btrfs_inode
, rb_node
);
3830 if (objectid
< btrfs_ino(entry
))
3831 node
= node
->rb_left
;
3832 else if (objectid
> btrfs_ino(entry
))
3833 node
= node
->rb_right
;
3839 entry
= rb_entry(prev
, struct btrfs_inode
, rb_node
);
3840 if (objectid
<= btrfs_ino(entry
)) {
3844 prev
= rb_next(prev
);
3848 entry
= rb_entry(node
, struct btrfs_inode
, rb_node
);
3849 objectid
= btrfs_ino(entry
) + 1;
3850 inode
= igrab(&entry
->vfs_inode
);
3852 spin_unlock(&root
->inode_lock
);
3853 if (atomic_read(&inode
->i_count
) > 1)
3854 d_prune_aliases(inode
);
3856 * btrfs_drop_inode will have it removed from the inode
3857 * cache when its usage count hits zero.
3861 spin_lock(&root
->inode_lock
);
3865 if (cond_resched_lock(&root
->inode_lock
))
3868 node
= rb_next(node
);
3870 spin_unlock(&root
->inode_lock
);
3873 int btrfs_delete_subvolume(struct inode
*dir
, struct dentry
*dentry
)
3875 struct btrfs_fs_info
*fs_info
= btrfs_sb(dentry
->d_sb
);
3876 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
3877 struct inode
*inode
= d_inode(dentry
);
3878 struct btrfs_root
*dest
= BTRFS_I(inode
)->root
;
3879 struct btrfs_trans_handle
*trans
;
3880 struct btrfs_block_rsv block_rsv
;
3886 * Don't allow to delete a subvolume with send in progress. This is
3887 * inside the inode lock so the error handling that has to drop the bit
3888 * again is not run concurrently.
3890 spin_lock(&dest
->root_item_lock
);
3891 if (dest
->send_in_progress
) {
3892 spin_unlock(&dest
->root_item_lock
);
3894 "attempt to delete subvolume %llu during send",
3895 dest
->root_key
.objectid
);
3898 root_flags
= btrfs_root_flags(&dest
->root_item
);
3899 btrfs_set_root_flags(&dest
->root_item
,
3900 root_flags
| BTRFS_ROOT_SUBVOL_DEAD
);
3901 spin_unlock(&dest
->root_item_lock
);
3903 down_write(&fs_info
->subvol_sem
);
3905 err
= may_destroy_subvol(dest
);
3909 btrfs_init_block_rsv(&block_rsv
, BTRFS_BLOCK_RSV_TEMP
);
3911 * One for dir inode,
3912 * two for dir entries,
3913 * two for root ref/backref.
3915 err
= btrfs_subvolume_reserve_metadata(root
, &block_rsv
, 5, true);
3919 trans
= btrfs_start_transaction(root
, 0);
3920 if (IS_ERR(trans
)) {
3921 err
= PTR_ERR(trans
);
3924 trans
->block_rsv
= &block_rsv
;
3925 trans
->bytes_reserved
= block_rsv
.size
;
3927 btrfs_record_snapshot_destroy(trans
, BTRFS_I(dir
));
3929 ret
= btrfs_unlink_subvol(trans
, dir
, dentry
);
3932 btrfs_abort_transaction(trans
, ret
);
3936 btrfs_record_root_in_trans(trans
, dest
);
3938 memset(&dest
->root_item
.drop_progress
, 0,
3939 sizeof(dest
->root_item
.drop_progress
));
3940 dest
->root_item
.drop_level
= 0;
3941 btrfs_set_root_refs(&dest
->root_item
, 0);
3943 if (!test_and_set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED
, &dest
->state
)) {
3944 ret
= btrfs_insert_orphan_item(trans
,
3946 dest
->root_key
.objectid
);
3948 btrfs_abort_transaction(trans
, ret
);
3954 ret
= btrfs_uuid_tree_remove(trans
, dest
->root_item
.uuid
,
3955 BTRFS_UUID_KEY_SUBVOL
,
3956 dest
->root_key
.objectid
);
3957 if (ret
&& ret
!= -ENOENT
) {
3958 btrfs_abort_transaction(trans
, ret
);
3962 if (!btrfs_is_empty_uuid(dest
->root_item
.received_uuid
)) {
3963 ret
= btrfs_uuid_tree_remove(trans
,
3964 dest
->root_item
.received_uuid
,
3965 BTRFS_UUID_KEY_RECEIVED_SUBVOL
,
3966 dest
->root_key
.objectid
);
3967 if (ret
&& ret
!= -ENOENT
) {
3968 btrfs_abort_transaction(trans
, ret
);
3975 trans
->block_rsv
= NULL
;
3976 trans
->bytes_reserved
= 0;
3977 ret
= btrfs_end_transaction(trans
);
3980 inode
->i_flags
|= S_DEAD
;
3982 btrfs_subvolume_release_metadata(fs_info
, &block_rsv
);
3984 up_write(&fs_info
->subvol_sem
);
3986 spin_lock(&dest
->root_item_lock
);
3987 root_flags
= btrfs_root_flags(&dest
->root_item
);
3988 btrfs_set_root_flags(&dest
->root_item
,
3989 root_flags
& ~BTRFS_ROOT_SUBVOL_DEAD
);
3990 spin_unlock(&dest
->root_item_lock
);
3992 d_invalidate(dentry
);
3993 btrfs_prune_dentries(dest
);
3994 ASSERT(dest
->send_in_progress
== 0);
3997 if (dest
->ino_cache_inode
) {
3998 iput(dest
->ino_cache_inode
);
3999 dest
->ino_cache_inode
= NULL
;
4006 static int btrfs_rmdir(struct inode
*dir
, struct dentry
*dentry
)
4008 struct inode
*inode
= d_inode(dentry
);
4010 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
4011 struct btrfs_trans_handle
*trans
;
4012 u64 last_unlink_trans
;
4014 if (inode
->i_size
> BTRFS_EMPTY_DIR_SIZE
)
4016 if (btrfs_ino(BTRFS_I(inode
)) == BTRFS_FIRST_FREE_OBJECTID
)
4017 return btrfs_delete_subvolume(dir
, dentry
);
4019 trans
= __unlink_start_trans(dir
);
4021 return PTR_ERR(trans
);
4023 if (unlikely(btrfs_ino(BTRFS_I(inode
)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID
)) {
4024 err
= btrfs_unlink_subvol(trans
, dir
, dentry
);
4028 err
= btrfs_orphan_add(trans
, BTRFS_I(inode
));
4032 last_unlink_trans
= BTRFS_I(inode
)->last_unlink_trans
;
4034 /* now the directory is empty */
4035 err
= btrfs_unlink_inode(trans
, root
, BTRFS_I(dir
),
4036 BTRFS_I(d_inode(dentry
)), dentry
->d_name
.name
,
4037 dentry
->d_name
.len
);
4039 btrfs_i_size_write(BTRFS_I(inode
), 0);
4041 * Propagate the last_unlink_trans value of the deleted dir to
4042 * its parent directory. This is to prevent an unrecoverable
4043 * log tree in the case we do something like this:
4045 * 2) create snapshot under dir foo
4046 * 3) delete the snapshot
4049 * 6) fsync foo or some file inside foo
4051 if (last_unlink_trans
>= trans
->transid
)
4052 BTRFS_I(dir
)->last_unlink_trans
= last_unlink_trans
;
4055 btrfs_end_transaction(trans
);
4056 btrfs_btree_balance_dirty(root
->fs_info
);
4062 * Return this if we need to call truncate_block for the last bit of the
4065 #define NEED_TRUNCATE_BLOCK 1
4068 * this can truncate away extent items, csum items and directory items.
4069 * It starts at a high offset and removes keys until it can't find
4070 * any higher than new_size
4072 * csum items that cross the new i_size are truncated to the new size
4075 * min_type is the minimum key type to truncate down to. If set to 0, this
4076 * will kill all the items on this inode, including the INODE_ITEM_KEY.
4078 int btrfs_truncate_inode_items(struct btrfs_trans_handle
*trans
,
4079 struct btrfs_root
*root
,
4080 struct inode
*inode
,
4081 u64 new_size
, u32 min_type
)
4083 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
4084 struct btrfs_path
*path
;
4085 struct extent_buffer
*leaf
;
4086 struct btrfs_file_extent_item
*fi
;
4087 struct btrfs_key key
;
4088 struct btrfs_key found_key
;
4089 u64 extent_start
= 0;
4090 u64 extent_num_bytes
= 0;
4091 u64 extent_offset
= 0;
4093 u64 last_size
= new_size
;
4094 u32 found_type
= (u8
)-1;
4097 int pending_del_nr
= 0;
4098 int pending_del_slot
= 0;
4099 int extent_type
= -1;
4101 u64 ino
= btrfs_ino(BTRFS_I(inode
));
4102 u64 bytes_deleted
= 0;
4103 bool be_nice
= false;
4104 bool should_throttle
= false;
4105 const u64 lock_start
= ALIGN_DOWN(new_size
, fs_info
->sectorsize
);
4106 struct extent_state
*cached_state
= NULL
;
4108 BUG_ON(new_size
> 0 && min_type
!= BTRFS_EXTENT_DATA_KEY
);
4111 * for non-free space inodes and ref cows, we want to back off from
4114 if (!btrfs_is_free_space_inode(BTRFS_I(inode
)) &&
4115 test_bit(BTRFS_ROOT_REF_COWS
, &root
->state
))
4118 path
= btrfs_alloc_path();
4121 path
->reada
= READA_BACK
;
4123 if (root
->root_key
.objectid
!= BTRFS_TREE_LOG_OBJECTID
)
4124 lock_extent_bits(&BTRFS_I(inode
)->io_tree
, lock_start
, (u64
)-1,
4128 * We want to drop from the next block forward in case this new size is
4129 * not block aligned since we will be keeping the last block of the
4130 * extent just the way it is.
4132 if (test_bit(BTRFS_ROOT_REF_COWS
, &root
->state
) ||
4133 root
== fs_info
->tree_root
)
4134 btrfs_drop_extent_cache(BTRFS_I(inode
), ALIGN(new_size
,
4135 fs_info
->sectorsize
),
4139 * This function is also used to drop the items in the log tree before
4140 * we relog the inode, so if root != BTRFS_I(inode)->root, it means
4141 * it is used to drop the logged items. So we shouldn't kill the delayed
4144 if (min_type
== 0 && root
== BTRFS_I(inode
)->root
)
4145 btrfs_kill_delayed_inode_items(BTRFS_I(inode
));
4148 key
.offset
= (u64
)-1;
4153 * with a 16K leaf size and 128MB extents, you can actually queue
4154 * up a huge file in a single leaf. Most of the time that
4155 * bytes_deleted is > 0, it will be huge by the time we get here
4157 if (be_nice
&& bytes_deleted
> SZ_32M
&&
4158 btrfs_should_end_transaction(trans
)) {
4163 ret
= btrfs_search_slot(trans
, root
, &key
, path
, -1, 1);
4169 /* there are no items in the tree for us to truncate, we're
4172 if (path
->slots
[0] == 0)
4178 u64 clear_start
= 0, clear_len
= 0;
4181 leaf
= path
->nodes
[0];
4182 btrfs_item_key_to_cpu(leaf
, &found_key
, path
->slots
[0]);
4183 found_type
= found_key
.type
;
4185 if (found_key
.objectid
!= ino
)
4188 if (found_type
< min_type
)
4191 item_end
= found_key
.offset
;
4192 if (found_type
== BTRFS_EXTENT_DATA_KEY
) {
4193 fi
= btrfs_item_ptr(leaf
, path
->slots
[0],
4194 struct btrfs_file_extent_item
);
4195 extent_type
= btrfs_file_extent_type(leaf
, fi
);
4196 if (extent_type
!= BTRFS_FILE_EXTENT_INLINE
) {
4198 btrfs_file_extent_num_bytes(leaf
, fi
);
4200 trace_btrfs_truncate_show_fi_regular(
4201 BTRFS_I(inode
), leaf
, fi
,
4203 } else if (extent_type
== BTRFS_FILE_EXTENT_INLINE
) {
4204 item_end
+= btrfs_file_extent_ram_bytes(leaf
,
4207 trace_btrfs_truncate_show_fi_inline(
4208 BTRFS_I(inode
), leaf
, fi
, path
->slots
[0],
4213 if (found_type
> min_type
) {
4216 if (item_end
< new_size
)
4218 if (found_key
.offset
>= new_size
)
4224 /* FIXME, shrink the extent if the ref count is only 1 */
4225 if (found_type
!= BTRFS_EXTENT_DATA_KEY
)
4228 if (extent_type
!= BTRFS_FILE_EXTENT_INLINE
) {
4231 clear_start
= found_key
.offset
;
4232 extent_start
= btrfs_file_extent_disk_bytenr(leaf
, fi
);
4234 u64 orig_num_bytes
=
4235 btrfs_file_extent_num_bytes(leaf
, fi
);
4236 extent_num_bytes
= ALIGN(new_size
-
4238 fs_info
->sectorsize
);
4239 clear_start
= ALIGN(new_size
, fs_info
->sectorsize
);
4240 btrfs_set_file_extent_num_bytes(leaf
, fi
,
4242 num_dec
= (orig_num_bytes
-
4244 if (test_bit(BTRFS_ROOT_REF_COWS
,
4247 inode_sub_bytes(inode
, num_dec
);
4248 btrfs_mark_buffer_dirty(leaf
);
4251 btrfs_file_extent_disk_num_bytes(leaf
,
4253 extent_offset
= found_key
.offset
-
4254 btrfs_file_extent_offset(leaf
, fi
);
4256 /* FIXME blocksize != 4096 */
4257 num_dec
= btrfs_file_extent_num_bytes(leaf
, fi
);
4258 if (extent_start
!= 0) {
4260 if (test_bit(BTRFS_ROOT_REF_COWS
,
4262 inode_sub_bytes(inode
, num_dec
);
4265 clear_len
= num_dec
;
4266 } else if (extent_type
== BTRFS_FILE_EXTENT_INLINE
) {
4268 * we can't truncate inline items that have had
4272 btrfs_file_extent_encryption(leaf
, fi
) == 0 &&
4273 btrfs_file_extent_other_encoding(leaf
, fi
) == 0 &&
4274 btrfs_file_extent_compression(leaf
, fi
) == 0) {
4275 u32 size
= (u32
)(new_size
- found_key
.offset
);
4277 btrfs_set_file_extent_ram_bytes(leaf
, fi
, size
);
4278 size
= btrfs_file_extent_calc_inline_size(size
);
4279 btrfs_truncate_item(path
, size
, 1);
4280 } else if (!del_item
) {
4282 * We have to bail so the last_size is set to
4283 * just before this extent.
4285 ret
= NEED_TRUNCATE_BLOCK
;
4289 * Inline extents are special, we just treat
4290 * them as a full sector worth in the file
4291 * extent tree just for simplicity sake.
4293 clear_len
= fs_info
->sectorsize
;
4296 if (test_bit(BTRFS_ROOT_REF_COWS
, &root
->state
))
4297 inode_sub_bytes(inode
, item_end
+ 1 - new_size
);
4301 * We use btrfs_truncate_inode_items() to clean up log trees for
4302 * multiple fsyncs, and in this case we don't want to clear the
4303 * file extent range because it's just the log.
4305 if (root
== BTRFS_I(inode
)->root
) {
4306 ret
= btrfs_inode_clear_file_extent_range(BTRFS_I(inode
),
4307 clear_start
, clear_len
);
4309 btrfs_abort_transaction(trans
, ret
);
4315 last_size
= found_key
.offset
;
4317 last_size
= new_size
;
4319 if (!pending_del_nr
) {
4320 /* no pending yet, add ourselves */
4321 pending_del_slot
= path
->slots
[0];
4323 } else if (pending_del_nr
&&
4324 path
->slots
[0] + 1 == pending_del_slot
) {
4325 /* hop on the pending chunk */
4327 pending_del_slot
= path
->slots
[0];
4334 should_throttle
= false;
4337 (test_bit(BTRFS_ROOT_REF_COWS
, &root
->state
) ||
4338 root
== fs_info
->tree_root
)) {
4339 struct btrfs_ref ref
= { 0 };
4341 bytes_deleted
+= extent_num_bytes
;
4343 btrfs_init_generic_ref(&ref
, BTRFS_DROP_DELAYED_REF
,
4344 extent_start
, extent_num_bytes
, 0);
4345 ref
.real_root
= root
->root_key
.objectid
;
4346 btrfs_init_data_ref(&ref
, btrfs_header_owner(leaf
),
4347 ino
, extent_offset
);
4348 ret
= btrfs_free_extent(trans
, &ref
);
4350 btrfs_abort_transaction(trans
, ret
);
4354 if (btrfs_should_throttle_delayed_refs(trans
))
4355 should_throttle
= true;
4359 if (found_type
== BTRFS_INODE_ITEM_KEY
)
4362 if (path
->slots
[0] == 0 ||
4363 path
->slots
[0] != pending_del_slot
||
4365 if (pending_del_nr
) {
4366 ret
= btrfs_del_items(trans
, root
, path
,
4370 btrfs_abort_transaction(trans
, ret
);
4375 btrfs_release_path(path
);
4378 * We can generate a lot of delayed refs, so we need to
4379 * throttle every once and a while and make sure we're
4380 * adding enough space to keep up with the work we are
4381 * generating. Since we hold a transaction here we
4382 * can't flush, and we don't want to FLUSH_LIMIT because
4383 * we could have generated too many delayed refs to
4384 * actually allocate, so just bail if we're short and
4385 * let the normal reservation dance happen higher up.
4387 if (should_throttle
) {
4388 ret
= btrfs_delayed_refs_rsv_refill(fs_info
,
4389 BTRFS_RESERVE_NO_FLUSH
);
4401 if (ret
>= 0 && pending_del_nr
) {
4404 err
= btrfs_del_items(trans
, root
, path
, pending_del_slot
,
4407 btrfs_abort_transaction(trans
, err
);
4411 if (root
->root_key
.objectid
!= BTRFS_TREE_LOG_OBJECTID
) {
4412 ASSERT(last_size
>= new_size
);
4413 if (!ret
&& last_size
> new_size
)
4414 last_size
= new_size
;
4415 btrfs_inode_safe_disk_i_size_write(inode
, last_size
);
4416 unlock_extent_cached(&BTRFS_I(inode
)->io_tree
, lock_start
,
4417 (u64
)-1, &cached_state
);
4420 btrfs_free_path(path
);
4425 * btrfs_truncate_block - read, zero a chunk and write a block
4426 * @inode - inode that we're zeroing
4427 * @from - the offset to start zeroing
4428 * @len - the length to zero, 0 to zero the entire range respective to the
4430 * @front - zero up to the offset instead of from the offset on
4432 * This will find the block for the "from" offset and cow the block and zero the
4433 * part we want to zero. This is used with truncate and hole punching.
4435 int btrfs_truncate_block(struct inode
*inode
, loff_t from
, loff_t len
,
4438 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
4439 struct address_space
*mapping
= inode
->i_mapping
;
4440 struct extent_io_tree
*io_tree
= &BTRFS_I(inode
)->io_tree
;
4441 struct btrfs_ordered_extent
*ordered
;
4442 struct extent_state
*cached_state
= NULL
;
4443 struct extent_changeset
*data_reserved
= NULL
;
4445 u32 blocksize
= fs_info
->sectorsize
;
4446 pgoff_t index
= from
>> PAGE_SHIFT
;
4447 unsigned offset
= from
& (blocksize
- 1);
4449 gfp_t mask
= btrfs_alloc_write_mask(mapping
);
4454 if (IS_ALIGNED(offset
, blocksize
) &&
4455 (!len
|| IS_ALIGNED(len
, blocksize
)))
4458 block_start
= round_down(from
, blocksize
);
4459 block_end
= block_start
+ blocksize
- 1;
4461 ret
= btrfs_delalloc_reserve_space(inode
, &data_reserved
,
4462 block_start
, blocksize
);
4467 page
= find_or_create_page(mapping
, index
, mask
);
4469 btrfs_delalloc_release_space(inode
, data_reserved
,
4470 block_start
, blocksize
, true);
4471 btrfs_delalloc_release_extents(BTRFS_I(inode
), blocksize
);
4476 if (!PageUptodate(page
)) {
4477 ret
= btrfs_readpage(NULL
, page
);
4479 if (page
->mapping
!= mapping
) {
4484 if (!PageUptodate(page
)) {
4489 wait_on_page_writeback(page
);
4491 lock_extent_bits(io_tree
, block_start
, block_end
, &cached_state
);
4492 set_page_extent_mapped(page
);
4494 ordered
= btrfs_lookup_ordered_extent(inode
, block_start
);
4496 unlock_extent_cached(io_tree
, block_start
, block_end
,
4500 btrfs_start_ordered_extent(inode
, ordered
, 1);
4501 btrfs_put_ordered_extent(ordered
);
4505 clear_extent_bit(&BTRFS_I(inode
)->io_tree
, block_start
, block_end
,
4506 EXTENT_DELALLOC
| EXTENT_DO_ACCOUNTING
| EXTENT_DEFRAG
,
4507 0, 0, &cached_state
);
4509 ret
= btrfs_set_extent_delalloc(inode
, block_start
, block_end
, 0,
4512 unlock_extent_cached(io_tree
, block_start
, block_end
,
4517 if (offset
!= blocksize
) {
4519 len
= blocksize
- offset
;
4522 memset(kaddr
+ (block_start
- page_offset(page
)),
4525 memset(kaddr
+ (block_start
- page_offset(page
)) + offset
,
4527 flush_dcache_page(page
);
4530 ClearPageChecked(page
);
4531 set_page_dirty(page
);
4532 unlock_extent_cached(io_tree
, block_start
, block_end
, &cached_state
);
4536 btrfs_delalloc_release_space(inode
, data_reserved
, block_start
,
4538 btrfs_delalloc_release_extents(BTRFS_I(inode
), blocksize
);
4542 extent_changeset_free(data_reserved
);
4546 static int maybe_insert_hole(struct btrfs_root
*root
, struct inode
*inode
,
4547 u64 offset
, u64 len
)
4549 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
4550 struct btrfs_trans_handle
*trans
;
4554 * Still need to make sure the inode looks like it's been updated so
4555 * that any holes get logged if we fsync.
4557 if (btrfs_fs_incompat(fs_info
, NO_HOLES
)) {
4558 BTRFS_I(inode
)->last_trans
= fs_info
->generation
;
4559 BTRFS_I(inode
)->last_sub_trans
= root
->log_transid
;
4560 BTRFS_I(inode
)->last_log_commit
= root
->last_log_commit
;
4565 * 1 - for the one we're dropping
4566 * 1 - for the one we're adding
4567 * 1 - for updating the inode.
4569 trans
= btrfs_start_transaction(root
, 3);
4571 return PTR_ERR(trans
);
4573 ret
= btrfs_drop_extents(trans
, root
, inode
, offset
, offset
+ len
, 1);
4575 btrfs_abort_transaction(trans
, ret
);
4576 btrfs_end_transaction(trans
);
4580 ret
= btrfs_insert_file_extent(trans
, root
, btrfs_ino(BTRFS_I(inode
)),
4581 offset
, 0, 0, len
, 0, len
, 0, 0, 0);
4583 btrfs_abort_transaction(trans
, ret
);
4585 btrfs_update_inode(trans
, root
, inode
);
4586 btrfs_end_transaction(trans
);
4591 * This function puts in dummy file extents for the area we're creating a hole
4592 * for. So if we are truncating this file to a larger size we need to insert
4593 * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for
4594 * the range between oldsize and size
4596 int btrfs_cont_expand(struct inode
*inode
, loff_t oldsize
, loff_t size
)
4598 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
4599 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
4600 struct extent_io_tree
*io_tree
= &BTRFS_I(inode
)->io_tree
;
4601 struct extent_map
*em
= NULL
;
4602 struct extent_state
*cached_state
= NULL
;
4603 struct extent_map_tree
*em_tree
= &BTRFS_I(inode
)->extent_tree
;
4604 u64 hole_start
= ALIGN(oldsize
, fs_info
->sectorsize
);
4605 u64 block_end
= ALIGN(size
, fs_info
->sectorsize
);
4612 * If our size started in the middle of a block we need to zero out the
4613 * rest of the block before we expand the i_size, otherwise we could
4614 * expose stale data.
4616 err
= btrfs_truncate_block(inode
, oldsize
, 0, 0);
4620 if (size
<= hole_start
)
4623 btrfs_lock_and_flush_ordered_range(BTRFS_I(inode
), hole_start
,
4624 block_end
- 1, &cached_state
);
4625 cur_offset
= hole_start
;
4627 em
= btrfs_get_extent(BTRFS_I(inode
), NULL
, 0, cur_offset
,
4628 block_end
- cur_offset
);
4634 last_byte
= min(extent_map_end(em
), block_end
);
4635 last_byte
= ALIGN(last_byte
, fs_info
->sectorsize
);
4636 hole_size
= last_byte
- cur_offset
;
4638 if (!test_bit(EXTENT_FLAG_PREALLOC
, &em
->flags
)) {
4639 struct extent_map
*hole_em
;
4641 err
= maybe_insert_hole(root
, inode
, cur_offset
,
4646 err
= btrfs_inode_set_file_extent_range(BTRFS_I(inode
),
4647 cur_offset
, hole_size
);
4651 btrfs_drop_extent_cache(BTRFS_I(inode
), cur_offset
,
4652 cur_offset
+ hole_size
- 1, 0);
4653 hole_em
= alloc_extent_map();
4655 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC
,
4656 &BTRFS_I(inode
)->runtime_flags
);
4659 hole_em
->start
= cur_offset
;
4660 hole_em
->len
= hole_size
;
4661 hole_em
->orig_start
= cur_offset
;
4663 hole_em
->block_start
= EXTENT_MAP_HOLE
;
4664 hole_em
->block_len
= 0;
4665 hole_em
->orig_block_len
= 0;
4666 hole_em
->ram_bytes
= hole_size
;
4667 hole_em
->compress_type
= BTRFS_COMPRESS_NONE
;
4668 hole_em
->generation
= fs_info
->generation
;
4671 write_lock(&em_tree
->lock
);
4672 err
= add_extent_mapping(em_tree
, hole_em
, 1);
4673 write_unlock(&em_tree
->lock
);
4676 btrfs_drop_extent_cache(BTRFS_I(inode
),
4681 free_extent_map(hole_em
);
4683 err
= btrfs_inode_set_file_extent_range(BTRFS_I(inode
),
4684 cur_offset
, hole_size
);
4689 free_extent_map(em
);
4691 cur_offset
= last_byte
;
4692 if (cur_offset
>= block_end
)
4695 free_extent_map(em
);
4696 unlock_extent_cached(io_tree
, hole_start
, block_end
- 1, &cached_state
);
4700 static int btrfs_setsize(struct inode
*inode
, struct iattr
*attr
)
4702 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
4703 struct btrfs_trans_handle
*trans
;
4704 loff_t oldsize
= i_size_read(inode
);
4705 loff_t newsize
= attr
->ia_size
;
4706 int mask
= attr
->ia_valid
;
4710 * The regular truncate() case without ATTR_CTIME and ATTR_MTIME is a
4711 * special case where we need to update the times despite not having
4712 * these flags set. For all other operations the VFS set these flags
4713 * explicitly if it wants a timestamp update.
4715 if (newsize
!= oldsize
) {
4716 inode_inc_iversion(inode
);
4717 if (!(mask
& (ATTR_CTIME
| ATTR_MTIME
)))
4718 inode
->i_ctime
= inode
->i_mtime
=
4719 current_time(inode
);
4722 if (newsize
> oldsize
) {
4724 * Don't do an expanding truncate while snapshotting is ongoing.
