1 // SPDX-License-Identifier: GPL-2.0-only
5 * Copyright (C) 1991, 1992, 2002 Linus Torvalds
9 * Start bdflush() with kernel_thread not syscall - Paul Gortmaker, 12/95
11 * Removed a lot of unnecessary code and simplified things now that
12 * the buffer cache isn't our primary cache - Andrew Tridgell 12/96
14 * Speed up hash, lru, and free list operations. Use gfp() for allocating
15 * hash table, use SLAB cache for buffer heads. SMP threading. -DaveM
17 * Added 32k buffer block sizes - these are required older ARM systems. - RMK
19 * async buffer flushing, 1999 Andrea Arcangeli <andrea@suse.de>
22 #include <linux/kernel.h>
23 #include <linux/sched/signal.h>
24 #include <linux/syscalls.h>
26 #include <linux/iomap.h>
28 #include <linux/percpu.h>
29 #include <linux/slab.h>
30 #include <linux/capability.h>
31 #include <linux/blkdev.h>
32 #include <linux/file.h>
33 #include <linux/quotaops.h>
34 #include <linux/highmem.h>
35 #include <linux/export.h>
36 #include <linux/backing-dev.h>
37 #include <linux/writeback.h>
38 #include <linux/hash.h>
39 #include <linux/suspend.h>
40 #include <linux/buffer_head.h>
41 #include <linux/task_io_accounting_ops.h>
42 #include <linux/bio.h>
43 #include <linux/cpu.h>
44 #include <linux/bitops.h>
45 #include <linux/mpage.h>
46 #include <linux/bit_spinlock.h>
47 #include <linux/pagevec.h>
48 #include <linux/sched/mm.h>
49 #include <trace/events/block.h>
50 #include <linux/fscrypt.h>
54 static int fsync_buffers_list(spinlock_t
*lock
, struct list_head
*list
);
55 static int submit_bh_wbc(int op
, int op_flags
, struct buffer_head
*bh
,
56 enum rw_hint hint
, struct writeback_control
*wbc
);
58 #define BH_ENTRY(list) list_entry((list), struct buffer_head, b_assoc_buffers)
60 inline void touch_buffer(struct buffer_head
*bh
)
62 trace_block_touch_buffer(bh
);
63 mark_page_accessed(bh
->b_page
);
65 EXPORT_SYMBOL(touch_buffer
);
67 void __lock_buffer(struct buffer_head
*bh
)
69 wait_on_bit_lock_io(&bh
->b_state
, BH_Lock
, TASK_UNINTERRUPTIBLE
);
71 EXPORT_SYMBOL(__lock_buffer
);
73 void unlock_buffer(struct buffer_head
*bh
)
75 clear_bit_unlock(BH_Lock
, &bh
->b_state
);
76 smp_mb__after_atomic();
77 wake_up_bit(&bh
->b_state
, BH_Lock
);
79 EXPORT_SYMBOL(unlock_buffer
);
82 * Returns if the page has dirty or writeback buffers. If all the buffers
83 * are unlocked and clean then the PageDirty information is stale. If
84 * any of the pages are locked, it is assumed they are locked for IO.
86 void buffer_check_dirty_writeback(struct page
*page
,
87 bool *dirty
, bool *writeback
)
89 struct buffer_head
*head
, *bh
;
93 BUG_ON(!PageLocked(page
));
95 if (!page_has_buffers(page
))
98 if (PageWriteback(page
))
101 head
= page_buffers(page
);
104 if (buffer_locked(bh
))
107 if (buffer_dirty(bh
))
110 bh
= bh
->b_this_page
;
111 } while (bh
!= head
);
113 EXPORT_SYMBOL(buffer_check_dirty_writeback
);
116 * Block until a buffer comes unlocked. This doesn't stop it
117 * from becoming locked again - you have to lock it yourself
118 * if you want to preserve its state.
120 void __wait_on_buffer(struct buffer_head
* bh
)
122 wait_on_bit_io(&bh
->b_state
, BH_Lock
, TASK_UNINTERRUPTIBLE
);
124 EXPORT_SYMBOL(__wait_on_buffer
);
127 __clear_page_buffers(struct page
*page
)
129 ClearPagePrivate(page
);
130 set_page_private(page
, 0);
134 static void buffer_io_error(struct buffer_head
*bh
, char *msg
)
136 if (!test_bit(BH_Quiet
, &bh
->b_state
))
137 printk_ratelimited(KERN_ERR
138 "Buffer I/O error on dev %pg, logical block %llu%s\n",
139 bh
->b_bdev
, (unsigned long long)bh
->b_blocknr
, msg
);
143 * End-of-IO handler helper function which does not touch the bh after
145 * Note: unlock_buffer() sort-of does touch the bh after unlocking it, but
146 * a race there is benign: unlock_buffer() only use the bh's address for
147 * hashing after unlocking the buffer, so it doesn't actually touch the bh
150 static void __end_buffer_read_notouch(struct buffer_head
*bh
, int uptodate
)
153 set_buffer_uptodate(bh
);
155 /* This happens, due to failed read-ahead attempts. */
156 clear_buffer_uptodate(bh
);
162 * Default synchronous end-of-IO handler.. Just mark it up-to-date and
163 * unlock the buffer. This is what ll_rw_block uses too.
165 void end_buffer_read_sync(struct buffer_head
*bh
, int uptodate
)
167 __end_buffer_read_notouch(bh
, uptodate
);
170 EXPORT_SYMBOL(end_buffer_read_sync
);
172 void end_buffer_write_sync(struct buffer_head
*bh
, int uptodate
)
175 set_buffer_uptodate(bh
);
177 buffer_io_error(bh
, ", lost sync page write");
178 mark_buffer_write_io_error(bh
);
179 clear_buffer_uptodate(bh
);
184 EXPORT_SYMBOL(end_buffer_write_sync
);
187 * Various filesystems appear to want __find_get_block to be non-blocking.
188 * But it's the page lock which protects the buffers. To get around this,
189 * we get exclusion from try_to_free_buffers with the blockdev mapping's
192 * Hack idea: for the blockdev mapping, private_lock contention
193 * may be quite high. This code could TryLock the page, and if that
194 * succeeds, there is no need to take private_lock.
196 static struct buffer_head
*
197 __find_get_block_slow(struct block_device
*bdev
, sector_t block
)
199 struct inode
*bd_inode
= bdev
->bd_inode
;
200 struct address_space
*bd_mapping
= bd_inode
->i_mapping
;
201 struct buffer_head
*ret
= NULL
;
203 struct buffer_head
*bh
;
204 struct buffer_head
*head
;
207 static DEFINE_RATELIMIT_STATE(last_warned
, HZ
, 1);
209 index
= block
>> (PAGE_SHIFT
- bd_inode
->i_blkbits
);
210 page
= find_get_page_flags(bd_mapping
, index
, FGP_ACCESSED
);
214 spin_lock(&bd_mapping
->private_lock
);
215 if (!page_has_buffers(page
))
217 head
= page_buffers(page
);
220 if (!buffer_mapped(bh
))
222 else if (bh
->b_blocknr
== block
) {
227 bh
= bh
->b_this_page
;
228 } while (bh
!= head
);
230 /* we might be here because some of the buffers on this page are
231 * not mapped. This is due to various races between
232 * file io on the block device and getblk. It gets dealt with
233 * elsewhere, don't buffer_error if we had some unmapped buffers
235 ratelimit_set_flags(&last_warned
, RATELIMIT_MSG_ON_RELEASE
);
236 if (all_mapped
&& __ratelimit(&last_warned
)) {
237 printk("__find_get_block_slow() failed. block=%llu, "
238 "b_blocknr=%llu, b_state=0x%08lx, b_size=%zu, "
239 "device %pg blocksize: %d\n",
240 (unsigned long long)block
,
241 (unsigned long long)bh
->b_blocknr
,
242 bh
->b_state
, bh
->b_size
, bdev
,
243 1 << bd_inode
->i_blkbits
);
246 spin_unlock(&bd_mapping
->private_lock
);
252 static void end_buffer_async_read(struct buffer_head
*bh
, int uptodate
)
255 struct buffer_head
*first
;
256 struct buffer_head
*tmp
;
258 int page_uptodate
= 1;
260 BUG_ON(!buffer_async_read(bh
));
264 set_buffer_uptodate(bh
);
266 clear_buffer_uptodate(bh
);
267 buffer_io_error(bh
, ", async page read");
272 * Be _very_ careful from here on. Bad things can happen if
273 * two buffer heads end IO at almost the same time and both
274 * decide that the page is now completely done.
276 first
= page_buffers(page
);
277 spin_lock_irqsave(&first
->b_uptodate_lock
, flags
);
278 clear_buffer_async_read(bh
);
282 if (!buffer_uptodate(tmp
))
284 if (buffer_async_read(tmp
)) {
285 BUG_ON(!buffer_locked(tmp
));
288 tmp
= tmp
->b_this_page
;
290 spin_unlock_irqrestore(&first
->b_uptodate_lock
, flags
);
293 * If none of the buffers had errors and they are all
294 * uptodate then we can set the page uptodate.
296 if (page_uptodate
&& !PageError(page
))
297 SetPageUptodate(page
);
302 spin_unlock_irqrestore(&first
->b_uptodate_lock
, flags
);
306 struct decrypt_bh_ctx
{
307 struct work_struct work
;
308 struct buffer_head
*bh
;
311 static void decrypt_bh(struct work_struct
*work
)
313 struct decrypt_bh_ctx
*ctx
=
314 container_of(work
, struct decrypt_bh_ctx
, work
);
315 struct buffer_head
*bh
= ctx
->bh
;
318 err
= fscrypt_decrypt_pagecache_blocks(bh
->b_page
, bh
->b_size
,
320 end_buffer_async_read(bh
, err
== 0);
325 * I/O completion handler for block_read_full_page() - pages
326 * which come unlocked at the end of I/O.
328 static void end_buffer_async_read_io(struct buffer_head
*bh
, int uptodate
)
330 /* Decrypt if needed */
331 if (uptodate
&& IS_ENABLED(CONFIG_FS_ENCRYPTION
) &&
332 IS_ENCRYPTED(bh
->b_page
->mapping
->host
) &&
333 S_ISREG(bh
->b_page
->mapping
->host
->i_mode
)) {
334 struct decrypt_bh_ctx
*ctx
= kmalloc(sizeof(*ctx
), GFP_ATOMIC
);
337 INIT_WORK(&ctx
->work
, decrypt_bh
);
339 fscrypt_enqueue_decrypt_work(&ctx
->work
);
344 end_buffer_async_read(bh
, uptodate
);
348 * Completion handler for block_write_full_page() - pages which are unlocked
349 * during I/O, and which have PageWriteback cleared upon I/O completion.
351 void end_buffer_async_write(struct buffer_head
*bh
, int uptodate
)
354 struct buffer_head
*first
;
355 struct buffer_head
*tmp
;
358 BUG_ON(!buffer_async_write(bh
));
362 set_buffer_uptodate(bh
);
364 buffer_io_error(bh
, ", lost async page write");
365 mark_buffer_write_io_error(bh
);
366 clear_buffer_uptodate(bh
);
370 first
= page_buffers(page
);
371 spin_lock_irqsave(&first
->b_uptodate_lock
, flags
);
373 clear_buffer_async_write(bh
);
375 tmp
= bh
->b_this_page
;
377 if (buffer_async_write(tmp
)) {
378 BUG_ON(!buffer_locked(tmp
));
381 tmp
= tmp
->b_this_page
;
383 spin_unlock_irqrestore(&first
->b_uptodate_lock
, flags
);
384 end_page_writeback(page
);
388 spin_unlock_irqrestore(&first
->b_uptodate_lock
, flags
);
391 EXPORT_SYMBOL(end_buffer_async_write
);
394 * If a page's buffers are under async readin (end_buffer_async_read
395 * completion) then there is a possibility that another thread of
396 * control could lock one of the buffers after it has completed
397 * but while some of the other buffers have not completed. This
398 * locked buffer would confuse end_buffer_async_read() into not unlocking
399 * the page. So the absence of BH_Async_Read tells end_buffer_async_read()
400 * that this buffer is not under async I/O.
402 * The page comes unlocked when it has no locked buffer_async buffers
405 * PageLocked prevents anyone starting new async I/O reads any of
408 * PageWriteback is used to prevent simultaneous writeout of the same
411 * PageLocked prevents anyone from starting writeback of a page which is
412 * under read I/O (PageWriteback is only ever set against a locked page).
