1 // SPDX-License-Identifier: GPL-2.0-only
3 * fs/kernfs/dir.c - kernfs directory implementation
5 * Copyright (c) 2001-3 Patrick Mochel
6 * Copyright (c) 2007 SUSE Linux Products GmbH
7 * Copyright (c) 2007, 2013 Tejun Heo <tj@kernel.org>
10 #include <linux/sched.h>
12 #include <linux/namei.h>
13 #include <linux/idr.h>
14 #include <linux/slab.h>
15 #include <linux/security.h>
16 #include <linux/hash.h>
18 #include "kernfs-internal.h"
20 DEFINE_MUTEX(kernfs_mutex
);
21 static DEFINE_SPINLOCK(kernfs_rename_lock
); /* kn->parent and ->name */
22 static char kernfs_pr_cont_buf
[PATH_MAX
]; /* protected by rename_lock */
23 static DEFINE_SPINLOCK(kernfs_idr_lock
); /* root->ino_idr */
25 #define rb_to_kn(X) rb_entry((X), struct kernfs_node, rb)
27 static bool kernfs_active(struct kernfs_node
*kn
)
29 lockdep_assert_held(&kernfs_mutex
);
30 return atomic_read(&kn
->active
) >= 0;
33 static bool kernfs_lockdep(struct kernfs_node
*kn
)
35 #ifdef CONFIG_DEBUG_LOCK_ALLOC
36 return kn
->flags
& KERNFS_LOCKDEP
;
42 static int kernfs_name_locked(struct kernfs_node
*kn
, char *buf
, size_t buflen
)
45 return strlcpy(buf
, "(null)", buflen
);
47 return strlcpy(buf
, kn
->parent
? kn
->name
: "/", buflen
);
50 /* kernfs_node_depth - compute depth from @from to @to */
51 static size_t kernfs_depth(struct kernfs_node
*from
, struct kernfs_node
*to
)
55 while (to
->parent
&& to
!= from
) {
62 static struct kernfs_node
*kernfs_common_ancestor(struct kernfs_node
*a
,
63 struct kernfs_node
*b
)
66 struct kernfs_root
*ra
= kernfs_root(a
), *rb
= kernfs_root(b
);
71 da
= kernfs_depth(ra
->kn
, a
);
72 db
= kernfs_depth(rb
->kn
, b
);
83 /* worst case b and a will be the same at root */
93 * kernfs_path_from_node_locked - find a pseudo-absolute path to @kn_to,
94 * where kn_from is treated as root of the path.
95 * @kn_from: kernfs node which should be treated as root for the path
96 * @kn_to: kernfs node to which path is needed
97 * @buf: buffer to copy the path into
98 * @buflen: size of @buf
100 * We need to handle couple of scenarios here:
101 * [1] when @kn_from is an ancestor of @kn_to at some level
103 * kn_to: /n1/n2/n3/n4/n5
106 * [2] when @kn_from is on a different hierarchy and we need to find common
107 * ancestor between @kn_from and @kn_to.
108 * kn_from: /n1/n2/n3/n4
112 * kn_from: /n1/n2/n3/n4/n5 [depth=5]
113 * kn_to: /n1/n2/n3 [depth=3]
116 * [3] when @kn_to is NULL result will be "(null)"
118 * Returns the length of the full path. If the full length is equal to or
119 * greater than @buflen, @buf contains the truncated path with the trailing
120 * '\0'. On error, -errno is returned.
122 static int kernfs_path_from_node_locked(struct kernfs_node
*kn_to
,
123 struct kernfs_node
*kn_from
,
124 char *buf
, size_t buflen
)
126 struct kernfs_node
*kn
, *common
;
127 const char parent_str
[] = "/..";
128 size_t depth_from
, depth_to
, len
= 0;
132 return strlcpy(buf
, "(null)", buflen
);
135 kn_from
= kernfs_root(kn_to
)->kn
;
137 if (kn_from
== kn_to
)
138 return strlcpy(buf
, "/", buflen
);
143 common
= kernfs_common_ancestor(kn_from
, kn_to
);
144 if (WARN_ON(!common
))
147 depth_to
= kernfs_depth(common
, kn_to
);
148 depth_from
= kernfs_depth(common
, kn_from
);
152 for (i
= 0; i
< depth_from
; i
++)
153 len
+= strlcpy(buf
+ len
, parent_str
,
154 len
< buflen
? buflen
- len
: 0);
156 /* Calculate how many bytes we need for the rest */
157 for (i
= depth_to
- 1; i
>= 0; i
--) {
158 for (kn
= kn_to
, j
= 0; j
< i
; j
++)
160 len
+= strlcpy(buf
+ len
, "/",
161 len
< buflen
? buflen
- len
: 0);
162 len
+= strlcpy(buf
+ len
, kn
->name
,
163 len
< buflen
? buflen
- len
: 0);
170 * kernfs_name - obtain the name of a given node
171 * @kn: kernfs_node of interest
172 * @buf: buffer to copy @kn's name into
173 * @buflen: size of @buf
175 * Copies the name of @kn into @buf of @buflen bytes. The behavior is
176 * similar to strlcpy(). It returns the length of @kn's name and if @buf
177 * isn't long enough, it's filled upto @buflen-1 and nul terminated.
179 * Fills buffer with "(null)" if @kn is NULL.
181 * This function can be called from any context.
183 int kernfs_name(struct kernfs_node
*kn
, char *buf
, size_t buflen
)
188 spin_lock_irqsave(&kernfs_rename_lock
, flags
);
189 ret
= kernfs_name_locked(kn
, buf
, buflen
);
190 spin_unlock_irqrestore(&kernfs_rename_lock
, flags
);
195 * kernfs_path_from_node - build path of node @to relative to @from.
196 * @from: parent kernfs_node relative to which we need to build the path
197 * @to: kernfs_node of interest
198 * @buf: buffer to copy @to's path into
199 * @buflen: size of @buf
201 * Builds @to's path relative to @from in @buf. @from and @to must
202 * be on the same kernfs-root. If @from is not parent of @to, then a relative
203 * path (which includes '..'s) as needed to reach from @from to @to is
206 * Returns the length of the full path. If the full length is equal to or
207 * greater than @buflen, @buf contains the truncated path with the trailing
208 * '\0'. On error, -errno is returned.
