1 // SPDX-License-Identifier: GPL-2.0-only
3 * net/sched/sch_qfq.c Quick Fair Queueing Plus Scheduler.
5 * Copyright (c) 2009 Fabio Checconi, Luigi Rizzo, and Paolo Valente.
6 * Copyright (c) 2012 Paolo Valente.
9 #include <linux/module.h>
10 #include <linux/init.h>
11 #include <linux/bitops.h>
12 #include <linux/errno.h>
13 #include <linux/netdevice.h>
14 #include <linux/pkt_sched.h>
15 #include <net/sch_generic.h>
16 #include <net/pkt_sched.h>
17 #include <net/pkt_cls.h>
20 /* Quick Fair Queueing Plus
21 ========================
26 "Reducing the Execution Time of Fair-Queueing Schedulers."
27 http://algo.ing.unimo.it/people/paolo/agg-sched/agg-sched.pdf
31 [2] Fabio Checconi, Luigi Rizzo, and Paolo Valente: "QFQ: Efficient
32 Packet Scheduling with Tight Bandwidth Distribution Guarantees."
35 http://retis.sssup.it/~fabio/linux/qfq/
40 QFQ+ divides classes into aggregates of at most MAX_AGG_CLASSES
41 classes. Each aggregate is timestamped with a virtual start time S
42 and a virtual finish time F, and scheduled according to its
43 timestamps. S and F are computed as a function of a system virtual
44 time function V. The classes within each aggregate are instead
47 To speed up operations, QFQ+ divides also aggregates into a limited
48 number of groups. Which group a class belongs to depends on the
49 ratio between the maximum packet length for the class and the weight
50 of the class. Groups have their own S and F. In the end, QFQ+
51 schedules groups, then aggregates within groups, then classes within
52 aggregates. See [1] and [2] for a full description.
54 Virtual time computations.
56 S, F and V are all computed in fixed point arithmetic with
57 FRAC_BITS decimal bits.
59 QFQ_MAX_INDEX is the maximum index allowed for a group. We need
61 QFQ_MAX_WSHIFT is the maximum power of two supported as a weight.
63 The layout of the bits is as below:
65 [ MTU_SHIFT ][ FRAC_BITS ]
66 [ MAX_INDEX ][ MIN_SLOT_SHIFT ]
70 where MIN_SLOT_SHIFT is derived by difference from the others.
72 The max group index corresponds to Lmax/w_min, where
73 Lmax=1<<MTU_SHIFT, w_min = 1 .
74 From this, and knowing how many groups (MAX_INDEX) we want,
75 we can derive the shift corresponding to each group.
77 Because we often need to compute
78 F = S + len/w_i and V = V + len/wsum
79 instead of storing w_i store the value
80 inv_w = (1<<FRAC_BITS)/w_i
81 so we can do F = S + len * inv_w * wsum.
82 We use W_TOT in the formulas so we can easily move between
83 static and adaptive weight sum.
85 The per-scheduler-instance data contain all the data structures
86 for the scheduler: bitmaps and bucket lists.
91 * Maximum number of consecutive slots occupied by backlogged classes
94 #define QFQ_MAX_SLOTS 32
97 * Shifts used for aggregate<->group mapping. We allow class weights that are
98 * in the range [1, 2^MAX_WSHIFT], and we try to map each aggregate i to the
99 * group with the smallest index that can support the L_i / r_i configured
100 * for the classes in the aggregate.
102 * grp->index is the index of the group; and grp->slot_shift
103 * is the shift for the corresponding (scaled) sigma_i.