414 static void mark_buffer_async_read(struct buffer_head
*bh
)
416 bh
->b_end_io
= end_buffer_async_read_io
;
417 set_buffer_async_read(bh
);
420 static void mark_buffer_async_write_endio(struct buffer_head
*bh
,
421 bh_end_io_t
*handler
)
423 bh
->b_end_io
= handler
;
424 set_buffer_async_write(bh
);
427 void mark_buffer_async_write(struct buffer_head
*bh
)
429 mark_buffer_async_write_endio(bh
, end_buffer_async_write
);
431 EXPORT_SYMBOL(mark_buffer_async_write
);
435 * fs/buffer.c contains helper functions for buffer-backed address space's
436 * fsync functions. A common requirement for buffer-based filesystems is
437 * that certain data from the backing blockdev needs to be written out for
438 * a successful fsync(). For example, ext2 indirect blocks need to be
439 * written back and waited upon before fsync() returns.
441 * The functions mark_buffer_inode_dirty(), fsync_inode_buffers(),
442 * inode_has_buffers() and invalidate_inode_buffers() are provided for the
443 * management of a list of dependent buffers at ->i_mapping->private_list.
445 * Locking is a little subtle: try_to_free_buffers() will remove buffers
446 * from their controlling inode's queue when they are being freed. But
447 * try_to_free_buffers() will be operating against the *blockdev* mapping
448 * at the time, not against the S_ISREG file which depends on those buffers.
449 * So the locking for private_list is via the private_lock in the address_space
450 * which backs the buffers. Which is different from the address_space
451 * against which the buffers are listed. So for a particular address_space,
452 * mapping->private_lock does *not* protect mapping->private_list! In fact,
453 * mapping->private_list will always be protected by the backing blockdev's
456 * Which introduces a requirement: all buffers on an address_space's
457 * ->private_list must be from the same address_space: the blockdev's.
459 * address_spaces which do not place buffers at ->private_list via these
460 * utility functions are free to use private_lock and private_list for
461 * whatever they want. The only requirement is that list_empty(private_list)
462 * be true at clear_inode() time.
464 * FIXME: clear_inode should not call invalidate_inode_buffers(). The
465 * filesystems should do that. invalidate_inode_buffers() should just go
466 * BUG_ON(!list_empty).
468 * FIXME: mark_buffer_dirty_inode() is a data-plane operation. It should
469 * take an address_space, not an inode. And it should be called
470 * mark_buffer_dirty_fsync() to clearly define why those buffers are being
473 * FIXME: mark_buffer_dirty_inode() doesn't need to add the buffer to the
474 * list if it is already on a list. Because if the buffer is on a list,
475 * it *must* already be on the right one. If not, the filesystem is being
476 * silly. This will save a ton of locking. But first we have to ensure
477 * that buffers are taken *off* the old inode's list when they are freed
478 * (presumably in truncate). That requires careful auditing of all
479 * filesystems (do it inside bforget()). It could also be done by bringing
484 * The buffer's backing address_space's private_lock must be held
486 static void __remove_assoc_queue(struct buffer_head
*bh
)
488 list_del_init(&bh
->b_assoc_buffers
);
489 WARN_ON(!bh
->b_assoc_map
);
490 bh
->b_assoc_map
= NULL
;
493 int inode_has_buffers(struct inode
*inode
)
495 return !list_empty(&inode
->i_data
.private_list
);
499 * osync is designed to support O_SYNC io. It waits synchronously for
500 * all already-submitted IO to complete, but does not queue any new
501 * writes to the disk.
503 * To do O_SYNC writes, just queue the buffer writes with ll_rw_block as
504 * you dirty the buffers, and then use osync_inode_buffers to wait for
505 * completion. Any other dirty buffers which are not yet queued for
506 * write will not be flushed to disk by the osync.
508 static int osync_buffers_list(spinlock_t
*lock
, struct list_head
*list
)
510 struct buffer_head
*bh
;
516 list_for_each_prev(p
, list
) {
518 if (buffer_locked(bh
)) {
522 if (!buffer_uptodate(bh
))
533 void emergency_thaw_bdev(struct super_block
*sb
)
535 while (sb
->s_bdev
&& !thaw_bdev(sb
->s_bdev
, sb
))
536 printk(KERN_WARNING
"Emergency Thaw on %pg\n", sb
->s_bdev
);
540 * sync_mapping_buffers - write out & wait upon a mapping's "associated" buffers
541 * @mapping: the mapping which wants those buffers written
543 * Starts I/O against the buffers at mapping->private_list, and waits upon
546 * Basically, this is a convenience function for fsync().
547 * @mapping is a file or directory which needs those buffers to be written for
548 * a successful fsync().
550 int sync_mapping_buffers(struct address_space
*mapping
)
552 struct address_space
*buffer_mapping
= mapping
->private_data
;
554 if (buffer_mapping
== NULL
|| list_empty(&mapping
->private_list
))
557 return fsync_buffers_list(&buffer_mapping
->private_lock
,
558 &mapping
->private_list
);
560 EXPORT_SYMBOL(sync_mapping_buffers
);
563 * Called when we've recently written block `bblock', and it is known that
564 * `bblock' was for a buffer_boundary() buffer. This means that the block at
565 * `bblock + 1' is probably a dirty indirect block. Hunt it down and, if it's
566 * dirty, schedule it for IO. So that indirects merge nicely with their data.
568 void write_boundary_block(struct block_device
*bdev
,
569 sector_t bblock
, unsigned blocksize
)
571 struct buffer_head
*bh
= __find_get_block(bdev
, bblock
+ 1, blocksize
);
573 if (buffer_dirty(bh
))
574 ll_rw_block(REQ_OP_WRITE
, 0, 1, &bh
);
579 void mark_buffer_dirty_inode(struct buffer_head
*bh
, struct inode
*inode
)
581 struct address_space
*mapping
= inode
->i_mapping
;
582 struct address_space
*buffer_mapping
= bh
->b_page
->mapping
;
584 mark_buffer_dirty(bh
);
585 if (!mapping
->private_data
) {
586 mapping
->private_data
= buffer_mapping
;
588 BUG_ON(mapping
->private_data
!= buffer_mapping
);
590 if (!bh
->b_assoc_map
) {
591 spin_lock(&buffer_mapping
->private_lock
);
592 list_move_tail(&bh
->b_assoc_buffers
,
593 &mapping
->private_list
);
594 bh
->b_assoc_map
= mapping
;
595 spin_unlock(&buffer_mapping
->private_lock
);
598 EXPORT_SYMBOL(mark_buffer_dirty_inode
);
601 * Mark the page dirty, and set it dirty in the page cache, and mark the inode
604 * If warn is true, then emit a warning if the page is not uptodate and has
605 * not been truncated.
607 * The caller must hold lock_page_memcg().
609 void __set_page_dirty(struct page
*page
, struct address_space
*mapping
,
614 xa_lock_irqsave(&mapping
->i_pages
, flags
);
615 if (page
->mapping
) { /* Race with truncate? */
616 WARN_ON_ONCE(warn
&& !PageUptodate(page
));
617 account_page_dirtied(page
, mapping
);
618 __xa_set_mark(&mapping
->i_pages
, page_index(page
),
619 PAGECACHE_TAG_DIRTY
);
621 xa_unlock_irqrestore(&mapping
->i_pages
, flags
);
623 EXPORT_SYMBOL_GPL(__set_page_dirty
);
626 * Add a page to the dirty page list.
628 * It is a sad fact of life that this function is called from several places
629 * deeply under spinlocking. It may not sleep.
631 * If the page has buffers, the uptodate buffers are set dirty, to preserve
632 * dirty-state coherency between the page and the buffers. It the page does
633 * not have buffers then when they are later attached they will all be set
636 * The buffers are dirtied before the page is dirtied. There's a small race
637 * window in which a writepage caller may see the page cleanness but not the
638 * buffer dirtiness. That's fine. If this code were to set the page dirty
639 * before the buffers, a concurrent writepage caller could clear the page dirty
640 * bit, see a bunch of clean buffers and we'd end up with dirty buffers/clean
641 * page on the dirty page list.
643 * We use private_lock to lock against try_to_free_buffers while using the
644 * page's buffer list. Also use this to protect against clean buffers being
645 * added to the page after it was set dirty.
647 * FIXME: may need to call ->reservepage here as well. That's rather up to the
648 * address_space though.
650 int __set_page_dirty_buffers(struct page
*page
)
653 struct address_space
*mapping
= page_mapping(page
);
655 if (unlikely(!mapping
))
656 return !TestSetPageDirty(page
);
658 spin_lock(&mapping
->private_lock
);
659 if (page_has_buffers(page
)) {
660 struct buffer_head
*head
= page_buffers(page
);
661 struct buffer_head
*bh
= head
;
664 set_buffer_dirty(bh
);
665 bh
= bh
->b_this_page
;
666 } while (bh
!= head
);
669 * Lock out page->mem_cgroup migration to keep PageDirty
670 * synchronized with per-memcg dirty page counters.
672 lock_page_memcg(page
);
673 newly_dirty
= !TestSetPageDirty(page
);
674 spin_unlock(&mapping
->private_lock
);
677 __set_page_dirty(page
, mapping
, 1);
679 unlock_page_memcg(page
);
682 __mark_inode_dirty(mapping
->host
, I_DIRTY_PAGES
);
686 EXPORT_SYMBOL(__set_page_dirty_buffers
);
689 * Write out and wait upon a list of buffers.
691 * We have conflicting pressures: we want to make sure that all
692 * initially dirty buffers get waited on, but that any subsequently
693 * dirtied buffers don't. After all, we don't want fsync to last
694 * forever if somebody is actively writing to the file.
696 * Do this in two main stages: first we copy dirty buffers to a
697 * temporary inode list, queueing the writes as we go. Then we clean
698 * up, waiting for those writes to complete.
700 * During this second stage, any subsequent updates to the file may end
701 * up refiling the buffer on the original inode's dirty list again, so
702 * there is a chance we will end up with a buffer queued for write but
703 * not yet completed on that list. So, as a final cleanup we go through
704 * the osync code to catch these locked, dirty buffers without requeuing
705 * any newly dirty buffers for write.
707 static int fsync_buffers_list(spinlock_t
*lock
, struct list_head
*list
)
709 struct buffer_head
*bh
;
710 struct list_head tmp
;
711 struct address_space
*mapping
;
713 struct blk_plug plug
;
715 INIT_LIST_HEAD(&tmp
);
716 blk_start_plug(&plug
);
719 while (!list_empty(list
)) {
720 bh
= BH_ENTRY(list
->next
);
721 mapping
= bh
->b_assoc_map
;
722 __remove_assoc_queue(bh
);
723 /* Avoid race with mark_buffer_dirty_inode() which does
724 * a lockless check and we rely on seeing the dirty bit */
726 if (buffer_dirty(bh
) || buffer_locked(bh
)) {
727 list_add(&bh
->b_assoc_buffers
, &tmp
);
728 bh
->b_assoc_map
= mapping
;
729 if (buffer_dirty(bh
)) {
733 * Ensure any pending I/O completes so that
734 * write_dirty_buffer() actually writes the
735 * current contents - it is a noop if I/O is
736 * still in flight on potentially older
739 write_dirty_buffer(bh
, REQ_SYNC
);
742 * Kick off IO for the previous mapping. Note
743 * that we will not run the very last mapping,
744 * wait_on_buffer() will do that for us
745 * through sync_buffer().
754 blk_finish_plug(&plug
);
757 while (!list_empty(&tmp
)) {
758 bh
= BH_ENTRY(tmp
.prev
);
760 mapping
= bh
->b_assoc_map
;
761 __remove_assoc_queue(bh
);
762 /* Avoid race with mark_buffer_dirty_inode() which does
763 * a lockless check and we rely on seeing the dirty bit */
765 if (buffer_dirty(bh
)) {
766 list_add(&bh
->b_assoc_buffers
,
767 &mapping
->private_list
);
768 bh
->b_assoc_map
= mapping
;
772 if (!buffer_uptodate(bh
))
779 err2
= osync_buffers_list(lock
, list
);
787 * Invalidate any and all dirty buffers on a given inode. We are
788 * probably unmounting the fs, but that doesn't mean we have already
789 * done a sync(). Just drop the buffers from the inode list.
791 * NOTE: we take the inode's blockdev's mapping's private_lock. Which
792 * assumes that all the buffers are against the blockdev. Not true
795 void invalidate_inode_buffers(struct inode
*inode
)
797 if (inode_has_buffers(inode
)) {
798 struct address_space
*mapping
= &inode
->i_data
;
799 struct list_head
*list
= &mapping
->private_list
;
800 struct address_space
*buffer_mapping
= mapping
->private_data
;
802 spin_lock(&buffer_mapping
->private_lock
);
803 while (!list_empty(list
))
804 __remove_assoc_queue(BH_ENTRY(list
->next
));
805 spin_unlock(&buffer_mapping
->private_lock
);
808 EXPORT_SYMBOL(invalidate_inode_buffers
);
811 * Remove any clean buffers from the inode's buffer list. This is called
812 * when we're trying to free the inode itself. Those buffers can pin it.