4725 * This is to ensure the snapshot captures a fully consistent
4726 * state of this file - if the snapshot captures this expanding
4727 * truncation, it must capture all writes that happened before
4730 btrfs_drew_write_lock(&root
->snapshot_lock
);
4731 ret
= btrfs_cont_expand(inode
, oldsize
, newsize
);
4733 btrfs_drew_write_unlock(&root
->snapshot_lock
);
4737 trans
= btrfs_start_transaction(root
, 1);
4738 if (IS_ERR(trans
)) {
4739 btrfs_drew_write_unlock(&root
->snapshot_lock
);
4740 return PTR_ERR(trans
);
4743 i_size_write(inode
, newsize
);
4744 btrfs_inode_safe_disk_i_size_write(inode
, 0);
4745 pagecache_isize_extended(inode
, oldsize
, newsize
);
4746 ret
= btrfs_update_inode(trans
, root
, inode
);
4747 btrfs_drew_write_unlock(&root
->snapshot_lock
);
4748 btrfs_end_transaction(trans
);
4752 * We're truncating a file that used to have good data down to
4753 * zero. Make sure it gets into the ordered flush list so that
4754 * any new writes get down to disk quickly.
4757 set_bit(BTRFS_INODE_ORDERED_DATA_CLOSE
,
4758 &BTRFS_I(inode
)->runtime_flags
);
4760 truncate_setsize(inode
, newsize
);
4762 /* Disable nonlocked read DIO to avoid the endless truncate */
4763 btrfs_inode_block_unlocked_dio(BTRFS_I(inode
));
4764 inode_dio_wait(inode
);
4765 btrfs_inode_resume_unlocked_dio(BTRFS_I(inode
));
4767 ret
= btrfs_truncate(inode
, newsize
== oldsize
);
4768 if (ret
&& inode
->i_nlink
) {
4772 * Truncate failed, so fix up the in-memory size. We
4773 * adjusted disk_i_size down as we removed extents, so
4774 * wait for disk_i_size to be stable and then update the
4775 * in-memory size to match.
4777 err
= btrfs_wait_ordered_range(inode
, 0, (u64
)-1);
4780 i_size_write(inode
, BTRFS_I(inode
)->disk_i_size
);
4787 static int btrfs_setattr(struct dentry
*dentry
, struct iattr
*attr
)
4789 struct inode
*inode
= d_inode(dentry
);
4790 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
4793 if (btrfs_root_readonly(root
))
4796 err
= setattr_prepare(dentry
, attr
);
4800 if (S_ISREG(inode
->i_mode
) && (attr
->ia_valid
& ATTR_SIZE
)) {
4801 err
= btrfs_setsize(inode
, attr
);
4806 if (attr
->ia_valid
) {
4807 setattr_copy(inode
, attr
);
4808 inode_inc_iversion(inode
);
4809 err
= btrfs_dirty_inode(inode
);
4811 if (!err
&& attr
->ia_valid
& ATTR_MODE
)
4812 err
= posix_acl_chmod(inode
, inode
->i_mode
);
4819 * While truncating the inode pages during eviction, we get the VFS calling
4820 * btrfs_invalidatepage() against each page of the inode. This is slow because
4821 * the calls to btrfs_invalidatepage() result in a huge amount of calls to
4822 * lock_extent_bits() and clear_extent_bit(), which keep merging and splitting
4823 * extent_state structures over and over, wasting lots of time.
4825 * Therefore if the inode is being evicted, let btrfs_invalidatepage() skip all
4826 * those expensive operations on a per page basis and do only the ordered io
4827 * finishing, while we release here the extent_map and extent_state structures,
4828 * without the excessive merging and splitting.
4830 static void evict_inode_truncate_pages(struct inode
*inode
)
4832 struct extent_io_tree
*io_tree
= &BTRFS_I(inode
)->io_tree
;
4833 struct extent_map_tree
*map_tree
= &BTRFS_I(inode
)->extent_tree
;
4834 struct rb_node
*node
;
4836 ASSERT(inode
->i_state
& I_FREEING
);
4837 truncate_inode_pages_final(&inode
->i_data
);
4839 write_lock(&map_tree
->lock
);
4840 while (!RB_EMPTY_ROOT(&map_tree
->map
.rb_root
)) {
4841 struct extent_map
*em
;
4843 node
= rb_first_cached(&map_tree
->map
);
4844 em
= rb_entry(node
, struct extent_map
, rb_node
);
4845 clear_bit(EXTENT_FLAG_PINNED
, &em
->flags
);
4846 clear_bit(EXTENT_FLAG_LOGGING
, &em
->flags
);
4847 remove_extent_mapping(map_tree
, em
);
4848 free_extent_map(em
);
4849 if (need_resched()) {
4850 write_unlock(&map_tree
->lock
);
4852 write_lock(&map_tree
->lock
);
4855 write_unlock(&map_tree
->lock
);
4858 * Keep looping until we have no more ranges in the io tree.
4859 * We can have ongoing bios started by readpages (called from readahead)
4860 * that have their endio callback (extent_io.c:end_bio_extent_readpage)
4861 * still in progress (unlocked the pages in the bio but did not yet
4862 * unlocked the ranges in the io tree). Therefore this means some
4863 * ranges can still be locked and eviction started because before
4864 * submitting those bios, which are executed by a separate task (work
4865 * queue kthread), inode references (inode->i_count) were not taken
4866 * (which would be dropped in the end io callback of each bio).
4867 * Therefore here we effectively end up waiting for those bios and
4868 * anyone else holding locked ranges without having bumped the inode's
4869 * reference count - if we don't do it, when they access the inode's
4870 * io_tree to unlock a range it may be too late, leading to an
4871 * use-after-free issue.
4873 spin_lock(&io_tree
->lock
);
4874 while (!RB_EMPTY_ROOT(&io_tree
->state
)) {
4875 struct extent_state
*state
;
4876 struct extent_state
*cached_state
= NULL
;
4879 unsigned state_flags
;
4881 node
= rb_first(&io_tree
->state
);
4882 state
= rb_entry(node
, struct extent_state
, rb_node
);
4883 start
= state
->start
;
4885 state_flags
= state
->state
;
4886 spin_unlock(&io_tree
->lock
);
4888 lock_extent_bits(io_tree
, start
, end
, &cached_state
);
4891 * If still has DELALLOC flag, the extent didn't reach disk,
4892 * and its reserved space won't be freed by delayed_ref.
4893 * So we need to free its reserved space here.
4894 * (Refer to comment in btrfs_invalidatepage, case 2)
4896 * Note, end is the bytenr of last byte, so we need + 1 here.
4898 if (state_flags
& EXTENT_DELALLOC
)
4899 btrfs_qgroup_free_data(inode
, NULL
, start
, end
- start
+ 1);
4901 clear_extent_bit(io_tree
, start
, end
,
4902 EXTENT_LOCKED
| EXTENT_DELALLOC
|
4903 EXTENT_DO_ACCOUNTING
| EXTENT_DEFRAG
, 1, 1,
4907 spin_lock(&io_tree
->lock
);
4909 spin_unlock(&io_tree
->lock
);
4912 static struct btrfs_trans_handle
*evict_refill_and_join(struct btrfs_root
*root
,
4913 struct btrfs_block_rsv
*rsv
)
4915 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
4916 struct btrfs_block_rsv
*global_rsv
= &fs_info
->global_block_rsv
;
4917 struct btrfs_trans_handle
*trans
;
4918 u64 delayed_refs_extra
= btrfs_calc_insert_metadata_size(fs_info
, 1);
4922 * Eviction should be taking place at some place safe because of our
4923 * delayed iputs. However the normal flushing code will run delayed
4924 * iputs, so we cannot use FLUSH_ALL otherwise we'll deadlock.
4926 * We reserve the delayed_refs_extra here again because we can't use
4927 * btrfs_start_transaction(root, 0) for the same deadlocky reason as
4928 * above. We reserve our extra bit here because we generate a ton of
4929 * delayed refs activity by truncating.
4931 * If we cannot make our reservation we'll attempt to steal from the
4932 * global reserve, because we really want to be able to free up space.
4934 ret
= btrfs_block_rsv_refill(root
, rsv
, rsv
->size
+ delayed_refs_extra
,
4935 BTRFS_RESERVE_FLUSH_EVICT
);
4938 * Try to steal from the global reserve if there is space for
4941 if (btrfs_check_space_for_delayed_refs(fs_info
) ||
4942 btrfs_block_rsv_migrate(global_rsv
, rsv
, rsv
->size
, 0)) {
4944 "could not allocate space for delete; will truncate on mount");
4945 return ERR_PTR(-ENOSPC
);
4947 delayed_refs_extra
= 0;
4950 trans
= btrfs_join_transaction(root
);
4954 if (delayed_refs_extra
) {
4955 trans
->block_rsv
= &fs_info
->trans_block_rsv
;
4956 trans
->bytes_reserved
= delayed_refs_extra
;
4957 btrfs_block_rsv_migrate(rsv
, trans
->block_rsv
,
4958 delayed_refs_extra
, 1);
4963 void btrfs_evict_inode(struct inode
*inode
)
4965 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
4966 struct btrfs_trans_handle
*trans
;
4967 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
4968 struct btrfs_block_rsv
*rsv
;
4971 trace_btrfs_inode_evict(inode
);
4978 evict_inode_truncate_pages(inode
);
4980 if (inode
->i_nlink
&&
4981 ((btrfs_root_refs(&root
->root_item
) != 0 &&
4982 root
->root_key
.objectid
!= BTRFS_ROOT_TREE_OBJECTID
) ||
4983 btrfs_is_free_space_inode(BTRFS_I(inode
))))
4986 if (is_bad_inode(inode
))
4989 btrfs_free_io_failure_record(BTRFS_I(inode
), 0, (u64
)-1);
4991 if (test_bit(BTRFS_FS_LOG_RECOVERING
, &fs_info
->flags
))
4994 if (inode
->i_nlink
> 0) {
4995 BUG_ON(btrfs_root_refs(&root
->root_item
) != 0 &&
4996 root
->root_key
.objectid
!= BTRFS_ROOT_TREE_OBJECTID
);
5000 ret
= btrfs_commit_inode_delayed_inode(BTRFS_I(inode
));
5004 rsv
= btrfs_alloc_block_rsv(fs_info
, BTRFS_BLOCK_RSV_TEMP
);
5007 rsv
->size
= btrfs_calc_metadata_size(fs_info
, 1);
5010 btrfs_i_size_write(BTRFS_I(inode
), 0);
5013 trans
= evict_refill_and_join(root
, rsv
);
5017 trans
->block_rsv
= rsv
;
5019 ret
= btrfs_truncate_inode_items(trans
, root
, inode
, 0, 0);
5020 trans
->block_rsv
= &fs_info
->trans_block_rsv
;
5021 btrfs_end_transaction(trans
);
5022 btrfs_btree_balance_dirty(fs_info
);
5023 if (ret
&& ret
!= -ENOSPC
&& ret
!= -EAGAIN
)
5030 * Errors here aren't a big deal, it just means we leave orphan items in
5031 * the tree. They will be cleaned up on the next mount. If the inode
5032 * number gets reused, cleanup deletes the orphan item without doing
5033 * anything, and unlink reuses the existing orphan item.
5035 * If it turns out that we are dropping too many of these, we might want
5036 * to add a mechanism for retrying these after a commit.
5038 trans
= evict_refill_and_join(root
, rsv
);
5039 if (!IS_ERR(trans
)) {
5040 trans
->block_rsv
= rsv
;
5041 btrfs_orphan_del(trans
, BTRFS_I(inode
));
5042 trans
->block_rsv
= &fs_info
->trans_block_rsv
;
5043 btrfs_end_transaction(trans
);
5046 if (!(root
== fs_info
->tree_root
||
5047 root
->root_key
.objectid
== BTRFS_TREE_RELOC_OBJECTID
))
5048 btrfs_return_ino(root
, btrfs_ino(BTRFS_I(inode
)));
5051 btrfs_free_block_rsv(fs_info
, rsv
);
5054 * If we didn't successfully delete, the orphan item will still be in
5055 * the tree and we'll retry on the next mount. Again, we might also want
5056 * to retry these periodically in the future.
5058 btrfs_remove_delayed_node(BTRFS_I(inode
));
5063 * Return the key found in the dir entry in the location pointer, fill @type
5064 * with BTRFS_FT_*, and return 0.
5066 * If no dir entries were found, returns -ENOENT.
5067 * If found a corrupted location in dir entry, returns -EUCLEAN.
5069 static int btrfs_inode_by_name(struct inode
*dir
, struct dentry
*dentry
,
5070 struct btrfs_key
*location
, u8
*type
)
5072 const char *name
= dentry
->d_name
.name
;
5073 int namelen
= dentry
->d_name
.len
;
5074 struct btrfs_dir_item
*di
;
5075 struct btrfs_path
*path
;
5076 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
5079 path
= btrfs_alloc_path();
5083 di
= btrfs_lookup_dir_item(NULL
, root
, path
, btrfs_ino(BTRFS_I(dir
)),
5085 if (IS_ERR_OR_NULL(di
)) {
5086 ret
= di
? PTR_ERR(di
) : -ENOENT
;
5090 btrfs_dir_item_key_to_cpu(path
->nodes
[0], di
, location
);
5091 if (location
->type
!= BTRFS_INODE_ITEM_KEY
&&
5092 location
->type
!= BTRFS_ROOT_ITEM_KEY
) {
5094 btrfs_warn(root
->fs_info
,
5095 "%s gets something invalid in DIR_ITEM (name %s, directory ino %llu, location(%llu %u %llu))",
5096 __func__
, name
, btrfs_ino(BTRFS_I(dir
)),
5097 location
->objectid
, location
->type
, location
->offset
);
5100 *type
= btrfs_dir_type(path
->nodes
[0], di
);
5102 btrfs_free_path(path
);
5107 * when we hit a tree root in a directory, the btrfs part of the inode
5108 * needs to be changed to reflect the root directory of the tree root. This
5109 * is kind of like crossing a mount point.
5111 static int fixup_tree_root_location(struct btrfs_fs_info
*fs_info
,
5113 struct dentry
*dentry
,
5114 struct btrfs_key
*location
,
5115 struct btrfs_root
**sub_root
)
5117 struct btrfs_path
*path
;
5118 struct btrfs_root
*new_root
;
5119 struct btrfs_root_ref
*ref
;
5120 struct extent_buffer
*leaf
;
5121 struct btrfs_key key
;
5125 path
= btrfs_alloc_path();
5132 key
.objectid
= BTRFS_I(dir
)->root
->root_key
.objectid
;
5133 key
.type
= BTRFS_ROOT_REF_KEY
;
5134 key
.offset
= location
->objectid
;
5136 ret
= btrfs_search_slot(NULL
, fs_info
->tree_root
, &key
, path
, 0, 0);
5143 leaf
= path
->nodes
[0];
5144 ref
= btrfs_item_ptr(leaf
, path
->slots
[0], struct btrfs_root_ref
);
5145 if (btrfs_root_ref_dirid(leaf
, ref
) != btrfs_ino(BTRFS_I(dir
)) ||
5146 btrfs_root_ref_name_len(leaf
, ref
) != dentry
->d_name
.len
)
5149 ret
= memcmp_extent_buffer(leaf
, dentry
->d_name
.name
,
5150 (unsigned long)(ref
+ 1),
5151 dentry
->d_name
.len
);
5155 btrfs_release_path(path
);
5157 new_root
= btrfs_get_fs_root(fs_info
, location
, true);
5158 if (IS_ERR(new_root
)) {
5159 err
= PTR_ERR(new_root
);
5163 *sub_root
= new_root
;
5164 location
->objectid
= btrfs_root_dirid(&new_root
->root_item
);
5165 location
->type
= BTRFS_INODE_ITEM_KEY
;
5166 location
->offset
= 0;
5169 btrfs_free_path(path
);
5173 static void inode_tree_add(struct inode
*inode
)
5175 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
5176 struct btrfs_inode
*entry
;
5178 struct rb_node
*parent
;
5179 struct rb_node
*new = &BTRFS_I(inode
)->rb_node
;
5180 u64 ino
= btrfs_ino(BTRFS_I(inode
));
5182 if (inode_unhashed(inode
))
5185 spin_lock(&root
->inode_lock
);
5186 p
= &root
->inode_tree
.rb_node
;
5189 entry
= rb_entry(parent
, struct btrfs_inode
, rb_node
);
5191 if (ino
< btrfs_ino(entry
))
5192 p
= &parent
->rb_left
;
5193 else if (ino
> btrfs_ino(entry
))
5194 p
= &parent
->rb_right
;
5196 WARN_ON(!(entry
->vfs_inode
.i_state
&
5197 (I_WILL_FREE
| I_FREEING
)));
5198 rb_replace_node(parent
, new, &root
->inode_tree
);
5199 RB_CLEAR_NODE(parent
);
5200 spin_unlock(&root
->inode_lock
);
5204 rb_link_node(new, parent
, p
);
5205 rb_insert_color(new, &root
->inode_tree
);
5206 spin_unlock(&root
->inode_lock
);
5209 static void inode_tree_del(struct inode
*inode
)
5211 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
5214 spin_lock(&root
->inode_lock
);
5215 if (!RB_EMPTY_NODE(&BTRFS_I(inode
)->rb_node
)) {
5216 rb_erase(&BTRFS_I(inode
)->rb_node
, &root
->inode_tree
);
5217 RB_CLEAR_NODE(&BTRFS_I(inode
)->rb_node
);
5218 empty
= RB_EMPTY_ROOT(&root
->inode_tree
);
5220 spin_unlock(&root
->inode_lock
);
5222 if (empty
&& btrfs_root_refs(&root
->root_item
) == 0) {
5223 spin_lock(&root
->inode_lock
);
5224 empty
= RB_EMPTY_ROOT(&root
->inode_tree
);
5225 spin_unlock(&root
->inode_lock
);
5227 btrfs_add_dead_root(root
);
5232 static int btrfs_init_locked_inode(struct inode
*inode
, void *p
)
5234 struct btrfs_iget_args
*args
= p
;
5235 inode
->i_ino
= args
->location
->objectid
;
5236 memcpy(&BTRFS_I(inode
)->location
, args
->location
,
5237 sizeof(*args
->location
));
5238 BTRFS_I(inode
)->root
= btrfs_grab_root(args
->root
);
5239 BUG_ON(args
->root
&& !BTRFS_I(inode
)->root
);
5243 static int btrfs_find_actor(struct inode
*inode
, void *opaque
)
5245 struct btrfs_iget_args
*args
= opaque
;
5246 return args
->location
->objectid
== BTRFS_I(inode
)->location
.objectid
&&
5247 args
->root
== BTRFS_I(inode
)->root
;
5250 static struct inode
*btrfs_iget_locked(struct super_block
*s
,
5251 struct btrfs_key
*location
,
5252 struct btrfs_root
*root
)
5254 struct inode
*inode
;
5255 struct btrfs_iget_args args
;
5256 unsigned long hashval
= btrfs_inode_hash(location
->objectid
, root
);
5258 args
.location
= location
;
5261 inode
= iget5_locked(s
, hashval
, btrfs_find_actor
,
5262 btrfs_init_locked_inode
,
5268 * Get an inode object given its location and corresponding root.
5269 * Path can be preallocated to prevent recursing back to iget through
5270 * allocator. NULL is also valid but may require an additional allocation
5273 struct inode
*btrfs_iget_path(struct super_block
*s
, struct btrfs_key
*location
,
5274 struct btrfs_root
*root
, struct btrfs_path
*path
)
5276 struct inode
*inode
;
5278 inode
= btrfs_iget_locked(s
, location
, root
);
5280 return ERR_PTR(-ENOMEM
);
5282 if (inode
->i_state
& I_NEW
) {
5285 ret
= btrfs_read_locked_inode(inode
, path
);
5287 inode_tree_add(inode
);
5288 unlock_new_inode(inode
);
5292 * ret > 0 can come from btrfs_search_slot called by
5293 * btrfs_read_locked_inode, this means the inode item
5298 inode
= ERR_PTR(ret
);
5305 struct inode
*btrfs_iget(struct super_block
*s
, struct btrfs_key
*location
,
5306 struct btrfs_root
*root
)
5308 return btrfs_iget_path(s
, location
, root
, NULL
);
5311 static struct inode
*new_simple_dir(struct super_block
*s
,
5312 struct btrfs_key
*key
,
5313 struct btrfs_root
*root
)
5315 struct inode
*inode
= new_inode(s
);
5318 return ERR_PTR(-ENOMEM
);
5320 BTRFS_I(inode
)->root
= btrfs_grab_root(root
);
5321 memcpy(&BTRFS_I(inode
)->location
, key
, sizeof(*key
));
5322 set_bit(BTRFS_INODE_DUMMY
, &BTRFS_I(inode
)->runtime_flags
);
5324 inode
->i_ino
= BTRFS_EMPTY_SUBVOL_DIR_OBJECTID
;
5326 * We only need lookup, the rest is read-only and there's no inode
5327 * associated with the dentry
5329 inode
->i_op
= &simple_dir_inode_operations
;
5330 inode
->i_opflags
&= ~IOP_XATTR
;
5331 inode
->i_fop
= &simple_dir_operations
;
5332 inode
->i_mode
= S_IFDIR
| S_IRUGO
| S_IWUSR
| S_IXUGO
;
5333 inode
->i_mtime
= current_time(inode
);
5334 inode
->i_atime
= inode
->i_mtime
;
5335 inode
->i_ctime
= inode
->i_mtime
;
5336 BTRFS_I(inode
)->i_otime
= inode
->i_mtime
;
5341 static inline u8
btrfs_inode_type(struct inode
*inode
)
5344 * Compile-time asserts that generic FT_* types still match
5347 BUILD_BUG_ON(BTRFS_FT_UNKNOWN
!= FT_UNKNOWN
);
5348 BUILD_BUG_ON(BTRFS_FT_REG_FILE
!= FT_REG_FILE
);
5349 BUILD_BUG_ON(BTRFS_FT_DIR
!= FT_DIR
);
5350 BUILD_BUG_ON(BTRFS_FT_CHRDEV
!= FT_CHRDEV
);
5351 BUILD_BUG_ON(BTRFS_FT_BLKDEV
!= FT_BLKDEV
);
5352 BUILD_BUG_ON(BTRFS_FT_FIFO
!= FT_FIFO
);
5353 BUILD_BUG_ON(BTRFS_FT_SOCK
!= FT_SOCK
);
5354 BUILD_BUG_ON(BTRFS_FT_SYMLINK
!= FT_SYMLINK
);
5356 return fs_umode_to_ftype(inode
->i_mode
);
5359 struct inode
*btrfs_lookup_dentry(struct inode
*dir
, struct dentry
*dentry
)
5361 struct btrfs_fs_info
*fs_info
= btrfs_sb(dir
->i_sb
);
5362 struct inode
*inode
;
5363 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
5364 struct btrfs_root
*sub_root
= root
;
5365 struct btrfs_key location
;
5369 if (dentry
->d_name
.len
> BTRFS_NAME_LEN
)
5370 return ERR_PTR(-ENAMETOOLONG
);
5372 ret
= btrfs_inode_by_name(dir
, dentry
, &location
, &di_type
);
5374 return ERR_PTR(ret
);
5376 if (location
.type
== BTRFS_INODE_ITEM_KEY
) {
5377 inode
= btrfs_iget(dir
->i_sb
, &location
, root
);
5381 /* Do extra check against inode mode with di_type */
5382 if (btrfs_inode_type(inode
) != di_type
) {
5384 "inode mode mismatch with dir: inode mode=0%o btrfs type=%u dir type=%u",
5385 inode
->i_mode
, btrfs_inode_type(inode
),
5388 return ERR_PTR(-EUCLEAN
);
5393 ret
= fixup_tree_root_location(fs_info
, dir
, dentry
,
5394 &location
, &sub_root
);
5397 inode
= ERR_PTR(ret
);
5399 inode
= new_simple_dir(dir
->i_sb
, &location
, sub_root
);
5401 inode
= btrfs_iget(dir
->i_sb
, &location
, sub_root
);
5403 if (root
!= sub_root
)
5404 btrfs_put_root(sub_root
);
5406 if (!IS_ERR(inode
) && root
!= sub_root
) {
5407 down_read(&fs_info
->cleanup_work_sem
);
5408 if (!sb_rdonly(inode
->i_sb
))
5409 ret
= btrfs_orphan_cleanup(sub_root
);
5410 up_read(&fs_info
->cleanup_work_sem
);
5413 inode
= ERR_PTR(ret
);
5420 static int btrfs_dentry_delete(const struct dentry
*dentry
)
5422 struct btrfs_root
*root
;
5423 struct inode
*inode
= d_inode(dentry
);
5425 if (!inode
&& !IS_ROOT(dentry
))
5426 inode
= d_inode(dentry
->d_parent
);
5429 root
= BTRFS_I(inode
)->root
;
5430 if (btrfs_root_refs(&root
->root_item
) == 0)
5433 if (btrfs_ino(BTRFS_I(inode
)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID
)
5439 static struct dentry
*btrfs_lookup(struct inode
*dir
, struct dentry
*dentry
,
5442 struct inode
*inode
= btrfs_lookup_dentry(dir
, dentry
);
5444 if (inode
== ERR_PTR(-ENOENT
))
5446 return d_splice_alias(inode
, dentry
);
5450 * All this infrastructure exists because dir_emit can fault, and we are holding
5451 * the tree lock when doing readdir. For now just allocate a buffer and copy
5452 * our information into that, and then dir_emit from the buffer. This is
5453 * similar to what NFS does, only we don't keep the buffer around in pagecache
5454 * because I'm afraid I'll mess that up. Long term we need to make filldir do
5455 * copy_to_user_inatomic so we don't have to worry about page faulting under the
5458 static int btrfs_opendir(struct inode
*inode
, struct file
*file
)
5460 struct btrfs_file_private
*private;
5462 private = kzalloc(sizeof(struct btrfs_file_private
), GFP_KERNEL
);
5465 private->filldir_buf
= kzalloc(PAGE_SIZE
, GFP_KERNEL
);
5466 if (!private->filldir_buf
) {
5470 file
->private_data
= private;
5481 static int btrfs_filldir(void *addr
, int entries
, struct dir_context
*ctx
)
5484 struct dir_entry
*entry
= addr
;
5485 char *name
= (char *)(entry
+ 1);
5487 ctx
->pos
= get_unaligned(&entry
->offset
);
5488 if (!dir_emit(ctx
, name
, get_unaligned(&entry
->name_len
),
5489 get_unaligned(&entry
->ino
),
5490 get_unaligned(&entry
->type
)))
5492 addr
+= sizeof(struct dir_entry
) +
5493 get_unaligned(&entry
->name_len
);
5499 static int btrfs_real_readdir(struct file
*file
, struct dir_context
*ctx
)
5501 struct inode
*inode
= file_inode(file
);
5502 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
5503 struct btrfs_file_private
*private = file
->private_data
;
5504 struct btrfs_dir_item
*di
;
5505 struct btrfs_key key
;
5506 struct btrfs_key found_key
;
5507 struct btrfs_path
*path
;
5509 struct list_head ins_list
;
5510 struct list_head del_list
;
5512 struct extent_buffer
*leaf
;
5519 struct btrfs_key location
;
5521 if (!dir_emit_dots(file
, ctx
))
5524 path
= btrfs_alloc_path();
5528 addr
= private->filldir_buf
;
5529 path
->reada
= READA_FORWARD
;
5531 INIT_LIST_HEAD(&ins_list
);
5532 INIT_LIST_HEAD(&del_list
);
5533 put
= btrfs_readdir_get_delayed_items(inode
, &ins_list
, &del_list
);
5536 key
.type
= BTRFS_DIR_INDEX_KEY
;
5537 key
.offset
= ctx
->pos
;
5538 key
.objectid
= btrfs_ino(BTRFS_I(inode
));
5540 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
5545 struct dir_entry
*entry
;
5547 leaf
= path
->nodes
[0];
5548 slot
= path
->slots
[0];
5549 if (slot
>= btrfs_header_nritems(leaf
)) {
5550 ret
= btrfs_next_leaf(root
, path
);
5558 btrfs_item_key_to_cpu(leaf
, &found_key
, slot
);
5560 if (found_key
.objectid
!= key
.objectid
)
5562 if (found_key
.type
!= BTRFS_DIR_INDEX_KEY
)
5564 if (found_key
.offset
< ctx
->pos
)
5566 if (btrfs_should_delete_dir_index(&del_list
, found_key
.offset
))
5568 di
= btrfs_item_ptr(leaf
, slot
, struct btrfs_dir_item
);
5569 name_len
= btrfs_dir_name_len(leaf
, di
);
5570 if ((total_len
+ sizeof(struct dir_entry
) + name_len
) >=
5572 btrfs_release_path(path
);
5573 ret
= btrfs_filldir(private->filldir_buf
, entries
, ctx
);
5576 addr
= private->filldir_buf
;
5583 put_unaligned(name_len
, &entry
->name_len
);
5584 name_ptr
= (char *)(entry
+ 1);
5585 read_extent_buffer(leaf
, name_ptr
, (unsigned long)(di
+ 1),
5587 put_unaligned(fs_ftype_to_dtype(btrfs_dir_type(leaf
, di
)),
5589 btrfs_dir_item_key_to_cpu(leaf
, di
, &location
);
5590 put_unaligned(location
.objectid
, &entry
->ino
);
5591 put_unaligned(found_key
.offset
, &entry
->offset
);
5593 addr
+= sizeof(struct dir_entry
) + name_len
;
5594 total_len
+= sizeof(struct dir_entry
) + name_len
;
5598 btrfs_release_path(path
);
5600 ret
= btrfs_filldir(private->filldir_buf
, entries
, ctx
);
5604 ret
= btrfs_readdir_delayed_dir_index(ctx
, &ins_list
);
5609 * Stop new entries from being returned after we return the last
5612 * New directory entries are assigned a strictly increasing
5613 * offset. This means that new entries created during readdir
5614 * are *guaranteed* to be seen in the future by that readdir.