210 int kernfs_path_from_node(struct kernfs_node
*to
, struct kernfs_node
*from
,
211 char *buf
, size_t buflen
)
216 spin_lock_irqsave(&kernfs_rename_lock
, flags
);
217 ret
= kernfs_path_from_node_locked(to
, from
, buf
, buflen
);
218 spin_unlock_irqrestore(&kernfs_rename_lock
, flags
);
221 EXPORT_SYMBOL_GPL(kernfs_path_from_node
);
224 * pr_cont_kernfs_name - pr_cont name of a kernfs_node
225 * @kn: kernfs_node of interest
227 * This function can be called from any context.
229 void pr_cont_kernfs_name(struct kernfs_node
*kn
)
233 spin_lock_irqsave(&kernfs_rename_lock
, flags
);
235 kernfs_name_locked(kn
, kernfs_pr_cont_buf
, sizeof(kernfs_pr_cont_buf
));
236 pr_cont("%s", kernfs_pr_cont_buf
);
238 spin_unlock_irqrestore(&kernfs_rename_lock
, flags
);
242 * pr_cont_kernfs_path - pr_cont path of a kernfs_node
243 * @kn: kernfs_node of interest
245 * This function can be called from any context.
247 void pr_cont_kernfs_path(struct kernfs_node
*kn
)
252 spin_lock_irqsave(&kernfs_rename_lock
, flags
);
254 sz
= kernfs_path_from_node_locked(kn
, NULL
, kernfs_pr_cont_buf
,
255 sizeof(kernfs_pr_cont_buf
));
261 if (sz
>= sizeof(kernfs_pr_cont_buf
)) {
262 pr_cont("(name too long)");
266 pr_cont("%s", kernfs_pr_cont_buf
);
269 spin_unlock_irqrestore(&kernfs_rename_lock
, flags
);
273 * kernfs_get_parent - determine the parent node and pin it
274 * @kn: kernfs_node of interest
276 * Determines @kn's parent, pins and returns it. This function can be
277 * called from any context.
279 struct kernfs_node
*kernfs_get_parent(struct kernfs_node
*kn
)
281 struct kernfs_node
*parent
;
284 spin_lock_irqsave(&kernfs_rename_lock
, flags
);
287 spin_unlock_irqrestore(&kernfs_rename_lock
, flags
);
294 * @name: Null terminated string to hash
295 * @ns: Namespace tag to hash
297 * Returns 31 bit hash of ns + name (so it fits in an off_t )
299 static unsigned int kernfs_name_hash(const char *name
, const void *ns
)
301 unsigned long hash
= init_name_hash(ns
);
302 unsigned int len
= strlen(name
);
304 hash
= partial_name_hash(*name
++, hash
);
305 hash
= end_name_hash(hash
);
307 /* Reserve hash numbers 0, 1 and INT_MAX for magic directory entries */
315 static int kernfs_name_compare(unsigned int hash
, const char *name
,
316 const void *ns
, const struct kernfs_node
*kn
)
326 return strcmp(name
, kn
->name
);
329 static int kernfs_sd_compare(const struct kernfs_node
*left
,
330 const struct kernfs_node
*right
)
332 return kernfs_name_compare(left
->hash
, left
->name
, left
->ns
, right
);
336 * kernfs_link_sibling - link kernfs_node into sibling rbtree
337 * @kn: kernfs_node of interest
339 * Link @kn into its sibling rbtree which starts from
340 * @kn->parent->dir.children.
343 * mutex_lock(kernfs_mutex)
346 * 0 on susccess -EEXIST on failure.
348 static int kernfs_link_sibling(struct kernfs_node
*kn
)
350 struct rb_node
**node
= &kn
->parent
->dir
.children
.rb_node
;
351 struct rb_node
*parent
= NULL
;
354 struct kernfs_node
*pos
;
357 pos
= rb_to_kn(*node
);
359 result
= kernfs_sd_compare(kn
, pos
);
361 node
= &pos
->rb
.rb_left
;
363 node
= &pos
->rb
.rb_right
;
368 /* add new node and rebalance the tree */
369 rb_link_node(&kn
->rb
, parent
, node
);
370 rb_insert_color(&kn
->rb
, &kn
->parent
->dir
.children
);
372 /* successfully added, account subdir number */
373 if (kernfs_type(kn
) == KERNFS_DIR
)
374 kn
->parent
->dir
.subdirs
++;
380 * kernfs_unlink_sibling - unlink kernfs_node from sibling rbtree
381 * @kn: kernfs_node of interest
383 * Try to unlink @kn from its sibling rbtree which starts from
384 * kn->parent->dir.children. Returns %true if @kn was actually
385 * removed, %false if @kn wasn't on the rbtree.
388 * mutex_lock(kernfs_mutex)
390 static bool kernfs_unlink_sibling(struct kernfs_node
*kn
)
392 if (RB_EMPTY_NODE(&kn
->rb
))
395 if (kernfs_type(kn
) == KERNFS_DIR
)
396 kn
->parent
->dir
.subdirs
--;
398 rb_erase(&kn
->rb
, &kn
->parent
->dir
.children
);
399 RB_CLEAR_NODE(&kn
->rb
);
404 * kernfs_get_active - get an active reference to kernfs_node
405 * @kn: kernfs_node to get an active reference to
407 * Get an active reference of @kn. This function is noop if @kn
411 * Pointer to @kn on success, NULL on failure.
413 struct kernfs_node
*kernfs_get_active(struct kernfs_node
*kn
)
418 if (!atomic_inc_unless_negative(&kn
->active
))
421 if (kernfs_lockdep(kn
))
422 rwsem_acquire_read(&kn
->dep_map
, 0, 1, _RET_IP_
);
427 * kernfs_put_active - put an active reference to kernfs_node
428 * @kn: kernfs_node to put an active reference to
430 * Put an active reference to @kn. This function is noop if @kn
433 void kernfs_put_active(struct kernfs_node
*kn
)
440 if (kernfs_lockdep(kn
))
441 rwsem_release(&kn
->dep_map
, _RET_IP_
);
442 v
= atomic_dec_return(&kn
->active
);
443 if (likely(v
!= KN_DEACTIVATED_BIAS
))
446 wake_up_all(&kernfs_root(kn
)->deactivate_waitq
);
450 * kernfs_drain - drain kernfs_node
451 * @kn: kernfs_node to drain
453 * Drain existing usages and nuke all existing mmaps of @kn. Mutiple
454 * removers may invoke this function concurrently on @kn and all will
455 * return after draining is complete.