814 * Returns true if all buffers were removed.
816 int remove_inode_buffers(struct inode
*inode
)
820 if (inode_has_buffers(inode
)) {
821 struct address_space
*mapping
= &inode
->i_data
;
822 struct list_head
*list
= &mapping
->private_list
;
823 struct address_space
*buffer_mapping
= mapping
->private_data
;
825 spin_lock(&buffer_mapping
->private_lock
);
826 while (!list_empty(list
)) {
827 struct buffer_head
*bh
= BH_ENTRY(list
->next
);
828 if (buffer_dirty(bh
)) {
832 __remove_assoc_queue(bh
);
834 spin_unlock(&buffer_mapping
->private_lock
);
840 * Create the appropriate buffers when given a page for data area and
841 * the size of each buffer.. Use the bh->b_this_page linked list to
842 * follow the buffers created. Return NULL if unable to create more
845 * The retry flag is used to differentiate async IO (paging, swapping)
846 * which may not fail from ordinary buffer allocations.
848 struct buffer_head
*alloc_page_buffers(struct page
*page
, unsigned long size
,
851 struct buffer_head
*bh
, *head
;
852 gfp_t gfp
= GFP_NOFS
| __GFP_ACCOUNT
;
854 struct mem_cgroup
*memcg
;
859 memcg
= get_mem_cgroup_from_page(page
);
860 memalloc_use_memcg(memcg
);
864 while ((offset
-= size
) >= 0) {
865 bh
= alloc_buffer_head(gfp
);
869 bh
->b_this_page
= head
;
875 /* Link the buffer to its page */
876 set_bh_page(bh
, page
, offset
);
879 memalloc_unuse_memcg();
880 mem_cgroup_put(memcg
);
883 * In case anything failed, we just free everything we got.
889 head
= head
->b_this_page
;
890 free_buffer_head(bh
);
896 EXPORT_SYMBOL_GPL(alloc_page_buffers
);
899 link_dev_buffers(struct page
*page
, struct buffer_head
*head
)
901 struct buffer_head
*bh
, *tail
;
906 bh
= bh
->b_this_page
;
908 tail
->b_this_page
= head
;
909 attach_page_buffers(page
, head
);
912 static sector_t
blkdev_max_block(struct block_device
*bdev
, unsigned int size
)
914 sector_t retval
= ~((sector_t
)0);
915 loff_t sz
= i_size_read(bdev
->bd_inode
);
918 unsigned int sizebits
= blksize_bits(size
);
919 retval
= (sz
>> sizebits
);
925 * Initialise the state of a blockdev page's buffers.
928 init_page_buffers(struct page
*page
, struct block_device
*bdev
,
929 sector_t block
, int size
)
931 struct buffer_head
*head
= page_buffers(page
);
932 struct buffer_head
*bh
= head
;
933 int uptodate
= PageUptodate(page
);
934 sector_t end_block
= blkdev_max_block(I_BDEV(bdev
->bd_inode
), size
);
937 if (!buffer_mapped(bh
)) {
939 bh
->b_private
= NULL
;
941 bh
->b_blocknr
= block
;
943 set_buffer_uptodate(bh
);
944 if (block
< end_block
)
945 set_buffer_mapped(bh
);
948 bh
= bh
->b_this_page
;
949 } while (bh
!= head
);
952 * Caller needs to validate requested block against end of device.
958 * Create the page-cache page that contains the requested block.
960 * This is used purely for blockdev mappings.
963 grow_dev_page(struct block_device
*bdev
, sector_t block
,
964 pgoff_t index
, int size
, int sizebits
, gfp_t gfp
)
966 struct inode
*inode
= bdev
->bd_inode
;
968 struct buffer_head
*bh
;
973 gfp_mask
= mapping_gfp_constraint(inode
->i_mapping
, ~__GFP_FS
) | gfp
;
976 * XXX: __getblk_slow() can not really deal with failure and
977 * will endlessly loop on improvised global reclaim. Prefer
978 * looping in the allocator rather than here, at least that
979 * code knows what it's doing.
981 gfp_mask
|= __GFP_NOFAIL
;
983 page
= find_or_create_page(inode
->i_mapping
, index
, gfp_mask
);
985 BUG_ON(!PageLocked(page
));
987 if (page_has_buffers(page
)) {
988 bh
= page_buffers(page
);
989 if (bh
->b_size
== size
) {
990 end_block
= init_page_buffers(page
, bdev
,
991 (sector_t
)index
<< sizebits
,
995 if (!try_to_free_buffers(page
))
1000 * Allocate some buffers for this page
1002 bh
= alloc_page_buffers(page
, size
, true);
1005 * Link the page to the buffers and initialise them. Take the
1006 * lock to be atomic wrt __find_get_block(), which does not
1007 * run under the page lock.
1009 spin_lock(&inode
->i_mapping
->private_lock
);
1010 link_dev_buffers(page
, bh
);
1011 end_block
= init_page_buffers(page
, bdev
, (sector_t
)index
<< sizebits
,
1013 spin_unlock(&inode
->i_mapping
->private_lock
);
1015 ret
= (block
< end_block
) ? 1 : -ENXIO
;
1023 * Create buffers for the specified block device block's page. If
1024 * that page was dirty, the buffers are set dirty also.
1027 grow_buffers(struct block_device
*bdev
, sector_t block
, int size
, gfp_t gfp
)
1035 } while ((size
<< sizebits
) < PAGE_SIZE
);
1037 index
= block
>> sizebits
;
1040 * Check for a block which wants to lie outside our maximum possible
1041 * pagecache index. (this comparison is done using sector_t types).
1043 if (unlikely(index
!= block
>> sizebits
)) {
1044 printk(KERN_ERR
"%s: requested out-of-range block %llu for "
1046 __func__
, (unsigned long long)block
,
1051 /* Create a page with the proper size buffers.. */
1052 return grow_dev_page(bdev
, block
, index
, size
, sizebits
, gfp
);
1055 static struct buffer_head
*
1056 __getblk_slow(struct block_device
*bdev
, sector_t block
,
1057 unsigned size
, gfp_t gfp
)
1059 /* Size must be multiple of hard sectorsize */
1060 if (unlikely(size
& (bdev_logical_block_size(bdev
)-1) ||
1061 (size
< 512 || size
> PAGE_SIZE
))) {
1062 printk(KERN_ERR
"getblk(): invalid block size %d requested\n",
1064 printk(KERN_ERR
"logical block size: %d\n",
1065 bdev_logical_block_size(bdev
));
1072 struct buffer_head
*bh
;
1075 bh
= __find_get_block(bdev
, block
, size
);
1079 ret
= grow_buffers(bdev
, block
, size
, gfp
);
1086 * The relationship between dirty buffers and dirty pages:
1088 * Whenever a page has any dirty buffers, the page's dirty bit is set, and
1089 * the page is tagged dirty in the page cache.
1091 * At all times, the dirtiness of the buffers represents the dirtiness of
1092 * subsections of the page. If the page has buffers, the page dirty bit is
1093 * merely a hint about the true dirty state.
1095 * When a page is set dirty in its entirety, all its buffers are marked dirty
1096 * (if the page has buffers).
1098 * When a buffer is marked dirty, its page is dirtied, but the page's other
1101 * Also. When blockdev buffers are explicitly read with bread(), they
1102 * individually become uptodate. But their backing page remains not
1103 * uptodate - even if all of its buffers are uptodate. A subsequent
1104 * block_read_full_page() against that page will discover all the uptodate
1105 * buffers, will set the page uptodate and will perform no I/O.
1109 * mark_buffer_dirty - mark a buffer_head as needing writeout
1110 * @bh: the buffer_head to mark dirty
1112 * mark_buffer_dirty() will set the dirty bit against the buffer, then set
1113 * its backing page dirty, then tag the page as dirty in the page cache
1114 * and then attach the address_space's inode to its superblock's dirty
1117 * mark_buffer_dirty() is atomic. It takes bh->b_page->mapping->private_lock,
1118 * i_pages lock and mapping->host->i_lock.
1120 void mark_buffer_dirty(struct buffer_head
*bh
)
1122 WARN_ON_ONCE(!buffer_uptodate(bh
));
1124 trace_block_dirty_buffer(bh
);
1127 * Very *carefully* optimize the it-is-already-dirty case.
1129 * Don't let the final "is it dirty" escape to before we
1130 * perhaps modified the buffer.
1132 if (buffer_dirty(bh
)) {
1134 if (buffer_dirty(bh
))
1138 if (!test_set_buffer_dirty(bh
)) {
1139 struct page
*page
= bh
->b_page
;
1140 struct address_space
*mapping
= NULL
;
1142 lock_page_memcg(page
);
1143 if (!TestSetPageDirty(page
)) {
1144 mapping
= page_mapping(page
);
1146 __set_page_dirty(page
, mapping
, 0);
1148 unlock_page_memcg(page
);
1150 __mark_inode_dirty(mapping
->host
, I_DIRTY_PAGES
);
1153 EXPORT_SYMBOL(mark_buffer_dirty
);
1155 void mark_buffer_write_io_error(struct buffer_head
*bh
)
1157 set_buffer_write_io_error(bh
);
1158 /* FIXME: do we need to set this in both places? */
1159 if (bh
->b_page
&& bh
->b_page
->mapping
)
1160 mapping_set_error(bh
->b_page
->mapping
, -EIO
);
1161 if (bh
->b_assoc_map
)
1162 mapping_set_error(bh
->b_assoc_map
, -EIO
);
1164 EXPORT_SYMBOL(mark_buffer_write_io_error
);
1167 * Decrement a buffer_head's reference count. If all buffers against a page
1168 * have zero reference count, are clean and unlocked, and if the page is clean
1169 * and unlocked then try_to_free_buffers() may strip the buffers from the page
1170 * in preparation for freeing it (sometimes, rarely, buffers are removed from
1171 * a page but it ends up not being freed, and buffers may later be reattached).
1173 void __brelse(struct buffer_head
* buf
)
1175 if (atomic_read(&buf
->b_count
)) {
1179 WARN(1, KERN_ERR
"VFS: brelse: Trying to free free buffer\n");
1181 EXPORT_SYMBOL(__brelse
);
1184 * bforget() is like brelse(), except it discards any
1185 * potentially dirty data.
1187 void __bforget(struct buffer_head
*bh
)
1189 clear_buffer_dirty(bh
);
1190 if (bh
->b_assoc_map
) {
1191 struct address_space
*buffer_mapping
= bh
->b_page
->mapping
;
1193 spin_lock(&buffer_mapping
->private_lock
);
1194 list_del_init(&bh
->b_assoc_buffers
);
1195 bh
->b_assoc_map
= NULL
;
1196 spin_unlock(&buffer_mapping
->private_lock
);
1200 EXPORT_SYMBOL(__bforget
);
1202 static struct buffer_head
*__bread_slow(struct buffer_head
*bh
)
1205 if (buffer_uptodate(bh
)) {
1210 bh
->b_end_io
= end_buffer_read_sync
;
1211 submit_bh(REQ_OP_READ
, 0, bh
);
1213 if (buffer_uptodate(bh
))
1221 * Per-cpu buffer LRU implementation. To reduce the cost of __find_get_block().
1222 * The bhs[] array is sorted - newest buffer is at bhs[0]. Buffers have their
1223 * refcount elevated by one when they're in an LRU. A buffer can only appear
1224 * once in a particular CPU's LRU. A single buffer can be present in multiple
1225 * CPU's LRUs at the same time.
1227 * This is a transparent caching front-end to sb_bread(), sb_getblk() and
1228 * sb_find_get_block().
1230 * The LRUs themselves only need locking against invalidate_bh_lrus. We use
1231 * a local interrupt disable for that.
1234 #define BH_LRU_SIZE 16
1237 struct buffer_head
*bhs
[BH_LRU_SIZE
];
1240 static DEFINE_PER_CPU(struct bh_lru
, bh_lrus
) = {{ NULL
}};
1243 #define bh_lru_lock() local_irq_disable()
1244 #define bh_lru_unlock() local_irq_enable()
1246 #define bh_lru_lock() preempt_disable()
1247 #define bh_lru_unlock() preempt_enable()
1250 static inline void check_irqs_on(void)
1252 #ifdef irqs_disabled
1253 BUG_ON(irqs_disabled());
1258 * Install a buffer_head into this cpu's LRU. If not already in the LRU, it is
1259 * inserted at the front, and the buffer_head at the back if any is evicted.
1260 * Or, if already in the LRU it is moved to the front.
1262 static void bh_lru_install(struct buffer_head
*bh
)
1264 struct buffer_head
*evictee
= bh
;
1271 b
= this_cpu_ptr(&bh_lrus
);
1272 for (i
= 0; i
< BH_LRU_SIZE
; i
++) {
1273 swap(evictee
, b
->bhs
[i
]);
1274 if (evictee
== bh
) {
1286 * Look up the bh in this cpu's LRU. If it's there, move it to the head.