5615 * This has broken buggy programs which operate on names as
5616 * they're returned by readdir. Until we re-use freed offsets
5617 * we have this hack to stop new entries from being returned
5618 * under the assumption that they'll never reach this huge
5621 * This is being careful not to overflow 32bit loff_t unless the
5622 * last entry requires it because doing so has broken 32bit apps
5625 if (ctx
->pos
>= INT_MAX
)
5626 ctx
->pos
= LLONG_MAX
;
5633 btrfs_readdir_put_delayed_items(inode
, &ins_list
, &del_list
);
5634 btrfs_free_path(path
);
5639 * This is somewhat expensive, updating the tree every time the
5640 * inode changes. But, it is most likely to find the inode in cache.
5641 * FIXME, needs more benchmarking...there are no reasons other than performance
5642 * to keep or drop this code.
5644 static int btrfs_dirty_inode(struct inode
*inode
)
5646 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
5647 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
5648 struct btrfs_trans_handle
*trans
;
5651 if (test_bit(BTRFS_INODE_DUMMY
, &BTRFS_I(inode
)->runtime_flags
))
5654 trans
= btrfs_join_transaction(root
);
5656 return PTR_ERR(trans
);
5658 ret
= btrfs_update_inode(trans
, root
, inode
);
5659 if (ret
&& ret
== -ENOSPC
) {
5660 /* whoops, lets try again with the full transaction */
5661 btrfs_end_transaction(trans
);
5662 trans
= btrfs_start_transaction(root
, 1);
5664 return PTR_ERR(trans
);
5666 ret
= btrfs_update_inode(trans
, root
, inode
);
5668 btrfs_end_transaction(trans
);
5669 if (BTRFS_I(inode
)->delayed_node
)
5670 btrfs_balance_delayed_items(fs_info
);
5676 * This is a copy of file_update_time. We need this so we can return error on
5677 * ENOSPC for updating the inode in the case of file write and mmap writes.
5679 static int btrfs_update_time(struct inode
*inode
, struct timespec64
*now
,
5682 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
5683 bool dirty
= flags
& ~S_VERSION
;
5685 if (btrfs_root_readonly(root
))
5688 if (flags
& S_VERSION
)
5689 dirty
|= inode_maybe_inc_iversion(inode
, dirty
);
5690 if (flags
& S_CTIME
)
5691 inode
->i_ctime
= *now
;
5692 if (flags
& S_MTIME
)
5693 inode
->i_mtime
= *now
;
5694 if (flags
& S_ATIME
)
5695 inode
->i_atime
= *now
;
5696 return dirty
? btrfs_dirty_inode(inode
) : 0;
5700 * find the highest existing sequence number in a directory
5701 * and then set the in-memory index_cnt variable to reflect
5702 * free sequence numbers
5704 static int btrfs_set_inode_index_count(struct btrfs_inode
*inode
)
5706 struct btrfs_root
*root
= inode
->root
;
5707 struct btrfs_key key
, found_key
;
5708 struct btrfs_path
*path
;
5709 struct extent_buffer
*leaf
;
5712 key
.objectid
= btrfs_ino(inode
);
5713 key
.type
= BTRFS_DIR_INDEX_KEY
;
5714 key
.offset
= (u64
)-1;
5716 path
= btrfs_alloc_path();
5720 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
5723 /* FIXME: we should be able to handle this */
5729 * MAGIC NUMBER EXPLANATION:
5730 * since we search a directory based on f_pos we have to start at 2
5731 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody
5732 * else has to start at 2
5734 if (path
->slots
[0] == 0) {
5735 inode
->index_cnt
= 2;
5741 leaf
= path
->nodes
[0];
5742 btrfs_item_key_to_cpu(leaf
, &found_key
, path
->slots
[0]);
5744 if (found_key
.objectid
!= btrfs_ino(inode
) ||
5745 found_key
.type
!= BTRFS_DIR_INDEX_KEY
) {
5746 inode
->index_cnt
= 2;
5750 inode
->index_cnt
= found_key
.offset
+ 1;
5752 btrfs_free_path(path
);
5757 * helper to find a free sequence number in a given directory. This current
5758 * code is very simple, later versions will do smarter things in the btree
5760 int btrfs_set_inode_index(struct btrfs_inode
*dir
, u64
*index
)
5764 if (dir
->index_cnt
== (u64
)-1) {
5765 ret
= btrfs_inode_delayed_dir_index_count(dir
);
5767 ret
= btrfs_set_inode_index_count(dir
);
5773 *index
= dir
->index_cnt
;
5779 static int btrfs_insert_inode_locked(struct inode
*inode
)
5781 struct btrfs_iget_args args
;
5782 args
.location
= &BTRFS_I(inode
)->location
;
5783 args
.root
= BTRFS_I(inode
)->root
;
5785 return insert_inode_locked4(inode
,
5786 btrfs_inode_hash(inode
->i_ino
, BTRFS_I(inode
)->root
),
5787 btrfs_find_actor
, &args
);
5791 * Inherit flags from the parent inode.
5793 * Currently only the compression flags and the cow flags are inherited.
5795 static void btrfs_inherit_iflags(struct inode
*inode
, struct inode
*dir
)
5802 flags
= BTRFS_I(dir
)->flags
;
5804 if (flags
& BTRFS_INODE_NOCOMPRESS
) {
5805 BTRFS_I(inode
)->flags
&= ~BTRFS_INODE_COMPRESS
;
5806 BTRFS_I(inode
)->flags
|= BTRFS_INODE_NOCOMPRESS
;
5807 } else if (flags
& BTRFS_INODE_COMPRESS
) {
5808 BTRFS_I(inode
)->flags
&= ~BTRFS_INODE_NOCOMPRESS
;
5809 BTRFS_I(inode
)->flags
|= BTRFS_INODE_COMPRESS
;
5812 if (flags
& BTRFS_INODE_NODATACOW
) {
5813 BTRFS_I(inode
)->flags
|= BTRFS_INODE_NODATACOW
;
5814 if (S_ISREG(inode
->i_mode
))
5815 BTRFS_I(inode
)->flags
|= BTRFS_INODE_NODATASUM
;
5818 btrfs_sync_inode_flags_to_i_flags(inode
);
5821 static struct inode
*btrfs_new_inode(struct btrfs_trans_handle
*trans
,
5822 struct btrfs_root
*root
,
5824 const char *name
, int name_len
,
5825 u64 ref_objectid
, u64 objectid
,
5826 umode_t mode
, u64
*index
)
5828 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
5829 struct inode
*inode
;
5830 struct btrfs_inode_item
*inode_item
;
5831 struct btrfs_key
*location
;
5832 struct btrfs_path
*path
;
5833 struct btrfs_inode_ref
*ref
;
5834 struct btrfs_key key
[2];
5836 int nitems
= name
? 2 : 1;
5838 unsigned int nofs_flag
;
5841 path
= btrfs_alloc_path();
5843 return ERR_PTR(-ENOMEM
);
5845 nofs_flag
= memalloc_nofs_save();
5846 inode
= new_inode(fs_info
->sb
);
5847 memalloc_nofs_restore(nofs_flag
);
5849 btrfs_free_path(path
);
5850 return ERR_PTR(-ENOMEM
);
5854 * O_TMPFILE, set link count to 0, so that after this point,
5855 * we fill in an inode item with the correct link count.
5858 set_nlink(inode
, 0);
5861 * we have to initialize this early, so we can reclaim the inode
5862 * number if we fail afterwards in this function.
5864 inode
->i_ino
= objectid
;
5867 trace_btrfs_inode_request(dir
);
5869 ret
= btrfs_set_inode_index(BTRFS_I(dir
), index
);
5871 btrfs_free_path(path
);
5873 return ERR_PTR(ret
);
5879 * index_cnt is ignored for everything but a dir,
5880 * btrfs_set_inode_index_count has an explanation for the magic
5883 BTRFS_I(inode
)->index_cnt
= 2;
5884 BTRFS_I(inode
)->dir_index
= *index
;
5885 BTRFS_I(inode
)->root
= btrfs_grab_root(root
);
5886 BTRFS_I(inode
)->generation
= trans
->transid
;
5887 inode
->i_generation
= BTRFS_I(inode
)->generation
;
5890 * We could have gotten an inode number from somebody who was fsynced
5891 * and then removed in this same transaction, so let's just set full
5892 * sync since it will be a full sync anyway and this will blow away the
5893 * old info in the log.
5895 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC
, &BTRFS_I(inode
)->runtime_flags
);
5897 key
[0].objectid
= objectid
;
5898 key
[0].type
= BTRFS_INODE_ITEM_KEY
;
5901 sizes
[0] = sizeof(struct btrfs_inode_item
);
5905 * Start new inodes with an inode_ref. This is slightly more
5906 * efficient for small numbers of hard links since they will
5907 * be packed into one item. Extended refs will kick in if we
5908 * add more hard links than can fit in the ref item.
5910 key
[1].objectid
= objectid
;
5911 key
[1].type
= BTRFS_INODE_REF_KEY
;
5912 key
[1].offset
= ref_objectid
;
5914 sizes
[1] = name_len
+ sizeof(*ref
);
5917 location
= &BTRFS_I(inode
)->location
;
5918 location
->objectid
= objectid
;
5919 location
->offset
= 0;
5920 location
->type
= BTRFS_INODE_ITEM_KEY
;
5922 ret
= btrfs_insert_inode_locked(inode
);
5928 path
->leave_spinning
= 1;
5929 ret
= btrfs_insert_empty_items(trans
, root
, path
, key
, sizes
, nitems
);
5933 inode_init_owner(inode
, dir
, mode
);
5934 inode_set_bytes(inode
, 0);
5936 inode
->i_mtime
= current_time(inode
);
5937 inode
->i_atime
= inode
->i_mtime
;
5938 inode
->i_ctime
= inode
->i_mtime
;
5939 BTRFS_I(inode
)->i_otime
= inode
->i_mtime
;
5941 inode_item
= btrfs_item_ptr(path
->nodes
[0], path
->slots
[0],
5942 struct btrfs_inode_item
);
5943 memzero_extent_buffer(path
->nodes
[0], (unsigned long)inode_item
,
5944 sizeof(*inode_item
));
5945 fill_inode_item(trans
, path
->nodes
[0], inode_item
, inode
);
5948 ref
= btrfs_item_ptr(path
->nodes
[0], path
->slots
[0] + 1,
5949 struct btrfs_inode_ref
);
5950 btrfs_set_inode_ref_name_len(path
->nodes
[0], ref
, name_len
);
5951 btrfs_set_inode_ref_index(path
->nodes
[0], ref
, *index
);
5952 ptr
= (unsigned long)(ref
+ 1);
5953 write_extent_buffer(path
->nodes
[0], name
, ptr
, name_len
);
5956 btrfs_mark_buffer_dirty(path
->nodes
[0]);
5957 btrfs_free_path(path
);
5959 btrfs_inherit_iflags(inode
, dir
);
5961 if (S_ISREG(mode
)) {
5962 if (btrfs_test_opt(fs_info
, NODATASUM
))
5963 BTRFS_I(inode
)->flags
|= BTRFS_INODE_NODATASUM
;
5964 if (btrfs_test_opt(fs_info
, NODATACOW
))
5965 BTRFS_I(inode
)->flags
|= BTRFS_INODE_NODATACOW
|
5966 BTRFS_INODE_NODATASUM
;
5969 inode_tree_add(inode
);
5971 trace_btrfs_inode_new(inode
);
5972 btrfs_set_inode_last_trans(trans
, inode
);
5974 btrfs_update_root_times(trans
, root
);
5976 ret
= btrfs_inode_inherit_props(trans
, inode
, dir
);
5979 "error inheriting props for ino %llu (root %llu): %d",
5980 btrfs_ino(BTRFS_I(inode
)), root
->root_key
.objectid
, ret
);
5985 discard_new_inode(inode
);
5988 BTRFS_I(dir
)->index_cnt
--;
5989 btrfs_free_path(path
);
5990 return ERR_PTR(ret
);
5994 * utility function to add 'inode' into 'parent_inode' with
5995 * a give name and a given sequence number.
5996 * if 'add_backref' is true, also insert a backref from the
5997 * inode to the parent directory.
5999 int btrfs_add_link(struct btrfs_trans_handle
*trans
,
6000 struct btrfs_inode
*parent_inode
, struct btrfs_inode
*inode
,
6001 const char *name
, int name_len
, int add_backref
, u64 index
)
6004 struct btrfs_key key
;
6005 struct btrfs_root
*root
= parent_inode
->root
;
6006 u64 ino
= btrfs_ino(inode
);
6007 u64 parent_ino
= btrfs_ino(parent_inode
);
6009 if (unlikely(ino
== BTRFS_FIRST_FREE_OBJECTID
)) {
6010 memcpy(&key
, &inode
->root
->root_key
, sizeof(key
));
6013 key
.type
= BTRFS_INODE_ITEM_KEY
;
6017 if (unlikely(ino
== BTRFS_FIRST_FREE_OBJECTID
)) {
6018 ret
= btrfs_add_root_ref(trans
, key
.objectid
,
6019 root
->root_key
.objectid
, parent_ino
,
6020 index
, name
, name_len
);
6021 } else if (add_backref
) {
6022 ret
= btrfs_insert_inode_ref(trans
, root
, name
, name_len
, ino
,
6026 /* Nothing to clean up yet */
6030 ret
= btrfs_insert_dir_item(trans
, name
, name_len
, parent_inode
, &key
,
6031 btrfs_inode_type(&inode
->vfs_inode
), index
);
6032 if (ret
== -EEXIST
|| ret
== -EOVERFLOW
)
6035 btrfs_abort_transaction(trans
, ret
);
6039 btrfs_i_size_write(parent_inode
, parent_inode
->vfs_inode
.i_size
+
6041 inode_inc_iversion(&parent_inode
->vfs_inode
);
6043 * If we are replaying a log tree, we do not want to update the mtime
6044 * and ctime of the parent directory with the current time, since the
6045 * log replay procedure is responsible for setting them to their correct
6046 * values (the ones it had when the fsync was done).
6048 if (!test_bit(BTRFS_FS_LOG_RECOVERING
, &root
->fs_info
->flags
)) {
6049 struct timespec64 now
= current_time(&parent_inode
->vfs_inode
);
6051 parent_inode
->vfs_inode
.i_mtime
= now
;
6052 parent_inode
->vfs_inode
.i_ctime
= now
;
6054 ret
= btrfs_update_inode(trans
, root
, &parent_inode
->vfs_inode
);
6056 btrfs_abort_transaction(trans
, ret
);
6060 if (unlikely(ino
== BTRFS_FIRST_FREE_OBJECTID
)) {
6063 err
= btrfs_del_root_ref(trans
, key
.objectid
,
6064 root
->root_key
.objectid
, parent_ino
,
6065 &local_index
, name
, name_len
);
6067 btrfs_abort_transaction(trans
, err
);
6068 } else if (add_backref
) {
6072 err
= btrfs_del_inode_ref(trans
, root
, name
, name_len
,
6073 ino
, parent_ino
, &local_index
);
6075 btrfs_abort_transaction(trans
, err
);
6078 /* Return the original error code */
6082 static int btrfs_add_nondir(struct btrfs_trans_handle
*trans
,
6083 struct btrfs_inode
*dir
, struct dentry
*dentry
,
6084 struct btrfs_inode
*inode
, int backref
, u64 index
)
6086 int err
= btrfs_add_link(trans
, dir
, inode
,
6087 dentry
->d_name
.name
, dentry
->d_name
.len
,
6094 static int btrfs_mknod(struct inode
*dir
, struct dentry
*dentry
,
6095 umode_t mode
, dev_t rdev
)
6097 struct btrfs_fs_info
*fs_info
= btrfs_sb(dir
->i_sb
);
6098 struct btrfs_trans_handle
*trans
;
6099 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
6100 struct inode
*inode
= NULL
;
6106 * 2 for inode item and ref
6108 * 1 for xattr if selinux is on
6110 trans
= btrfs_start_transaction(root
, 5);
6112 return PTR_ERR(trans
);
6114 err
= btrfs_find_free_ino(root
, &objectid
);
6118 inode
= btrfs_new_inode(trans
, root
, dir
, dentry
->d_name
.name
,
6119 dentry
->d_name
.len
, btrfs_ino(BTRFS_I(dir
)), objectid
,
6121 if (IS_ERR(inode
)) {
6122 err
= PTR_ERR(inode
);
6128 * If the active LSM wants to access the inode during
6129 * d_instantiate it needs these. Smack checks to see
6130 * if the filesystem supports xattrs by looking at the
6133 inode
->i_op
= &btrfs_special_inode_operations
;
6134 init_special_inode(inode
, inode
->i_mode
, rdev
);
6136 err
= btrfs_init_inode_security(trans
, inode
, dir
, &dentry
->d_name
);
6140 err
= btrfs_add_nondir(trans
, BTRFS_I(dir
), dentry
, BTRFS_I(inode
),
6145 btrfs_update_inode(trans
, root
, inode
);
6146 d_instantiate_new(dentry
, inode
);
6149 btrfs_end_transaction(trans
);
6150 btrfs_btree_balance_dirty(fs_info
);
6152 inode_dec_link_count(inode
);
6153 discard_new_inode(inode
);
6158 static int btrfs_create(struct inode
*dir
, struct dentry
*dentry
,
6159 umode_t mode
, bool excl
)
6161 struct btrfs_fs_info
*fs_info
= btrfs_sb(dir
->i_sb
);
6162 struct btrfs_trans_handle
*trans
;
6163 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
6164 struct inode
*inode
= NULL
;
6170 * 2 for inode item and ref
6172 * 1 for xattr if selinux is on
6174 trans
= btrfs_start_transaction(root
, 5);
6176 return PTR_ERR(trans
);
6178 err
= btrfs_find_free_ino(root
, &objectid
);
6182 inode
= btrfs_new_inode(trans
, root
, dir
, dentry
->d_name
.name
,
6183 dentry
->d_name
.len
, btrfs_ino(BTRFS_I(dir
)), objectid
,
6185 if (IS_ERR(inode
)) {
6186 err
= PTR_ERR(inode
);
6191 * If the active LSM wants to access the inode during
6192 * d_instantiate it needs these. Smack checks to see
6193 * if the filesystem supports xattrs by looking at the
6196 inode
->i_fop
= &btrfs_file_operations
;
6197 inode
->i_op
= &btrfs_file_inode_operations
;
6198 inode
->i_mapping
->a_ops
= &btrfs_aops
;
6200 err
= btrfs_init_inode_security(trans
, inode
, dir
, &dentry
->d_name
);
6204 err
= btrfs_update_inode(trans
, root
, inode
);
6208 err
= btrfs_add_nondir(trans
, BTRFS_I(dir
), dentry
, BTRFS_I(inode
),
6213 BTRFS_I(inode
)->io_tree
.ops
= &btrfs_extent_io_ops
;
6214 d_instantiate_new(dentry
, inode
);
6217 btrfs_end_transaction(trans
);
6219 inode_dec_link_count(inode
);
6220 discard_new_inode(inode
);
6222 btrfs_btree_balance_dirty(fs_info
);
6226 static int btrfs_link(struct dentry
*old_dentry
, struct inode
*dir
,
6227 struct dentry
*dentry
)
6229 struct btrfs_trans_handle
*trans
= NULL
;
6230 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
6231 struct inode
*inode
= d_inode(old_dentry
);
6232 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
6237 /* do not allow sys_link's with other subvols of the same device */
6238 if (root
->root_key
.objectid
!= BTRFS_I(inode
)->root
->root_key
.objectid
)
6241 if (inode
->i_nlink
>= BTRFS_LINK_MAX
)
6244 err
= btrfs_set_inode_index(BTRFS_I(dir
), &index
);
6249 * 2 items for inode and inode ref
6250 * 2 items for dir items
6251 * 1 item for parent inode
6252 * 1 item for orphan item deletion if O_TMPFILE
6254 trans
= btrfs_start_transaction(root
, inode
->i_nlink
? 5 : 6);
6255 if (IS_ERR(trans
)) {
6256 err
= PTR_ERR(trans
);
6261 /* There are several dir indexes for this inode, clear the cache. */
6262 BTRFS_I(inode
)->dir_index
= 0ULL;
6264 inode_inc_iversion(inode
);
6265 inode
->i_ctime
= current_time(inode
);
6267 set_bit(BTRFS_INODE_COPY_EVERYTHING
, &BTRFS_I(inode
)->runtime_flags
);
6269 err
= btrfs_add_nondir(trans
, BTRFS_I(dir
), dentry
, BTRFS_I(inode
),
6275 struct dentry
*parent
= dentry
->d_parent
;
6278 err
= btrfs_update_inode(trans
, root
, inode
);
6281 if (inode
->i_nlink
== 1) {
6283 * If new hard link count is 1, it's a file created
6284 * with open(2) O_TMPFILE flag.
6286 err
= btrfs_orphan_del(trans
, BTRFS_I(inode
));
6290 d_instantiate(dentry
, inode
);
6291 ret
= btrfs_log_new_name(trans
, BTRFS_I(inode
), NULL
, parent
,
6293 if (ret
== BTRFS_NEED_TRANS_COMMIT
) {
6294 err
= btrfs_commit_transaction(trans
);
6301 btrfs_end_transaction(trans
);
6303 inode_dec_link_count(inode
);
6306 btrfs_btree_balance_dirty(fs_info
);
6310 static int btrfs_mkdir(struct inode
*dir
, struct dentry
*dentry
, umode_t mode
)
6312 struct btrfs_fs_info
*fs_info
= btrfs_sb(dir
->i_sb
);
6313 struct inode
*inode
= NULL
;
6314 struct btrfs_trans_handle
*trans
;
6315 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
6321 * 2 items for inode and ref
6322 * 2 items for dir items
6323 * 1 for xattr if selinux is on
6325 trans
= btrfs_start_transaction(root
, 5);
6327 return PTR_ERR(trans
);
6329 err
= btrfs_find_free_ino(root
, &objectid
);
6333 inode
= btrfs_new_inode(trans
, root
, dir
, dentry
->d_name
.name
,
6334 dentry
->d_name
.len
, btrfs_ino(BTRFS_I(dir
)), objectid
,
6335 S_IFDIR
| mode
, &index
);
6336 if (IS_ERR(inode
)) {
6337 err
= PTR_ERR(inode
);
6342 /* these must be set before we unlock the inode */
6343 inode
->i_op
= &btrfs_dir_inode_operations
;
6344 inode
->i_fop
= &btrfs_dir_file_operations
;
6346 err
= btrfs_init_inode_security(trans
, inode
, dir
, &dentry
->d_name
);
6350 btrfs_i_size_write(BTRFS_I(inode
), 0);
6351 err
= btrfs_update_inode(trans
, root
, inode
);
6355 err
= btrfs_add_link(trans
, BTRFS_I(dir
), BTRFS_I(inode
),
6356 dentry
->d_name
.name
,
6357 dentry
->d_name
.len
, 0, index
);
6361 d_instantiate_new(dentry
, inode
);
6364 btrfs_end_transaction(trans
);
6366 inode_dec_link_count(inode
);
6367 discard_new_inode(inode
);
6369 btrfs_btree_balance_dirty(fs_info
);
6373 static noinline
int uncompress_inline(struct btrfs_path
*path
,
6375 size_t pg_offset
, u64 extent_offset
,
6376 struct btrfs_file_extent_item
*item
)
6379 struct extent_buffer
*leaf
= path
->nodes
[0];
6382 unsigned long inline_size
;
6386 WARN_ON(pg_offset
!= 0);
6387 compress_type
= btrfs_file_extent_compression(leaf
, item
);
6388 max_size
= btrfs_file_extent_ram_bytes(leaf
, item
);
6389 inline_size
= btrfs_file_extent_inline_item_len(leaf
,
6390 btrfs_item_nr(path
->slots
[0]));
6391 tmp
= kmalloc(inline_size
, GFP_NOFS
);
6394 ptr
= btrfs_file_extent_inline_start(item
);
6396 read_extent_buffer(leaf
, tmp
, ptr
, inline_size
);
6398 max_size
= min_t(unsigned long, PAGE_SIZE
, max_size
);
6399 ret
= btrfs_decompress(compress_type
, tmp
, page
,
6400 extent_offset
, inline_size
, max_size
);
6403 * decompression code contains a memset to fill in any space between the end
6404 * of the uncompressed data and the end of max_size in case the decompressed
6405 * data ends up shorter than ram_bytes. That doesn't cover the hole between
6406 * the end of an inline extent and the beginning of the next block, so we
6407 * cover that region here.
6410 if (max_size
+ pg_offset
< PAGE_SIZE
) {
6411 char *map
= kmap(page
);
6412 memset(map
+ pg_offset
+ max_size
, 0, PAGE_SIZE
- max_size
- pg_offset
);
6420 * btrfs_get_extent - Lookup the first extent overlapping a range in a file.