457 static void kernfs_drain(struct kernfs_node
*kn
)
458 __releases(&kernfs_mutex
) __acquires(&kernfs_mutex
)
460 struct kernfs_root
*root
= kernfs_root(kn
);
462 lockdep_assert_held(&kernfs_mutex
);
463 WARN_ON_ONCE(kernfs_active(kn
));
465 mutex_unlock(&kernfs_mutex
);
467 if (kernfs_lockdep(kn
)) {
468 rwsem_acquire(&kn
->dep_map
, 0, 0, _RET_IP_
);
469 if (atomic_read(&kn
->active
) != KN_DEACTIVATED_BIAS
)
470 lock_contended(&kn
->dep_map
, _RET_IP_
);
473 /* but everyone should wait for draining */
474 wait_event(root
->deactivate_waitq
,
475 atomic_read(&kn
->active
) == KN_DEACTIVATED_BIAS
);
477 if (kernfs_lockdep(kn
)) {
478 lock_acquired(&kn
->dep_map
, _RET_IP_
);
479 rwsem_release(&kn
->dep_map
, _RET_IP_
);
482 kernfs_drain_open_files(kn
);
484 mutex_lock(&kernfs_mutex
);
488 * kernfs_get - get a reference count on a kernfs_node
489 * @kn: the target kernfs_node
491 void kernfs_get(struct kernfs_node
*kn
)
494 WARN_ON(!atomic_read(&kn
->count
));
495 atomic_inc(&kn
->count
);
498 EXPORT_SYMBOL_GPL(kernfs_get
);
501 * kernfs_put - put a reference count on a kernfs_node
502 * @kn: the target kernfs_node
504 * Put a reference count of @kn and destroy it if it reached zero.
506 void kernfs_put(struct kernfs_node
*kn
)
508 struct kernfs_node
*parent
;
509 struct kernfs_root
*root
;
511 if (!kn
|| !atomic_dec_and_test(&kn
->count
))
513 root
= kernfs_root(kn
);
516 * Moving/renaming is always done while holding reference.
517 * kn->parent won't change beneath us.
521 WARN_ONCE(atomic_read(&kn
->active
) != KN_DEACTIVATED_BIAS
,
522 "kernfs_put: %s/%s: released with incorrect active_ref %d\n",
523 parent
? parent
->name
: "", kn
->name
, atomic_read(&kn
->active
));
525 if (kernfs_type(kn
) == KERNFS_LINK
)
526 kernfs_put(kn
->symlink
.target_kn
);
528 kfree_const(kn
->name
);
531 simple_xattrs_free(&kn
->iattr
->xattrs
);
532 kmem_cache_free(kernfs_iattrs_cache
, kn
->iattr
);
534 spin_lock(&kernfs_idr_lock
);
535 idr_remove(&root
->ino_idr
, (u32
)kernfs_ino(kn
));
536 spin_unlock(&kernfs_idr_lock
);
537 kmem_cache_free(kernfs_node_cache
, kn
);
541 if (atomic_dec_and_test(&kn
->count
))
544 /* just released the root kn, free @root too */
545 idr_destroy(&root
->ino_idr
);
549 EXPORT_SYMBOL_GPL(kernfs_put
);
551 static int kernfs_dop_revalidate(struct dentry
*dentry
, unsigned int flags
)
553 struct kernfs_node
*kn
;
555 if (flags
& LOOKUP_RCU
)
558 /* Always perform fresh lookup for negatives */
559 if (d_really_is_negative(dentry
))
560 goto out_bad_unlocked
;
562 kn
= kernfs_dentry_node(dentry
);
563 mutex_lock(&kernfs_mutex
);
565 /* The kernfs node has been deactivated */
566 if (!kernfs_active(kn
))
569 /* The kernfs node has been moved? */
570 if (kernfs_dentry_node(dentry
->d_parent
) != kn
->parent
)
573 /* The kernfs node has been renamed */
574 if (strcmp(dentry
->d_name
.name
, kn
->name
) != 0)
577 /* The kernfs node has been moved to a different namespace */
578 if (kn
->parent
&& kernfs_ns_enabled(kn
->parent
) &&
579 kernfs_info(dentry
->d_sb
)->ns
!= kn
->ns
)
582 mutex_unlock(&kernfs_mutex
);
585 mutex_unlock(&kernfs_mutex
);
590 const struct dentry_operations kernfs_dops
= {
591 .d_revalidate
= kernfs_dop_revalidate
,
595 * kernfs_node_from_dentry - determine kernfs_node associated with a dentry
596 * @dentry: the dentry in question
598 * Return the kernfs_node associated with @dentry. If @dentry is not a
599 * kernfs one, %NULL is returned.
601 * While the returned kernfs_node will stay accessible as long as @dentry
602 * is accessible, the returned node can be in any state and the caller is
603 * fully responsible for determining what's accessible.
605 struct kernfs_node
*kernfs_node_from_dentry(struct dentry
*dentry
)
607 if (dentry
->d_sb
->s_op
== &kernfs_sops
&&
608 !d_really_is_negative(dentry
))
609 return kernfs_dentry_node(dentry
);
613 static struct kernfs_node
*__kernfs_new_node(struct kernfs_root
*root
,
614 struct kernfs_node
*parent
,
615 const char *name
, umode_t mode
,
616 kuid_t uid
, kgid_t gid
,
619 struct kernfs_node
*kn
;
623 name
= kstrdup_const(name
, GFP_KERNEL
);
627 kn
= kmem_cache_zalloc(kernfs_node_cache
, GFP_KERNEL
);
631 idr_preload(GFP_KERNEL
);
632 spin_lock(&kernfs_idr_lock
);
633 ret
= idr_alloc_cyclic(&root
->ino_idr
, kn
, 1, 0, GFP_ATOMIC
);
634 if (ret
>= 0 && ret
< root
->last_id_lowbits
)
636 id_highbits
= root
->id_highbits
;
637 root
->last_id_lowbits
= ret
;
638 spin_unlock(&kernfs_idr_lock
);
643 kn
->id
= (u64
)id_highbits
<< 32 | ret
;
645 atomic_set(&kn
->count
, 1);
646 atomic_set(&kn
->active
, KN_DEACTIVATED_BIAS
);
647 RB_CLEAR_NODE(&kn
->rb
);
653 if (!uid_eq(uid
, GLOBAL_ROOT_UID
) || !gid_eq(gid
, GLOBAL_ROOT_GID
)) {
654 struct iattr iattr
= {
655 .ia_valid
= ATTR_UID
| ATTR_GID
,
660 ret
= __kernfs_setattr(kn
, &iattr
);
666 ret
= security_kernfs_init_security(parent
, kn
);
674 idr_remove(&root
->ino_idr
, (u32
)kernfs_ino(kn
));
676 kmem_cache_free(kernfs_node_cache
, kn
);
682 struct kernfs_node
*kernfs_new_node(struct kernfs_node
*parent
,
683 const char *name
, umode_t mode
,
684 kuid_t uid
, kgid_t gid
,
687 struct kernfs_node
*kn
;
689 kn
= __kernfs_new_node(kernfs_root(parent
), parent
,
690 name
, mode
, uid
, gid
, flags
);
699 * kernfs_find_and_get_node_by_id - get kernfs_node from node id
700 * @root: the kernfs root
701 * @id: the target node id
703 * @id's lower 32bits encode ino and upper gen. If the gen portion is
704 * zero, all generations are matched.