1288 static struct buffer_head
*
1289 lookup_bh_lru(struct block_device
*bdev
, sector_t block
, unsigned size
)
1291 struct buffer_head
*ret
= NULL
;
1296 for (i
= 0; i
< BH_LRU_SIZE
; i
++) {
1297 struct buffer_head
*bh
= __this_cpu_read(bh_lrus
.bhs
[i
]);
1299 if (bh
&& bh
->b_blocknr
== block
&& bh
->b_bdev
== bdev
&&
1300 bh
->b_size
== size
) {
1303 __this_cpu_write(bh_lrus
.bhs
[i
],
1304 __this_cpu_read(bh_lrus
.bhs
[i
- 1]));
1307 __this_cpu_write(bh_lrus
.bhs
[0], bh
);
1319 * Perform a pagecache lookup for the matching buffer. If it's there, refresh
1320 * it in the LRU and mark it as accessed. If it is not present then return
1323 struct buffer_head
*
1324 __find_get_block(struct block_device
*bdev
, sector_t block
, unsigned size
)
1326 struct buffer_head
*bh
= lookup_bh_lru(bdev
, block
, size
);
1329 /* __find_get_block_slow will mark the page accessed */
1330 bh
= __find_get_block_slow(bdev
, block
);
1338 EXPORT_SYMBOL(__find_get_block
);
1341 * __getblk_gfp() will locate (and, if necessary, create) the buffer_head
1342 * which corresponds to the passed block_device, block and size. The
1343 * returned buffer has its reference count incremented.
1345 * __getblk_gfp() will lock up the machine if grow_dev_page's
1346 * try_to_free_buffers() attempt is failing. FIXME, perhaps?
1348 struct buffer_head
*
1349 __getblk_gfp(struct block_device
*bdev
, sector_t block
,
1350 unsigned size
, gfp_t gfp
)
1352 struct buffer_head
*bh
= __find_get_block(bdev
, block
, size
);
1356 bh
= __getblk_slow(bdev
, block
, size
, gfp
);
1359 EXPORT_SYMBOL(__getblk_gfp
);
1362 * Do async read-ahead on a buffer..
1364 void __breadahead(struct block_device
*bdev
, sector_t block
, unsigned size
)
1366 struct buffer_head
*bh
= __getblk(bdev
, block
, size
);
1368 ll_rw_block(REQ_OP_READ
, REQ_RAHEAD
, 1, &bh
);
1372 EXPORT_SYMBOL(__breadahead
);
1374 void __breadahead_gfp(struct block_device
*bdev
, sector_t block
, unsigned size
,
1377 struct buffer_head
*bh
= __getblk_gfp(bdev
, block
, size
, gfp
);
1379 ll_rw_block(REQ_OP_READ
, REQ_RAHEAD
, 1, &bh
);
1383 EXPORT_SYMBOL(__breadahead_gfp
);
1386 * __bread_gfp() - reads a specified block and returns the bh
1387 * @bdev: the block_device to read from
1388 * @block: number of block
1389 * @size: size (in bytes) to read
1390 * @gfp: page allocation flag
1392 * Reads a specified block, and returns buffer head that contains it.
1393 * The page cache can be allocated from non-movable area
1394 * not to prevent page migration if you set gfp to zero.
1395 * It returns NULL if the block was unreadable.
1397 struct buffer_head
*
1398 __bread_gfp(struct block_device
*bdev
, sector_t block
,
1399 unsigned size
, gfp_t gfp
)
1401 struct buffer_head
*bh
= __getblk_gfp(bdev
, block
, size
, gfp
);
1403 if (likely(bh
) && !buffer_uptodate(bh
))
1404 bh
= __bread_slow(bh
);
1407 EXPORT_SYMBOL(__bread_gfp
);
1410 * invalidate_bh_lrus() is called rarely - but not only at unmount.
1411 * This doesn't race because it runs in each cpu either in irq
1412 * or with preempt disabled.
1414 static void invalidate_bh_lru(void *arg
)
1416 struct bh_lru
*b
= &get_cpu_var(bh_lrus
);
1419 for (i
= 0; i
< BH_LRU_SIZE
; i
++) {
1423 put_cpu_var(bh_lrus
);
1426 static bool has_bh_in_lru(int cpu
, void *dummy
)
1428 struct bh_lru
*b
= per_cpu_ptr(&bh_lrus
, cpu
);
1431 for (i
= 0; i
< BH_LRU_SIZE
; i
++) {
1439 void invalidate_bh_lrus(void)
1441 on_each_cpu_cond(has_bh_in_lru
, invalidate_bh_lru
, NULL
, 1);
1443 EXPORT_SYMBOL_GPL(invalidate_bh_lrus
);
1445 void set_bh_page(struct buffer_head
*bh
,
1446 struct page
*page
, unsigned long offset
)
1449 BUG_ON(offset
>= PAGE_SIZE
);
1450 if (PageHighMem(page
))
1452 * This catches illegal uses and preserves the offset:
1454 bh
->b_data
= (char *)(0 + offset
);
1456 bh
->b_data
= page_address(page
) + offset
;
1458 EXPORT_SYMBOL(set_bh_page
);
1461 * Called when truncating a buffer on a page completely.
1464 /* Bits that are cleared during an invalidate */
1465 #define BUFFER_FLAGS_DISCARD \
1466 (1 << BH_Mapped | 1 << BH_New | 1 << BH_Req | \
1467 1 << BH_Delay | 1 << BH_Unwritten)
1469 static void discard_buffer(struct buffer_head
* bh
)
1471 unsigned long b_state
, b_state_old
;
1474 clear_buffer_dirty(bh
);
1476 b_state
= bh
->b_state
;
1478 b_state_old
= cmpxchg(&bh
->b_state
, b_state
,
1479 (b_state
& ~BUFFER_FLAGS_DISCARD
));
1480 if (b_state_old
== b_state
)
1482 b_state
= b_state_old
;
1488 * block_invalidatepage - invalidate part or all of a buffer-backed page
1490 * @page: the page which is affected
1491 * @offset: start of the range to invalidate
1492 * @length: length of the range to invalidate
1494 * block_invalidatepage() is called when all or part of the page has become
1495 * invalidated by a truncate operation.
1497 * block_invalidatepage() does not have to release all buffers, but it must
1498 * ensure that no dirty buffer is left outside @offset and that no I/O
1499 * is underway against any of the blocks which are outside the truncation
1500 * point. Because the caller is about to free (and possibly reuse) those
1503 void block_invalidatepage(struct page
*page
, unsigned int offset
,
1504 unsigned int length
)
1506 struct buffer_head
*head
, *bh
, *next
;
1507 unsigned int curr_off
= 0;
1508 unsigned int stop
= length
+ offset
;
1510 BUG_ON(!PageLocked(page
));
1511 if (!page_has_buffers(page
))
1515 * Check for overflow
1517 BUG_ON(stop
> PAGE_SIZE
|| stop
< length
);
1519 head
= page_buffers(page
);
1522 unsigned int next_off
= curr_off
+ bh
->b_size
;
1523 next
= bh
->b_this_page
;
1526 * Are we still fully in range ?
1528 if (next_off
> stop
)
1532 * is this block fully invalidated?
1534 if (offset
<= curr_off
)
1536 curr_off
= next_off
;
1538 } while (bh
!= head
);
1541 * We release buffers only if the entire page is being invalidated.
1542 * The get_block cached value has been unconditionally invalidated,
1543 * so real IO is not possible anymore.
1545 if (length
== PAGE_SIZE
)
1546 try_to_release_page(page
, 0);
1550 EXPORT_SYMBOL(block_invalidatepage
);
1554 * We attach and possibly dirty the buffers atomically wrt
1555 * __set_page_dirty_buffers() via private_lock. try_to_free_buffers
1556 * is already excluded via the page lock.
1558 void create_empty_buffers(struct page
*page
,
1559 unsigned long blocksize
, unsigned long b_state
)
1561 struct buffer_head
*bh
, *head
, *tail
;
1563 head
= alloc_page_buffers(page
, blocksize
, true);
1566 bh
->b_state
|= b_state
;
1568 bh
= bh
->b_this_page
;
1570 tail
->b_this_page
= head
;
1572 spin_lock(&page
->mapping
->private_lock
);
1573 if (PageUptodate(page
) || PageDirty(page
)) {
1576 if (PageDirty(page
))
1577 set_buffer_dirty(bh
);
1578 if (PageUptodate(page
))
1579 set_buffer_uptodate(bh
);
1580 bh
= bh
->b_this_page
;
1581 } while (bh
!= head
);
1583 attach_page_buffers(page
, head
);
1584 spin_unlock(&page
->mapping
->private_lock
);
1586 EXPORT_SYMBOL(create_empty_buffers
);
1589 * clean_bdev_aliases: clean a range of buffers in block device
1590 * @bdev: Block device to clean buffers in
1591 * @block: Start of a range of blocks to clean
1592 * @len: Number of blocks to clean
1594 * We are taking a range of blocks for data and we don't want writeback of any
1595 * buffer-cache aliases starting from return from this function and until the
1596 * moment when something will explicitly mark the buffer dirty (hopefully that
1597 * will not happen until we will free that block ;-) We don't even need to mark
1598 * it not-uptodate - nobody can expect anything from a newly allocated buffer
1599 * anyway. We used to use unmap_buffer() for such invalidation, but that was
1600 * wrong. We definitely don't want to mark the alias unmapped, for example - it
1601 * would confuse anyone who might pick it with bread() afterwards...
1603 * Also.. Note that bforget() doesn't lock the buffer. So there can be
1604 * writeout I/O going on against recently-freed buffers. We don't wait on that
1605 * I/O in bforget() - it's more efficient to wait on the I/O only if we really
1606 * need to. That happens here.
1608 void clean_bdev_aliases(struct block_device
*bdev
, sector_t block
, sector_t len
)
1610 struct inode
*bd_inode
= bdev
->bd_inode
;
1611 struct address_space
*bd_mapping
= bd_inode
->i_mapping
;
1612 struct pagevec pvec
;
1613 pgoff_t index
= block
>> (PAGE_SHIFT
- bd_inode
->i_blkbits
);
1616 struct buffer_head
*bh
;
1617 struct buffer_head
*head
;
1619 end
= (block
+ len
- 1) >> (PAGE_SHIFT
- bd_inode
->i_blkbits
);
1620 pagevec_init(&pvec
);
1621 while (pagevec_lookup_range(&pvec
, bd_mapping
, &index
, end
)) {
1622 count
= pagevec_count(&pvec
);
1623 for (i
= 0; i
< count
; i
++) {
1624 struct page
*page
= pvec
.pages
[i
];
1626 if (!page_has_buffers(page
))
1629 * We use page lock instead of bd_mapping->private_lock
1630 * to pin buffers here since we can afford to sleep and
1631 * it scales better than a global spinlock lock.
1634 /* Recheck when the page is locked which pins bhs */
1635 if (!page_has_buffers(page
))
1637 head
= page_buffers(page
);
1640 if (!buffer_mapped(bh
) || (bh
->b_blocknr
< block
))
1642 if (bh
->b_blocknr
>= block
+ len
)
1644 clear_buffer_dirty(bh
);
1646 clear_buffer_req(bh
);
1648 bh
= bh
->b_this_page
;
1649 } while (bh
!= head
);
1653 pagevec_release(&pvec
);
1655 /* End of range already reached? */
1656 if (index
> end
|| !index
)
1660 EXPORT_SYMBOL(clean_bdev_aliases
);
1663 * Size is a power-of-two in the range 512..PAGE_SIZE,
1664 * and the case we care about most is PAGE_SIZE.
1666 * So this *could* possibly be written with those
1667 * constraints in mind (relevant mostly if some
1668 * architecture has a slow bit-scan instruction)
1670 static inline int block_size_bits(unsigned int blocksize
)
1672 return ilog2(blocksize
);
1675 static struct buffer_head
*create_page_buffers(struct page
*page
, struct inode
*inode
, unsigned int b_state
)
1677 BUG_ON(!PageLocked(page
));
1679 if (!page_has_buffers(page
))
1680 create_empty_buffers(page
, 1 << READ_ONCE(inode
->i_blkbits
),
1682 return page_buffers(page
);
1686 * NOTE! All mapped/uptodate combinations are valid:
1688 * Mapped Uptodate Meaning
1690 * No No "unknown" - must do get_block()
1691 * No Yes "hole" - zero-filled
1692 * Yes No "allocated" - allocated on disk, not read in
1693 * Yes Yes "valid" - allocated and up-to-date in memory.
1695 * "Dirty" is valid only with the last case (mapped+uptodate).