105 #define QFQ_MAX_INDEX 24
106 #define QFQ_MAX_WSHIFT 10
108 #define QFQ_MAX_WEIGHT (1<<QFQ_MAX_WSHIFT) /* see qfq_slot_insert */
109 #define QFQ_MAX_WSUM (64*QFQ_MAX_WEIGHT)
111 #define FRAC_BITS 30 /* fixed point arithmetic */
112 #define ONE_FP (1UL << FRAC_BITS)
114 #define QFQ_MTU_SHIFT 16 /* to support TSO/GSO */
115 #define QFQ_MIN_LMAX 512 /* see qfq_slot_insert */
117 #define QFQ_MAX_AGG_CLASSES 8 /* max num classes per aggregate allowed */
120 * Possible group states. These values are used as indexes for the bitmaps
121 * array of struct qfq_queue.
123 enum qfq_state
{ ER
, IR
, EB
, IB
, QFQ_MAX_STATE
};
127 struct qfq_aggregate
;
130 struct Qdisc_class_common common
;
132 unsigned int filter_cnt
;
134 struct gnet_stats_basic_packed bstats
;
135 struct gnet_stats_queue qstats
;
136 struct net_rate_estimator __rcu
*rate_est
;
138 struct list_head alist
; /* Link for active-classes list. */
139 struct qfq_aggregate
*agg
; /* Parent aggregate. */
140 int deficit
; /* DRR deficit counter. */
143 struct qfq_aggregate
{
144 struct hlist_node next
; /* Link for the slot list. */
145 u64 S
, F
; /* flow timestamps (exact) */
147 /* group we belong to. In principle we would need the index,
148 * which is log_2(lmax/weight), but we never reference it
149 * directly, only the group.
151 struct qfq_group
*grp
;
153 /* these are copied from the flowset. */
154 u32 class_weight
; /* Weight of each class in this aggregate. */
155 /* Max pkt size for the classes in this aggregate, DRR quantum. */
158 u32 inv_w
; /* ONE_FP/(sum of weights of classes in aggr.). */
159 u32 budgetmax
; /* Max budget for this aggregate. */
160 u32 initial_budget
, budget
; /* Initial and current budget. */
162 int num_classes
; /* Number of classes in this aggr. */
163 struct list_head active
; /* DRR queue of active classes. */
165 struct hlist_node nonfull_next
; /* See nonfull_aggs in qfq_sched. */
169 u64 S
, F
; /* group timestamps (approx). */
170 unsigned int slot_shift
; /* Slot shift. */
171 unsigned int index
; /* Group index. */
172 unsigned int front
; /* Index of the front slot. */
173 unsigned long full_slots
; /* non-empty slots */
175 /* Array of RR lists of active aggregates. */
176 struct hlist_head slots
[QFQ_MAX_SLOTS
];
180 struct tcf_proto __rcu
*filter_list
;
181 struct tcf_block
*block
;
182 struct Qdisc_class_hash clhash
;
184 u64 oldV
, V
; /* Precise virtual times. */
185 struct qfq_aggregate
*in_serv_agg
; /* Aggregate being served. */
186 u32 wsum
; /* weight sum */
187 u32 iwsum
; /* inverse weight sum */
189 unsigned long bitmaps
[QFQ_MAX_STATE
]; /* Group bitmaps. */
190 struct qfq_group groups
[QFQ_MAX_INDEX
+ 1]; /* The groups. */
191 u32 min_slot_shift
; /* Index of the group-0 bit in the bitmaps. */
193 u32 max_agg_classes
; /* Max number of classes per aggr. */
194 struct hlist_head nonfull_aggs
; /* Aggs with room for more classes. */
198 * Possible reasons why the timestamps of an aggregate are updated
199 * enqueue: the aggregate switches from idle to active and must scheduled
201 * requeue: the aggregate finishes its budget, so it stops being served and
202 * must be rescheduled for service
204 enum update_reason
{enqueue
, requeue
};
206 static struct qfq_class
*qfq_find_class(struct Qdisc
*sch
, u32 classid
)
208 struct qfq_sched
*q
= qdisc_priv(sch
);
209 struct Qdisc_class_common
*clc
;
211 clc
= qdisc_class_find(&q
->clhash
, classid
);
214 return container_of(clc
, struct qfq_class
, common
);
217 static const struct nla_policy qfq_policy
[TCA_QFQ_MAX
+ 1] = {
218 [TCA_QFQ_WEIGHT
] = { .type
= NLA_U32
},
219 [TCA_QFQ_LMAX
] = { .type
= NLA_U32
},
223 * Calculate a flow index, given its weight and maximum packet length.