707 * NULL on failure. Return a kernfs node with reference counter incremented
709 struct kernfs_node
*kernfs_find_and_get_node_by_id(struct kernfs_root
*root
,
712 struct kernfs_node
*kn
;
713 ino_t ino
= kernfs_id_ino(id
);
714 u32 gen
= kernfs_id_gen(id
);
716 spin_lock(&kernfs_idr_lock
);
718 kn
= idr_find(&root
->ino_idr
, (u32
)ino
);
722 if (sizeof(ino_t
) >= sizeof(u64
)) {
723 /* we looked up with the low 32bits, compare the whole */
724 if (kernfs_ino(kn
) != ino
)
727 /* 0 matches all generations */
728 if (unlikely(gen
&& kernfs_gen(kn
) != gen
))
733 * ACTIVATED is protected with kernfs_mutex but it was clear when
734 * @kn was added to idr and we just wanna see it set. No need to
737 if (unlikely(!(kn
->flags
& KERNFS_ACTIVATED
) ||
738 !atomic_inc_not_zero(&kn
->count
)))
741 spin_unlock(&kernfs_idr_lock
);
744 spin_unlock(&kernfs_idr_lock
);
749 * kernfs_add_one - add kernfs_node to parent without warning
750 * @kn: kernfs_node to be added
752 * The caller must already have initialized @kn->parent. This
753 * function increments nlink of the parent's inode if @kn is a
754 * directory and link into the children list of the parent.
757 * 0 on success, -EEXIST if entry with the given name already
760 int kernfs_add_one(struct kernfs_node
*kn
)
762 struct kernfs_node
*parent
= kn
->parent
;
763 struct kernfs_iattrs
*ps_iattr
;
767 mutex_lock(&kernfs_mutex
);
770 has_ns
= kernfs_ns_enabled(parent
);
771 if (WARN(has_ns
!= (bool)kn
->ns
, KERN_WARNING
"kernfs: ns %s in '%s' for '%s'\n",
772 has_ns
? "required" : "invalid", parent
->name
, kn
->name
))
775 if (kernfs_type(parent
) != KERNFS_DIR
)
779 if (parent
->flags
& KERNFS_EMPTY_DIR
)
782 if ((parent
->flags
& KERNFS_ACTIVATED
) && !kernfs_active(parent
))
785 kn
->hash
= kernfs_name_hash(kn
->name
, kn
->ns
);
787 ret
= kernfs_link_sibling(kn
);
791 /* Update timestamps on the parent */
792 ps_iattr
= parent
->iattr
;
794 ktime_get_real_ts64(&ps_iattr
->ia_ctime
);
795 ps_iattr
->ia_mtime
= ps_iattr
->ia_ctime
;
798 mutex_unlock(&kernfs_mutex
);
801 * Activate the new node unless CREATE_DEACTIVATED is requested.
802 * If not activated here, the kernfs user is responsible for
803 * activating the node with kernfs_activate(). A node which hasn't
804 * been activated is not visible to userland and its removal won't
805 * trigger deactivation.
807 if (!(kernfs_root(kn
)->flags
& KERNFS_ROOT_CREATE_DEACTIVATED
))
812 mutex_unlock(&kernfs_mutex
);
817 * kernfs_find_ns - find kernfs_node with the given name
818 * @parent: kernfs_node to search under
819 * @name: name to look for
820 * @ns: the namespace tag to use
822 * Look for kernfs_node with name @name under @parent. Returns pointer to
823 * the found kernfs_node on success, %NULL on failure.
825 static struct kernfs_node
*kernfs_find_ns(struct kernfs_node
*parent
,
826 const unsigned char *name
,
829 struct rb_node
*node
= parent
->dir
.children
.rb_node
;
830 bool has_ns
= kernfs_ns_enabled(parent
);
833 lockdep_assert_held(&kernfs_mutex
);
835 if (has_ns
!= (bool)ns
) {
836 WARN(1, KERN_WARNING
"kernfs: ns %s in '%s' for '%s'\n",
837 has_ns
? "required" : "invalid", parent
->name
, name
);
841 hash
= kernfs_name_hash(name
, ns
);
843 struct kernfs_node
*kn
;
847 result
= kernfs_name_compare(hash
, name
, ns
, kn
);
849 node
= node
->rb_left
;
851 node
= node
->rb_right
;
858 static struct kernfs_node
*kernfs_walk_ns(struct kernfs_node
*parent
,
859 const unsigned char *path
,
865 lockdep_assert_held(&kernfs_mutex
);
867 /* grab kernfs_rename_lock to piggy back on kernfs_pr_cont_buf */
868 spin_lock_irq(&kernfs_rename_lock
);
870 len
= strlcpy(kernfs_pr_cont_buf
, path
, sizeof(kernfs_pr_cont_buf
));
872 if (len
>= sizeof(kernfs_pr_cont_buf
)) {
873 spin_unlock_irq(&kernfs_rename_lock
);
877 p
= kernfs_pr_cont_buf
;
879 while ((name
= strsep(&p
, "/")) && parent
) {
882 parent
= kernfs_find_ns(parent
, name
, ns
);
885 spin_unlock_irq(&kernfs_rename_lock
);
891 * kernfs_find_and_get_ns - find and get kernfs_node with the given name
892 * @parent: kernfs_node to search under
893 * @name: name to look for
894 * @ns: the namespace tag to use
896 * Look for kernfs_node with name @name under @parent and get a reference
897 * if found. This function may sleep and returns pointer to the found
898 * kernfs_node on success, %NULL on failure.