1699 * While block_write_full_page is writing back the dirty buffers under
1700 * the page lock, whoever dirtied the buffers may decide to clean them
1701 * again at any time. We handle that by only looking at the buffer
1702 * state inside lock_buffer().
1704 * If block_write_full_page() is called for regular writeback
1705 * (wbc->sync_mode == WB_SYNC_NONE) then it will redirty a page which has a
1706 * locked buffer. This only can happen if someone has written the buffer
1707 * directly, with submit_bh(). At the address_space level PageWriteback
1708 * prevents this contention from occurring.
1710 * If block_write_full_page() is called with wbc->sync_mode ==
1711 * WB_SYNC_ALL, the writes are posted using REQ_SYNC; this
1712 * causes the writes to be flagged as synchronous writes.
1714 int __block_write_full_page(struct inode
*inode
, struct page
*page
,
1715 get_block_t
*get_block
, struct writeback_control
*wbc
,
1716 bh_end_io_t
*handler
)
1720 sector_t last_block
;
1721 struct buffer_head
*bh
, *head
;
1722 unsigned int blocksize
, bbits
;
1723 int nr_underway
= 0;
1724 int write_flags
= wbc_to_write_flags(wbc
);
1726 head
= create_page_buffers(page
, inode
,
1727 (1 << BH_Dirty
)|(1 << BH_Uptodate
));
1730 * Be very careful. We have no exclusion from __set_page_dirty_buffers
1731 * here, and the (potentially unmapped) buffers may become dirty at
1732 * any time. If a buffer becomes dirty here after we've inspected it
1733 * then we just miss that fact, and the page stays dirty.
1735 * Buffers outside i_size may be dirtied by __set_page_dirty_buffers;
1736 * handle that here by just cleaning them.
1740 blocksize
= bh
->b_size
;
1741 bbits
= block_size_bits(blocksize
);
1743 block
= (sector_t
)page
->index
<< (PAGE_SHIFT
- bbits
);
1744 last_block
= (i_size_read(inode
) - 1) >> bbits
;
1747 * Get all the dirty buffers mapped to disk addresses and
1748 * handle any aliases from the underlying blockdev's mapping.
1751 if (block
> last_block
) {
1753 * mapped buffers outside i_size will occur, because
1754 * this page can be outside i_size when there is a
1755 * truncate in progress.
1758 * The buffer was zeroed by block_write_full_page()
1760 clear_buffer_dirty(bh
);
1761 set_buffer_uptodate(bh
);
1762 } else if ((!buffer_mapped(bh
) || buffer_delay(bh
)) &&
1764 WARN_ON(bh
->b_size
!= blocksize
);
1765 err
= get_block(inode
, block
, bh
, 1);
1768 clear_buffer_delay(bh
);
1769 if (buffer_new(bh
)) {
1770 /* blockdev mappings never come here */
1771 clear_buffer_new(bh
);
1772 clean_bdev_bh_alias(bh
);
1775 bh
= bh
->b_this_page
;
1777 } while (bh
!= head
);
1780 if (!buffer_mapped(bh
))
1783 * If it's a fully non-blocking write attempt and we cannot
1784 * lock the buffer then redirty the page. Note that this can
1785 * potentially cause a busy-wait loop from writeback threads
1786 * and kswapd activity, but those code paths have their own
1787 * higher-level throttling.
1789 if (wbc
->sync_mode
!= WB_SYNC_NONE
) {
1791 } else if (!trylock_buffer(bh
)) {
1792 redirty_page_for_writepage(wbc
, page
);
1795 if (test_clear_buffer_dirty(bh
)) {
1796 mark_buffer_async_write_endio(bh
, handler
);
1800 } while ((bh
= bh
->b_this_page
) != head
);
1803 * The page and its buffers are protected by PageWriteback(), so we can
1804 * drop the bh refcounts early.
1806 BUG_ON(PageWriteback(page
));
1807 set_page_writeback(page
);
1810 struct buffer_head
*next
= bh
->b_this_page
;
1811 if (buffer_async_write(bh
)) {
1812 submit_bh_wbc(REQ_OP_WRITE
, write_flags
, bh
,
1813 inode
->i_write_hint
, wbc
);
1817 } while (bh
!= head
);
1822 if (nr_underway
== 0) {
1824 * The page was marked dirty, but the buffers were
1825 * clean. Someone wrote them back by hand with
1826 * ll_rw_block/submit_bh. A rare case.
1828 end_page_writeback(page
);
1831 * The page and buffer_heads can be released at any time from
1839 * ENOSPC, or some other error. We may already have added some
1840 * blocks to the file, so we need to write these out to avoid
1841 * exposing stale data.
1842 * The page is currently locked and not marked for writeback
1845 /* Recovery: lock and submit the mapped buffers */
1847 if (buffer_mapped(bh
) && buffer_dirty(bh
) &&
1848 !buffer_delay(bh
)) {
1850 mark_buffer_async_write_endio(bh
, handler
);
1853 * The buffer may have been set dirty during
1854 * attachment to a dirty page.
1856 clear_buffer_dirty(bh
);
1858 } while ((bh
= bh
->b_this_page
) != head
);
1860 BUG_ON(PageWriteback(page
));
1861 mapping_set_error(page
->mapping
, err
);
1862 set_page_writeback(page
);
1864 struct buffer_head
*next
= bh
->b_this_page
;
1865 if (buffer_async_write(bh
)) {
1866 clear_buffer_dirty(bh
);
1867 submit_bh_wbc(REQ_OP_WRITE
, write_flags
, bh
,
1868 inode
->i_write_hint
, wbc
);
1872 } while (bh
!= head
);
1876 EXPORT_SYMBOL(__block_write_full_page
);
1879 * If a page has any new buffers, zero them out here, and mark them uptodate
1880 * and dirty so they'll be written out (in order to prevent uninitialised
1881 * block data from leaking). And clear the new bit.
1883 void page_zero_new_buffers(struct page
*page
, unsigned from
, unsigned to
)
1885 unsigned int block_start
, block_end
;
1886 struct buffer_head
*head
, *bh
;
1888 BUG_ON(!PageLocked(page
));
1889 if (!page_has_buffers(page
))
1892 bh
= head
= page_buffers(page
);
1895 block_end
= block_start
+ bh
->b_size
;
1897 if (buffer_new(bh
)) {
1898 if (block_end
> from
&& block_start
< to
) {
1899 if (!PageUptodate(page
)) {
1900 unsigned start
, size
;
1902 start
= max(from
, block_start
);
1903 size
= min(to
, block_end
) - start
;
1905 zero_user(page
, start
, size
);
1906 set_buffer_uptodate(bh
);
1909 clear_buffer_new(bh
);
1910 mark_buffer_dirty(bh
);
1914 block_start
= block_end
;
1915 bh
= bh
->b_this_page
;
1916 } while (bh
!= head
);
1918 EXPORT_SYMBOL(page_zero_new_buffers
);
1921 iomap_to_bh(struct inode
*inode
, sector_t block
, struct buffer_head
*bh
,
1922 struct iomap
*iomap
)
1924 loff_t offset
= block
<< inode
->i_blkbits
;
1926 bh
->b_bdev
= iomap
->bdev
;
1929 * Block points to offset in file we need to map, iomap contains
1930 * the offset at which the map starts. If the map ends before the
1931 * current block, then do not map the buffer and let the caller
1934 BUG_ON(offset
>= iomap
->offset
+ iomap
->length
);
1936 switch (iomap
->type
) {
1939 * If the buffer is not up to date or beyond the current EOF,
1940 * we need to mark it as new to ensure sub-block zeroing is
1941 * executed if necessary.
1943 if (!buffer_uptodate(bh
) ||
1944 (offset
>= i_size_read(inode
)))
1947 case IOMAP_DELALLOC
:
1948 if (!buffer_uptodate(bh
) ||
1949 (offset
>= i_size_read(inode
)))
1951 set_buffer_uptodate(bh
);
1952 set_buffer_mapped(bh
);
1953 set_buffer_delay(bh
);
1955 case IOMAP_UNWRITTEN
:
1957 * For unwritten regions, we always need to ensure that regions
1958 * in the block we are not writing to are zeroed. Mark the
1959 * buffer as new to ensure this.
1962 set_buffer_unwritten(bh
);
1965 if ((iomap
->flags
& IOMAP_F_NEW
) ||
1966 offset
>= i_size_read(inode
))
1968 bh
->b_blocknr
= (iomap
->addr
+ offset
- iomap
->offset
) >>
1970 set_buffer_mapped(bh
);
1975 int __block_write_begin_int(struct page
*page
, loff_t pos
, unsigned len
,
1976 get_block_t
*get_block
, struct iomap
*iomap
)
1978 unsigned from
= pos
& (PAGE_SIZE
- 1);
1979 unsigned to
= from
+ len
;
1980 struct inode
*inode
= page
->mapping
->host
;
1981 unsigned block_start
, block_end
;
1984 unsigned blocksize
, bbits
;
1985 struct buffer_head
*bh
, *head
, *wait
[2], **wait_bh
=wait
;
1987 BUG_ON(!PageLocked(page
));
1988 BUG_ON(from
> PAGE_SIZE
);
1989 BUG_ON(to
> PAGE_SIZE
);
1992 head
= create_page_buffers(page
, inode
, 0);
1993 blocksize
= head
->b_size
;
1994 bbits
= block_size_bits(blocksize
);
1996 block
= (sector_t
)page
->index
<< (PAGE_SHIFT
- bbits
);
1998 for(bh
= head
, block_start
= 0; bh
!= head
|| !block_start
;
1999 block
++, block_start
=block_end
, bh
= bh
->b_this_page
) {
2000 block_end
= block_start
+ blocksize
;
2001 if (block_end
<= from
|| block_start
>= to
) {
2002 if (PageUptodate(page
)) {
2003 if (!buffer_uptodate(bh
))
2004 set_buffer_uptodate(bh
);
2009 clear_buffer_new(bh
);
2010 if (!buffer_mapped(bh
)) {
2011 WARN_ON(bh
->b_size
!= blocksize
);
2013 err
= get_block(inode
, block
, bh
, 1);
2017 iomap_to_bh(inode
, block
, bh
, iomap
);
2020 if (buffer_new(bh
)) {
2021 clean_bdev_bh_alias(bh
);
2022 if (PageUptodate(page
)) {
2023 clear_buffer_new(bh
);
2024 set_buffer_uptodate(bh
);
2025 mark_buffer_dirty(bh
);
2028 if (block_end
> to
|| block_start
< from
)
2029 zero_user_segments(page
,
2035 if (PageUptodate(page
)) {
2036 if (!buffer_uptodate(bh
))
2037 set_buffer_uptodate(bh
);
2040 if (!buffer_uptodate(bh
) && !buffer_delay(bh
) &&
2041 !buffer_unwritten(bh
) &&
2042 (block_start
< from
|| block_end
> to
)) {
2043 ll_rw_block(REQ_OP_READ
, 0, 1, &bh
);
2048 * If we issued read requests - let them complete.
2050 while(wait_bh
> wait
) {
2051 wait_on_buffer(*--wait_bh
);
2052 if (!buffer_uptodate(*wait_bh
))
2056 page_zero_new_buffers(page
, from
, to
);
2060 int __block_write_begin(struct page
*page
, loff_t pos
, unsigned len
,
2061 get_block_t
*get_block
)
2063 return __block_write_begin_int(page
, pos
, len
, get_block
, NULL
);
2065 EXPORT_SYMBOL(__block_write_begin
);
2067 static int __block_commit_write(struct inode
*inode
, struct page
*page
,
2068 unsigned from
, unsigned to
)
2070 unsigned block_start
, block_end
;
2073 struct buffer_head
*bh
, *head
;
2075 bh
= head
= page_buffers(page
);
2076 blocksize
= bh
->b_size
;
2080 block_end
= block_start
+ blocksize
;
2081 if (block_end
<= from
|| block_start
>= to
) {
2082 if (!buffer_uptodate(bh
))
2085 set_buffer_uptodate(bh
);
2086 mark_buffer_dirty(bh
);
2088 clear_buffer_new(bh
);
2090 block_start
= block_end
;
2091 bh
= bh
->b_this_page
;
2092 } while (bh
!= head
);
2095 * If this is a partial write which happened to make all buffers
2096 * uptodate then we can optimize away a bogus readpage() for
2097 * the next read(). Here we 'discover' whether the page went
2098 * uptodate as a result of this (potentially partial) write.
2101 SetPageUptodate(page
);
2106 * block_write_begin takes care of the basic task of block allocation and
2107 * bringing partial write blocks uptodate first.
2109 * The filesystem needs to handle block truncation upon failure.