6421 * @inode: file to search in
6422 * @page: page to read extent data into if the extent is inline
6423 * @pg_offset: offset into @page to copy to
6424 * @start: file offset
6425 * @len: length of range starting at @start
6427 * This returns the first &struct extent_map which overlaps with the given
6428 * range, reading it from the B-tree and caching it if necessary. Note that
6429 * there may be more extents which overlap the given range after the returned
6432 * If @page is not NULL and the extent is inline, this also reads the extent
6433 * data directly into the page and marks the extent up to date in the io_tree.
6435 * Return: ERR_PTR on error, non-NULL extent_map on success.
6437 struct extent_map
*btrfs_get_extent(struct btrfs_inode
*inode
,
6438 struct page
*page
, size_t pg_offset
,
6441 struct btrfs_fs_info
*fs_info
= inode
->root
->fs_info
;
6444 u64 extent_start
= 0;
6446 u64 objectid
= btrfs_ino(inode
);
6447 int extent_type
= -1;
6448 struct btrfs_path
*path
= NULL
;
6449 struct btrfs_root
*root
= inode
->root
;
6450 struct btrfs_file_extent_item
*item
;
6451 struct extent_buffer
*leaf
;
6452 struct btrfs_key found_key
;
6453 struct extent_map
*em
= NULL
;
6454 struct extent_map_tree
*em_tree
= &inode
->extent_tree
;
6455 struct extent_io_tree
*io_tree
= &inode
->io_tree
;
6457 read_lock(&em_tree
->lock
);
6458 em
= lookup_extent_mapping(em_tree
, start
, len
);
6459 read_unlock(&em_tree
->lock
);
6462 if (em
->start
> start
|| em
->start
+ em
->len
<= start
)
6463 free_extent_map(em
);
6464 else if (em
->block_start
== EXTENT_MAP_INLINE
&& page
)
6465 free_extent_map(em
);
6469 em
= alloc_extent_map();
6474 em
->start
= EXTENT_MAP_HOLE
;
6475 em
->orig_start
= EXTENT_MAP_HOLE
;
6477 em
->block_len
= (u64
)-1;
6479 path
= btrfs_alloc_path();
6485 /* Chances are we'll be called again, so go ahead and do readahead */
6486 path
->reada
= READA_FORWARD
;
6489 * Unless we're going to uncompress the inline extent, no sleep would
6492 path
->leave_spinning
= 1;
6494 ret
= btrfs_lookup_file_extent(NULL
, root
, path
, objectid
, start
, 0);
6498 } else if (ret
> 0) {
6499 if (path
->slots
[0] == 0)
6504 leaf
= path
->nodes
[0];
6505 item
= btrfs_item_ptr(leaf
, path
->slots
[0],
6506 struct btrfs_file_extent_item
);
6507 btrfs_item_key_to_cpu(leaf
, &found_key
, path
->slots
[0]);
6508 if (found_key
.objectid
!= objectid
||
6509 found_key
.type
!= BTRFS_EXTENT_DATA_KEY
) {
6511 * If we backup past the first extent we want to move forward
6512 * and see if there is an extent in front of us, otherwise we'll
6513 * say there is a hole for our whole search range which can
6520 extent_type
= btrfs_file_extent_type(leaf
, item
);
6521 extent_start
= found_key
.offset
;
6522 extent_end
= btrfs_file_extent_end(path
);
6523 if (extent_type
== BTRFS_FILE_EXTENT_REG
||
6524 extent_type
== BTRFS_FILE_EXTENT_PREALLOC
) {
6525 /* Only regular file could have regular/prealloc extent */
6526 if (!S_ISREG(inode
->vfs_inode
.i_mode
)) {
6529 "regular/prealloc extent found for non-regular inode %llu",
6533 trace_btrfs_get_extent_show_fi_regular(inode
, leaf
, item
,
6535 } else if (extent_type
== BTRFS_FILE_EXTENT_INLINE
) {
6536 trace_btrfs_get_extent_show_fi_inline(inode
, leaf
, item
,
6541 if (start
>= extent_end
) {
6543 if (path
->slots
[0] >= btrfs_header_nritems(leaf
)) {
6544 ret
= btrfs_next_leaf(root
, path
);
6548 } else if (ret
> 0) {
6551 leaf
= path
->nodes
[0];
6553 btrfs_item_key_to_cpu(leaf
, &found_key
, path
->slots
[0]);
6554 if (found_key
.objectid
!= objectid
||
6555 found_key
.type
!= BTRFS_EXTENT_DATA_KEY
)
6557 if (start
+ len
<= found_key
.offset
)
6559 if (start
> found_key
.offset
)
6562 /* New extent overlaps with existing one */
6564 em
->orig_start
= start
;
6565 em
->len
= found_key
.offset
- start
;
6566 em
->block_start
= EXTENT_MAP_HOLE
;
6570 btrfs_extent_item_to_extent_map(inode
, path
, item
, !page
, em
);
6572 if (extent_type
== BTRFS_FILE_EXTENT_REG
||
6573 extent_type
== BTRFS_FILE_EXTENT_PREALLOC
) {
6575 } else if (extent_type
== BTRFS_FILE_EXTENT_INLINE
) {
6579 size_t extent_offset
;
6585 size
= btrfs_file_extent_ram_bytes(leaf
, item
);
6586 extent_offset
= page_offset(page
) + pg_offset
- extent_start
;
6587 copy_size
= min_t(u64
, PAGE_SIZE
- pg_offset
,
6588 size
- extent_offset
);
6589 em
->start
= extent_start
+ extent_offset
;
6590 em
->len
= ALIGN(copy_size
, fs_info
->sectorsize
);
6591 em
->orig_block_len
= em
->len
;
6592 em
->orig_start
= em
->start
;
6593 ptr
= btrfs_file_extent_inline_start(item
) + extent_offset
;
6595 btrfs_set_path_blocking(path
);
6596 if (!PageUptodate(page
)) {
6597 if (btrfs_file_extent_compression(leaf
, item
) !=
6598 BTRFS_COMPRESS_NONE
) {
6599 ret
= uncompress_inline(path
, page
, pg_offset
,
6600 extent_offset
, item
);
6607 read_extent_buffer(leaf
, map
+ pg_offset
, ptr
,
6609 if (pg_offset
+ copy_size
< PAGE_SIZE
) {
6610 memset(map
+ pg_offset
+ copy_size
, 0,
6611 PAGE_SIZE
- pg_offset
-
6616 flush_dcache_page(page
);
6618 set_extent_uptodate(io_tree
, em
->start
,
6619 extent_map_end(em
) - 1, NULL
, GFP_NOFS
);
6624 em
->orig_start
= start
;
6626 em
->block_start
= EXTENT_MAP_HOLE
;
6628 btrfs_release_path(path
);
6629 if (em
->start
> start
|| extent_map_end(em
) <= start
) {
6631 "bad extent! em: [%llu %llu] passed [%llu %llu]",
6632 em
->start
, em
->len
, start
, len
);
6638 write_lock(&em_tree
->lock
);
6639 err
= btrfs_add_extent_mapping(fs_info
, em_tree
, &em
, start
, len
);
6640 write_unlock(&em_tree
->lock
);
6642 btrfs_free_path(path
);
6644 trace_btrfs_get_extent(root
, inode
, em
);
6647 free_extent_map(em
);
6648 return ERR_PTR(err
);
6650 BUG_ON(!em
); /* Error is always set */
6654 struct extent_map
*btrfs_get_extent_fiemap(struct btrfs_inode
*inode
,
6657 struct extent_map
*em
;
6658 struct extent_map
*hole_em
= NULL
;
6659 u64 delalloc_start
= start
;
6665 em
= btrfs_get_extent(inode
, NULL
, 0, start
, len
);
6669 * If our em maps to:
6671 * - a pre-alloc extent,
6672 * there might actually be delalloc bytes behind it.
6674 if (em
->block_start
!= EXTENT_MAP_HOLE
&&
6675 !test_bit(EXTENT_FLAG_PREALLOC
, &em
->flags
))
6680 /* check to see if we've wrapped (len == -1 or similar) */
6689 /* ok, we didn't find anything, lets look for delalloc */
6690 delalloc_len
= count_range_bits(&inode
->io_tree
, &delalloc_start
,
6691 end
, len
, EXTENT_DELALLOC
, 1);
6692 delalloc_end
= delalloc_start
+ delalloc_len
;
6693 if (delalloc_end
< delalloc_start
)
6694 delalloc_end
= (u64
)-1;
6697 * We didn't find anything useful, return the original results from
6700 if (delalloc_start
> end
|| delalloc_end
<= start
) {
6707 * Adjust the delalloc_start to make sure it doesn't go backwards from
6708 * the start they passed in
6710 delalloc_start
= max(start
, delalloc_start
);
6711 delalloc_len
= delalloc_end
- delalloc_start
;
6713 if (delalloc_len
> 0) {
6716 const u64 hole_end
= extent_map_end(hole_em
);
6718 em
= alloc_extent_map();
6726 * When btrfs_get_extent can't find anything it returns one
6729 * Make sure what it found really fits our range, and adjust to
6730 * make sure it is based on the start from the caller
6732 if (hole_end
<= start
|| hole_em
->start
> end
) {
6733 free_extent_map(hole_em
);
6736 hole_start
= max(hole_em
->start
, start
);
6737 hole_len
= hole_end
- hole_start
;
6740 if (hole_em
&& delalloc_start
> hole_start
) {
6742 * Our hole starts before our delalloc, so we have to
6743 * return just the parts of the hole that go until the
6746 em
->len
= min(hole_len
, delalloc_start
- hole_start
);
6747 em
->start
= hole_start
;
6748 em
->orig_start
= hole_start
;
6750 * Don't adjust block start at all, it is fixed at
6753 em
->block_start
= hole_em
->block_start
;
6754 em
->block_len
= hole_len
;
6755 if (test_bit(EXTENT_FLAG_PREALLOC
, &hole_em
->flags
))
6756 set_bit(EXTENT_FLAG_PREALLOC
, &em
->flags
);
6759 * Hole is out of passed range or it starts after
6762 em
->start
= delalloc_start
;
6763 em
->len
= delalloc_len
;
6764 em
->orig_start
= delalloc_start
;
6765 em
->block_start
= EXTENT_MAP_DELALLOC
;
6766 em
->block_len
= delalloc_len
;
6773 free_extent_map(hole_em
);
6775 free_extent_map(em
);
6776 return ERR_PTR(err
);
6781 static struct extent_map
*btrfs_create_dio_extent(struct inode
*inode
,
6784 const u64 orig_start
,
6785 const u64 block_start
,
6786 const u64 block_len
,
6787 const u64 orig_block_len
,
6788 const u64 ram_bytes
,
6791 struct extent_map
*em
= NULL
;
6794 if (type
!= BTRFS_ORDERED_NOCOW
) {
6795 em
= create_io_em(inode
, start
, len
, orig_start
,
6796 block_start
, block_len
, orig_block_len
,
6798 BTRFS_COMPRESS_NONE
, /* compress_type */
6803 ret
= btrfs_add_ordered_extent_dio(inode
, start
, block_start
,
6804 len
, block_len
, type
);
6807 free_extent_map(em
);
6808 btrfs_drop_extent_cache(BTRFS_I(inode
), start
,
6809 start
+ len
- 1, 0);
6818 static struct extent_map
*btrfs_new_extent_direct(struct inode
*inode
,
6821 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
6822 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
6823 struct extent_map
*em
;
6824 struct btrfs_key ins
;
6828 alloc_hint
= get_extent_allocation_hint(inode
, start
, len
);
6829 ret
= btrfs_reserve_extent(root
, len
, len
, fs_info
->sectorsize
,
6830 0, alloc_hint
, &ins
, 1, 1);
6832 return ERR_PTR(ret
);
6834 em
= btrfs_create_dio_extent(inode
, start
, ins
.offset
, start
,
6835 ins
.objectid
, ins
.offset
, ins
.offset
,
6836 ins
.offset
, BTRFS_ORDERED_REGULAR
);
6837 btrfs_dec_block_group_reservations(fs_info
, ins
.objectid
);
6839 btrfs_free_reserved_extent(fs_info
, ins
.objectid
,
6846 * returns 1 when the nocow is safe, < 1 on error, 0 if the
6847 * block must be cow'd
6849 noinline
int can_nocow_extent(struct inode
*inode
, u64 offset
, u64
*len
,
6850 u64
*orig_start
, u64
*orig_block_len
,
6853 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
6854 struct btrfs_path
*path
;
6856 struct extent_buffer
*leaf
;
6857 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
6858 struct extent_io_tree
*io_tree
= &BTRFS_I(inode
)->io_tree
;
6859 struct btrfs_file_extent_item
*fi
;
6860 struct btrfs_key key
;
6867 bool nocow
= (BTRFS_I(inode
)->flags
& BTRFS_INODE_NODATACOW
);
6869 path
= btrfs_alloc_path();
6873 ret
= btrfs_lookup_file_extent(NULL
, root
, path
,
6874 btrfs_ino(BTRFS_I(inode
)), offset
, 0);
6878 slot
= path
->slots
[0];
6881 /* can't find the item, must cow */
6888 leaf
= path
->nodes
[0];
6889 btrfs_item_key_to_cpu(leaf
, &key
, slot
);
6890 if (key
.objectid
!= btrfs_ino(BTRFS_I(inode
)) ||
6891 key
.type
!= BTRFS_EXTENT_DATA_KEY
) {
6892 /* not our file or wrong item type, must cow */
6896 if (key
.offset
> offset
) {
6897 /* Wrong offset, must cow */
6901 fi
= btrfs_item_ptr(leaf
, slot
, struct btrfs_file_extent_item
);
6902 found_type
= btrfs_file_extent_type(leaf
, fi
);
6903 if (found_type
!= BTRFS_FILE_EXTENT_REG
&&
6904 found_type
!= BTRFS_FILE_EXTENT_PREALLOC
) {
6905 /* not a regular extent, must cow */
6909 if (!nocow
&& found_type
== BTRFS_FILE_EXTENT_REG
)
6912 extent_end
= key
.offset
+ btrfs_file_extent_num_bytes(leaf
, fi
);
6913 if (extent_end
<= offset
)
6916 disk_bytenr
= btrfs_file_extent_disk_bytenr(leaf
, fi
);
6917 if (disk_bytenr
== 0)
6920 if (btrfs_file_extent_compression(leaf
, fi
) ||
6921 btrfs_file_extent_encryption(leaf
, fi
) ||
6922 btrfs_file_extent_other_encoding(leaf
, fi
))
6926 * Do the same check as in btrfs_cross_ref_exist but without the
6927 * unnecessary search.
6929 if (btrfs_file_extent_generation(leaf
, fi
) <=
6930 btrfs_root_last_snapshot(&root
->root_item
))
6933 backref_offset
= btrfs_file_extent_offset(leaf
, fi
);
6936 *orig_start
= key
.offset
- backref_offset
;
6937 *orig_block_len
= btrfs_file_extent_disk_num_bytes(leaf
, fi
);
6938 *ram_bytes
= btrfs_file_extent_ram_bytes(leaf
, fi
);
6941 if (btrfs_extent_readonly(fs_info
, disk_bytenr
))
6944 num_bytes
= min(offset
+ *len
, extent_end
) - offset
;
6945 if (!nocow
&& found_type
== BTRFS_FILE_EXTENT_PREALLOC
) {
6948 range_end
= round_up(offset
+ num_bytes
,
6949 root
->fs_info
->sectorsize
) - 1;
6950 ret
= test_range_bit(io_tree
, offset
, range_end
,
6951 EXTENT_DELALLOC
, 0, NULL
);
6958 btrfs_release_path(path
);
6961 * look for other files referencing this extent, if we
6962 * find any we must cow
6965 ret
= btrfs_cross_ref_exist(root
, btrfs_ino(BTRFS_I(inode
)),
6966 key
.offset
- backref_offset
, disk_bytenr
);
6973 * adjust disk_bytenr and num_bytes to cover just the bytes
6974 * in this extent we are about to write. If there
6975 * are any csums in that range we have to cow in order
6976 * to keep the csums correct
6978 disk_bytenr
+= backref_offset
;
6979 disk_bytenr
+= offset
- key
.offset
;
6980 if (csum_exist_in_range(fs_info
, disk_bytenr
, num_bytes
))
6983 * all of the above have passed, it is safe to overwrite this extent
6989 btrfs_free_path(path
);
6993 static int lock_extent_direct(struct inode
*inode
, u64 lockstart
, u64 lockend
,
6994 struct extent_state
**cached_state
, int writing
)
6996 struct btrfs_ordered_extent
*ordered
;
7000 lock_extent_bits(&BTRFS_I(inode
)->io_tree
, lockstart
, lockend
,
7003 * We're concerned with the entire range that we're going to be
7004 * doing DIO to, so we need to make sure there's no ordered
7005 * extents in this range.
7007 ordered
= btrfs_lookup_ordered_range(BTRFS_I(inode
), lockstart
,
7008 lockend
- lockstart
+ 1);
7011 * We need to make sure there are no buffered pages in this
7012 * range either, we could have raced between the invalidate in
7013 * generic_file_direct_write and locking the extent. The
7014 * invalidate needs to happen so that reads after a write do not
7018 (!writing
|| !filemap_range_has_page(inode
->i_mapping
,
7019 lockstart
, lockend
)))
7022 unlock_extent_cached(&BTRFS_I(inode
)->io_tree
, lockstart
, lockend
,
7027 * If we are doing a DIO read and the ordered extent we
7028 * found is for a buffered write, we can not wait for it
7029 * to complete and retry, because if we do so we can
7030 * deadlock with concurrent buffered writes on page
7031 * locks. This happens only if our DIO read covers more
7032 * than one extent map, if at this point has already
7033 * created an ordered extent for a previous extent map
7034 * and locked its range in the inode's io tree, and a
7035 * concurrent write against that previous extent map's
7036 * range and this range started (we unlock the ranges
7037 * in the io tree only when the bios complete and
7038 * buffered writes always lock pages before attempting
7039 * to lock range in the io tree).
7042 test_bit(BTRFS_ORDERED_DIRECT
, &ordered
->flags
))
7043 btrfs_start_ordered_extent(inode
, ordered
, 1);
7046 btrfs_put_ordered_extent(ordered
);
7049 * We could trigger writeback for this range (and wait
7050 * for it to complete) and then invalidate the pages for
7051 * this range (through invalidate_inode_pages2_range()),
7052 * but that can lead us to a deadlock with a concurrent
7053 * call to readpages() (a buffered read or a defrag call
7054 * triggered a readahead) on a page lock due to an
7055 * ordered dio extent we created before but did not have
7056 * yet a corresponding bio submitted (whence it can not
7057 * complete), which makes readpages() wait for that
7058 * ordered extent to complete while holding a lock on
7073 /* The callers of this must take lock_extent() */
7074 static struct extent_map
*create_io_em(struct inode
*inode
, u64 start
, u64 len
,
7075 u64 orig_start
, u64 block_start
,
7076 u64 block_len
, u64 orig_block_len
,
7077 u64 ram_bytes
, int compress_type
,
7080 struct extent_map_tree
*em_tree
;
7081 struct extent_map
*em
;
7084 ASSERT(type
== BTRFS_ORDERED_PREALLOC
||
7085 type
== BTRFS_ORDERED_COMPRESSED
||
7086 type
== BTRFS_ORDERED_NOCOW
||
7087 type
== BTRFS_ORDERED_REGULAR
);
7089 em_tree
= &BTRFS_I(inode
)->extent_tree
;
7090 em
= alloc_extent_map();
7092 return ERR_PTR(-ENOMEM
);
7095 em
->orig_start
= orig_start
;
7097 em
->block_len
= block_len
;
7098 em
->block_start
= block_start
;
7099 em
->orig_block_len
= orig_block_len
;
7100 em
->ram_bytes
= ram_bytes
;
7101 em
->generation
= -1;
7102 set_bit(EXTENT_FLAG_PINNED
, &em
->flags
);
7103 if (type
== BTRFS_ORDERED_PREALLOC
) {
7104 set_bit(EXTENT_FLAG_FILLING
, &em
->flags
);
7105 } else if (type
== BTRFS_ORDERED_COMPRESSED
) {
7106 set_bit(EXTENT_FLAG_COMPRESSED
, &em
->flags
);
7107 em
->compress_type
= compress_type
;
7111 btrfs_drop_extent_cache(BTRFS_I(inode
), em
->start
,
7112 em
->start
+ em
->len
- 1, 0);
7113 write_lock(&em_tree
->lock
);
7114 ret
= add_extent_mapping(em_tree
, em
, 1);
7115 write_unlock(&em_tree
->lock
);
7117 * The caller has taken lock_extent(), who could race with us
7120 } while (ret
== -EEXIST
);
7123 free_extent_map(em
);
7124 return ERR_PTR(ret
);
7127 /* em got 2 refs now, callers needs to do free_extent_map once. */
7132 static int btrfs_get_blocks_direct_read(struct extent_map
*em
,
7133 struct buffer_head
*bh_result
,
7134 struct inode
*inode
,
7137 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
7139 if (em
->block_start
== EXTENT_MAP_HOLE
||
7140 test_bit(EXTENT_FLAG_PREALLOC
, &em
->flags
))
7143 len
= min(len
, em
->len
- (start
- em
->start
));
7145 bh_result
->b_blocknr
= (em
->block_start
+ (start
- em
->start
)) >>
7147 bh_result
->b_size
= len
;
7148 bh_result
->b_bdev
= fs_info
->fs_devices
->latest_bdev
;
7149 set_buffer_mapped(bh_result
);
7154 static int btrfs_get_blocks_direct_write(struct extent_map
**map
,
7155 struct buffer_head
*bh_result
,
7156 struct inode
*inode
,
7157 struct btrfs_dio_data
*dio_data
,
7160 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
7161 struct extent_map
*em
= *map
;
7165 * We don't allocate a new extent in the following cases
7167 * 1) The inode is marked as NODATACOW. In this case we'll just use the
7169 * 2) The extent is marked as PREALLOC. We're good to go here and can
7170 * just use the extent.
7173 if (test_bit(EXTENT_FLAG_PREALLOC
, &em
->flags
) ||
7174 ((BTRFS_I(inode
)->flags
& BTRFS_INODE_NODATACOW
) &&
7175 em
->block_start
!= EXTENT_MAP_HOLE
)) {
7177 u64 block_start
, orig_start
, orig_block_len
, ram_bytes
;
7179 if (test_bit(EXTENT_FLAG_PREALLOC
, &em
->flags
))
7180 type
= BTRFS_ORDERED_PREALLOC
;
7182 type
= BTRFS_ORDERED_NOCOW
;
7183 len
= min(len
, em
->len
- (start
- em
->start
));
7184 block_start
= em
->block_start
+ (start
- em
->start
);
7186 if (can_nocow_extent(inode
, start
, &len
, &orig_start
,
7187 &orig_block_len
, &ram_bytes
) == 1 &&
7188 btrfs_inc_nocow_writers(fs_info
, block_start
)) {
7189 struct extent_map
*em2
;
7191 em2
= btrfs_create_dio_extent(inode
, start
, len
,
7192 orig_start
, block_start
,
7193 len
, orig_block_len
,
7195 btrfs_dec_nocow_writers(fs_info
, block_start
);
7196 if (type
== BTRFS_ORDERED_PREALLOC
) {
7197 free_extent_map(em
);
7201 if (em2
&& IS_ERR(em2
)) {
7206 * For inode marked NODATACOW or extent marked PREALLOC,
7207 * use the existing or preallocated extent, so does not
7208 * need to adjust btrfs_space_info's bytes_may_use.
7210 btrfs_free_reserved_data_space_noquota(inode
, start
,
7216 /* this will cow the extent */
7217 len
= bh_result
->b_size
;
7218 free_extent_map(em
);
7219 *map
= em
= btrfs_new_extent_direct(inode
, start
, len
);
7225 len
= min(len
, em
->len
- (start
- em
->start
));
7228 bh_result
->b_blocknr
= (em
->block_start
+ (start
- em
->start
)) >>
7230 bh_result
->b_size
= len
;
7231 bh_result
->b_bdev
= fs_info
->fs_devices
->latest_bdev
;
7232 set_buffer_mapped(bh_result
);
7234 if (!test_bit(EXTENT_FLAG_PREALLOC
, &em
->flags
))
7235 set_buffer_new(bh_result
);
7238 * Need to update the i_size under the extent lock so buffered
7239 * readers will get the updated i_size when we unlock.
7241 if (!dio_data
->overwrite
&& start
+ len
> i_size_read(inode
))
7242 i_size_write(inode
, start
+ len
);
7244 WARN_ON(dio_data
->reserve
< len
);
7245 dio_data
->reserve
-= len
;
7246 dio_data
->unsubmitted_oe_range_end
= start
+ len
;
7247 current
->journal_info
= dio_data
;
7252 static int btrfs_get_blocks_direct(struct inode
*inode
, sector_t iblock
,
7253 struct buffer_head
*bh_result
, int create
)
7255 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
7256 struct extent_map
*em
;
7257 struct extent_state
*cached_state
= NULL
;
7258 struct btrfs_dio_data
*dio_data
= NULL
;
7259 u64 start
= iblock
<< inode
->i_blkbits
;
7260 u64 lockstart
, lockend
;
7261 u64 len
= bh_result
->b_size
;
7265 len
= min_t(u64
, len
, fs_info
->sectorsize
);
7268 lockend
= start
+ len
- 1;
7270 if (current
->journal_info
) {
7272 * Need to pull our outstanding extents and set journal_info to NULL so
7273 * that anything that needs to check if there's a transaction doesn't get
7276 dio_data
= current
->journal_info
;
7277 current
->journal_info
= NULL
;
7281 * If this errors out it's because we couldn't invalidate pagecache for
7282 * this range and we need to fallback to buffered.
7284 if (lock_extent_direct(inode
, lockstart
, lockend
, &cached_state
,
7290 em
= btrfs_get_extent(BTRFS_I(inode
), NULL
, 0, start
, len
);
7297 * Ok for INLINE and COMPRESSED extents we need to fallback on buffered
7298 * io. INLINE is special, and we could probably kludge it in here, but
7299 * it's still buffered so for safety lets just fall back to the generic
7302 * For COMPRESSED we _have_ to read the entire extent in so we can
7303 * decompress it, so there will be buffering required no matter what we
7304 * do, so go ahead and fallback to buffered.
7306 * We return -ENOTBLK because that's what makes DIO go ahead and go back
7307 * to buffered IO. Don't blame me, this is the price we pay for using
7310 if (test_bit(EXTENT_FLAG_COMPRESSED
, &em
->flags
) ||
7311 em
->block_start
== EXTENT_MAP_INLINE
) {
7312 free_extent_map(em
);
7318 ret
= btrfs_get_blocks_direct_write(&em
, bh_result
, inode
,
7319 dio_data
, start
, len
);
7323 unlock_extent_cached(&BTRFS_I(inode
)->io_tree
, lockstart
,
7324 lockend
, &cached_state
);
7326 ret
= btrfs_get_blocks_direct_read(em
, bh_result
, inode
,
7328 /* Can be negative only if we read from a hole */
7331 free_extent_map(em
);
7335 * We need to unlock only the end area that we aren't using.
7336 * The rest is going to be unlocked by the endio routine.