900 struct kernfs_node
*kernfs_find_and_get_ns(struct kernfs_node
*parent
,
901 const char *name
, const void *ns
)
903 struct kernfs_node
*kn
;
905 mutex_lock(&kernfs_mutex
);
906 kn
= kernfs_find_ns(parent
, name
, ns
);
908 mutex_unlock(&kernfs_mutex
);
912 EXPORT_SYMBOL_GPL(kernfs_find_and_get_ns
);
915 * kernfs_walk_and_get_ns - find and get kernfs_node with the given path
916 * @parent: kernfs_node to search under
917 * @path: path to look for
918 * @ns: the namespace tag to use
920 * Look for kernfs_node with path @path under @parent and get a reference
921 * if found. This function may sleep and returns pointer to the found
922 * kernfs_node on success, %NULL on failure.
924 struct kernfs_node
*kernfs_walk_and_get_ns(struct kernfs_node
*parent
,
925 const char *path
, const void *ns
)
927 struct kernfs_node
*kn
;
929 mutex_lock(&kernfs_mutex
);
930 kn
= kernfs_walk_ns(parent
, path
, ns
);
932 mutex_unlock(&kernfs_mutex
);
938 * kernfs_create_root - create a new kernfs hierarchy
939 * @scops: optional syscall operations for the hierarchy
940 * @flags: KERNFS_ROOT_* flags
941 * @priv: opaque data associated with the new directory
943 * Returns the root of the new hierarchy on success, ERR_PTR() value on
946 struct kernfs_root
*kernfs_create_root(struct kernfs_syscall_ops
*scops
,
947 unsigned int flags
, void *priv
)
949 struct kernfs_root
*root
;
950 struct kernfs_node
*kn
;
952 root
= kzalloc(sizeof(*root
), GFP_KERNEL
);
954 return ERR_PTR(-ENOMEM
);
956 idr_init(&root
->ino_idr
);
957 INIT_LIST_HEAD(&root
->supers
);
960 * On 64bit ino setups, id is ino. On 32bit, low 32bits are ino.
961 * High bits generation. The starting value for both ino and
962 * genenration is 1. Initialize upper 32bit allocation
965 if (sizeof(ino_t
) >= sizeof(u64
))
966 root
->id_highbits
= 0;
968 root
->id_highbits
= 1;
970 kn
= __kernfs_new_node(root
, NULL
, "", S_IFDIR
| S_IRUGO
| S_IXUGO
,
971 GLOBAL_ROOT_UID
, GLOBAL_ROOT_GID
,
974 idr_destroy(&root
->ino_idr
);
976 return ERR_PTR(-ENOMEM
);
982 root
->syscall_ops
= scops
;
985 init_waitqueue_head(&root
->deactivate_waitq
);
987 if (!(root
->flags
& KERNFS_ROOT_CREATE_DEACTIVATED
))
994 * kernfs_destroy_root - destroy a kernfs hierarchy
995 * @root: root of the hierarchy to destroy
997 * Destroy the hierarchy anchored at @root by removing all existing
998 * directories and destroying @root.
1000 void kernfs_destroy_root(struct kernfs_root
*root
)
1002 kernfs_remove(root
->kn
); /* will also free @root */
1006 * kernfs_create_dir_ns - create a directory
1007 * @parent: parent in which to create a new directory
1008 * @name: name of the new directory
1009 * @mode: mode of the new directory
1010 * @uid: uid of the new directory
1011 * @gid: gid of the new directory
1012 * @priv: opaque data associated with the new directory
1013 * @ns: optional namespace tag of the directory
1015 * Returns the created node on success, ERR_PTR() value on failure.
1017 struct kernfs_node
*kernfs_create_dir_ns(struct kernfs_node
*parent
,
1018 const char *name
, umode_t mode
,
1019 kuid_t uid
, kgid_t gid
,
1020 void *priv
, const void *ns
)
1022 struct kernfs_node
*kn
;
1026 kn
= kernfs_new_node(parent
, name
, mode
| S_IFDIR
,
1027 uid
, gid
, KERNFS_DIR
);
1029 return ERR_PTR(-ENOMEM
);
1031 kn
->dir
.root
= parent
->dir
.root
;
1036 rc
= kernfs_add_one(kn
);
1045 * kernfs_create_empty_dir - create an always empty directory
1046 * @parent: parent in which to create a new directory
1047 * @name: name of the new directory
1049 * Returns the created node on success, ERR_PTR() value on failure.