2111 int block_write_begin(struct address_space
*mapping
, loff_t pos
, unsigned len
,
2112 unsigned flags
, struct page
**pagep
, get_block_t
*get_block
)
2114 pgoff_t index
= pos
>> PAGE_SHIFT
;
2118 page
= grab_cache_page_write_begin(mapping
, index
, flags
);
2122 status
= __block_write_begin(page
, pos
, len
, get_block
);
2123 if (unlikely(status
)) {
2132 EXPORT_SYMBOL(block_write_begin
);
2134 int block_write_end(struct file
*file
, struct address_space
*mapping
,
2135 loff_t pos
, unsigned len
, unsigned copied
,
2136 struct page
*page
, void *fsdata
)
2138 struct inode
*inode
= mapping
->host
;
2141 start
= pos
& (PAGE_SIZE
- 1);
2143 if (unlikely(copied
< len
)) {
2145 * The buffers that were written will now be uptodate, so we
2146 * don't have to worry about a readpage reading them and
2147 * overwriting a partial write. However if we have encountered
2148 * a short write and only partially written into a buffer, it
2149 * will not be marked uptodate, so a readpage might come in and
2150 * destroy our partial write.
2152 * Do the simplest thing, and just treat any short write to a
2153 * non uptodate page as a zero-length write, and force the
2154 * caller to redo the whole thing.
2156 if (!PageUptodate(page
))
2159 page_zero_new_buffers(page
, start
+copied
, start
+len
);
2161 flush_dcache_page(page
);
2163 /* This could be a short (even 0-length) commit */
2164 __block_commit_write(inode
, page
, start
, start
+copied
);
2168 EXPORT_SYMBOL(block_write_end
);
2170 int generic_write_end(struct file
*file
, struct address_space
*mapping
,
2171 loff_t pos
, unsigned len
, unsigned copied
,
2172 struct page
*page
, void *fsdata
)
2174 struct inode
*inode
= mapping
->host
;
2175 loff_t old_size
= inode
->i_size
;
2176 bool i_size_changed
= false;
2178 copied
= block_write_end(file
, mapping
, pos
, len
, copied
, page
, fsdata
);
2181 * No need to use i_size_read() here, the i_size cannot change under us
2182 * because we hold i_rwsem.
2184 * But it's important to update i_size while still holding page lock:
2185 * page writeout could otherwise come in and zero beyond i_size.
2187 if (pos
+ copied
> inode
->i_size
) {
2188 i_size_write(inode
, pos
+ copied
);
2189 i_size_changed
= true;
2196 pagecache_isize_extended(inode
, old_size
, pos
);
2198 * Don't mark the inode dirty under page lock. First, it unnecessarily
2199 * makes the holding time of page lock longer. Second, it forces lock
2200 * ordering of page lock and transaction start for journaling
2204 mark_inode_dirty(inode
);
2207 EXPORT_SYMBOL(generic_write_end
);
2210 * block_is_partially_uptodate checks whether buffers within a page are
2213 * Returns true if all buffers which correspond to a file portion
2214 * we want to read are uptodate.
2216 int block_is_partially_uptodate(struct page
*page
, unsigned long from
,
2217 unsigned long count
)
2219 unsigned block_start
, block_end
, blocksize
;
2221 struct buffer_head
*bh
, *head
;
2224 if (!page_has_buffers(page
))
2227 head
= page_buffers(page
);
2228 blocksize
= head
->b_size
;
2229 to
= min_t(unsigned, PAGE_SIZE
- from
, count
);
2231 if (from
< blocksize
&& to
> PAGE_SIZE
- blocksize
)
2237 block_end
= block_start
+ blocksize
;
2238 if (block_end
> from
&& block_start
< to
) {
2239 if (!buffer_uptodate(bh
)) {
2243 if (block_end
>= to
)
2246 block_start
= block_end
;
2247 bh
= bh
->b_this_page
;
2248 } while (bh
!= head
);
2252 EXPORT_SYMBOL(block_is_partially_uptodate
);
2255 * Generic "read page" function for block devices that have the normal
2256 * get_block functionality. This is most of the block device filesystems.
2257 * Reads the page asynchronously --- the unlock_buffer() and
2258 * set/clear_buffer_uptodate() functions propagate buffer state into the
2259 * page struct once IO has completed.
2261 int block_read_full_page(struct page
*page
, get_block_t
*get_block
)
2263 struct inode
*inode
= page
->mapping
->host
;
2264 sector_t iblock
, lblock
;
2265 struct buffer_head
*bh
, *head
, *arr
[MAX_BUF_PER_PAGE
];
2266 unsigned int blocksize
, bbits
;
2268 int fully_mapped
= 1;
2270 head
= create_page_buffers(page
, inode
, 0);
2271 blocksize
= head
->b_size
;
2272 bbits
= block_size_bits(blocksize
);
2274 iblock
= (sector_t
)page
->index
<< (PAGE_SHIFT
- bbits
);
2275 lblock
= (i_size_read(inode
)+blocksize
-1) >> bbits
;
2281 if (buffer_uptodate(bh
))
2284 if (!buffer_mapped(bh
)) {
2288 if (iblock
< lblock
) {
2289 WARN_ON(bh
->b_size
!= blocksize
);
2290 err
= get_block(inode
, iblock
, bh
, 0);
2294 if (!buffer_mapped(bh
)) {
2295 zero_user(page
, i
* blocksize
, blocksize
);
2297 set_buffer_uptodate(bh
);
2301 * get_block() might have updated the buffer
2304 if (buffer_uptodate(bh
))
2308 } while (i
++, iblock
++, (bh
= bh
->b_this_page
) != head
);
2311 SetPageMappedToDisk(page
);
2315 * All buffers are uptodate - we can set the page uptodate
2316 * as well. But not if get_block() returned an error.
2318 if (!PageError(page
))
2319 SetPageUptodate(page
);
2324 /* Stage two: lock the buffers */
2325 for (i
= 0; i
< nr
; i
++) {
2328 mark_buffer_async_read(bh
);
2332 * Stage 3: start the IO. Check for uptodateness
2333 * inside the buffer lock in case another process reading
2334 * the underlying blockdev brought it uptodate (the sct fix).
2336 for (i
= 0; i
< nr
; i
++) {
2338 if (buffer_uptodate(bh
))
2339 end_buffer_async_read(bh
, 1);
2341 submit_bh(REQ_OP_READ
, 0, bh
);
2345 EXPORT_SYMBOL(block_read_full_page
);
2347 /* utility function for filesystems that need to do work on expanding
2348 * truncates. Uses filesystem pagecache writes to allow the filesystem to
2349 * deal with the hole.
2351 int generic_cont_expand_simple(struct inode
*inode
, loff_t size
)
2353 struct address_space
*mapping
= inode
->i_mapping
;
2358 err
= inode_newsize_ok(inode
, size
);
2362 err
= pagecache_write_begin(NULL
, mapping
, size
, 0,
2363 AOP_FLAG_CONT_EXPAND
, &page
, &fsdata
);
2367 err
= pagecache_write_end(NULL
, mapping
, size
, 0, 0, page
, fsdata
);
2373 EXPORT_SYMBOL(generic_cont_expand_simple
);
2375 static int cont_expand_zero(struct file
*file
, struct address_space
*mapping
,
2376 loff_t pos
, loff_t
*bytes
)
2378 struct inode
*inode
= mapping
->host
;
2379 unsigned int blocksize
= i_blocksize(inode
);
2382 pgoff_t index
, curidx
;
2384 unsigned zerofrom
, offset
, len
;
2387 index
= pos
>> PAGE_SHIFT
;
2388 offset
= pos
& ~PAGE_MASK
;
2390 while (index
> (curidx
= (curpos
= *bytes
)>>PAGE_SHIFT
)) {
2391 zerofrom
= curpos
& ~PAGE_MASK
;
2392 if (zerofrom
& (blocksize
-1)) {
2393 *bytes
|= (blocksize
-1);
2396 len
= PAGE_SIZE
- zerofrom
;
2398 err
= pagecache_write_begin(file
, mapping
, curpos
, len
, 0,
2402 zero_user(page
, zerofrom
, len
);
2403 err
= pagecache_write_end(file
, mapping
, curpos
, len
, len
,
2410 balance_dirty_pages_ratelimited(mapping
);
2412 if (fatal_signal_pending(current
)) {
2418 /* page covers the boundary, find the boundary offset */
2419 if (index
== curidx
) {
2420 zerofrom
= curpos
& ~PAGE_MASK
;
2421 /* if we will expand the thing last block will be filled */
2422 if (offset
<= zerofrom
) {
2425 if (zerofrom
& (blocksize
-1)) {
2426 *bytes
|= (blocksize
-1);
2429 len
= offset
- zerofrom
;
2431 err
= pagecache_write_begin(file
, mapping
, curpos
, len
, 0,
2435 zero_user(page
, zerofrom
, len
);
2436 err
= pagecache_write_end(file
, mapping
, curpos
, len
, len
,
2448 * For moronic filesystems that do not allow holes in file.
2449 * We may have to extend the file.
2451 int cont_write_begin(struct file
*file
, struct address_space
*mapping
,
2452 loff_t pos
, unsigned len
, unsigned flags
,
2453 struct page
**pagep
, void **fsdata
,
2454 get_block_t
*get_block
, loff_t
*bytes
)
2456 struct inode
*inode
= mapping
->host
;
2457 unsigned int blocksize
= i_blocksize(inode
);
2458 unsigned int zerofrom
;
2461 err
= cont_expand_zero(file
, mapping
, pos
, bytes
);
2465 zerofrom
= *bytes
& ~PAGE_MASK
;
2466 if (pos
+len
> *bytes
&& zerofrom
& (blocksize
-1)) {
2467 *bytes
|= (blocksize
-1);
2471 return block_write_begin(mapping
, pos
, len
, flags
, pagep
, get_block
);
2473 EXPORT_SYMBOL(cont_write_begin
);
2475 int block_commit_write(struct page
*page
, unsigned from
, unsigned to
)
2477 struct inode
*inode
= page
->mapping
->host
;
2478 __block_commit_write(inode
,page
,from
,to
);
2481 EXPORT_SYMBOL(block_commit_write
);
2484 * block_page_mkwrite() is not allowed to change the file size as it gets
2485 * called from a page fault handler when a page is first dirtied. Hence we must
2486 * be careful to check for EOF conditions here. We set the page up correctly
2487 * for a written page which means we get ENOSPC checking when writing into
2488 * holes and correct delalloc and unwritten extent mapping on filesystems that
2489 * support these features.
2491 * We are not allowed to take the i_mutex here so we have to play games to
2492 * protect against truncate races as the page could now be beyond EOF. Because
2493 * truncate writes the inode size before removing pages, once we have the
2494 * page lock we can determine safely if the page is beyond EOF. If it is not
2495 * beyond EOF, then the page is guaranteed safe against truncation until we
2498 * Direct callers of this function should protect against filesystem freezing
2499 * using sb_start_pagefault() - sb_end_pagefault() functions.
2501 int block_page_mkwrite(struct vm_area_struct
*vma
, struct vm_fault
*vmf
,
2502 get_block_t get_block
)
2504 struct page
*page
= vmf
->page
;
2505 struct inode
*inode
= file_inode(vma
->vm_file
);
2511 size
= i_size_read(inode
);
2512 if ((page
->mapping
!= inode
->i_mapping
) ||
2513 (page_offset(page
) > size
)) {
2514 /* We overload EFAULT to mean page got truncated */
2519 /* page is wholly or partially inside EOF */
2520 if (((page
->index
+ 1) << PAGE_SHIFT
) > size
)
2521 end
= size
& ~PAGE_MASK
;
2525 ret
= __block_write_begin(page
, 0, end
, get_block
);
2527 ret
= block_commit_write(page
, 0, end
);
2529 if (unlikely(ret
< 0))
2531 set_page_dirty(page
);
2532 wait_for_stable_page(page
);
2538 EXPORT_SYMBOL(block_page_mkwrite
);
2541 * nobh_write_begin()'s prereads are special: the buffer_heads are freed
2542 * immediately, while under the page lock. So it needs a special end_io
2543 * handler which does not touch the bh after unlocking it.
2545 static void end_buffer_read_nobh(struct buffer_head
*bh
, int uptodate
)
2547 __end_buffer_read_notouch(bh
, uptodate
);
2551 * Attach the singly-linked list of buffers created by nobh_write_begin, to
2552 * the page (converting it to circular linked list and taking care of page
2555 static void attach_nobh_buffers(struct page
*page
, struct buffer_head
*head
)
2557 struct buffer_head
*bh
;
2559 BUG_ON(!PageLocked(page
));
2561 spin_lock(&page
->mapping
->private_lock
);
2564 if (PageDirty(page
))
2565 set_buffer_dirty(bh
);
2566 if (!bh
->b_this_page
)
2567 bh
->b_this_page
= head
;
2568 bh
= bh
->b_this_page
;
2569 } while (bh
!= head
);
2570 attach_page_buffers(page
, head
);
2571 spin_unlock(&page
->mapping
->private_lock
);
2575 * On entry, the page is fully not uptodate.