7338 lockstart
= start
+ bh_result
->b_size
;
7339 if (lockstart
< lockend
) {
7340 unlock_extent_cached(&BTRFS_I(inode
)->io_tree
,
7341 lockstart
, lockend
, &cached_state
);
7343 free_extent_state(cached_state
);
7347 free_extent_map(em
);
7352 unlock_extent_cached(&BTRFS_I(inode
)->io_tree
, lockstart
, lockend
,
7356 current
->journal_info
= dio_data
;
7360 static inline blk_status_t
submit_dio_repair_bio(struct inode
*inode
,
7364 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
7367 BUG_ON(bio_op(bio
) == REQ_OP_WRITE
);
7369 ret
= btrfs_bio_wq_end_io(fs_info
, bio
, BTRFS_WQ_ENDIO_DIO_REPAIR
);
7373 ret
= btrfs_map_bio(fs_info
, bio
, mirror_num
);
7378 static int btrfs_check_dio_repairable(struct inode
*inode
,
7379 struct bio
*failed_bio
,
7380 struct io_failure_record
*failrec
,
7383 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
7386 num_copies
= btrfs_num_copies(fs_info
, failrec
->logical
, failrec
->len
);
7387 if (num_copies
== 1) {
7389 * we only have a single copy of the data, so don't bother with
7390 * all the retry and error correction code that follows. no
7391 * matter what the error is, it is very likely to persist.
7393 btrfs_debug(fs_info
,
7394 "Check DIO Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d",
7395 num_copies
, failrec
->this_mirror
, failed_mirror
);
7399 failrec
->failed_mirror
= failed_mirror
;
7400 failrec
->this_mirror
++;
7401 if (failrec
->this_mirror
== failed_mirror
)
7402 failrec
->this_mirror
++;
7404 if (failrec
->this_mirror
> num_copies
) {
7405 btrfs_debug(fs_info
,
7406 "Check DIO Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d",
7407 num_copies
, failrec
->this_mirror
, failed_mirror
);
7414 static blk_status_t
dio_read_error(struct inode
*inode
, struct bio
*failed_bio
,
7415 struct page
*page
, unsigned int pgoff
,
7416 u64 start
, u64 end
, int failed_mirror
,
7417 bio_end_io_t
*repair_endio
, void *repair_arg
)
7419 struct io_failure_record
*failrec
;
7420 struct extent_io_tree
*io_tree
= &BTRFS_I(inode
)->io_tree
;
7421 struct extent_io_tree
*failure_tree
= &BTRFS_I(inode
)->io_failure_tree
;
7424 unsigned int read_mode
= 0;
7427 blk_status_t status
;
7428 struct bio_vec bvec
;
7430 BUG_ON(bio_op(failed_bio
) == REQ_OP_WRITE
);
7432 ret
= btrfs_get_io_failure_record(inode
, start
, end
, &failrec
);
7434 return errno_to_blk_status(ret
);
7436 ret
= btrfs_check_dio_repairable(inode
, failed_bio
, failrec
,
7439 free_io_failure(failure_tree
, io_tree
, failrec
);
7440 return BLK_STS_IOERR
;
7443 segs
= bio_segments(failed_bio
);
7444 bio_get_first_bvec(failed_bio
, &bvec
);
7446 (bvec
.bv_len
> btrfs_inode_sectorsize(inode
)))
7447 read_mode
|= REQ_FAILFAST_DEV
;
7449 isector
= start
- btrfs_io_bio(failed_bio
)->logical
;
7450 isector
>>= inode
->i_sb
->s_blocksize_bits
;
7451 bio
= btrfs_create_repair_bio(inode
, failed_bio
, failrec
, page
,
7452 pgoff
, isector
, repair_endio
, repair_arg
);
7453 bio
->bi_opf
= REQ_OP_READ
| read_mode
;
7455 btrfs_debug(BTRFS_I(inode
)->root
->fs_info
,
7456 "repair DIO read error: submitting new dio read[%#x] to this_mirror=%d, in_validation=%d",
7457 read_mode
, failrec
->this_mirror
, failrec
->in_validation
);
7459 status
= submit_dio_repair_bio(inode
, bio
, failrec
->this_mirror
);
7461 free_io_failure(failure_tree
, io_tree
, failrec
);
7468 struct btrfs_retry_complete
{
7469 struct completion done
;
7470 struct inode
*inode
;
7475 static void btrfs_retry_endio_nocsum(struct bio
*bio
)
7477 struct btrfs_retry_complete
*done
= bio
->bi_private
;
7478 struct inode
*inode
= done
->inode
;
7479 struct bio_vec
*bvec
;
7480 struct extent_io_tree
*io_tree
, *failure_tree
;
7481 struct bvec_iter_all iter_all
;
7486 ASSERT(bio
->bi_vcnt
== 1);
7487 io_tree
= &BTRFS_I(inode
)->io_tree
;
7488 failure_tree
= &BTRFS_I(inode
)->io_failure_tree
;
7489 ASSERT(bio_first_bvec_all(bio
)->bv_len
== btrfs_inode_sectorsize(inode
));
7492 ASSERT(!bio_flagged(bio
, BIO_CLONED
));
7493 bio_for_each_segment_all(bvec
, bio
, iter_all
)
7494 clean_io_failure(BTRFS_I(inode
)->root
->fs_info
, failure_tree
,
7495 io_tree
, done
->start
, bvec
->bv_page
,
7496 btrfs_ino(BTRFS_I(inode
)), 0);
7498 complete(&done
->done
);
7502 static blk_status_t
__btrfs_correct_data_nocsum(struct inode
*inode
,
7503 struct btrfs_io_bio
*io_bio
)
7505 struct btrfs_fs_info
*fs_info
;
7506 struct bio_vec bvec
;
7507 struct bvec_iter iter
;
7508 struct btrfs_retry_complete done
;
7514 blk_status_t err
= BLK_STS_OK
;
7516 fs_info
= BTRFS_I(inode
)->root
->fs_info
;
7517 sectorsize
= fs_info
->sectorsize
;
7519 start
= io_bio
->logical
;
7521 io_bio
->bio
.bi_iter
= io_bio
->iter
;
7523 bio_for_each_segment(bvec
, &io_bio
->bio
, iter
) {
7524 nr_sectors
= BTRFS_BYTES_TO_BLKS(fs_info
, bvec
.bv_len
);
7525 pgoff
= bvec
.bv_offset
;
7527 next_block_or_try_again
:
7530 init_completion(&done
.done
);
7532 ret
= dio_read_error(inode
, &io_bio
->bio
, bvec
.bv_page
,
7533 pgoff
, start
, start
+ sectorsize
- 1,
7535 btrfs_retry_endio_nocsum
, &done
);
7541 wait_for_completion_io(&done
.done
);
7543 if (!done
.uptodate
) {
7544 /* We might have another mirror, so try again */
7545 goto next_block_or_try_again
;
7549 start
+= sectorsize
;
7553 pgoff
+= sectorsize
;
7554 ASSERT(pgoff
< PAGE_SIZE
);
7555 goto next_block_or_try_again
;
7562 static void btrfs_retry_endio(struct bio
*bio
)
7564 struct btrfs_retry_complete
*done
= bio
->bi_private
;
7565 struct btrfs_io_bio
*io_bio
= btrfs_io_bio(bio
);
7566 struct extent_io_tree
*io_tree
, *failure_tree
;
7567 struct inode
*inode
= done
->inode
;
7568 struct bio_vec
*bvec
;
7572 struct bvec_iter_all iter_all
;
7579 ASSERT(bio
->bi_vcnt
== 1);
7580 ASSERT(bio_first_bvec_all(bio
)->bv_len
== btrfs_inode_sectorsize(done
->inode
));
7582 io_tree
= &BTRFS_I(inode
)->io_tree
;
7583 failure_tree
= &BTRFS_I(inode
)->io_failure_tree
;
7585 ASSERT(!bio_flagged(bio
, BIO_CLONED
));
7586 bio_for_each_segment_all(bvec
, bio
, iter_all
) {
7587 ret
= __readpage_endio_check(inode
, io_bio
, i
, bvec
->bv_page
,
7588 bvec
->bv_offset
, done
->start
,
7591 clean_io_failure(BTRFS_I(inode
)->root
->fs_info
,
7592 failure_tree
, io_tree
, done
->start
,
7594 btrfs_ino(BTRFS_I(inode
)),
7601 done
->uptodate
= uptodate
;
7603 complete(&done
->done
);
7607 static blk_status_t
__btrfs_subio_endio_read(struct inode
*inode
,
7608 struct btrfs_io_bio
*io_bio
, blk_status_t err
)
7610 struct btrfs_fs_info
*fs_info
;
7611 struct bio_vec bvec
;
7612 struct bvec_iter iter
;
7613 struct btrfs_retry_complete done
;
7620 bool uptodate
= (err
== 0);
7622 blk_status_t status
;
7624 fs_info
= BTRFS_I(inode
)->root
->fs_info
;
7625 sectorsize
= fs_info
->sectorsize
;
7628 start
= io_bio
->logical
;
7630 io_bio
->bio
.bi_iter
= io_bio
->iter
;
7632 bio_for_each_segment(bvec
, &io_bio
->bio
, iter
) {
7633 nr_sectors
= BTRFS_BYTES_TO_BLKS(fs_info
, bvec
.bv_len
);
7635 pgoff
= bvec
.bv_offset
;
7638 csum_pos
= BTRFS_BYTES_TO_BLKS(fs_info
, offset
);
7639 ret
= __readpage_endio_check(inode
, io_bio
, csum_pos
,
7640 bvec
.bv_page
, pgoff
, start
, sectorsize
);
7647 init_completion(&done
.done
);
7649 status
= dio_read_error(inode
, &io_bio
->bio
, bvec
.bv_page
,
7650 pgoff
, start
, start
+ sectorsize
- 1,
7651 io_bio
->mirror_num
, btrfs_retry_endio
,
7658 wait_for_completion_io(&done
.done
);
7660 if (!done
.uptodate
) {
7661 /* We might have another mirror, so try again */
7665 offset
+= sectorsize
;
7666 start
+= sectorsize
;
7672 pgoff
+= sectorsize
;
7673 ASSERT(pgoff
< PAGE_SIZE
);
7681 static blk_status_t
btrfs_subio_endio_read(struct inode
*inode
,
7682 struct btrfs_io_bio
*io_bio
, blk_status_t err
)
7684 bool skip_csum
= BTRFS_I(inode
)->flags
& BTRFS_INODE_NODATASUM
;
7688 return __btrfs_correct_data_nocsum(inode
, io_bio
);
7692 return __btrfs_subio_endio_read(inode
, io_bio
, err
);
7696 static void btrfs_endio_direct_read(struct bio
*bio
)
7698 struct btrfs_dio_private
*dip
= bio
->bi_private
;
7699 struct inode
*inode
= dip
->inode
;
7700 struct bio
*dio_bio
;
7701 struct btrfs_io_bio
*io_bio
= btrfs_io_bio(bio
);
7702 blk_status_t err
= bio
->bi_status
;
7704 if (dip
->flags
& BTRFS_DIO_ORIG_BIO_SUBMITTED
)
7705 err
= btrfs_subio_endio_read(inode
, io_bio
, err
);
7707 unlock_extent(&BTRFS_I(inode
)->io_tree
, dip
->logical_offset
,
7708 dip
->logical_offset
+ dip
->bytes
- 1);
7709 dio_bio
= dip
->dio_bio
;
7713 dio_bio
->bi_status
= err
;
7714 dio_end_io(dio_bio
);
7715 btrfs_io_bio_free_csum(io_bio
);
7719 static void __endio_write_update_ordered(struct inode
*inode
,
7720 const u64 offset
, const u64 bytes
,
7721 const bool uptodate
)
7723 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
7724 struct btrfs_ordered_extent
*ordered
= NULL
;
7725 struct btrfs_workqueue
*wq
;
7726 u64 ordered_offset
= offset
;
7727 u64 ordered_bytes
= bytes
;
7730 if (btrfs_is_free_space_inode(BTRFS_I(inode
)))
7731 wq
= fs_info
->endio_freespace_worker
;
7733 wq
= fs_info
->endio_write_workers
;
7735 while (ordered_offset
< offset
+ bytes
) {
7736 last_offset
= ordered_offset
;
7737 if (btrfs_dec_test_first_ordered_pending(inode
, &ordered
,
7741 btrfs_init_work(&ordered
->work
, finish_ordered_fn
, NULL
,
7743 btrfs_queue_work(wq
, &ordered
->work
);
7746 * If btrfs_dec_test_ordered_pending does not find any ordered
7747 * extent in the range, we can exit.
7749 if (ordered_offset
== last_offset
)
7752 * Our bio might span multiple ordered extents. In this case
7753 * we keep going until we have accounted the whole dio.
7755 if (ordered_offset
< offset
+ bytes
) {
7756 ordered_bytes
= offset
+ bytes
- ordered_offset
;
7762 static void btrfs_endio_direct_write(struct bio
*bio
)
7764 struct btrfs_dio_private
*dip
= bio
->bi_private
;
7765 struct bio
*dio_bio
= dip
->dio_bio
;
7767 __endio_write_update_ordered(dip
->inode
, dip
->logical_offset
,
7768 dip
->bytes
, !bio
->bi_status
);
7772 dio_bio
->bi_status
= bio
->bi_status
;
7773 dio_end_io(dio_bio
);
7777 static blk_status_t
btrfs_submit_bio_start_direct_io(void *private_data
,
7778 struct bio
*bio
, u64 offset
)
7780 struct inode
*inode
= private_data
;
7782 ret
= btrfs_csum_one_bio(inode
, bio
, offset
, 1);
7783 BUG_ON(ret
); /* -ENOMEM */
7787 static void btrfs_end_dio_bio(struct bio
*bio
)
7789 struct btrfs_dio_private
*dip
= bio
->bi_private
;
7790 blk_status_t err
= bio
->bi_status
;
7793 btrfs_warn(BTRFS_I(dip
->inode
)->root
->fs_info
,
7794 "direct IO failed ino %llu rw %d,%u sector %#Lx len %u err no %d",
7795 btrfs_ino(BTRFS_I(dip
->inode
)), bio_op(bio
),
7797 (unsigned long long)bio
->bi_iter
.bi_sector
,
7798 bio
->bi_iter
.bi_size
, err
);
7800 if (dip
->subio_endio
)
7801 err
= dip
->subio_endio(dip
->inode
, btrfs_io_bio(bio
), err
);
7805 * We want to perceive the errors flag being set before
7806 * decrementing the reference count. We don't need a barrier
7807 * since atomic operations with a return value are fully
7808 * ordered as per atomic_t.txt
7813 /* if there are more bios still pending for this dio, just exit */
7814 if (!atomic_dec_and_test(&dip
->pending_bios
))
7818 bio_io_error(dip
->orig_bio
);
7820 dip
->dio_bio
->bi_status
= BLK_STS_OK
;
7821 bio_endio(dip
->orig_bio
);
7827 static inline blk_status_t
btrfs_lookup_and_bind_dio_csum(struct inode
*inode
,
7828 struct btrfs_dio_private
*dip
,
7832 struct btrfs_io_bio
*io_bio
= btrfs_io_bio(bio
);
7833 struct btrfs_io_bio
*orig_io_bio
= btrfs_io_bio(dip
->orig_bio
);
7838 * We load all the csum data we need when we submit
7839 * the first bio to reduce the csum tree search and
7842 if (dip
->logical_offset
== file_offset
) {
7843 ret
= btrfs_lookup_bio_sums(inode
, dip
->orig_bio
, file_offset
,
7849 if (bio
== dip
->orig_bio
)
7852 file_offset
-= dip
->logical_offset
;
7853 file_offset
>>= inode
->i_sb
->s_blocksize_bits
;
7854 csum_size
= btrfs_super_csum_size(btrfs_sb(inode
->i_sb
)->super_copy
);
7855 io_bio
->csum
= orig_io_bio
->csum
+ csum_size
* file_offset
;
7860 static inline blk_status_t
btrfs_submit_dio_bio(struct bio
*bio
,
7861 struct inode
*inode
, u64 file_offset
, int async_submit
)
7863 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
7864 struct btrfs_dio_private
*dip
= bio
->bi_private
;
7865 bool write
= bio_op(bio
) == REQ_OP_WRITE
;
7868 /* Check btrfs_submit_bio_hook() for rules about async submit. */
7870 async_submit
= !atomic_read(&BTRFS_I(inode
)->sync_writers
);
7873 ret
= btrfs_bio_wq_end_io(fs_info
, bio
, BTRFS_WQ_ENDIO_DATA
);
7878 if (BTRFS_I(inode
)->flags
& BTRFS_INODE_NODATASUM
)
7881 if (write
&& async_submit
) {
7882 ret
= btrfs_wq_submit_bio(fs_info
, bio
, 0, 0,
7884 btrfs_submit_bio_start_direct_io
);
7888 * If we aren't doing async submit, calculate the csum of the
7891 ret
= btrfs_csum_one_bio(inode
, bio
, file_offset
, 1);
7895 ret
= btrfs_lookup_and_bind_dio_csum(inode
, dip
, bio
,
7901 ret
= btrfs_map_bio(fs_info
, bio
, 0);
7906 static int btrfs_submit_direct_hook(struct btrfs_dio_private
*dip
)
7908 struct inode
*inode
= dip
->inode
;
7909 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
7911 struct bio
*orig_bio
= dip
->orig_bio
;
7912 u64 start_sector
= orig_bio
->bi_iter
.bi_sector
;
7913 u64 file_offset
= dip
->logical_offset
;
7914 int async_submit
= 0;
7916 int clone_offset
= 0;
7919 blk_status_t status
;
7920 struct btrfs_io_geometry geom
;
7922 submit_len
= orig_bio
->bi_iter
.bi_size
;
7923 ret
= btrfs_get_io_geometry(fs_info
, btrfs_op(orig_bio
),
7924 start_sector
<< 9, submit_len
, &geom
);
7928 if (geom
.len
>= submit_len
) {
7930 dip
->flags
|= BTRFS_DIO_ORIG_BIO_SUBMITTED
;
7934 /* async crcs make it difficult to collect full stripe writes. */
7935 if (btrfs_data_alloc_profile(fs_info
) & BTRFS_BLOCK_GROUP_RAID56_MASK
)
7941 ASSERT(geom
.len
<= INT_MAX
);
7942 atomic_inc(&dip
->pending_bios
);
7944 clone_len
= min_t(int, submit_len
, geom
.len
);
7947 * This will never fail as it's passing GPF_NOFS and
7948 * the allocation is backed by btrfs_bioset.
7950 bio
= btrfs_bio_clone_partial(orig_bio
, clone_offset
,
7952 bio
->bi_private
= dip
;
7953 bio
->bi_end_io
= btrfs_end_dio_bio
;
7954 btrfs_io_bio(bio
)->logical
= file_offset
;
7956 ASSERT(submit_len
>= clone_len
);
7957 submit_len
-= clone_len
;
7958 if (submit_len
== 0)
7962 * Increase the count before we submit the bio so we know
7963 * the end IO handler won't happen before we increase the
7964 * count. Otherwise, the dip might get freed before we're
7965 * done setting it up.
7967 atomic_inc(&dip
->pending_bios
);
7969 status
= btrfs_submit_dio_bio(bio
, inode
, file_offset
,
7973 atomic_dec(&dip
->pending_bios
);
7977 clone_offset
+= clone_len
;
7978 start_sector
+= clone_len
>> 9;
7979 file_offset
+= clone_len
;
7981 ret
= btrfs_get_io_geometry(fs_info
, btrfs_op(orig_bio
),
7982 start_sector
<< 9, submit_len
, &geom
);
7985 } while (submit_len
> 0);
7988 status
= btrfs_submit_dio_bio(bio
, inode
, file_offset
, async_submit
);
7996 * Before atomic variable goto zero, we must make sure dip->errors is
7997 * perceived to be set. This ordering is ensured by the fact that an
7998 * atomic operations with a return value are fully ordered as per
8001 if (atomic_dec_and_test(&dip
->pending_bios
))
8002 bio_io_error(dip
->orig_bio
);
8004 /* bio_end_io() will handle error, so we needn't return it */
8008 static void btrfs_submit_direct(struct bio
*dio_bio
, struct inode
*inode
,
8011 struct btrfs_dio_private
*dip
= NULL
;
8012 struct bio
*bio
= NULL
;
8013 struct btrfs_io_bio
*io_bio
;
8014 bool write
= (bio_op(dio_bio
) == REQ_OP_WRITE
);
8017 bio
= btrfs_bio_clone(dio_bio
);
8019 dip
= kzalloc(sizeof(*dip
), GFP_NOFS
);
8025 dip
->private = dio_bio
->bi_private
;
8027 dip
->logical_offset
= file_offset
;
8028 dip
->bytes
= dio_bio
->bi_iter
.bi_size
;
8029 dip
->disk_bytenr
= (u64
)dio_bio
->bi_iter
.bi_sector
<< 9;
8030 bio
->bi_private
= dip
;
8031 dip
->orig_bio
= bio
;
8032 dip
->dio_bio
= dio_bio
;
8033 atomic_set(&dip
->pending_bios
, 0);
8034 io_bio
= btrfs_io_bio(bio
);
8035 io_bio
->logical
= file_offset
;
8038 bio
->bi_end_io
= btrfs_endio_direct_write
;
8040 bio
->bi_end_io
= btrfs_endio_direct_read
;
8041 dip
->subio_endio
= btrfs_subio_endio_read
;
8045 * Reset the range for unsubmitted ordered extents (to a 0 length range)
8046 * even if we fail to submit a bio, because in such case we do the
8047 * corresponding error handling below and it must not be done a second
8048 * time by btrfs_direct_IO().
8051 struct btrfs_dio_data
*dio_data
= current
->journal_info
;
8053 dio_data
->unsubmitted_oe_range_end
= dip
->logical_offset
+
8055 dio_data
->unsubmitted_oe_range_start
=
8056 dio_data
->unsubmitted_oe_range_end
;
8059 ret
= btrfs_submit_direct_hook(dip
);
8063 btrfs_io_bio_free_csum(io_bio
);
8067 * If we arrived here it means either we failed to submit the dip
8068 * or we either failed to clone the dio_bio or failed to allocate the
8069 * dip. If we cloned the dio_bio and allocated the dip, we can just
8070 * call bio_endio against our io_bio so that we get proper resource
8071 * cleanup if we fail to submit the dip, otherwise, we must do the
8072 * same as btrfs_endio_direct_[write|read] because we can't call these
8073 * callbacks - they require an allocated dip and a clone of dio_bio.
8078 * The end io callbacks free our dip, do the final put on bio
8079 * and all the cleanup and final put for dio_bio (through
8086 __endio_write_update_ordered(inode
,
8088 dio_bio
->bi_iter
.bi_size
,
8091 unlock_extent(&BTRFS_I(inode
)->io_tree
, file_offset
,
8092 file_offset
+ dio_bio
->bi_iter
.bi_size
- 1);
8094 dio_bio
->bi_status
= BLK_STS_IOERR
;
8096 * Releases and cleans up our dio_bio, no need to bio_put()
8097 * nor bio_endio()/bio_io_error() against dio_bio.
8099 dio_end_io(dio_bio
);
8106 static ssize_t
check_direct_IO(struct btrfs_fs_info
*fs_info
,
8107 const struct iov_iter
*iter
, loff_t offset
)
8111 unsigned int blocksize_mask
= fs_info
->sectorsize
- 1;
8112 ssize_t retval
= -EINVAL
;
8114 if (offset
& blocksize_mask
)
8117 if (iov_iter_alignment(iter
) & blocksize_mask
)
8120 /* If this is a write we don't need to check anymore */
8121 if (iov_iter_rw(iter
) != READ
|| !iter_is_iovec(iter
))
8124 * Check to make sure we don't have duplicate iov_base's in this
8125 * iovec, if so return EINVAL, otherwise we'll get csum errors
8126 * when reading back.
8128 for (seg
= 0; seg
< iter
->nr_segs
; seg
++) {
8129 for (i
= seg
+ 1; i
< iter
->nr_segs
; i
++) {
8130 if (iter
->iov
[seg
].iov_base
== iter
->iov
[i
].iov_base
)
8139 static ssize_t
btrfs_direct_IO(struct kiocb
*iocb
, struct iov_iter
*iter
)
8141 struct file
*file
= iocb
->ki_filp
;
8142 struct inode
*inode
= file
->f_mapping
->host
;
8143 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
8144 struct btrfs_dio_data dio_data
= { 0 };
8145 struct extent_changeset
*data_reserved
= NULL
;
8146 loff_t offset
= iocb
->ki_pos
;
8150 bool relock
= false;
8153 if (check_direct_IO(fs_info
, iter
, offset
))
8156 inode_dio_begin(inode
);
8159 * The generic stuff only does filemap_write_and_wait_range, which
8160 * isn't enough if we've written compressed pages to this area, so
8161 * we need to flush the dirty pages again to make absolutely sure
8162 * that any outstanding dirty pages are on disk.
8164 count
= iov_iter_count(iter
);
8165 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT
,
8166 &BTRFS_I(inode
)->runtime_flags
))
8167 filemap_fdatawrite_range(inode
->i_mapping
, offset
,
8168 offset
+ count
- 1);
8170 if (iov_iter_rw(iter
) == WRITE
) {
8172 * If the write DIO is beyond the EOF, we need update
8173 * the isize, but it is protected by i_mutex. So we can
8174 * not unlock the i_mutex at this case.
8176 if (offset
+ count
<= inode
->i_size
) {
8177 dio_data
.overwrite
= 1;
8178 inode_unlock(inode
);
8180 } else if (iocb
->ki_flags
& IOCB_NOWAIT
) {
8184 ret
= btrfs_delalloc_reserve_space(inode
, &data_reserved
,
8190 * We need to know how many extents we reserved so that we can
8191 * do the accounting properly if we go over the number we
8192 * originally calculated. Abuse current->journal_info for this.
8194 dio_data
.reserve
= round_up(count
,
8195 fs_info
->sectorsize
);
8196 dio_data
.unsubmitted_oe_range_start
= (u64
)offset
;
8197 dio_data
.unsubmitted_oe_range_end
= (u64
)offset
;
8198 current
->journal_info
= &dio_data
;
8199 down_read(&BTRFS_I(inode
)->dio_sem
);
8200 } else if (test_bit(BTRFS_INODE_READDIO_NEED_LOCK
,
8201 &BTRFS_I(inode
)->runtime_flags
)) {
8202 inode_dio_end(inode
);
8203 flags
= DIO_LOCKING
| DIO_SKIP_HOLES
;
8207 ret
= __blockdev_direct_IO(iocb
, inode
,
8208 fs_info
->fs_devices
->latest_bdev
,
8209 iter
, btrfs_get_blocks_direct
, NULL
,
8210 btrfs_submit_direct
, flags
);
8211 if (iov_iter_rw(iter
) == WRITE
) {
8212 up_read(&BTRFS_I(inode
)->dio_sem
);
8213 current
->journal_info
= NULL
;
8214 if (ret
< 0 && ret
!= -EIOCBQUEUED
) {
8215 if (dio_data
.reserve
)
8216 btrfs_delalloc_release_space(inode
, data_reserved
,
8217 offset
, dio_data
.reserve
, true);
8219 * On error we might have left some ordered extents
8220 * without submitting corresponding bios for them, so
8221 * cleanup them up to avoid other tasks getting them
8222 * and waiting for them to complete forever.