1051 struct kernfs_node
*kernfs_create_empty_dir(struct kernfs_node
*parent
,
1054 struct kernfs_node
*kn
;
1058 kn
= kernfs_new_node(parent
, name
, S_IRUGO
|S_IXUGO
|S_IFDIR
,
1059 GLOBAL_ROOT_UID
, GLOBAL_ROOT_GID
, KERNFS_DIR
);
1061 return ERR_PTR(-ENOMEM
);
1063 kn
->flags
|= KERNFS_EMPTY_DIR
;
1064 kn
->dir
.root
= parent
->dir
.root
;
1069 rc
= kernfs_add_one(kn
);
1077 static struct dentry
*kernfs_iop_lookup(struct inode
*dir
,
1078 struct dentry
*dentry
,
1082 struct kernfs_node
*parent
= dir
->i_private
;
1083 struct kernfs_node
*kn
;
1084 struct inode
*inode
;
1085 const void *ns
= NULL
;
1087 mutex_lock(&kernfs_mutex
);
1089 if (kernfs_ns_enabled(parent
))
1090 ns
= kernfs_info(dir
->i_sb
)->ns
;
1092 kn
= kernfs_find_ns(parent
, dentry
->d_name
.name
, ns
);
1095 if (!kn
|| !kernfs_active(kn
)) {
1100 /* attach dentry and inode */
1101 inode
= kernfs_get_inode(dir
->i_sb
, kn
);
1103 ret
= ERR_PTR(-ENOMEM
);
1107 /* instantiate and hash dentry */
1108 ret
= d_splice_alias(inode
, dentry
);
1110 mutex_unlock(&kernfs_mutex
);
1114 static int kernfs_iop_mkdir(struct inode
*dir
, struct dentry
*dentry
,
1117 struct kernfs_node
*parent
= dir
->i_private
;
1118 struct kernfs_syscall_ops
*scops
= kernfs_root(parent
)->syscall_ops
;
1121 if (!scops
|| !scops
->mkdir
)
1124 if (!kernfs_get_active(parent
))
1127 ret
= scops
->mkdir(parent
, dentry
->d_name
.name
, mode
);
1129 kernfs_put_active(parent
);
1133 static int kernfs_iop_rmdir(struct inode
*dir
, struct dentry
*dentry
)
1135 struct kernfs_node
*kn
= kernfs_dentry_node(dentry
);
1136 struct kernfs_syscall_ops
*scops
= kernfs_root(kn
)->syscall_ops
;
1139 if (!scops
|| !scops
->rmdir
)
1142 if (!kernfs_get_active(kn
))
1145 ret
= scops
->rmdir(kn
);
1147 kernfs_put_active(kn
);
1151 static int kernfs_iop_rename(struct inode
*old_dir
, struct dentry
*old_dentry
,
1152 struct inode
*new_dir
, struct dentry
*new_dentry
,
1155 struct kernfs_node
*kn
= kernfs_dentry_node(old_dentry
);
1156 struct kernfs_node
*new_parent
= new_dir
->i_private
;
1157 struct kernfs_syscall_ops
*scops
= kernfs_root(kn
)->syscall_ops
;
1163 if (!scops
|| !scops
->rename
)
1166 if (!kernfs_get_active(kn
))
1169 if (!kernfs_get_active(new_parent
)) {
1170 kernfs_put_active(kn
);
1174 ret
= scops
->rename(kn
, new_parent
, new_dentry
->d_name
.name
);
1176 kernfs_put_active(new_parent
);
1177 kernfs_put_active(kn
);
1181 const struct inode_operations kernfs_dir_iops
= {
1182 .lookup
= kernfs_iop_lookup
,
1183 .permission
= kernfs_iop_permission
,
1184 .setattr
= kernfs_iop_setattr
,
1185 .getattr
= kernfs_iop_getattr
,
1186 .listxattr
= kernfs_iop_listxattr
,
1188 .mkdir
= kernfs_iop_mkdir
,
1189 .rmdir
= kernfs_iop_rmdir
,
1190 .rename
= kernfs_iop_rename
,
1193 static struct kernfs_node
*kernfs_leftmost_descendant(struct kernfs_node
*pos
)
1195 struct kernfs_node
*last
;
1198 struct rb_node
*rbn
;
1202 if (kernfs_type(pos
) != KERNFS_DIR
)
1205 rbn
= rb_first(&pos
->dir
.children
);
1209 pos
= rb_to_kn(rbn
);
1216 * kernfs_next_descendant_post - find the next descendant for post-order walk
1217 * @pos: the current position (%NULL to initiate traversal)
1218 * @root: kernfs_node whose descendants to walk
1220 * Find the next descendant to visit for post-order traversal of @root's
1221 * descendants. @root is included in the iteration and the last node to be
1224 static struct kernfs_node
*kernfs_next_descendant_post(struct kernfs_node
*pos
,
1225 struct kernfs_node
*root
)
1227 struct rb_node
*rbn
;
1229 lockdep_assert_held(&kernfs_mutex
);
1231 /* if first iteration, visit leftmost descendant which may be root */
1233 return kernfs_leftmost_descendant(root
);
1235 /* if we visited @root, we're done */
1239 /* if there's an unvisited sibling, visit its leftmost descendant */
1240 rbn
= rb_next(&pos
->rb
);
1242 return kernfs_leftmost_descendant(rb_to_kn(rbn
));
1244 /* no sibling left, visit parent */
1249 * kernfs_activate - activate a node which started deactivated
1250 * @kn: kernfs_node whose subtree is to be activated
1252 * If the root has KERNFS_ROOT_CREATE_DEACTIVATED set, a newly created node
1253 * needs to be explicitly activated. A node which hasn't been activated
1254 * isn't visible to userland and deactivation is skipped during its
1255 * removal. This is useful to construct atomic init sequences where
1256 * creation of multiple nodes should either succeed or fail atomically.
1258 * The caller is responsible for ensuring that this function is not called
1259 * after kernfs_remove*() is invoked on @kn.
1261 void kernfs_activate(struct kernfs_node
*kn
)
1263 struct kernfs_node
*pos
;
1265 mutex_lock(&kernfs_mutex
);
1268 while ((pos
= kernfs_next_descendant_post(pos
, kn
))) {
1269 if (pos
->flags
& KERNFS_ACTIVATED
)
1272 WARN_ON_ONCE(pos
->parent
&& RB_EMPTY_NODE(&pos
->rb
));
1273 WARN_ON_ONCE(atomic_read(&pos
->active
) != KN_DEACTIVATED_BIAS
);
1275 atomic_sub(KN_DEACTIVATED_BIAS
, &pos
->active
);
1276 pos
->flags
|= KERNFS_ACTIVATED
;
1279 mutex_unlock(&kernfs_mutex
);
1282 static void __kernfs_remove(struct kernfs_node
*kn
)
1284 struct kernfs_node
*pos
;
1286 lockdep_assert_held(&kernfs_mutex
);
1289 * Short-circuit if non-root @kn has already finished removal.
1290 * This is for kernfs_remove_self() which plays with active ref
1293 if (!kn
|| (kn
->parent
&& RB_EMPTY_NODE(&kn
->rb
)))
1296 pr_debug("kernfs %s: removing\n", kn
->name
);
1298 /* prevent any new usage under @kn by deactivating all nodes */
1300 while ((pos
= kernfs_next_descendant_post(pos
, kn
)))
1301 if (kernfs_active(pos
))
1302 atomic_add(KN_DEACTIVATED_BIAS
, &pos
->active
);
1304 /* deactivate and unlink the subtree node-by-node */
1306 pos
= kernfs_leftmost_descendant(kn
);
1309 * kernfs_drain() drops kernfs_mutex temporarily and @pos's
1310 * base ref could have been put by someone else by the time
1311 * the function returns. Make sure it doesn't go away
1317 * Drain iff @kn was activated. This avoids draining and
1318 * its lockdep annotations for nodes which have never been
1319 * activated and allows embedding kernfs_remove() in create
1320 * error paths without worrying about draining.