2576 * On exit the page is fully uptodate in the areas outside (from,to)
2577 * The filesystem needs to handle block truncation upon failure.
2579 int nobh_write_begin(struct address_space
*mapping
,
2580 loff_t pos
, unsigned len
, unsigned flags
,
2581 struct page
**pagep
, void **fsdata
,
2582 get_block_t
*get_block
)
2584 struct inode
*inode
= mapping
->host
;
2585 const unsigned blkbits
= inode
->i_blkbits
;
2586 const unsigned blocksize
= 1 << blkbits
;
2587 struct buffer_head
*head
, *bh
;
2591 unsigned block_in_page
;
2592 unsigned block_start
, block_end
;
2593 sector_t block_in_file
;
2596 int is_mapped_to_disk
= 1;
2598 index
= pos
>> PAGE_SHIFT
;
2599 from
= pos
& (PAGE_SIZE
- 1);
2602 page
= grab_cache_page_write_begin(mapping
, index
, flags
);
2608 if (page_has_buffers(page
)) {
2609 ret
= __block_write_begin(page
, pos
, len
, get_block
);
2615 if (PageMappedToDisk(page
))
2619 * Allocate buffers so that we can keep track of state, and potentially
2620 * attach them to the page if an error occurs. In the common case of
2621 * no error, they will just be freed again without ever being attached
2622 * to the page (which is all OK, because we're under the page lock).
2624 * Be careful: the buffer linked list is a NULL terminated one, rather
2625 * than the circular one we're used to.
2627 head
= alloc_page_buffers(page
, blocksize
, false);
2633 block_in_file
= (sector_t
)page
->index
<< (PAGE_SHIFT
- blkbits
);
2636 * We loop across all blocks in the page, whether or not they are
2637 * part of the affected region. This is so we can discover if the
2638 * page is fully mapped-to-disk.
2640 for (block_start
= 0, block_in_page
= 0, bh
= head
;
2641 block_start
< PAGE_SIZE
;
2642 block_in_page
++, block_start
+= blocksize
, bh
= bh
->b_this_page
) {
2645 block_end
= block_start
+ blocksize
;
2648 if (block_start
>= to
)
2650 ret
= get_block(inode
, block_in_file
+ block_in_page
,
2654 if (!buffer_mapped(bh
))
2655 is_mapped_to_disk
= 0;
2657 clean_bdev_bh_alias(bh
);
2658 if (PageUptodate(page
)) {
2659 set_buffer_uptodate(bh
);
2662 if (buffer_new(bh
) || !buffer_mapped(bh
)) {
2663 zero_user_segments(page
, block_start
, from
,
2667 if (buffer_uptodate(bh
))
2668 continue; /* reiserfs does this */
2669 if (block_start
< from
|| block_end
> to
) {
2671 bh
->b_end_io
= end_buffer_read_nobh
;
2672 submit_bh(REQ_OP_READ
, 0, bh
);
2679 * The page is locked, so these buffers are protected from
2680 * any VM or truncate activity. Hence we don't need to care
2681 * for the buffer_head refcounts.
2683 for (bh
= head
; bh
; bh
= bh
->b_this_page
) {
2685 if (!buffer_uptodate(bh
))
2692 if (is_mapped_to_disk
)
2693 SetPageMappedToDisk(page
);
2695 *fsdata
= head
; /* to be released by nobh_write_end */
2702 * Error recovery is a bit difficult. We need to zero out blocks that
2703 * were newly allocated, and dirty them to ensure they get written out.
2704 * Buffers need to be attached to the page at this point, otherwise
2705 * the handling of potential IO errors during writeout would be hard
2706 * (could try doing synchronous writeout, but what if that fails too?)
2708 attach_nobh_buffers(page
, head
);
2709 page_zero_new_buffers(page
, from
, to
);
2718 EXPORT_SYMBOL(nobh_write_begin
);
2720 int nobh_write_end(struct file
*file
, struct address_space
*mapping
,
2721 loff_t pos
, unsigned len
, unsigned copied
,
2722 struct page
*page
, void *fsdata
)
2724 struct inode
*inode
= page
->mapping
->host
;
2725 struct buffer_head
*head
= fsdata
;
2726 struct buffer_head
*bh
;
2727 BUG_ON(fsdata
!= NULL
&& page_has_buffers(page
));
2729 if (unlikely(copied
< len
) && head
)
2730 attach_nobh_buffers(page
, head
);
2731 if (page_has_buffers(page
))
2732 return generic_write_end(file
, mapping
, pos
, len
,
2733 copied
, page
, fsdata
);
2735 SetPageUptodate(page
);
2736 set_page_dirty(page
);
2737 if (pos
+copied
> inode
->i_size
) {
2738 i_size_write(inode
, pos
+copied
);
2739 mark_inode_dirty(inode
);
2747 head
= head
->b_this_page
;
2748 free_buffer_head(bh
);
2753 EXPORT_SYMBOL(nobh_write_end
);
2756 * nobh_writepage() - based on block_full_write_page() except
2757 * that it tries to operate without attaching bufferheads to
2760 int nobh_writepage(struct page
*page
, get_block_t
*get_block
,
2761 struct writeback_control
*wbc
)
2763 struct inode
* const inode
= page
->mapping
->host
;
2764 loff_t i_size
= i_size_read(inode
);
2765 const pgoff_t end_index
= i_size
>> PAGE_SHIFT
;
2769 /* Is the page fully inside i_size? */
2770 if (page
->index
< end_index
)
2773 /* Is the page fully outside i_size? (truncate in progress) */
2774 offset
= i_size
& (PAGE_SIZE
-1);
2775 if (page
->index
>= end_index
+1 || !offset
) {
2777 * The page may have dirty, unmapped buffers. For example,
2778 * they may have been added in ext3_writepage(). Make them
2779 * freeable here, so the page does not leak.
2782 /* Not really sure about this - do we need this ? */
2783 if (page
->mapping
->a_ops
->invalidatepage
)
2784 page
->mapping
->a_ops
->invalidatepage(page
, offset
);
2787 return 0; /* don't care */
2791 * The page straddles i_size. It must be zeroed out on each and every
2792 * writepage invocation because it may be mmapped. "A file is mapped
2793 * in multiples of the page size. For a file that is not a multiple of
2794 * the page size, the remaining memory is zeroed when mapped, and
2795 * writes to that region are not written out to the file."
2797 zero_user_segment(page
, offset
, PAGE_SIZE
);
2799 ret
= mpage_writepage(page
, get_block
, wbc
);
2801 ret
= __block_write_full_page(inode
, page
, get_block
, wbc
,
2802 end_buffer_async_write
);
2805 EXPORT_SYMBOL(nobh_writepage
);
2807 int nobh_truncate_page(struct address_space
*mapping
,
2808 loff_t from
, get_block_t
*get_block
)
2810 pgoff_t index
= from
>> PAGE_SHIFT
;
2811 unsigned offset
= from
& (PAGE_SIZE
-1);
2814 unsigned length
, pos
;
2815 struct inode
*inode
= mapping
->host
;
2817 struct buffer_head map_bh
;
2820 blocksize
= i_blocksize(inode
);
2821 length
= offset
& (blocksize
- 1);
2823 /* Block boundary? Nothing to do */
2827 length
= blocksize
- length
;
2828 iblock
= (sector_t
)index
<< (PAGE_SHIFT
- inode
->i_blkbits
);
2830 page
= grab_cache_page(mapping
, index
);
2835 if (page_has_buffers(page
)) {
2839 return block_truncate_page(mapping
, from
, get_block
);
2842 /* Find the buffer that contains "offset" */
2844 while (offset
>= pos
) {
2849 map_bh
.b_size
= blocksize
;
2851 err
= get_block(inode
, iblock
, &map_bh
, 0);
2854 /* unmapped? It's a hole - nothing to do */
2855 if (!buffer_mapped(&map_bh
))
2858 /* Ok, it's mapped. Make sure it's up-to-date */
2859 if (!PageUptodate(page
)) {
2860 err
= mapping
->a_ops
->readpage(NULL
, page
);
2866 if (!PageUptodate(page
)) {
2870 if (page_has_buffers(page
))
2873 zero_user(page
, offset
, length
);
2874 set_page_dirty(page
);
2883 EXPORT_SYMBOL(nobh_truncate_page
);
2885 int block_truncate_page(struct address_space
*mapping
,
2886 loff_t from
, get_block_t
*get_block
)
2888 pgoff_t index
= from
>> PAGE_SHIFT
;
2889 unsigned offset
= from
& (PAGE_SIZE
-1);
2892 unsigned length
, pos
;
2893 struct inode
*inode
= mapping
->host
;
2895 struct buffer_head
*bh
;
2898 blocksize
= i_blocksize(inode
);
2899 length
= offset
& (blocksize
- 1);
2901 /* Block boundary? Nothing to do */
2905 length
= blocksize
- length
;
2906 iblock
= (sector_t
)index
<< (PAGE_SHIFT
- inode
->i_blkbits
);
2908 page
= grab_cache_page(mapping
, index
);
2913 if (!page_has_buffers(page
))
2914 create_empty_buffers(page
, blocksize
, 0);
2916 /* Find the buffer that contains "offset" */
2917 bh
= page_buffers(page
);
2919 while (offset
>= pos
) {
2920 bh
= bh
->b_this_page
;
2926 if (!buffer_mapped(bh
)) {
2927 WARN_ON(bh
->b_size
!= blocksize
);
2928 err
= get_block(inode
, iblock
, bh
, 0);
2931 /* unmapped? It's a hole - nothing to do */
2932 if (!buffer_mapped(bh
))
2936 /* Ok, it's mapped. Make sure it's up-to-date */
2937 if (PageUptodate(page
))
2938 set_buffer_uptodate(bh
);
2940 if (!buffer_uptodate(bh
) && !buffer_delay(bh
) && !buffer_unwritten(bh
)) {
2942 ll_rw_block(REQ_OP_READ
, 0, 1, &bh
);
2944 /* Uhhuh. Read error. Complain and punt. */
2945 if (!buffer_uptodate(bh
))
2949 zero_user(page
, offset
, length
);
2950 mark_buffer_dirty(bh
);
2959 EXPORT_SYMBOL(block_truncate_page
);
2962 * The generic ->writepage function for buffer-backed address_spaces
2964 int block_write_full_page(struct page
*page
, get_block_t
*get_block
,
2965 struct writeback_control
*wbc
)
2967 struct inode
* const inode
= page
->mapping
->host
;
2968 loff_t i_size
= i_size_read(inode
);
2969 const pgoff_t end_index
= i_size
>> PAGE_SHIFT
;
2972 /* Is the page fully inside i_size? */
2973 if (page
->index
< end_index
)
2974 return __block_write_full_page(inode
, page
, get_block
, wbc
,
2975 end_buffer_async_write
);
2977 /* Is the page fully outside i_size? (truncate in progress) */
2978 offset
= i_size
& (PAGE_SIZE
-1);
2979 if (page
->index
>= end_index
+1 || !offset
) {
2981 * The page may have dirty, unmapped buffers. For example,
2982 * they may have been added in ext3_writepage(). Make them
2983 * freeable here, so the page does not leak.
2985 do_invalidatepage(page
, 0, PAGE_SIZE
);
2987 return 0; /* don't care */
2991 * The page straddles i_size. It must be zeroed out on each and every
2992 * writepage invocation because it may be mmapped. "A file is mapped
2993 * in multiples of the page size. For a file that is not a multiple of
2994 * the page size, the remaining memory is zeroed when mapped, and
2995 * writes to that region are not written out to the file."