8224 if (dio_data
.unsubmitted_oe_range_start
<
8225 dio_data
.unsubmitted_oe_range_end
)
8226 __endio_write_update_ordered(inode
,
8227 dio_data
.unsubmitted_oe_range_start
,
8228 dio_data
.unsubmitted_oe_range_end
-
8229 dio_data
.unsubmitted_oe_range_start
,
8231 } else if (ret
>= 0 && (size_t)ret
< count
)
8232 btrfs_delalloc_release_space(inode
, data_reserved
,
8233 offset
, count
- (size_t)ret
, true);
8234 btrfs_delalloc_release_extents(BTRFS_I(inode
), count
);
8238 inode_dio_end(inode
);
8242 extent_changeset_free(data_reserved
);
8246 #define BTRFS_FIEMAP_FLAGS (FIEMAP_FLAG_SYNC)
8248 static int btrfs_fiemap(struct inode
*inode
, struct fiemap_extent_info
*fieinfo
,
8249 __u64 start
, __u64 len
)
8253 ret
= fiemap_check_flags(fieinfo
, BTRFS_FIEMAP_FLAGS
);
8257 return extent_fiemap(inode
, fieinfo
, start
, len
);
8260 int btrfs_readpage(struct file
*file
, struct page
*page
)
8262 return extent_read_full_page(page
, btrfs_get_extent
, 0);
8265 static int btrfs_writepage(struct page
*page
, struct writeback_control
*wbc
)
8267 struct inode
*inode
= page
->mapping
->host
;
8270 if (current
->flags
& PF_MEMALLOC
) {
8271 redirty_page_for_writepage(wbc
, page
);
8277 * If we are under memory pressure we will call this directly from the
8278 * VM, we need to make sure we have the inode referenced for the ordered
8279 * extent. If not just return like we didn't do anything.
8281 if (!igrab(inode
)) {
8282 redirty_page_for_writepage(wbc
, page
);
8283 return AOP_WRITEPAGE_ACTIVATE
;
8285 ret
= extent_write_full_page(page
, wbc
);
8286 btrfs_add_delayed_iput(inode
);
8290 static int btrfs_writepages(struct address_space
*mapping
,
8291 struct writeback_control
*wbc
)
8293 return extent_writepages(mapping
, wbc
);
8297 btrfs_readpages(struct file
*file
, struct address_space
*mapping
,
8298 struct list_head
*pages
, unsigned nr_pages
)
8300 return extent_readpages(mapping
, pages
, nr_pages
);
8303 static int __btrfs_releasepage(struct page
*page
, gfp_t gfp_flags
)
8305 int ret
= try_release_extent_mapping(page
, gfp_flags
);
8307 ClearPagePrivate(page
);
8308 set_page_private(page
, 0);
8314 static int btrfs_releasepage(struct page
*page
, gfp_t gfp_flags
)
8316 if (PageWriteback(page
) || PageDirty(page
))
8318 return __btrfs_releasepage(page
, gfp_flags
);
8321 #ifdef CONFIG_MIGRATION
8322 static int btrfs_migratepage(struct address_space
*mapping
,
8323 struct page
*newpage
, struct page
*page
,
8324 enum migrate_mode mode
)
8328 ret
= migrate_page_move_mapping(mapping
, newpage
, page
, 0);
8329 if (ret
!= MIGRATEPAGE_SUCCESS
)
8332 if (page_has_private(page
)) {
8333 ClearPagePrivate(page
);
8335 set_page_private(newpage
, page_private(page
));
8336 set_page_private(page
, 0);
8338 SetPagePrivate(newpage
);
8341 if (PagePrivate2(page
)) {
8342 ClearPagePrivate2(page
);
8343 SetPagePrivate2(newpage
);
8346 if (mode
!= MIGRATE_SYNC_NO_COPY
)
8347 migrate_page_copy(newpage
, page
);
8349 migrate_page_states(newpage
, page
);
8350 return MIGRATEPAGE_SUCCESS
;
8354 static void btrfs_invalidatepage(struct page
*page
, unsigned int offset
,
8355 unsigned int length
)
8357 struct inode
*inode
= page
->mapping
->host
;
8358 struct extent_io_tree
*tree
;
8359 struct btrfs_ordered_extent
*ordered
;
8360 struct extent_state
*cached_state
= NULL
;
8361 u64 page_start
= page_offset(page
);
8362 u64 page_end
= page_start
+ PAGE_SIZE
- 1;
8365 int inode_evicting
= inode
->i_state
& I_FREEING
;
8368 * we have the page locked, so new writeback can't start,
8369 * and the dirty bit won't be cleared while we are here.
8371 * Wait for IO on this page so that we can safely clear
8372 * the PagePrivate2 bit and do ordered accounting
8374 wait_on_page_writeback(page
);
8376 tree
= &BTRFS_I(inode
)->io_tree
;
8378 btrfs_releasepage(page
, GFP_NOFS
);
8382 if (!inode_evicting
)
8383 lock_extent_bits(tree
, page_start
, page_end
, &cached_state
);
8386 ordered
= btrfs_lookup_ordered_range(BTRFS_I(inode
), start
,
8387 page_end
- start
+ 1);
8390 ordered
->file_offset
+ ordered
->num_bytes
- 1);
8392 * IO on this page will never be started, so we need
8393 * to account for any ordered extents now
8395 if (!inode_evicting
)
8396 clear_extent_bit(tree
, start
, end
,
8397 EXTENT_DELALLOC
| EXTENT_DELALLOC_NEW
|
8398 EXTENT_LOCKED
| EXTENT_DO_ACCOUNTING
|
8399 EXTENT_DEFRAG
, 1, 0, &cached_state
);
8401 * whoever cleared the private bit is responsible
8402 * for the finish_ordered_io
8404 if (TestClearPagePrivate2(page
)) {
8405 struct btrfs_ordered_inode_tree
*tree
;
8408 tree
= &BTRFS_I(inode
)->ordered_tree
;
8410 spin_lock_irq(&tree
->lock
);
8411 set_bit(BTRFS_ORDERED_TRUNCATED
, &ordered
->flags
);
8412 new_len
= start
- ordered
->file_offset
;
8413 if (new_len
< ordered
->truncated_len
)
8414 ordered
->truncated_len
= new_len
;
8415 spin_unlock_irq(&tree
->lock
);
8417 if (btrfs_dec_test_ordered_pending(inode
, &ordered
,
8419 end
- start
+ 1, 1))
8420 btrfs_finish_ordered_io(ordered
);
8422 btrfs_put_ordered_extent(ordered
);
8423 if (!inode_evicting
) {
8424 cached_state
= NULL
;
8425 lock_extent_bits(tree
, start
, end
,
8430 if (start
< page_end
)
8435 * Qgroup reserved space handler
8436 * Page here will be either
8437 * 1) Already written to disk
8438 * In this case, its reserved space is released from data rsv map
8439 * and will be freed by delayed_ref handler finally.
8440 * So even we call qgroup_free_data(), it won't decrease reserved
8442 * 2) Not written to disk
8443 * This means the reserved space should be freed here. However,
8444 * if a truncate invalidates the page (by clearing PageDirty)
8445 * and the page is accounted for while allocating extent
8446 * in btrfs_check_data_free_space() we let delayed_ref to
8447 * free the entire extent.
8449 if (PageDirty(page
))
8450 btrfs_qgroup_free_data(inode
, NULL
, page_start
, PAGE_SIZE
);
8451 if (!inode_evicting
) {
8452 clear_extent_bit(tree
, page_start
, page_end
, EXTENT_LOCKED
|
8453 EXTENT_DELALLOC
| EXTENT_DELALLOC_NEW
|
8454 EXTENT_DO_ACCOUNTING
| EXTENT_DEFRAG
, 1, 1,
8457 __btrfs_releasepage(page
, GFP_NOFS
);
8460 ClearPageChecked(page
);
8461 if (PagePrivate(page
)) {
8462 ClearPagePrivate(page
);
8463 set_page_private(page
, 0);
8469 * btrfs_page_mkwrite() is not allowed to change the file size as it gets
8470 * called from a page fault handler when a page is first dirtied. Hence we must
8471 * be careful to check for EOF conditions here. We set the page up correctly
8472 * for a written page which means we get ENOSPC checking when writing into
8473 * holes and correct delalloc and unwritten extent mapping on filesystems that
8474 * support these features.
8476 * We are not allowed to take the i_mutex here so we have to play games to
8477 * protect against truncate races as the page could now be beyond EOF. Because
8478 * truncate_setsize() writes the inode size before removing pages, once we have
8479 * the page lock we can determine safely if the page is beyond EOF. If it is not
8480 * beyond EOF, then the page is guaranteed safe against truncation until we
8483 vm_fault_t
btrfs_page_mkwrite(struct vm_fault
*vmf
)
8485 struct page
*page
= vmf
->page
;
8486 struct inode
*inode
= file_inode(vmf
->vma
->vm_file
);
8487 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
8488 struct extent_io_tree
*io_tree
= &BTRFS_I(inode
)->io_tree
;
8489 struct btrfs_ordered_extent
*ordered
;
8490 struct extent_state
*cached_state
= NULL
;
8491 struct extent_changeset
*data_reserved
= NULL
;
8493 unsigned long zero_start
;
8503 reserved_space
= PAGE_SIZE
;
8505 sb_start_pagefault(inode
->i_sb
);
8506 page_start
= page_offset(page
);
8507 page_end
= page_start
+ PAGE_SIZE
- 1;
8511 * Reserving delalloc space after obtaining the page lock can lead to
8512 * deadlock. For example, if a dirty page is locked by this function
8513 * and the call to btrfs_delalloc_reserve_space() ends up triggering
8514 * dirty page write out, then the btrfs_writepage() function could
8515 * end up waiting indefinitely to get a lock on the page currently
8516 * being processed by btrfs_page_mkwrite() function.
8518 ret2
= btrfs_delalloc_reserve_space(inode
, &data_reserved
, page_start
,
8521 ret2
= file_update_time(vmf
->vma
->vm_file
);
8525 ret
= vmf_error(ret2
);
8531 ret
= VM_FAULT_NOPAGE
; /* make the VM retry the fault */
8534 size
= i_size_read(inode
);
8536 if ((page
->mapping
!= inode
->i_mapping
) ||
8537 (page_start
>= size
)) {
8538 /* page got truncated out from underneath us */
8541 wait_on_page_writeback(page
);
8543 lock_extent_bits(io_tree
, page_start
, page_end
, &cached_state
);
8544 set_page_extent_mapped(page
);
8547 * we can't set the delalloc bits if there are pending ordered
8548 * extents. Drop our locks and wait for them to finish
8550 ordered
= btrfs_lookup_ordered_range(BTRFS_I(inode
), page_start
,
8553 unlock_extent_cached(io_tree
, page_start
, page_end
,
8556 btrfs_start_ordered_extent(inode
, ordered
, 1);
8557 btrfs_put_ordered_extent(ordered
);
8561 if (page
->index
== ((size
- 1) >> PAGE_SHIFT
)) {
8562 reserved_space
= round_up(size
- page_start
,
8563 fs_info
->sectorsize
);
8564 if (reserved_space
< PAGE_SIZE
) {
8565 end
= page_start
+ reserved_space
- 1;
8566 btrfs_delalloc_release_space(inode
, data_reserved
,
8567 page_start
, PAGE_SIZE
- reserved_space
,
8573 * page_mkwrite gets called when the page is firstly dirtied after it's
8574 * faulted in, but write(2) could also dirty a page and set delalloc
8575 * bits, thus in this case for space account reason, we still need to
8576 * clear any delalloc bits within this page range since we have to
8577 * reserve data&meta space before lock_page() (see above comments).
8579 clear_extent_bit(&BTRFS_I(inode
)->io_tree
, page_start
, end
,
8580 EXTENT_DELALLOC
| EXTENT_DO_ACCOUNTING
|
8581 EXTENT_DEFRAG
, 0, 0, &cached_state
);
8583 ret2
= btrfs_set_extent_delalloc(inode
, page_start
, end
, 0,
8586 unlock_extent_cached(io_tree
, page_start
, page_end
,
8588 ret
= VM_FAULT_SIGBUS
;
8592 /* page is wholly or partially inside EOF */
8593 if (page_start
+ PAGE_SIZE
> size
)
8594 zero_start
= offset_in_page(size
);
8596 zero_start
= PAGE_SIZE
;
8598 if (zero_start
!= PAGE_SIZE
) {
8600 memset(kaddr
+ zero_start
, 0, PAGE_SIZE
- zero_start
);
8601 flush_dcache_page(page
);
8604 ClearPageChecked(page
);
8605 set_page_dirty(page
);
8606 SetPageUptodate(page
);
8608 BTRFS_I(inode
)->last_trans
= fs_info
->generation
;
8609 BTRFS_I(inode
)->last_sub_trans
= BTRFS_I(inode
)->root
->log_transid
;
8610 BTRFS_I(inode
)->last_log_commit
= BTRFS_I(inode
)->root
->last_log_commit
;
8612 unlock_extent_cached(io_tree
, page_start
, page_end
, &cached_state
);
8614 btrfs_delalloc_release_extents(BTRFS_I(inode
), PAGE_SIZE
);
8615 sb_end_pagefault(inode
->i_sb
);
8616 extent_changeset_free(data_reserved
);
8617 return VM_FAULT_LOCKED
;
8622 btrfs_delalloc_release_extents(BTRFS_I(inode
), PAGE_SIZE
);
8623 btrfs_delalloc_release_space(inode
, data_reserved
, page_start
,
8624 reserved_space
, (ret
!= 0));
8626 sb_end_pagefault(inode
->i_sb
);
8627 extent_changeset_free(data_reserved
);
8631 static int btrfs_truncate(struct inode
*inode
, bool skip_writeback
)
8633 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
8634 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
8635 struct btrfs_block_rsv
*rsv
;
8637 struct btrfs_trans_handle
*trans
;
8638 u64 mask
= fs_info
->sectorsize
- 1;
8639 u64 min_size
= btrfs_calc_metadata_size(fs_info
, 1);
8641 if (!skip_writeback
) {
8642 ret
= btrfs_wait_ordered_range(inode
, inode
->i_size
& (~mask
),
8649 * Yes ladies and gentlemen, this is indeed ugly. We have a couple of
8650 * things going on here:
8652 * 1) We need to reserve space to update our inode.
8654 * 2) We need to have something to cache all the space that is going to
8655 * be free'd up by the truncate operation, but also have some slack
8656 * space reserved in case it uses space during the truncate (thank you
8657 * very much snapshotting).
8659 * And we need these to be separate. The fact is we can use a lot of
8660 * space doing the truncate, and we have no earthly idea how much space
8661 * we will use, so we need the truncate reservation to be separate so it
8662 * doesn't end up using space reserved for updating the inode. We also
8663 * need to be able to stop the transaction and start a new one, which
8664 * means we need to be able to update the inode several times, and we
8665 * have no idea of knowing how many times that will be, so we can't just
8666 * reserve 1 item for the entirety of the operation, so that has to be
8667 * done separately as well.
8669 * So that leaves us with
8671 * 1) rsv - for the truncate reservation, which we will steal from the
8672 * transaction reservation.
8673 * 2) fs_info->trans_block_rsv - this will have 1 items worth left for
8674 * updating the inode.
8676 rsv
= btrfs_alloc_block_rsv(fs_info
, BTRFS_BLOCK_RSV_TEMP
);
8679 rsv
->size
= min_size
;
8683 * 1 for the truncate slack space
8684 * 1 for updating the inode.
8686 trans
= btrfs_start_transaction(root
, 2);
8687 if (IS_ERR(trans
)) {
8688 ret
= PTR_ERR(trans
);
8692 /* Migrate the slack space for the truncate to our reserve */
8693 ret
= btrfs_block_rsv_migrate(&fs_info
->trans_block_rsv
, rsv
,
8698 * So if we truncate and then write and fsync we normally would just
8699 * write the extents that changed, which is a problem if we need to
8700 * first truncate that entire inode. So set this flag so we write out
8701 * all of the extents in the inode to the sync log so we're completely
8704 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC
, &BTRFS_I(inode
)->runtime_flags
);
8705 trans
->block_rsv
= rsv
;
8708 ret
= btrfs_truncate_inode_items(trans
, root
, inode
,
8710 BTRFS_EXTENT_DATA_KEY
);
8711 trans
->block_rsv
= &fs_info
->trans_block_rsv
;
8712 if (ret
!= -ENOSPC
&& ret
!= -EAGAIN
)
8715 ret
= btrfs_update_inode(trans
, root
, inode
);
8719 btrfs_end_transaction(trans
);
8720 btrfs_btree_balance_dirty(fs_info
);
8722 trans
= btrfs_start_transaction(root
, 2);
8723 if (IS_ERR(trans
)) {
8724 ret
= PTR_ERR(trans
);
8729 btrfs_block_rsv_release(fs_info
, rsv
, -1, NULL
);
8730 ret
= btrfs_block_rsv_migrate(&fs_info
->trans_block_rsv
,
8731 rsv
, min_size
, false);
8732 BUG_ON(ret
); /* shouldn't happen */
8733 trans
->block_rsv
= rsv
;
8737 * We can't call btrfs_truncate_block inside a trans handle as we could
8738 * deadlock with freeze, if we got NEED_TRUNCATE_BLOCK then we know
8739 * we've truncated everything except the last little bit, and can do
8740 * btrfs_truncate_block and then update the disk_i_size.
8742 if (ret
== NEED_TRUNCATE_BLOCK
) {
8743 btrfs_end_transaction(trans
);
8744 btrfs_btree_balance_dirty(fs_info
);
8746 ret
= btrfs_truncate_block(inode
, inode
->i_size
, 0, 0);
8749 trans
= btrfs_start_transaction(root
, 1);
8750 if (IS_ERR(trans
)) {
8751 ret
= PTR_ERR(trans
);
8754 btrfs_inode_safe_disk_i_size_write(inode
, 0);
8760 trans
->block_rsv
= &fs_info
->trans_block_rsv
;
8761 ret2
= btrfs_update_inode(trans
, root
, inode
);
8765 ret2
= btrfs_end_transaction(trans
);
8768 btrfs_btree_balance_dirty(fs_info
);
8771 btrfs_free_block_rsv(fs_info
, rsv
);
8777 * create a new subvolume directory/inode (helper for the ioctl).
8779 int btrfs_create_subvol_root(struct btrfs_trans_handle
*trans
,
8780 struct btrfs_root
*new_root
,
8781 struct btrfs_root
*parent_root
,
8784 struct inode
*inode
;
8788 inode
= btrfs_new_inode(trans
, new_root
, NULL
, "..", 2,
8789 new_dirid
, new_dirid
,
8790 S_IFDIR
| (~current_umask() & S_IRWXUGO
),
8793 return PTR_ERR(inode
);
8794 inode
->i_op
= &btrfs_dir_inode_operations
;
8795 inode
->i_fop
= &btrfs_dir_file_operations
;
8797 set_nlink(inode
, 1);
8798 btrfs_i_size_write(BTRFS_I(inode
), 0);
8799 unlock_new_inode(inode
);
8801 err
= btrfs_subvol_inherit_props(trans
, new_root
, parent_root
);
8803 btrfs_err(new_root
->fs_info
,
8804 "error inheriting subvolume %llu properties: %d",
8805 new_root
->root_key
.objectid
, err
);
8807 err
= btrfs_update_inode(trans
, new_root
, inode
);
8813 struct inode
*btrfs_alloc_inode(struct super_block
*sb
)
8815 struct btrfs_fs_info
*fs_info
= btrfs_sb(sb
);
8816 struct btrfs_inode
*ei
;
8817 struct inode
*inode
;
8819 ei
= kmem_cache_alloc(btrfs_inode_cachep
, GFP_KERNEL
);
8826 ei
->last_sub_trans
= 0;
8827 ei
->logged_trans
= 0;
8828 ei
->delalloc_bytes
= 0;
8829 ei
->new_delalloc_bytes
= 0;
8830 ei
->defrag_bytes
= 0;
8831 ei
->disk_i_size
= 0;
8834 ei
->index_cnt
= (u64
)-1;
8836 ei
->last_unlink_trans
= 0;
8837 ei
->last_log_commit
= 0;
8839 spin_lock_init(&ei
->lock
);
8840 ei
->outstanding_extents
= 0;
8841 if (sb
->s_magic
!= BTRFS_TEST_MAGIC
)
8842 btrfs_init_metadata_block_rsv(fs_info
, &ei
->block_rsv
,
8843 BTRFS_BLOCK_RSV_DELALLOC
);
8844 ei
->runtime_flags
= 0;
8845 ei
->prop_compress
= BTRFS_COMPRESS_NONE
;
8846 ei
->defrag_compress
= BTRFS_COMPRESS_NONE
;
8848 ei
->delayed_node
= NULL
;
8850 ei
->i_otime
.tv_sec
= 0;
8851 ei
->i_otime
.tv_nsec
= 0;
8853 inode
= &ei
->vfs_inode
;
8854 extent_map_tree_init(&ei
->extent_tree
);
8855 extent_io_tree_init(fs_info
, &ei
->io_tree
, IO_TREE_INODE_IO
, inode
);
8856 extent_io_tree_init(fs_info
, &ei
->io_failure_tree
,
8857 IO_TREE_INODE_IO_FAILURE
, inode
);
8858 extent_io_tree_init(fs_info
, &ei
->file_extent_tree
,
8859 IO_TREE_INODE_FILE_EXTENT
, inode
);
8860 ei
->io_tree
.track_uptodate
= true;
8861 ei
->io_failure_tree
.track_uptodate
= true;
8862 atomic_set(&ei
->sync_writers
, 0);
8863 mutex_init(&ei
->log_mutex
);
8864 btrfs_ordered_inode_tree_init(&ei
->ordered_tree
);
8865 INIT_LIST_HEAD(&ei
->delalloc_inodes
);
8866 INIT_LIST_HEAD(&ei
->delayed_iput
);
8867 RB_CLEAR_NODE(&ei
->rb_node
);
8868 init_rwsem(&ei
->dio_sem
);
8873 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
8874 void btrfs_test_destroy_inode(struct inode
*inode
)
8876 btrfs_drop_extent_cache(BTRFS_I(inode
), 0, (u64
)-1, 0);
8877 kmem_cache_free(btrfs_inode_cachep
, BTRFS_I(inode
));
8881 void btrfs_free_inode(struct inode
*inode
)
8883 kmem_cache_free(btrfs_inode_cachep
, BTRFS_I(inode
));
8886 void btrfs_destroy_inode(struct inode
*inode
)
8888 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
8889 struct btrfs_ordered_extent
*ordered
;
8890 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
8892 WARN_ON(!hlist_empty(&inode
->i_dentry
));
8893 WARN_ON(inode
->i_data
.nrpages
);
8894 WARN_ON(BTRFS_I(inode
)->block_rsv
.reserved
);
8895 WARN_ON(BTRFS_I(inode
)->block_rsv
.size
);
8896 WARN_ON(BTRFS_I(inode
)->outstanding_extents
);
8897 WARN_ON(BTRFS_I(inode
)->delalloc_bytes
);
8898 WARN_ON(BTRFS_I(inode
)->new_delalloc_bytes
);
8899 WARN_ON(BTRFS_I(inode
)->csum_bytes
);
8900 WARN_ON(BTRFS_I(inode
)->defrag_bytes
);
8903 * This can happen where we create an inode, but somebody else also
8904 * created the same inode and we need to destroy the one we already
8911 ordered
= btrfs_lookup_first_ordered_extent(inode
, (u64
)-1);
8916 "found ordered extent %llu %llu on inode cleanup",
8917 ordered
->file_offset
, ordered
->num_bytes
);
8918 btrfs_remove_ordered_extent(inode
, ordered
);
8919 btrfs_put_ordered_extent(ordered
);
8920 btrfs_put_ordered_extent(ordered
);
8923 btrfs_qgroup_check_reserved_leak(inode
);
8924 inode_tree_del(inode
);
8925 btrfs_drop_extent_cache(BTRFS_I(inode
), 0, (u64
)-1, 0);
8926 btrfs_inode_clear_file_extent_range(BTRFS_I(inode
), 0, (u64
)-1);
8927 btrfs_put_root(BTRFS_I(inode
)->root
);
8930 int btrfs_drop_inode(struct inode
*inode
)
8932 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
8937 /* the snap/subvol tree is on deleting */
8938 if (btrfs_root_refs(&root
->root_item
) == 0)
8941 return generic_drop_inode(inode
);
8944 static void init_once(void *foo
)
8946 struct btrfs_inode
*ei
= (struct btrfs_inode
*) foo
;
8948 inode_init_once(&ei
->vfs_inode
);
8951 void __cold
btrfs_destroy_cachep(void)
8954 * Make sure all delayed rcu free inodes are flushed before we
8958 kmem_cache_destroy(btrfs_inode_cachep
);
8959 kmem_cache_destroy(btrfs_trans_handle_cachep
);
8960 kmem_cache_destroy(btrfs_path_cachep
);
8961 kmem_cache_destroy(btrfs_free_space_cachep
);
8962 kmem_cache_destroy(btrfs_free_space_bitmap_cachep
);
8965 int __init
btrfs_init_cachep(void)
8967 btrfs_inode_cachep
= kmem_cache_create("btrfs_inode",
8968 sizeof(struct btrfs_inode
), 0,
8969 SLAB_RECLAIM_ACCOUNT
| SLAB_MEM_SPREAD
| SLAB_ACCOUNT
,
8971 if (!btrfs_inode_cachep
)
8974 btrfs_trans_handle_cachep
= kmem_cache_create("btrfs_trans_handle",
8975 sizeof(struct btrfs_trans_handle
), 0,
8976 SLAB_TEMPORARY
| SLAB_MEM_SPREAD
, NULL
);
8977 if (!btrfs_trans_handle_cachep
)
8980 btrfs_path_cachep
= kmem_cache_create("btrfs_path",
8981 sizeof(struct btrfs_path
), 0,
8982 SLAB_MEM_SPREAD
, NULL
);
8983 if (!btrfs_path_cachep
)
8986 btrfs_free_space_cachep
= kmem_cache_create("btrfs_free_space",
8987 sizeof(struct btrfs_free_space
), 0,
8988 SLAB_MEM_SPREAD
, NULL
);
8989 if (!btrfs_free_space_cachep
)
8992 btrfs_free_space_bitmap_cachep
= kmem_cache_create("btrfs_free_space_bitmap",
8993 PAGE_SIZE
, PAGE_SIZE
,
8994 SLAB_RED_ZONE
, NULL
);
8995 if (!btrfs_free_space_bitmap_cachep
)
9000 btrfs_destroy_cachep();
9004 static int btrfs_getattr(const struct path
*path
, struct kstat
*stat
,
9005 u32 request_mask
, unsigned int flags
)
9008 struct inode
*inode
= d_inode(path
->dentry
);
9009 u32 blocksize
= inode
->i_sb
->s_blocksize
;
9010 u32 bi_flags
= BTRFS_I(inode
)->flags
;
9012 stat
->result_mask
|= STATX_BTIME
;
9013 stat
->btime
.tv_sec
= BTRFS_I(inode
)->i_otime
.tv_sec
;
9014 stat
->btime
.tv_nsec
= BTRFS_I(inode
)->i_otime
.tv_nsec
;
9015 if (bi_flags
& BTRFS_INODE_APPEND
)
9016 stat
->attributes
|= STATX_ATTR_APPEND
;
9017 if (bi_flags
& BTRFS_INODE_COMPRESS
)
9018 stat
->attributes
|= STATX_ATTR_COMPRESSED
;
9019 if (bi_flags
& BTRFS_INODE_IMMUTABLE
)
9020 stat
->attributes
|= STATX_ATTR_IMMUTABLE
;
9021 if (bi_flags
& BTRFS_INODE_NODUMP
)
9022 stat
->attributes
|= STATX_ATTR_NODUMP
;
9024 stat
->attributes_mask
|= (STATX_ATTR_APPEND
|
9025 STATX_ATTR_COMPRESSED
|
9026 STATX_ATTR_IMMUTABLE
|
9029 generic_fillattr(inode
, stat
);
9030 stat
->dev
= BTRFS_I(inode
)->root
->anon_dev
;
9032 spin_lock(&BTRFS_I(inode
)->lock
);
9033 delalloc_bytes
= BTRFS_I(inode
)->new_delalloc_bytes
;
9034 spin_unlock(&BTRFS_I(inode
)->lock
);
9035 stat
->blocks
= (ALIGN(inode_get_bytes(inode
), blocksize
) +
9036 ALIGN(delalloc_bytes
, blocksize
)) >> 9;
9040 static int btrfs_rename_exchange(struct inode
*old_dir
,
9041 struct dentry
*old_dentry
,
9042 struct inode
*new_dir
,
9043 struct dentry
*new_dentry
)
9045 struct btrfs_fs_info
*fs_info
= btrfs_sb(old_dir
->i_sb
);
9046 struct btrfs_trans_handle
*trans
;
9047 struct btrfs_root
*root
= BTRFS_I(old_dir
)->root
;
9048 struct btrfs_root
*dest
= BTRFS_I(new_dir
)->root
;
9049 struct inode
*new_inode
= new_dentry
->d_inode
;
9050 struct inode
*old_inode
= old_dentry
->d_inode
;
9051 struct timespec64 ctime
= current_time(old_inode
);
9052 struct dentry
*parent
;
9053 u64 old_ino
= btrfs_ino(BTRFS_I(old_inode
));
9054 u64 new_ino
= btrfs_ino(BTRFS_I(new_inode
));
9058 bool root_log_pinned
= false;
9059 bool dest_log_pinned
= false;
9060 struct btrfs_log_ctx ctx_root
;
9061 struct btrfs_log_ctx ctx_dest
;
9062 bool sync_log_root
= false;
9063 bool sync_log_dest
= false;
9064 bool commit_transaction
= false;
9066 /* we only allow rename subvolume link between subvolumes */
9067 if (old_ino
!= BTRFS_FIRST_FREE_OBJECTID
&& root
!= dest
)
9070 btrfs_init_log_ctx(&ctx_root
, old_inode
);
9071 btrfs_init_log_ctx(&ctx_dest
, new_inode
);
9073 /* close the race window with snapshot create/destroy ioctl */
9074 if (old_ino
== BTRFS_FIRST_FREE_OBJECTID
||
9075 new_ino
== BTRFS_FIRST_FREE_OBJECTID
)
9076 down_read(&fs_info
->subvol_sem
);
9079 * We want to reserve the absolute worst case amount of items. So if
9080 * both inodes are subvols and we need to unlink them then that would
9081 * require 4 item modifications, but if they are both normal inodes it
9082 * would require 5 item modifications, so we'll assume their normal
9083 * inodes. So 5 * 2 is 10, plus 2 for the new links, so 12 total items
9084 * should cover the worst case number of items we'll modify.