1322 if (kn
->flags
& KERNFS_ACTIVATED
)
1325 WARN_ON_ONCE(atomic_read(&kn
->active
) != KN_DEACTIVATED_BIAS
);
1328 * kernfs_unlink_sibling() succeeds once per node. Use it
1329 * to decide who's responsible for cleanups.
1331 if (!pos
->parent
|| kernfs_unlink_sibling(pos
)) {
1332 struct kernfs_iattrs
*ps_iattr
=
1333 pos
->parent
? pos
->parent
->iattr
: NULL
;
1335 /* update timestamps on the parent */
1337 ktime_get_real_ts64(&ps_iattr
->ia_ctime
);
1338 ps_iattr
->ia_mtime
= ps_iattr
->ia_ctime
;
1345 } while (pos
!= kn
);
1349 * kernfs_remove - remove a kernfs_node recursively
1350 * @kn: the kernfs_node to remove
1352 * Remove @kn along with all its subdirectories and files.
1354 void kernfs_remove(struct kernfs_node
*kn
)
1356 mutex_lock(&kernfs_mutex
);
1357 __kernfs_remove(kn
);
1358 mutex_unlock(&kernfs_mutex
);
1362 * kernfs_break_active_protection - break out of active protection
1363 * @kn: the self kernfs_node
1365 * The caller must be running off of a kernfs operation which is invoked
1366 * with an active reference - e.g. one of kernfs_ops. Each invocation of
1367 * this function must also be matched with an invocation of
1368 * kernfs_unbreak_active_protection().
1370 * This function releases the active reference of @kn the caller is
1371 * holding. Once this function is called, @kn may be removed at any point
1372 * and the caller is solely responsible for ensuring that the objects it
1373 * dereferences are accessible.
1375 void kernfs_break_active_protection(struct kernfs_node
*kn
)
1378 * Take out ourself out of the active ref dependency chain. If
1379 * we're called without an active ref, lockdep will complain.
1381 kernfs_put_active(kn
);
1385 * kernfs_unbreak_active_protection - undo kernfs_break_active_protection()
1386 * @kn: the self kernfs_node
1388 * If kernfs_break_active_protection() was called, this function must be
1389 * invoked before finishing the kernfs operation. Note that while this
1390 * function restores the active reference, it doesn't and can't actually
1391 * restore the active protection - @kn may already or be in the process of
1392 * being removed. Once kernfs_break_active_protection() is invoked, that
1393 * protection is irreversibly gone for the kernfs operation instance.
1395 * While this function may be called at any point after
1396 * kernfs_break_active_protection() is invoked, its most useful location
1397 * would be right before the enclosing kernfs operation returns.
1399 void kernfs_unbreak_active_protection(struct kernfs_node
*kn
)
1402 * @kn->active could be in any state; however, the increment we do
1403 * here will be undone as soon as the enclosing kernfs operation
1404 * finishes and this temporary bump can't break anything. If @kn
1405 * is alive, nothing changes. If @kn is being deactivated, the
1406 * soon-to-follow put will either finish deactivation or restore
1407 * deactivated state. If @kn is already removed, the temporary
1408 * bump is guaranteed to be gone before @kn is released.
1410 atomic_inc(&kn
->active
);
1411 if (kernfs_lockdep(kn
))
1412 rwsem_acquire(&kn
->dep_map
, 0, 1, _RET_IP_
);
1416 * kernfs_remove_self - remove a kernfs_node from its own method
1417 * @kn: the self kernfs_node to remove
1419 * The caller must be running off of a kernfs operation which is invoked
1420 * with an active reference - e.g. one of kernfs_ops. This can be used to
1421 * implement a file operation which deletes itself.
1423 * For example, the "delete" file for a sysfs device directory can be
1424 * implemented by invoking kernfs_remove_self() on the "delete" file
1425 * itself. This function breaks the circular dependency of trying to
1426 * deactivate self while holding an active ref itself. It isn't necessary
1427 * to modify the usual removal path to use kernfs_remove_self(). The
1428 * "delete" implementation can simply invoke kernfs_remove_self() on self
1429 * before proceeding with the usual removal path. kernfs will ignore later
1430 * kernfs_remove() on self.
1432 * kernfs_remove_self() can be called multiple times concurrently on the
1433 * same kernfs_node. Only the first one actually performs removal and
1434 * returns %true. All others will wait until the kernfs operation which
1435 * won self-removal finishes and return %false. Note that the losers wait
1436 * for the completion of not only the winning kernfs_remove_self() but also
1437 * the whole kernfs_ops which won the arbitration. This can be used to
1438 * guarantee, for example, all concurrent writes to a "delete" file to
1439 * finish only after the whole operation is complete.
1441 bool kernfs_remove_self(struct kernfs_node
*kn
)
1445 mutex_lock(&kernfs_mutex
);
1446 kernfs_break_active_protection(kn
);
1449 * SUICIDAL is used to arbitrate among competing invocations. Only
1450 * the first one will actually perform removal. When the removal
1451 * is complete, SUICIDED is set and the active ref is restored
1452 * while holding kernfs_mutex. The ones which lost arbitration
1453 * waits for SUICDED && drained which can happen only after the
1454 * enclosing kernfs operation which executed the winning instance
1455 * of kernfs_remove_self() finished.
1457 if (!(kn
->flags
& KERNFS_SUICIDAL
)) {
1458 kn
->flags
|= KERNFS_SUICIDAL
;
1459 __kernfs_remove(kn
);
1460 kn
->flags
|= KERNFS_SUICIDED
;
1463 wait_queue_head_t
*waitq
= &kernfs_root(kn
)->deactivate_waitq
;
1467 prepare_to_wait(waitq
, &wait
, TASK_UNINTERRUPTIBLE
);
1469 if ((kn
->flags
& KERNFS_SUICIDED
) &&
1470 atomic_read(&kn
->active
) == KN_DEACTIVATED_BIAS
)
1473 mutex_unlock(&kernfs_mutex
);
1475 mutex_lock(&kernfs_mutex
);
1477 finish_wait(waitq
, &wait
);
1478 WARN_ON_ONCE(!RB_EMPTY_NODE(&kn
->rb
));
1483 * This must be done while holding kernfs_mutex; otherwise, waiting
1484 * for SUICIDED && deactivated could finish prematurely.