2997 zero_user_segment(page
, offset
, PAGE_SIZE
);
2998 return __block_write_full_page(inode
, page
, get_block
, wbc
,
2999 end_buffer_async_write
);
3001 EXPORT_SYMBOL(block_write_full_page
);
3003 sector_t
generic_block_bmap(struct address_space
*mapping
, sector_t block
,
3004 get_block_t
*get_block
)
3006 struct inode
*inode
= mapping
->host
;
3007 struct buffer_head tmp
= {
3008 .b_size
= i_blocksize(inode
),
3011 get_block(inode
, block
, &tmp
, 0);
3012 return tmp
.b_blocknr
;
3014 EXPORT_SYMBOL(generic_block_bmap
);
3016 static void end_bio_bh_io_sync(struct bio
*bio
)
3018 struct buffer_head
*bh
= bio
->bi_private
;
3020 if (unlikely(bio_flagged(bio
, BIO_QUIET
)))
3021 set_bit(BH_Quiet
, &bh
->b_state
);
3023 bh
->b_end_io(bh
, !bio
->bi_status
);
3027 static int submit_bh_wbc(int op
, int op_flags
, struct buffer_head
*bh
,
3028 enum rw_hint write_hint
, struct writeback_control
*wbc
)
3032 BUG_ON(!buffer_locked(bh
));
3033 BUG_ON(!buffer_mapped(bh
));
3034 BUG_ON(!bh
->b_end_io
);
3035 BUG_ON(buffer_delay(bh
));
3036 BUG_ON(buffer_unwritten(bh
));
3039 * Only clear out a write error when rewriting
3041 if (test_set_buffer_req(bh
) && (op
== REQ_OP_WRITE
))
3042 clear_buffer_write_io_error(bh
);
3045 * from here on down, it's all bio -- do the initial mapping,
3046 * submit_bio -> generic_make_request may further map this bio around
3048 bio
= bio_alloc(GFP_NOIO
, 1);
3050 bio
->bi_iter
.bi_sector
= bh
->b_blocknr
* (bh
->b_size
>> 9);
3051 bio_set_dev(bio
, bh
->b_bdev
);
3052 bio
->bi_write_hint
= write_hint
;
3054 bio_add_page(bio
, bh
->b_page
, bh
->b_size
, bh_offset(bh
));
3055 BUG_ON(bio
->bi_iter
.bi_size
!= bh
->b_size
);
3057 bio
->bi_end_io
= end_bio_bh_io_sync
;
3058 bio
->bi_private
= bh
;
3060 if (buffer_meta(bh
))
3061 op_flags
|= REQ_META
;
3062 if (buffer_prio(bh
))
3063 op_flags
|= REQ_PRIO
;
3064 bio_set_op_attrs(bio
, op
, op_flags
);
3066 /* Take care of bh's that straddle the end of the device */
3070 wbc_init_bio(wbc
, bio
);
3071 wbc_account_cgroup_owner(wbc
, bh
->b_page
, bh
->b_size
);
3078 int submit_bh(int op
, int op_flags
, struct buffer_head
*bh
)
3080 return submit_bh_wbc(op
, op_flags
, bh
, 0, NULL
);
3082 EXPORT_SYMBOL(submit_bh
);
3085 * ll_rw_block: low-level access to block devices (DEPRECATED)
3086 * @op: whether to %READ or %WRITE
3087 * @op_flags: req_flag_bits
3088 * @nr: number of &struct buffer_heads in the array
3089 * @bhs: array of pointers to &struct buffer_head
3091 * ll_rw_block() takes an array of pointers to &struct buffer_heads, and
3092 * requests an I/O operation on them, either a %REQ_OP_READ or a %REQ_OP_WRITE.
3093 * @op_flags contains flags modifying the detailed I/O behavior, most notably
3096 * This function drops any buffer that it cannot get a lock on (with the
3097 * BH_Lock state bit), any buffer that appears to be clean when doing a write
3098 * request, and any buffer that appears to be up-to-date when doing read
3099 * request. Further it marks as clean buffers that are processed for
3100 * writing (the buffer cache won't assume that they are actually clean
3101 * until the buffer gets unlocked).
3103 * ll_rw_block sets b_end_io to simple completion handler that marks
3104 * the buffer up-to-date (if appropriate), unlocks the buffer and wakes
3107 * All of the buffers must be for the same device, and must also be a
3108 * multiple of the current approved size for the device.
3110 void ll_rw_block(int op
, int op_flags
, int nr
, struct buffer_head
*bhs
[])
3114 for (i
= 0; i
< nr
; i
++) {
3115 struct buffer_head
*bh
= bhs
[i
];
3117 if (!trylock_buffer(bh
))
3120 if (test_clear_buffer_dirty(bh
)) {
3121 bh
->b_end_io
= end_buffer_write_sync
;
3123 submit_bh(op
, op_flags
, bh
);
3127 if (!buffer_uptodate(bh
)) {
3128 bh
->b_end_io
= end_buffer_read_sync
;
3130 submit_bh(op
, op_flags
, bh
);
3137 EXPORT_SYMBOL(ll_rw_block
);
3139 void write_dirty_buffer(struct buffer_head
*bh
, int op_flags
)
3142 if (!test_clear_buffer_dirty(bh
)) {
3146 bh
->b_end_io
= end_buffer_write_sync
;
3148 submit_bh(REQ_OP_WRITE
, op_flags
, bh
);
3150 EXPORT_SYMBOL(write_dirty_buffer
);
3153 * For a data-integrity writeout, we need to wait upon any in-progress I/O
3154 * and then start new I/O and then wait upon it. The caller must have a ref on
3157 int __sync_dirty_buffer(struct buffer_head
*bh
, int op_flags
)
3161 WARN_ON(atomic_read(&bh
->b_count
) < 1);
3163 if (test_clear_buffer_dirty(bh
)) {
3165 bh
->b_end_io
= end_buffer_write_sync
;
3166 ret
= submit_bh(REQ_OP_WRITE
, op_flags
, bh
);
3168 if (!ret
&& !buffer_uptodate(bh
))
3175 EXPORT_SYMBOL(__sync_dirty_buffer
);
3177 int sync_dirty_buffer(struct buffer_head
*bh
)
3179 return __sync_dirty_buffer(bh
, REQ_SYNC
);
3181 EXPORT_SYMBOL(sync_dirty_buffer
);
3184 * try_to_free_buffers() checks if all the buffers on this particular page
3185 * are unused, and releases them if so.
3187 * Exclusion against try_to_free_buffers may be obtained by either
3188 * locking the page or by holding its mapping's private_lock.
3190 * If the page is dirty but all the buffers are clean then we need to
3191 * be sure to mark the page clean as well. This is because the page
3192 * may be against a block device, and a later reattachment of buffers
3193 * to a dirty page will set *all* buffers dirty. Which would corrupt
3194 * filesystem data on the same device.
3196 * The same applies to regular filesystem pages: if all the buffers are
3197 * clean then we set the page clean and proceed. To do that, we require
3198 * total exclusion from __set_page_dirty_buffers(). That is obtained with
3201 * try_to_free_buffers() is non-blocking.
3203 static inline int buffer_busy(struct buffer_head
*bh
)
3205 return atomic_read(&bh
->b_count
) |
3206 (bh
->b_state
& ((1 << BH_Dirty
) | (1 << BH_Lock
)));
3210 drop_buffers(struct page
*page
, struct buffer_head
**buffers_to_free
)
3212 struct buffer_head
*head
= page_buffers(page
);
3213 struct buffer_head
*bh
;
3217 if (buffer_busy(bh
))
3219 bh
= bh
->b_this_page
;
3220 } while (bh
!= head
);
3223 struct buffer_head
*next
= bh
->b_this_page
;
3225 if (bh
->b_assoc_map
)
3226 __remove_assoc_queue(bh
);
3228 } while (bh
!= head
);
3229 *buffers_to_free
= head
;
3230 __clear_page_buffers(page
);
3236 int try_to_free_buffers(struct page
*page
)
3238 struct address_space
* const mapping
= page
->mapping
;
3239 struct buffer_head
*buffers_to_free
= NULL
;
3242 BUG_ON(!PageLocked(page
));
3243 if (PageWriteback(page
))
3246 if (mapping
== NULL
) { /* can this still happen? */
3247 ret
= drop_buffers(page
, &buffers_to_free
);
3251 spin_lock(&mapping
->private_lock
);
3252 ret
= drop_buffers(page
, &buffers_to_free
);
3255 * If the filesystem writes its buffers by hand (eg ext3)
3256 * then we can have clean buffers against a dirty page. We
3257 * clean the page here; otherwise the VM will never notice
3258 * that the filesystem did any IO at all.
3260 * Also, during truncate, discard_buffer will have marked all
3261 * the page's buffers clean. We discover that here and clean
3264 * private_lock must be held over this entire operation in order
3265 * to synchronise against __set_page_dirty_buffers and prevent the
3266 * dirty bit from being lost.
3269 cancel_dirty_page(page
);
3270 spin_unlock(&mapping
->private_lock
);
3272 if (buffers_to_free
) {
3273 struct buffer_head
*bh
= buffers_to_free
;
3276 struct buffer_head
*next
= bh
->b_this_page
;
3277 free_buffer_head(bh
);
3279 } while (bh
!= buffers_to_free
);
3283 EXPORT_SYMBOL(try_to_free_buffers
);
3286 * There are no bdflush tunables left. But distributions are
3287 * still running obsolete flush daemons, so we terminate them here.
3289 * Use of bdflush() is deprecated and will be removed in a future kernel.
3290 * The `flush-X' kernel threads fully replace bdflush daemons and this call.
3292 SYSCALL_DEFINE2(bdflush
, int, func
, long, data
)
3294 static int msg_count
;
3296 if (!capable(CAP_SYS_ADMIN
))
3299 if (msg_count
< 5) {
3302 "warning: process `%s' used the obsolete bdflush"
3303 " system call\n", current
->comm
);
3304 printk(KERN_INFO
"Fix your initscripts?\n");
3313 * Buffer-head allocation
3315 static struct kmem_cache
*bh_cachep __read_mostly
;
3318 * Once the number of bh's in the machine exceeds this level, we start
3319 * stripping them in writeback.
3321 static unsigned long max_buffer_heads
;
3323 int buffer_heads_over_limit
;
3325 struct bh_accounting
{
3326 int nr
; /* Number of live bh's */
3327 int ratelimit
; /* Limit cacheline bouncing */
3330 static DEFINE_PER_CPU(struct bh_accounting
, bh_accounting
) = {0, 0};
3332 static void recalc_bh_state(void)
3337 if (__this_cpu_inc_return(bh_accounting
.ratelimit
) - 1 < 4096)
3339 __this_cpu_write(bh_accounting
.ratelimit
, 0);
3340 for_each_online_cpu(i
)
3341 tot
+= per_cpu(bh_accounting
, i
).nr
;
3342 buffer_heads_over_limit
= (tot
> max_buffer_heads
);
3345 struct buffer_head
*alloc_buffer_head(gfp_t gfp_flags
)
3347 struct buffer_head
*ret
= kmem_cache_zalloc(bh_cachep
, gfp_flags
);
3349 INIT_LIST_HEAD(&ret
->b_assoc_buffers
);
3350 spin_lock_init(&ret
->b_uptodate_lock
);
3352 __this_cpu_inc(bh_accounting
.nr
);
3358 EXPORT_SYMBOL(alloc_buffer_head
);
3360 void free_buffer_head(struct buffer_head
*bh
)
3362 BUG_ON(!list_empty(&bh
->b_assoc_buffers
));
3363 kmem_cache_free(bh_cachep
, bh
);
3365 __this_cpu_dec(bh_accounting
.nr
);
3369 EXPORT_SYMBOL(free_buffer_head
);
3371 static int buffer_exit_cpu_dead(unsigned int cpu
)
3374 struct bh_lru
*b
= &per_cpu(bh_lrus
, cpu
);
3376 for (i
= 0; i
< BH_LRU_SIZE
; i
++) {
3380 this_cpu_add(bh_accounting
.nr
, per_cpu(bh_accounting
, cpu
).nr
);
3381 per_cpu(bh_accounting
, cpu
).nr
= 0;
3386 * bh_uptodate_or_lock - Test whether the buffer is uptodate
3387 * @bh: struct buffer_head
3389 * Return true if the buffer is up-to-date and false,
3390 * with the buffer locked, if not.
3392 int bh_uptodate_or_lock(struct buffer_head
*bh
)
3394 if (!buffer_uptodate(bh
)) {
3396 if (!buffer_uptodate(bh
))
3402 EXPORT_SYMBOL(bh_uptodate_or_lock
);
3405 * bh_submit_read - Submit a locked buffer for reading
3406 * @bh: struct buffer_head
3408 * Returns zero on success and -EIO on error.
3410 int bh_submit_read(struct buffer_head
*bh
)
3412 BUG_ON(!buffer_locked(bh
));
3414 if (buffer_uptodate(bh
)) {
3420 bh
->b_end_io
= end_buffer_read_sync
;
3421 submit_bh(REQ_OP_READ
, 0, bh
);
3423 if (buffer_uptodate(bh
))
3427 EXPORT_SYMBOL(bh_submit_read
);
3429 void __init
buffer_init(void)
3431 unsigned long nrpages
;
3434 bh_cachep
= kmem_cache_create("buffer_head",
3435 sizeof(struct buffer_head
), 0,
3436 (SLAB_RECLAIM_ACCOUNT
|SLAB_PANIC
|
3441 * Limit the bh occupancy to 10% of ZONE_NORMAL
3443 nrpages
= (nr_free_buffer_pages() * 10) / 100;
3444 max_buffer_heads
= nrpages
* (PAGE_SIZE
/ sizeof(struct buffer_head
));
3445 ret
= cpuhp_setup_state_nocalls(CPUHP_FS_BUFF_DEAD
, "fs/buffer:dead",
3446 NULL
, buffer_exit_cpu_dead
);