9086 trans
= btrfs_start_transaction(root
, 12);
9087 if (IS_ERR(trans
)) {
9088 ret
= PTR_ERR(trans
);
9093 btrfs_record_root_in_trans(trans
, dest
);
9096 * We need to find a free sequence number both in the source and
9097 * in the destination directory for the exchange.
9099 ret
= btrfs_set_inode_index(BTRFS_I(new_dir
), &old_idx
);
9102 ret
= btrfs_set_inode_index(BTRFS_I(old_dir
), &new_idx
);
9106 BTRFS_I(old_inode
)->dir_index
= 0ULL;
9107 BTRFS_I(new_inode
)->dir_index
= 0ULL;
9109 /* Reference for the source. */
9110 if (old_ino
== BTRFS_FIRST_FREE_OBJECTID
) {
9111 /* force full log commit if subvolume involved. */
9112 btrfs_set_log_full_commit(trans
);
9114 btrfs_pin_log_trans(root
);
9115 root_log_pinned
= true;
9116 ret
= btrfs_insert_inode_ref(trans
, dest
,
9117 new_dentry
->d_name
.name
,
9118 new_dentry
->d_name
.len
,
9120 btrfs_ino(BTRFS_I(new_dir
)),
9126 /* And now for the dest. */
9127 if (new_ino
== BTRFS_FIRST_FREE_OBJECTID
) {
9128 /* force full log commit if subvolume involved. */
9129 btrfs_set_log_full_commit(trans
);
9131 btrfs_pin_log_trans(dest
);
9132 dest_log_pinned
= true;
9133 ret
= btrfs_insert_inode_ref(trans
, root
,
9134 old_dentry
->d_name
.name
,
9135 old_dentry
->d_name
.len
,
9137 btrfs_ino(BTRFS_I(old_dir
)),
9143 /* Update inode version and ctime/mtime. */
9144 inode_inc_iversion(old_dir
);
9145 inode_inc_iversion(new_dir
);
9146 inode_inc_iversion(old_inode
);
9147 inode_inc_iversion(new_inode
);
9148 old_dir
->i_ctime
= old_dir
->i_mtime
= ctime
;
9149 new_dir
->i_ctime
= new_dir
->i_mtime
= ctime
;
9150 old_inode
->i_ctime
= ctime
;
9151 new_inode
->i_ctime
= ctime
;
9153 if (old_dentry
->d_parent
!= new_dentry
->d_parent
) {
9154 btrfs_record_unlink_dir(trans
, BTRFS_I(old_dir
),
9155 BTRFS_I(old_inode
), 1);
9156 btrfs_record_unlink_dir(trans
, BTRFS_I(new_dir
),
9157 BTRFS_I(new_inode
), 1);
9160 /* src is a subvolume */
9161 if (old_ino
== BTRFS_FIRST_FREE_OBJECTID
) {
9162 ret
= btrfs_unlink_subvol(trans
, old_dir
, old_dentry
);
9163 } else { /* src is an inode */
9164 ret
= __btrfs_unlink_inode(trans
, root
, BTRFS_I(old_dir
),
9165 BTRFS_I(old_dentry
->d_inode
),
9166 old_dentry
->d_name
.name
,
9167 old_dentry
->d_name
.len
);
9169 ret
= btrfs_update_inode(trans
, root
, old_inode
);
9172 btrfs_abort_transaction(trans
, ret
);
9176 /* dest is a subvolume */
9177 if (new_ino
== BTRFS_FIRST_FREE_OBJECTID
) {
9178 ret
= btrfs_unlink_subvol(trans
, new_dir
, new_dentry
);
9179 } else { /* dest is an inode */
9180 ret
= __btrfs_unlink_inode(trans
, dest
, BTRFS_I(new_dir
),
9181 BTRFS_I(new_dentry
->d_inode
),
9182 new_dentry
->d_name
.name
,
9183 new_dentry
->d_name
.len
);
9185 ret
= btrfs_update_inode(trans
, dest
, new_inode
);
9188 btrfs_abort_transaction(trans
, ret
);
9192 ret
= btrfs_add_link(trans
, BTRFS_I(new_dir
), BTRFS_I(old_inode
),
9193 new_dentry
->d_name
.name
,
9194 new_dentry
->d_name
.len
, 0, old_idx
);
9196 btrfs_abort_transaction(trans
, ret
);
9200 ret
= btrfs_add_link(trans
, BTRFS_I(old_dir
), BTRFS_I(new_inode
),
9201 old_dentry
->d_name
.name
,
9202 old_dentry
->d_name
.len
, 0, new_idx
);
9204 btrfs_abort_transaction(trans
, ret
);
9208 if (old_inode
->i_nlink
== 1)
9209 BTRFS_I(old_inode
)->dir_index
= old_idx
;
9210 if (new_inode
->i_nlink
== 1)
9211 BTRFS_I(new_inode
)->dir_index
= new_idx
;
9213 if (root_log_pinned
) {
9214 parent
= new_dentry
->d_parent
;
9215 ret
= btrfs_log_new_name(trans
, BTRFS_I(old_inode
),
9216 BTRFS_I(old_dir
), parent
,
9218 if (ret
== BTRFS_NEED_LOG_SYNC
)
9219 sync_log_root
= true;
9220 else if (ret
== BTRFS_NEED_TRANS_COMMIT
)
9221 commit_transaction
= true;
9223 btrfs_end_log_trans(root
);
9224 root_log_pinned
= false;
9226 if (dest_log_pinned
) {
9227 if (!commit_transaction
) {
9228 parent
= old_dentry
->d_parent
;
9229 ret
= btrfs_log_new_name(trans
, BTRFS_I(new_inode
),
9230 BTRFS_I(new_dir
), parent
,
9232 if (ret
== BTRFS_NEED_LOG_SYNC
)
9233 sync_log_dest
= true;
9234 else if (ret
== BTRFS_NEED_TRANS_COMMIT
)
9235 commit_transaction
= true;
9238 btrfs_end_log_trans(dest
);
9239 dest_log_pinned
= false;
9243 * If we have pinned a log and an error happened, we unpin tasks
9244 * trying to sync the log and force them to fallback to a transaction
9245 * commit if the log currently contains any of the inodes involved in
9246 * this rename operation (to ensure we do not persist a log with an
9247 * inconsistent state for any of these inodes or leading to any
9248 * inconsistencies when replayed). If the transaction was aborted, the
9249 * abortion reason is propagated to userspace when attempting to commit
9250 * the transaction. If the log does not contain any of these inodes, we
9251 * allow the tasks to sync it.
9253 if (ret
&& (root_log_pinned
|| dest_log_pinned
)) {
9254 if (btrfs_inode_in_log(BTRFS_I(old_dir
), fs_info
->generation
) ||
9255 btrfs_inode_in_log(BTRFS_I(new_dir
), fs_info
->generation
) ||
9256 btrfs_inode_in_log(BTRFS_I(old_inode
), fs_info
->generation
) ||
9258 btrfs_inode_in_log(BTRFS_I(new_inode
), fs_info
->generation
)))
9259 btrfs_set_log_full_commit(trans
);
9261 if (root_log_pinned
) {
9262 btrfs_end_log_trans(root
);
9263 root_log_pinned
= false;
9265 if (dest_log_pinned
) {
9266 btrfs_end_log_trans(dest
);
9267 dest_log_pinned
= false;
9270 if (!ret
&& sync_log_root
&& !commit_transaction
) {
9271 ret
= btrfs_sync_log(trans
, BTRFS_I(old_inode
)->root
,
9274 commit_transaction
= true;
9276 if (!ret
&& sync_log_dest
&& !commit_transaction
) {
9277 ret
= btrfs_sync_log(trans
, BTRFS_I(new_inode
)->root
,
9280 commit_transaction
= true;
9282 if (commit_transaction
) {
9284 * We may have set commit_transaction when logging the new name
9285 * in the destination root, in which case we left the source
9286 * root context in the list of log contextes. So make sure we
9287 * remove it to avoid invalid memory accesses, since the context
9288 * was allocated in our stack frame.
9290 if (sync_log_root
) {
9291 mutex_lock(&root
->log_mutex
);
9292 list_del_init(&ctx_root
.list
);
9293 mutex_unlock(&root
->log_mutex
);
9295 ret
= btrfs_commit_transaction(trans
);
9299 ret2
= btrfs_end_transaction(trans
);
9300 ret
= ret
? ret
: ret2
;
9303 if (new_ino
== BTRFS_FIRST_FREE_OBJECTID
||
9304 old_ino
== BTRFS_FIRST_FREE_OBJECTID
)
9305 up_read(&fs_info
->subvol_sem
);
9307 ASSERT(list_empty(&ctx_root
.list
));
9308 ASSERT(list_empty(&ctx_dest
.list
));
9313 static int btrfs_whiteout_for_rename(struct btrfs_trans_handle
*trans
,
9314 struct btrfs_root
*root
,
9316 struct dentry
*dentry
)
9319 struct inode
*inode
;
9323 ret
= btrfs_find_free_ino(root
, &objectid
);
9327 inode
= btrfs_new_inode(trans
, root
, dir
,
9328 dentry
->d_name
.name
,
9330 btrfs_ino(BTRFS_I(dir
)),
9332 S_IFCHR
| WHITEOUT_MODE
,
9335 if (IS_ERR(inode
)) {
9336 ret
= PTR_ERR(inode
);
9340 inode
->i_op
= &btrfs_special_inode_operations
;
9341 init_special_inode(inode
, inode
->i_mode
,
9344 ret
= btrfs_init_inode_security(trans
, inode
, dir
,
9349 ret
= btrfs_add_nondir(trans
, BTRFS_I(dir
), dentry
,
9350 BTRFS_I(inode
), 0, index
);
9354 ret
= btrfs_update_inode(trans
, root
, inode
);
9356 unlock_new_inode(inode
);
9358 inode_dec_link_count(inode
);
9364 static int btrfs_rename(struct inode
*old_dir
, struct dentry
*old_dentry
,
9365 struct inode
*new_dir
, struct dentry
*new_dentry
,
9368 struct btrfs_fs_info
*fs_info
= btrfs_sb(old_dir
->i_sb
);
9369 struct btrfs_trans_handle
*trans
;
9370 unsigned int trans_num_items
;
9371 struct btrfs_root
*root
= BTRFS_I(old_dir
)->root
;
9372 struct btrfs_root
*dest
= BTRFS_I(new_dir
)->root
;
9373 struct inode
*new_inode
= d_inode(new_dentry
);
9374 struct inode
*old_inode
= d_inode(old_dentry
);
9377 u64 old_ino
= btrfs_ino(BTRFS_I(old_inode
));
9378 bool log_pinned
= false;
9379 struct btrfs_log_ctx ctx
;
9380 bool sync_log
= false;
9381 bool commit_transaction
= false;
9383 if (btrfs_ino(BTRFS_I(new_dir
)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID
)
9386 /* we only allow rename subvolume link between subvolumes */
9387 if (old_ino
!= BTRFS_FIRST_FREE_OBJECTID
&& root
!= dest
)
9390 if (old_ino
== BTRFS_EMPTY_SUBVOL_DIR_OBJECTID
||
9391 (new_inode
&& btrfs_ino(BTRFS_I(new_inode
)) == BTRFS_FIRST_FREE_OBJECTID
))
9394 if (S_ISDIR(old_inode
->i_mode
) && new_inode
&&
9395 new_inode
->i_size
> BTRFS_EMPTY_DIR_SIZE
)
9399 /* check for collisions, even if the name isn't there */
9400 ret
= btrfs_check_dir_item_collision(dest
, new_dir
->i_ino
,
9401 new_dentry
->d_name
.name
,
9402 new_dentry
->d_name
.len
);
9405 if (ret
== -EEXIST
) {
9407 * eexist without a new_inode */
9408 if (WARN_ON(!new_inode
)) {
9412 /* maybe -EOVERFLOW */
9419 * we're using rename to replace one file with another. Start IO on it
9420 * now so we don't add too much work to the end of the transaction
9422 if (new_inode
&& S_ISREG(old_inode
->i_mode
) && new_inode
->i_size
)
9423 filemap_flush(old_inode
->i_mapping
);
9425 /* close the racy window with snapshot create/destroy ioctl */
9426 if (old_ino
== BTRFS_FIRST_FREE_OBJECTID
)
9427 down_read(&fs_info
->subvol_sem
);
9429 * We want to reserve the absolute worst case amount of items. So if
9430 * both inodes are subvols and we need to unlink them then that would
9431 * require 4 item modifications, but if they are both normal inodes it
9432 * would require 5 item modifications, so we'll assume they are normal
9433 * inodes. So 5 * 2 is 10, plus 1 for the new link, so 11 total items
9434 * should cover the worst case number of items we'll modify.
9435 * If our rename has the whiteout flag, we need more 5 units for the
9436 * new inode (1 inode item, 1 inode ref, 2 dir items and 1 xattr item
9437 * when selinux is enabled).
9439 trans_num_items
= 11;
9440 if (flags
& RENAME_WHITEOUT
)
9441 trans_num_items
+= 5;
9442 trans
= btrfs_start_transaction(root
, trans_num_items
);
9443 if (IS_ERR(trans
)) {
9444 ret
= PTR_ERR(trans
);
9449 btrfs_record_root_in_trans(trans
, dest
);
9451 ret
= btrfs_set_inode_index(BTRFS_I(new_dir
), &index
);
9455 BTRFS_I(old_inode
)->dir_index
= 0ULL;
9456 if (unlikely(old_ino
== BTRFS_FIRST_FREE_OBJECTID
)) {
9457 /* force full log commit if subvolume involved. */
9458 btrfs_set_log_full_commit(trans
);
9460 btrfs_pin_log_trans(root
);
9462 ret
= btrfs_insert_inode_ref(trans
, dest
,
9463 new_dentry
->d_name
.name
,
9464 new_dentry
->d_name
.len
,
9466 btrfs_ino(BTRFS_I(new_dir
)), index
);
9471 inode_inc_iversion(old_dir
);
9472 inode_inc_iversion(new_dir
);
9473 inode_inc_iversion(old_inode
);
9474 old_dir
->i_ctime
= old_dir
->i_mtime
=
9475 new_dir
->i_ctime
= new_dir
->i_mtime
=
9476 old_inode
->i_ctime
= current_time(old_dir
);
9478 if (old_dentry
->d_parent
!= new_dentry
->d_parent
)
9479 btrfs_record_unlink_dir(trans
, BTRFS_I(old_dir
),
9480 BTRFS_I(old_inode
), 1);
9482 if (unlikely(old_ino
== BTRFS_FIRST_FREE_OBJECTID
)) {
9483 ret
= btrfs_unlink_subvol(trans
, old_dir
, old_dentry
);
9485 ret
= __btrfs_unlink_inode(trans
, root
, BTRFS_I(old_dir
),
9486 BTRFS_I(d_inode(old_dentry
)),
9487 old_dentry
->d_name
.name
,
9488 old_dentry
->d_name
.len
);
9490 ret
= btrfs_update_inode(trans
, root
, old_inode
);
9493 btrfs_abort_transaction(trans
, ret
);
9498 inode_inc_iversion(new_inode
);
9499 new_inode
->i_ctime
= current_time(new_inode
);
9500 if (unlikely(btrfs_ino(BTRFS_I(new_inode
)) ==
9501 BTRFS_EMPTY_SUBVOL_DIR_OBJECTID
)) {
9502 ret
= btrfs_unlink_subvol(trans
, new_dir
, new_dentry
);
9503 BUG_ON(new_inode
->i_nlink
== 0);
9505 ret
= btrfs_unlink_inode(trans
, dest
, BTRFS_I(new_dir
),
9506 BTRFS_I(d_inode(new_dentry
)),
9507 new_dentry
->d_name
.name
,
9508 new_dentry
->d_name
.len
);
9510 if (!ret
&& new_inode
->i_nlink
== 0)
9511 ret
= btrfs_orphan_add(trans
,
9512 BTRFS_I(d_inode(new_dentry
)));
9514 btrfs_abort_transaction(trans
, ret
);
9519 ret
= btrfs_add_link(trans
, BTRFS_I(new_dir
), BTRFS_I(old_inode
),
9520 new_dentry
->d_name
.name
,
9521 new_dentry
->d_name
.len
, 0, index
);
9523 btrfs_abort_transaction(trans
, ret
);
9527 if (old_inode
->i_nlink
== 1)
9528 BTRFS_I(old_inode
)->dir_index
= index
;
9531 struct dentry
*parent
= new_dentry
->d_parent
;
9533 btrfs_init_log_ctx(&ctx
, old_inode
);
9534 ret
= btrfs_log_new_name(trans
, BTRFS_I(old_inode
),
9535 BTRFS_I(old_dir
), parent
,
9537 if (ret
== BTRFS_NEED_LOG_SYNC
)
9539 else if (ret
== BTRFS_NEED_TRANS_COMMIT
)
9540 commit_transaction
= true;
9542 btrfs_end_log_trans(root
);
9546 if (flags
& RENAME_WHITEOUT
) {
9547 ret
= btrfs_whiteout_for_rename(trans
, root
, old_dir
,
9551 btrfs_abort_transaction(trans
, ret
);
9557 * If we have pinned the log and an error happened, we unpin tasks
9558 * trying to sync the log and force them to fallback to a transaction
9559 * commit if the log currently contains any of the inodes involved in
9560 * this rename operation (to ensure we do not persist a log with an
9561 * inconsistent state for any of these inodes or leading to any
9562 * inconsistencies when replayed). If the transaction was aborted, the
9563 * abortion reason is propagated to userspace when attempting to commit
9564 * the transaction. If the log does not contain any of these inodes, we
9565 * allow the tasks to sync it.
9567 if (ret
&& log_pinned
) {
9568 if (btrfs_inode_in_log(BTRFS_I(old_dir
), fs_info
->generation
) ||
9569 btrfs_inode_in_log(BTRFS_I(new_dir
), fs_info
->generation
) ||
9570 btrfs_inode_in_log(BTRFS_I(old_inode
), fs_info
->generation
) ||
9572 btrfs_inode_in_log(BTRFS_I(new_inode
), fs_info
->generation
)))
9573 btrfs_set_log_full_commit(trans
);
9575 btrfs_end_log_trans(root
);
9578 if (!ret
&& sync_log
) {
9579 ret
= btrfs_sync_log(trans
, BTRFS_I(old_inode
)->root
, &ctx
);
9581 commit_transaction
= true;
9582 } else if (sync_log
) {
9583 mutex_lock(&root
->log_mutex
);
9584 list_del(&ctx
.list
);
9585 mutex_unlock(&root
->log_mutex
);
9587 if (commit_transaction
) {
9588 ret
= btrfs_commit_transaction(trans
);
9592 ret2
= btrfs_end_transaction(trans
);
9593 ret
= ret
? ret
: ret2
;
9596 if (old_ino
== BTRFS_FIRST_FREE_OBJECTID
)
9597 up_read(&fs_info
->subvol_sem
);
9602 static int btrfs_rename2(struct inode
*old_dir
, struct dentry
*old_dentry
,
9603 struct inode
*new_dir
, struct dentry
*new_dentry
,
9606 if (flags
& ~(RENAME_NOREPLACE
| RENAME_EXCHANGE
| RENAME_WHITEOUT
))
9609 if (flags
& RENAME_EXCHANGE
)
9610 return btrfs_rename_exchange(old_dir
, old_dentry
, new_dir
,
9613 return btrfs_rename(old_dir
, old_dentry
, new_dir
, new_dentry
, flags
);
9616 struct btrfs_delalloc_work
{
9617 struct inode
*inode
;
9618 struct completion completion
;
9619 struct list_head list
;
9620 struct btrfs_work work
;
9623 static void btrfs_run_delalloc_work(struct btrfs_work
*work
)
9625 struct btrfs_delalloc_work
*delalloc_work
;
9626 struct inode
*inode
;
9628 delalloc_work
= container_of(work
, struct btrfs_delalloc_work
,
9630 inode
= delalloc_work
->inode
;
9631 filemap_flush(inode
->i_mapping
);
9632 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT
,
9633 &BTRFS_I(inode
)->runtime_flags
))
9634 filemap_flush(inode
->i_mapping
);
9637 complete(&delalloc_work
->completion
);
9640 static struct btrfs_delalloc_work
*btrfs_alloc_delalloc_work(struct inode
*inode
)
9642 struct btrfs_delalloc_work
*work
;
9644 work
= kmalloc(sizeof(*work
), GFP_NOFS
);
9648 init_completion(&work
->completion
);
9649 INIT_LIST_HEAD(&work
->list
);
9650 work
->inode
= inode
;
9651 btrfs_init_work(&work
->work
, btrfs_run_delalloc_work
, NULL
, NULL
);
9657 * some fairly slow code that needs optimization. This walks the list
9658 * of all the inodes with pending delalloc and forces them to disk.