1486 kernfs_unbreak_active_protection(kn
);
1488 mutex_unlock(&kernfs_mutex
);
1493 * kernfs_remove_by_name_ns - find a kernfs_node by name and remove it
1494 * @parent: parent of the target
1495 * @name: name of the kernfs_node to remove
1496 * @ns: namespace tag of the kernfs_node to remove
1498 * Look for the kernfs_node with @name and @ns under @parent and remove it.
1499 * Returns 0 on success, -ENOENT if such entry doesn't exist.
1501 int kernfs_remove_by_name_ns(struct kernfs_node
*parent
, const char *name
,
1504 struct kernfs_node
*kn
;
1507 WARN(1, KERN_WARNING
"kernfs: can not remove '%s', no directory\n",
1512 mutex_lock(&kernfs_mutex
);
1514 kn
= kernfs_find_ns(parent
, name
, ns
);
1516 __kernfs_remove(kn
);
1518 mutex_unlock(&kernfs_mutex
);
1527 * kernfs_rename_ns - move and rename a kernfs_node
1529 * @new_parent: new parent to put @sd under
1530 * @new_name: new name
1531 * @new_ns: new namespace tag
1533 int kernfs_rename_ns(struct kernfs_node
*kn
, struct kernfs_node
*new_parent
,
1534 const char *new_name
, const void *new_ns
)
1536 struct kernfs_node
*old_parent
;
1537 const char *old_name
= NULL
;
1540 /* can't move or rename root */
1544 mutex_lock(&kernfs_mutex
);
1547 if (!kernfs_active(kn
) || !kernfs_active(new_parent
) ||
1548 (new_parent
->flags
& KERNFS_EMPTY_DIR
))
1552 if ((kn
->parent
== new_parent
) && (kn
->ns
== new_ns
) &&
1553 (strcmp(kn
->name
, new_name
) == 0))
1554 goto out
; /* nothing to rename */
1557 if (kernfs_find_ns(new_parent
, new_name
, new_ns
))
1560 /* rename kernfs_node */
1561 if (strcmp(kn
->name
, new_name
) != 0) {
1563 new_name
= kstrdup_const(new_name
, GFP_KERNEL
);
1571 * Move to the appropriate place in the appropriate directories rbtree.
1573 kernfs_unlink_sibling(kn
);
1574 kernfs_get(new_parent
);
1576 /* rename_lock protects ->parent and ->name accessors */
1577 spin_lock_irq(&kernfs_rename_lock
);
1579 old_parent
= kn
->parent
;
1580 kn
->parent
= new_parent
;
1584 old_name
= kn
->name
;
1585 kn
->name
= new_name
;
1588 spin_unlock_irq(&kernfs_rename_lock
);
1590 kn
->hash
= kernfs_name_hash(kn
->name
, kn
->ns
);
1591 kernfs_link_sibling(kn
);
1593 kernfs_put(old_parent
);
1594 kfree_const(old_name
);
1598 mutex_unlock(&kernfs_mutex
);
1602 /* Relationship between s_mode and the DT_xxx types */
1603 static inline unsigned char dt_type(struct kernfs_node
*kn
)
1605 return (kn
->mode
>> 12) & 15;
1608 static int kernfs_dir_fop_release(struct inode
*inode
, struct file
*filp
)
1610 kernfs_put(filp
->private_data
);
1614 static struct kernfs_node
*kernfs_dir_pos(const void *ns
,
1615 struct kernfs_node
*parent
, loff_t hash
, struct kernfs_node
*pos
)
1618 int valid
= kernfs_active(pos
) &&
1619 pos
->parent
== parent
&& hash
== pos
->hash
;
1624 if (!pos
&& (hash
> 1) && (hash
< INT_MAX
)) {
1625 struct rb_node
*node
= parent
->dir
.children
.rb_node
;
1627 pos
= rb_to_kn(node
);
1629 if (hash
< pos
->hash
)
1630 node
= node
->rb_left
;
1631 else if (hash
> pos
->hash
)
1632 node
= node
->rb_right
;
1637 /* Skip over entries which are dying/dead or in the wrong namespace */
1638 while (pos
&& (!kernfs_active(pos
) || pos
->ns
!= ns
)) {
1639 struct rb_node
*node
= rb_next(&pos
->rb
);
1643 pos
= rb_to_kn(node
);
1648 static struct kernfs_node
*kernfs_dir_next_pos(const void *ns
,
1649 struct kernfs_node
*parent
, ino_t ino
, struct kernfs_node
*pos
)
1651 pos
= kernfs_dir_pos(ns
, parent
, ino
, pos
);
1654 struct rb_node
*node
= rb_next(&pos
->rb
);
1658 pos
= rb_to_kn(node
);
1659 } while (pos
&& (!kernfs_active(pos
) || pos
->ns
!= ns
));
1664 static int kernfs_fop_readdir(struct file
*file
, struct dir_context
*ctx
)
1666 struct dentry
*dentry
= file
->f_path
.dentry
;
1667 struct kernfs_node
*parent
= kernfs_dentry_node(dentry
);
1668 struct kernfs_node
*pos
= file
->private_data
;
1669 const void *ns
= NULL
;
1671 if (!dir_emit_dots(file
, ctx
))
1673 mutex_lock(&kernfs_mutex
);
1675 if (kernfs_ns_enabled(parent
))
1676 ns
= kernfs_info(dentry
->d_sb
)->ns
;
1678 for (pos
= kernfs_dir_pos(ns
, parent
, ctx
->pos
, pos
);
1680 pos
= kernfs_dir_next_pos(ns
, parent
, ctx
->pos
, pos
)) {
1681 const char *name
= pos
->name
;
1682 unsigned int type
= dt_type(pos
);
1683 int len
= strlen(name
);
1684 ino_t ino
= kernfs_ino(pos
);
1686 ctx
->pos
= pos
->hash
;
1687 file
->private_data
= pos
;
1690 mutex_unlock(&kernfs_mutex
);
1691 if (!dir_emit(ctx
, name
, len
, ino
, type
))
1693 mutex_lock(&kernfs_mutex
);
1695 mutex_unlock(&kernfs_mutex
);
1696 file
->private_data
= NULL
;
1701 const struct file_operations kernfs_dir_fops
= {
1702 .read
= generic_read_dir
,
1703 .iterate_shared
= kernfs_fop_readdir
,
1704 .release
= kernfs_dir_fop_release
,
1705 .llseek
= generic_file_llseek
,