9660 static int start_delalloc_inodes(struct btrfs_root
*root
, int nr
, bool snapshot
)
9662 struct btrfs_inode
*binode
;
9663 struct inode
*inode
;
9664 struct btrfs_delalloc_work
*work
, *next
;
9665 struct list_head works
;
9666 struct list_head splice
;
9669 INIT_LIST_HEAD(&works
);
9670 INIT_LIST_HEAD(&splice
);
9672 mutex_lock(&root
->delalloc_mutex
);
9673 spin_lock(&root
->delalloc_lock
);
9674 list_splice_init(&root
->delalloc_inodes
, &splice
);
9675 while (!list_empty(&splice
)) {
9676 binode
= list_entry(splice
.next
, struct btrfs_inode
,
9679 list_move_tail(&binode
->delalloc_inodes
,
9680 &root
->delalloc_inodes
);
9681 inode
= igrab(&binode
->vfs_inode
);
9683 cond_resched_lock(&root
->delalloc_lock
);
9686 spin_unlock(&root
->delalloc_lock
);
9689 set_bit(BTRFS_INODE_SNAPSHOT_FLUSH
,
9690 &binode
->runtime_flags
);
9691 work
= btrfs_alloc_delalloc_work(inode
);
9697 list_add_tail(&work
->list
, &works
);
9698 btrfs_queue_work(root
->fs_info
->flush_workers
,
9701 if (nr
!= -1 && ret
>= nr
)
9704 spin_lock(&root
->delalloc_lock
);
9706 spin_unlock(&root
->delalloc_lock
);
9709 list_for_each_entry_safe(work
, next
, &works
, list
) {
9710 list_del_init(&work
->list
);
9711 wait_for_completion(&work
->completion
);
9715 if (!list_empty(&splice
)) {
9716 spin_lock(&root
->delalloc_lock
);
9717 list_splice_tail(&splice
, &root
->delalloc_inodes
);
9718 spin_unlock(&root
->delalloc_lock
);
9720 mutex_unlock(&root
->delalloc_mutex
);
9724 int btrfs_start_delalloc_snapshot(struct btrfs_root
*root
)
9726 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
9729 if (test_bit(BTRFS_FS_STATE_ERROR
, &fs_info
->fs_state
))
9732 ret
= start_delalloc_inodes(root
, -1, true);
9738 int btrfs_start_delalloc_roots(struct btrfs_fs_info
*fs_info
, int nr
)
9740 struct btrfs_root
*root
;
9741 struct list_head splice
;
9744 if (test_bit(BTRFS_FS_STATE_ERROR
, &fs_info
->fs_state
))
9747 INIT_LIST_HEAD(&splice
);
9749 mutex_lock(&fs_info
->delalloc_root_mutex
);
9750 spin_lock(&fs_info
->delalloc_root_lock
);
9751 list_splice_init(&fs_info
->delalloc_roots
, &splice
);
9752 while (!list_empty(&splice
) && nr
) {
9753 root
= list_first_entry(&splice
, struct btrfs_root
,
9755 root
= btrfs_grab_root(root
);
9757 list_move_tail(&root
->delalloc_root
,
9758 &fs_info
->delalloc_roots
);
9759 spin_unlock(&fs_info
->delalloc_root_lock
);
9761 ret
= start_delalloc_inodes(root
, nr
, false);
9762 btrfs_put_root(root
);
9770 spin_lock(&fs_info
->delalloc_root_lock
);
9772 spin_unlock(&fs_info
->delalloc_root_lock
);
9776 if (!list_empty(&splice
)) {
9777 spin_lock(&fs_info
->delalloc_root_lock
);
9778 list_splice_tail(&splice
, &fs_info
->delalloc_roots
);
9779 spin_unlock(&fs_info
->delalloc_root_lock
);
9781 mutex_unlock(&fs_info
->delalloc_root_mutex
);
9785 static int btrfs_symlink(struct inode
*dir
, struct dentry
*dentry
,
9786 const char *symname
)
9788 struct btrfs_fs_info
*fs_info
= btrfs_sb(dir
->i_sb
);
9789 struct btrfs_trans_handle
*trans
;
9790 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
9791 struct btrfs_path
*path
;
9792 struct btrfs_key key
;
9793 struct inode
*inode
= NULL
;
9800 struct btrfs_file_extent_item
*ei
;
9801 struct extent_buffer
*leaf
;
9803 name_len
= strlen(symname
);
9804 if (name_len
> BTRFS_MAX_INLINE_DATA_SIZE(fs_info
))
9805 return -ENAMETOOLONG
;
9808 * 2 items for inode item and ref
9809 * 2 items for dir items
9810 * 1 item for updating parent inode item
9811 * 1 item for the inline extent item
9812 * 1 item for xattr if selinux is on
9814 trans
= btrfs_start_transaction(root
, 7);
9816 return PTR_ERR(trans
);
9818 err
= btrfs_find_free_ino(root
, &objectid
);
9822 inode
= btrfs_new_inode(trans
, root
, dir
, dentry
->d_name
.name
,
9823 dentry
->d_name
.len
, btrfs_ino(BTRFS_I(dir
)),
9824 objectid
, S_IFLNK
|S_IRWXUGO
, &index
);
9825 if (IS_ERR(inode
)) {
9826 err
= PTR_ERR(inode
);
9832 * If the active LSM wants to access the inode during
9833 * d_instantiate it needs these. Smack checks to see
9834 * if the filesystem supports xattrs by looking at the
9837 inode
->i_fop
= &btrfs_file_operations
;
9838 inode
->i_op
= &btrfs_file_inode_operations
;
9839 inode
->i_mapping
->a_ops
= &btrfs_aops
;
9840 BTRFS_I(inode
)->io_tree
.ops
= &btrfs_extent_io_ops
;
9842 err
= btrfs_init_inode_security(trans
, inode
, dir
, &dentry
->d_name
);
9846 path
= btrfs_alloc_path();
9851 key
.objectid
= btrfs_ino(BTRFS_I(inode
));
9853 key
.type
= BTRFS_EXTENT_DATA_KEY
;
9854 datasize
= btrfs_file_extent_calc_inline_size(name_len
);
9855 err
= btrfs_insert_empty_item(trans
, root
, path
, &key
,
9858 btrfs_free_path(path
);
9861 leaf
= path
->nodes
[0];
9862 ei
= btrfs_item_ptr(leaf
, path
->slots
[0],
9863 struct btrfs_file_extent_item
);
9864 btrfs_set_file_extent_generation(leaf
, ei
, trans
->transid
);
9865 btrfs_set_file_extent_type(leaf
, ei
,
9866 BTRFS_FILE_EXTENT_INLINE
);
9867 btrfs_set_file_extent_encryption(leaf
, ei
, 0);
9868 btrfs_set_file_extent_compression(leaf
, ei
, 0);
9869 btrfs_set_file_extent_other_encoding(leaf
, ei
, 0);
9870 btrfs_set_file_extent_ram_bytes(leaf
, ei
, name_len
);
9872 ptr
= btrfs_file_extent_inline_start(ei
);
9873 write_extent_buffer(leaf
, symname
, ptr
, name_len
);
9874 btrfs_mark_buffer_dirty(leaf
);
9875 btrfs_free_path(path
);
9877 inode
->i_op
= &btrfs_symlink_inode_operations
;
9878 inode_nohighmem(inode
);
9879 inode_set_bytes(inode
, name_len
);
9880 btrfs_i_size_write(BTRFS_I(inode
), name_len
);
9881 err
= btrfs_update_inode(trans
, root
, inode
);
9883 * Last step, add directory indexes for our symlink inode. This is the
9884 * last step to avoid extra cleanup of these indexes if an error happens
9888 err
= btrfs_add_nondir(trans
, BTRFS_I(dir
), dentry
,
9889 BTRFS_I(inode
), 0, index
);
9893 d_instantiate_new(dentry
, inode
);
9896 btrfs_end_transaction(trans
);
9898 inode_dec_link_count(inode
);
9899 discard_new_inode(inode
);
9901 btrfs_btree_balance_dirty(fs_info
);
9905 static int __btrfs_prealloc_file_range(struct inode
*inode
, int mode
,
9906 u64 start
, u64 num_bytes
, u64 min_size
,
9907 loff_t actual_len
, u64
*alloc_hint
,
9908 struct btrfs_trans_handle
*trans
)
9910 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
9911 struct extent_map_tree
*em_tree
= &BTRFS_I(inode
)->extent_tree
;
9912 struct extent_map
*em
;
9913 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
9914 struct btrfs_key ins
;
9915 u64 cur_offset
= start
;
9916 u64 clear_offset
= start
;
9919 u64 last_alloc
= (u64
)-1;
9921 bool own_trans
= true;
9922 u64 end
= start
+ num_bytes
- 1;
9926 while (num_bytes
> 0) {
9928 trans
= btrfs_start_transaction(root
, 3);
9929 if (IS_ERR(trans
)) {
9930 ret
= PTR_ERR(trans
);
9935 cur_bytes
= min_t(u64
, num_bytes
, SZ_256M
);
9936 cur_bytes
= max(cur_bytes
, min_size
);
9938 * If we are severely fragmented we could end up with really
9939 * small allocations, so if the allocator is returning small
9940 * chunks lets make its job easier by only searching for those
9943 cur_bytes
= min(cur_bytes
, last_alloc
);
9944 ret
= btrfs_reserve_extent(root
, cur_bytes
, cur_bytes
,
9945 min_size
, 0, *alloc_hint
, &ins
, 1, 0);
9948 btrfs_end_transaction(trans
);
9953 * We've reserved this space, and thus converted it from
9954 * ->bytes_may_use to ->bytes_reserved. Any error that happens
9955 * from here on out we will only need to clear our reservation
9956 * for the remaining unreserved area, so advance our
9957 * clear_offset by our extent size.
9959 clear_offset
+= ins
.offset
;
9960 btrfs_dec_block_group_reservations(fs_info
, ins
.objectid
);
9962 last_alloc
= ins
.offset
;
9963 ret
= insert_reserved_file_extent(trans
, inode
,
9964 cur_offset
, ins
.objectid
,
9965 ins
.offset
, ins
.offset
,
9966 ins
.offset
, 0, 0, 0,
9967 BTRFS_FILE_EXTENT_PREALLOC
);
9969 btrfs_free_reserved_extent(fs_info
, ins
.objectid
,
9971 btrfs_abort_transaction(trans
, ret
);
9973 btrfs_end_transaction(trans
);
9977 btrfs_drop_extent_cache(BTRFS_I(inode
), cur_offset
,
9978 cur_offset
+ ins
.offset
-1, 0);
9980 em
= alloc_extent_map();
9982 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC
,
9983 &BTRFS_I(inode
)->runtime_flags
);
9987 em
->start
= cur_offset
;
9988 em
->orig_start
= cur_offset
;
9989 em
->len
= ins
.offset
;
9990 em
->block_start
= ins
.objectid
;
9991 em
->block_len
= ins
.offset
;
9992 em
->orig_block_len
= ins
.offset
;
9993 em
->ram_bytes
= ins
.offset
;
9994 set_bit(EXTENT_FLAG_PREALLOC
, &em
->flags
);
9995 em
->generation
= trans
->transid
;
9998 write_lock(&em_tree
->lock
);
9999 ret
= add_extent_mapping(em_tree
, em
, 1);
10000 write_unlock(&em_tree
->lock
);
10001 if (ret
!= -EEXIST
)
10003 btrfs_drop_extent_cache(BTRFS_I(inode
), cur_offset
,
10004 cur_offset
+ ins
.offset
- 1,
10007 free_extent_map(em
);
10009 num_bytes
-= ins
.offset
;
10010 cur_offset
+= ins
.offset
;
10011 *alloc_hint
= ins
.objectid
+ ins
.offset
;
10013 inode_inc_iversion(inode
);
10014 inode
->i_ctime
= current_time(inode
);
10015 BTRFS_I(inode
)->flags
|= BTRFS_INODE_PREALLOC
;
10016 if (!(mode
& FALLOC_FL_KEEP_SIZE
) &&
10017 (actual_len
> inode
->i_size
) &&
10018 (cur_offset
> inode
->i_size
)) {
10019 if (cur_offset
> actual_len
)
10020 i_size
= actual_len
;
10022 i_size
= cur_offset
;
10023 i_size_write(inode
, i_size
);
10024 btrfs_inode_safe_disk_i_size_write(inode
, 0);
10027 ret
= btrfs_update_inode(trans
, root
, inode
);
10030 btrfs_abort_transaction(trans
, ret
);
10032 btrfs_end_transaction(trans
);
10037 btrfs_end_transaction(trans
);
10039 if (clear_offset
< end
)
10040 btrfs_free_reserved_data_space(inode
, NULL
, clear_offset
,
10041 end
- clear_offset
+ 1);
10045 int btrfs_prealloc_file_range(struct inode
*inode
, int mode
,
10046 u64 start
, u64 num_bytes
, u64 min_size
,
10047 loff_t actual_len
, u64
*alloc_hint
)
10049 return __btrfs_prealloc_file_range(inode
, mode
, start
, num_bytes
,
10050 min_size
, actual_len
, alloc_hint
,
10054 int btrfs_prealloc_file_range_trans(struct inode
*inode
,
10055 struct btrfs_trans_handle
*trans
, int mode
,
10056 u64 start
, u64 num_bytes
, u64 min_size
,
10057 loff_t actual_len
, u64
*alloc_hint
)
10059 return __btrfs_prealloc_file_range(inode
, mode
, start
, num_bytes
,
10060 min_size
, actual_len
, alloc_hint
, trans
);
10063 static int btrfs_set_page_dirty(struct page
*page
)
10065 return __set_page_dirty_nobuffers(page
);
10068 static int btrfs_permission(struct inode
*inode
, int mask
)
10070 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
10071 umode_t mode
= inode
->i_mode
;
10073 if (mask
& MAY_WRITE
&&
10074 (S_ISREG(mode
) || S_ISDIR(mode
) || S_ISLNK(mode
))) {
10075 if (btrfs_root_readonly(root
))
10077 if (BTRFS_I(inode
)->flags
& BTRFS_INODE_READONLY
)
10080 return generic_permission(inode
, mask
);
10083 static int btrfs_tmpfile(struct inode
*dir
, struct dentry
*dentry
, umode_t mode
)
10085 struct btrfs_fs_info
*fs_info
= btrfs_sb(dir
->i_sb
);
10086 struct btrfs_trans_handle
*trans
;
10087 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
10088 struct inode
*inode
= NULL
;
10094 * 5 units required for adding orphan entry
10096 trans
= btrfs_start_transaction(root
, 5);
10098 return PTR_ERR(trans
);
10100 ret
= btrfs_find_free_ino(root
, &objectid
);
10104 inode
= btrfs_new_inode(trans
, root
, dir
, NULL
, 0,
10105 btrfs_ino(BTRFS_I(dir
)), objectid
, mode
, &index
);
10106 if (IS_ERR(inode
)) {
10107 ret
= PTR_ERR(inode
);
10112 inode
->i_fop
= &btrfs_file_operations
;
10113 inode
->i_op
= &btrfs_file_inode_operations
;
10115 inode
->i_mapping
->a_ops
= &btrfs_aops
;
10116 BTRFS_I(inode
)->io_tree
.ops
= &btrfs_extent_io_ops
;
10118 ret
= btrfs_init_inode_security(trans
, inode
, dir
, NULL
);
10122 ret
= btrfs_update_inode(trans
, root
, inode
);
10125 ret
= btrfs_orphan_add(trans
, BTRFS_I(inode
));
10130 * We set number of links to 0 in btrfs_new_inode(), and here we set
10131 * it to 1 because d_tmpfile() will issue a warning if the count is 0,
10134 * d_tmpfile() -> inode_dec_link_count() -> drop_nlink()
10136 set_nlink(inode
, 1);
10137 d_tmpfile(dentry
, inode
);
10138 unlock_new_inode(inode
);
10139 mark_inode_dirty(inode
);
10141 btrfs_end_transaction(trans
);
10143 discard_new_inode(inode
);
10144 btrfs_btree_balance_dirty(fs_info
);
10148 void btrfs_set_range_writeback(struct extent_io_tree
*tree
, u64 start
, u64 end
)
10150 struct inode
*inode
= tree
->private_data
;
10151 unsigned long index
= start
>> PAGE_SHIFT
;
10152 unsigned long end_index
= end
>> PAGE_SHIFT
;
10155 while (index
<= end_index
) {
10156 page
= find_get_page(inode
->i_mapping
, index
);
10157 ASSERT(page
); /* Pages should be in the extent_io_tree */
10158 set_page_writeback(page
);
10166 * Add an entry indicating a block group or device which is pinned by a
10167 * swapfile. Returns 0 on success, 1 if there is already an entry for it, or a
10168 * negative errno on failure.
10170 static int btrfs_add_swapfile_pin(struct inode
*inode
, void *ptr
,
10171 bool is_block_group
)
10173 struct btrfs_fs_info
*fs_info
= BTRFS_I(inode
)->root
->fs_info
;
10174 struct btrfs_swapfile_pin
*sp
, *entry
;
10175 struct rb_node
**p
;
10176 struct rb_node
*parent
= NULL
;
10178 sp
= kmalloc(sizeof(*sp
), GFP_NOFS
);
10183 sp
->is_block_group
= is_block_group
;
10185 spin_lock(&fs_info
->swapfile_pins_lock
);
10186 p
= &fs_info
->swapfile_pins
.rb_node
;
10189 entry
= rb_entry(parent
, struct btrfs_swapfile_pin
, node
);
10190 if (sp
->ptr
< entry
->ptr
||
10191 (sp
->ptr
== entry
->ptr
&& sp
->inode
< entry
->inode
)) {
10192 p
= &(*p
)->rb_left
;
10193 } else if (sp
->ptr
> entry
->ptr
||
10194 (sp
->ptr
== entry
->ptr
&& sp
->inode
> entry
->inode
)) {
10195 p
= &(*p
)->rb_right
;
10197 spin_unlock(&fs_info
->swapfile_pins_lock
);
10202 rb_link_node(&sp
->node
, parent
, p
);
10203 rb_insert_color(&sp
->node
, &fs_info
->swapfile_pins
);
10204 spin_unlock(&fs_info
->swapfile_pins_lock
);
10208 /* Free all of the entries pinned by this swapfile. */
10209 static void btrfs_free_swapfile_pins(struct inode
*inode
)
10211 struct btrfs_fs_info
*fs_info
= BTRFS_I(inode
)->root
->fs_info
;
10212 struct btrfs_swapfile_pin
*sp
;
10213 struct rb_node
*node
, *next
;
10215 spin_lock(&fs_info
->swapfile_pins_lock
);
10216 node
= rb_first(&fs_info
->swapfile_pins
);
10218 next
= rb_next(node
);
10219 sp
= rb_entry(node
, struct btrfs_swapfile_pin
, node
);
10220 if (sp
->inode
== inode
) {
10221 rb_erase(&sp
->node
, &fs_info
->swapfile_pins
);
10222 if (sp
->is_block_group
)
10223 btrfs_put_block_group(sp
->ptr
);
10228 spin_unlock(&fs_info
->swapfile_pins_lock
);
10231 struct btrfs_swap_info
{
10237 unsigned long nr_pages
;
10241 static int btrfs_add_swap_extent(struct swap_info_struct
*sis
,
10242 struct btrfs_swap_info
*bsi
)
10244 unsigned long nr_pages
;
10245 u64 first_ppage
, first_ppage_reported
, next_ppage
;
10248 first_ppage
= ALIGN(bsi
->block_start
, PAGE_SIZE
) >> PAGE_SHIFT
;
10249 next_ppage
= ALIGN_DOWN(bsi
->block_start
+ bsi
->block_len
,
10250 PAGE_SIZE
) >> PAGE_SHIFT
;
10252 if (first_ppage
>= next_ppage
)
10254 nr_pages
= next_ppage
- first_ppage
;
10256 first_ppage_reported
= first_ppage
;
10257 if (bsi
->start
== 0)
10258 first_ppage_reported
++;
10259 if (bsi
->lowest_ppage
> first_ppage_reported
)
10260 bsi
->lowest_ppage
= first_ppage_reported
;
10261 if (bsi
->highest_ppage
< (next_ppage
- 1))
10262 bsi
->highest_ppage
= next_ppage
- 1;
10264 ret
= add_swap_extent(sis
, bsi
->nr_pages
, nr_pages
, first_ppage
);
10267 bsi
->nr_extents
+= ret
;
10268 bsi
->nr_pages
+= nr_pages
;
10272 static void btrfs_swap_deactivate(struct file
*file
)
10274 struct inode
*inode
= file_inode(file
);
10276 btrfs_free_swapfile_pins(inode
);
10277 atomic_dec(&BTRFS_I(inode
)->root
->nr_swapfiles
);
10280 static int btrfs_swap_activate(struct swap_info_struct
*sis
, struct file
*file
,
10283 struct inode
*inode
= file_inode(file
);
10284 struct btrfs_fs_info
*fs_info
= BTRFS_I(inode
)->root
->fs_info
;
10285 struct extent_io_tree
*io_tree
= &BTRFS_I(inode
)->io_tree
;
10286 struct extent_state
*cached_state
= NULL
;
10287 struct extent_map
*em
= NULL
;
10288 struct btrfs_device
*device
= NULL
;
10289 struct btrfs_swap_info bsi
= {
10290 .lowest_ppage
= (sector_t
)-1ULL,
10297 * If the swap file was just created, make sure delalloc is done. If the
10298 * file changes again after this, the user is doing something stupid and
10299 * we don't really care.
10301 ret
= btrfs_wait_ordered_range(inode
, 0, (u64
)-1);
10306 * The inode is locked, so these flags won't change after we check them.
10308 if (BTRFS_I(inode
)->flags
& BTRFS_INODE_COMPRESS
) {
10309 btrfs_warn(fs_info
, "swapfile must not be compressed");
10312 if (!(BTRFS_I(inode
)->flags
& BTRFS_INODE_NODATACOW
)) {
10313 btrfs_warn(fs_info
, "swapfile must not be copy-on-write");
10316 if (!(BTRFS_I(inode
)->flags
& BTRFS_INODE_NODATASUM
)) {
10317 btrfs_warn(fs_info
, "swapfile must not be checksummed");
10322 * Balance or device remove/replace/resize can move stuff around from
10323 * under us. The EXCL_OP flag makes sure they aren't running/won't run
10324 * concurrently while we are mapping the swap extents, and
10325 * fs_info->swapfile_pins prevents them from running while the swap file
10326 * is active and moving the extents. Note that this also prevents a
10327 * concurrent device add which isn't actually necessary, but it's not
10328 * really worth the trouble to allow it.
10330 if (test_and_set_bit(BTRFS_FS_EXCL_OP
, &fs_info
->flags
)) {
10331 btrfs_warn(fs_info
,
10332 "cannot activate swapfile while exclusive operation is running");
10336 * Snapshots can create extents which require COW even if NODATACOW is
10337 * set. We use this counter to prevent snapshots. We must increment it
10338 * before walking the extents because we don't want a concurrent
10339 * snapshot to run after we've already checked the extents.
10341 atomic_inc(&BTRFS_I(inode
)->root
->nr_swapfiles
);
10343 isize
= ALIGN_DOWN(inode
->i_size
, fs_info
->sectorsize
);
10345 lock_extent_bits(io_tree
, 0, isize
- 1, &cached_state
);
10347 while (start
< isize
) {
10348 u64 logical_block_start
, physical_block_start
;
10349 struct btrfs_block_group
*bg
;
10350 u64 len
= isize
- start
;
10352 em
= btrfs_get_extent(BTRFS_I(inode
), NULL
, 0, start
, len
);
10358 if (em
->block_start
== EXTENT_MAP_HOLE
) {
10359 btrfs_warn(fs_info
, "swapfile must not have holes");
10363 if (em
->block_start
== EXTENT_MAP_INLINE
) {
10365 * It's unlikely we'll ever actually find ourselves
10366 * here, as a file small enough to fit inline won't be
10367 * big enough to store more than the swap header, but in
10368 * case something changes in the future, let's catch it
10369 * here rather than later.
10371 btrfs_warn(fs_info
, "swapfile must not be inline");
10375 if (test_bit(EXTENT_FLAG_COMPRESSED
, &em
->flags
)) {
10376 btrfs_warn(fs_info
, "swapfile must not be compressed");
10381 logical_block_start
= em
->block_start
+ (start
- em
->start
);
10382 len
= min(len
, em
->len
- (start
- em
->start
));
10383 free_extent_map(em
);
10386 ret
= can_nocow_extent(inode
, start
, &len
, NULL
, NULL
, NULL
);
10392 btrfs_warn(fs_info
,
10393 "swapfile must not be copy-on-write");
10398 em
= btrfs_get_chunk_map(fs_info
, logical_block_start
, len
);
10404 if (em
->map_lookup
->type
& BTRFS_BLOCK_GROUP_PROFILE_MASK
) {
10405 btrfs_warn(fs_info
,
10406 "swapfile must have single data profile");
10411 if (device
== NULL
) {
10412 device
= em
->map_lookup
->stripes
[0].dev
;
10413 ret
= btrfs_add_swapfile_pin(inode
, device
, false);
10418 } else if (device
!= em
->map_lookup
->stripes
[0].dev
) {
10419 btrfs_warn(fs_info
, "swapfile must be on one device");
10424 physical_block_start
= (em
->map_lookup
->stripes
[0].physical
+
10425 (logical_block_start
- em
->start
));
10426 len
= min(len
, em
->len
- (logical_block_start
- em
->start
));
10427 free_extent_map(em
);
10430 bg
= btrfs_lookup_block_group(fs_info
, logical_block_start
);
10432 btrfs_warn(fs_info
,
10433 "could not find block group containing swapfile");
10438 ret
= btrfs_add_swapfile_pin(inode
, bg
, true);
10440 btrfs_put_block_group(bg
);
10447 if (bsi
.block_len
&&
10448 bsi
.block_start
+ bsi
.block_len
== physical_block_start
) {
10449 bsi
.block_len
+= len
;
10451 if (bsi
.block_len
) {
10452 ret
= btrfs_add_swap_extent(sis
, &bsi
);
10457 bsi
.block_start
= physical_block_start
;
10458 bsi
.block_len
= len
;
10465 ret
= btrfs_add_swap_extent(sis
, &bsi
);
10468 if (!IS_ERR_OR_NULL(em
))
10469 free_extent_map(em
);
10471 unlock_extent_cached(io_tree
, 0, isize
- 1, &cached_state
);
10474 btrfs_swap_deactivate(file
);
10476 clear_bit(BTRFS_FS_EXCL_OP
, &fs_info
->flags
);
10482 sis
->bdev
= device
->bdev
;
10483 *span
= bsi
.highest_ppage
- bsi
.lowest_ppage
+ 1;
10484 sis
->max
= bsi
.nr_pages
;
10485 sis
->pages
= bsi
.nr_pages
- 1;
10486 sis
->highest_bit
= bsi
.nr_pages
- 1;
10487 return bsi
.nr_extents
;
10490 static void btrfs_swap_deactivate(struct file
*file
)
10494 static int btrfs_swap_activate(struct swap_info_struct
*sis
, struct file
*file
,
10497 return -EOPNOTSUPP
;
10501 static const struct inode_operations btrfs_dir_inode_operations
= {
10502 .getattr
= btrfs_getattr
,
10503 .lookup
= btrfs_lookup
,
10504 .create
= btrfs_create
,
10505 .unlink
= btrfs_unlink
,
10506 .link
= btrfs_link
,
10507 .mkdir
= btrfs_mkdir
,
10508 .rmdir
= btrfs_rmdir
,
10509 .rename
= btrfs_rename2
,
10510 .symlink
= btrfs_symlink
,
10511 .setattr
= btrfs_setattr
,
10512 .mknod
= btrfs_mknod
,
10513 .listxattr
= btrfs_listxattr
,
10514 .permission
= btrfs_permission
,
10515 .get_acl
= btrfs_get_acl
,
10516 .set_acl
= btrfs_set_acl
,
10517 .update_time
= btrfs_update_time
,
10518 .tmpfile
= btrfs_tmpfile
,
10521 static const struct file_operations btrfs_dir_file_operations
= {
10522 .llseek
= generic_file_llseek
,
10523 .read
= generic_read_dir
,
10524 .iterate_shared
= btrfs_real_readdir
,
10525 .open
= btrfs_opendir
,
10526 .unlocked_ioctl
= btrfs_ioctl
,
10527 #ifdef CONFIG_COMPAT
10528 .compat_ioctl
= btrfs_compat_ioctl
,
10530 .release
= btrfs_release_file
,
10531 .fsync
= btrfs_sync_file
,
10534 static const struct extent_io_ops btrfs_extent_io_ops
= {
10535 /* mandatory callbacks */
10536 .submit_bio_hook
= btrfs_submit_bio_hook
,
10537 .readpage_end_io_hook
= btrfs_readpage_end_io_hook
,
10541 * btrfs doesn't support the bmap operation because swapfiles
10542 * use bmap to make a mapping of extents in the file. They assume
10543 * these extents won't change over the life of the file and they
10544 * use the bmap result to do IO directly to the drive.
10546 * the btrfs bmap call would return logical addresses that aren't
10547 * suitable for IO and they also will change frequently as COW
10548 * operations happen. So, swapfile + btrfs == corruption.
10550 * For now we're avoiding this by dropping bmap.
10552 static const struct address_space_operations btrfs_aops
= {
10553 .readpage
= btrfs_readpage
,
10554 .writepage
= btrfs_writepage
,
10555 .writepages
= btrfs_writepages
,
10556 .readpages
= btrfs_readpages
,
10557 .direct_IO
= btrfs_direct_IO
,
10558 .invalidatepage
= btrfs_invalidatepage
,
10559 .releasepage
= btrfs_releasepage
,
10560 #ifdef CONFIG_MIGRATION
10561 .migratepage
= btrfs_migratepage
,
10563 .set_page_dirty
= btrfs_set_page_dirty
,
10564 .error_remove_page
= generic_error_remove_page
,
10565 .swap_activate
= btrfs_swap_activate
,
10566 .swap_deactivate
= btrfs_swap_deactivate
,
10569 static const struct inode_operations btrfs_file_inode_operations
= {
10570 .getattr
= btrfs_getattr
,
10571 .setattr
= btrfs_setattr
,
10572 .listxattr
= btrfs_listxattr
,
10573 .permission
= btrfs_permission
,
10574 .fiemap
= btrfs_fiemap
,
10575 .get_acl
= btrfs_get_acl
,
10576 .set_acl
= btrfs_set_acl
,
10577 .update_time
= btrfs_update_time
,
10579 static const struct inode_operations btrfs_special_inode_operations
= {
10580 .getattr
= btrfs_getattr
,
10581 .setattr
= btrfs_setattr
,
10582 .permission
= btrfs_permission
,
10583 .listxattr
= btrfs_listxattr
,
10584 .get_acl
= btrfs_get_acl
,
10585 .set_acl
= btrfs_set_acl
,
10586 .update_time
= btrfs_update_time
,
10588 static const struct inode_operations btrfs_symlink_inode_operations
= {
10589 .get_link
= page_get_link
,
10590 .getattr
= btrfs_getattr
,
10591 .setattr
= btrfs_setattr
,
10592 .permission
= btrfs_permission
,
10593 .listxattr
= btrfs_listxattr
,
10594 .update_time
= btrfs_update_time
,
10597 const struct dentry_operations btrfs_dentry_operations
= {
10598 .d_delete
= btrfs_dentry_delete
,