224 * index = log_2(maxlen/weight) but we need to apply the scaling.
225 * This is used only once at flow creation.
227 static int qfq_calc_index(u32 inv_w
, unsigned int maxlen
, u32 min_slot_shift
)
229 u64 slot_size
= (u64
)maxlen
* inv_w
;
230 unsigned long size_map
;
233 size_map
= slot_size
>> min_slot_shift
;
237 index
= __fls(size_map
) + 1; /* basically a log_2 */
238 index
-= !(slot_size
- (1ULL << (index
+ min_slot_shift
- 1)));
243 pr_debug("qfq calc_index: W = %lu, L = %u, I = %d\n",
244 (unsigned long) ONE_FP
/inv_w
, maxlen
, index
);
249 static void qfq_deactivate_agg(struct qfq_sched
*, struct qfq_aggregate
*);
250 static void qfq_activate_agg(struct qfq_sched
*, struct qfq_aggregate
*,
253 static void qfq_init_agg(struct qfq_sched
*q
, struct qfq_aggregate
*agg
,
254 u32 lmax
, u32 weight
)
256 INIT_LIST_HEAD(&agg
->active
);
257 hlist_add_head(&agg
->nonfull_next
, &q
->nonfull_aggs
);
260 agg
->class_weight
= weight
;
263 static struct qfq_aggregate
*qfq_find_agg(struct qfq_sched
*q
,
264 u32 lmax
, u32 weight
)
266 struct qfq_aggregate
*agg
;
268 hlist_for_each_entry(agg
, &q
->nonfull_aggs
, nonfull_next
)
269 if (agg
->lmax
== lmax
&& agg
->class_weight
== weight
)
276 /* Update aggregate as a function of the new number of classes. */
277 static void qfq_update_agg(struct qfq_sched
*q
, struct qfq_aggregate
*agg
,
282 if (new_num_classes
== q
->max_agg_classes
)
283 hlist_del_init(&agg
->nonfull_next
);
285 if (agg
->num_classes
> new_num_classes
&&
286 new_num_classes
== q
->max_agg_classes
- 1) /* agg no more full */
287 hlist_add_head(&agg
->nonfull_next
, &q
->nonfull_aggs
);
289 /* The next assignment may let
290 * agg->initial_budget > agg->budgetmax
291 * hold, we will take it into account in charge_actual_service().
293 agg
->budgetmax
= new_num_classes
* agg
->lmax
;
294 new_agg_weight
= agg
->class_weight
* new_num_classes
;
295 agg
->inv_w
= ONE_FP
/new_agg_weight
;
297 if (agg
->grp
== NULL
) {
298 int i
= qfq_calc_index(agg
->inv_w
, agg
->budgetmax
,
300 agg
->grp
= &q
->groups
[i
];
304 (int) agg
->class_weight
* (new_num_classes
- agg
->num_classes
);
305 q
->iwsum
= ONE_FP
/ q
->wsum
;
307 agg
->num_classes
= new_num_classes
;
310 /* Add class to aggregate. */
311 static void qfq_add_to_agg(struct qfq_sched
*q
,
312 struct qfq_aggregate
*agg
,
313 struct qfq_class
*cl
)
317 qfq_update_agg(q
, agg
, agg
->num_classes
+1);
318 if (cl
->qdisc
->q
.qlen
> 0) { /* adding an active class */
319 list_add_tail(&cl
->alist
, &agg
->active
);
320 if (list_first_entry(&agg
->active
, struct qfq_class
, alist
) ==
321 cl
&& q
->in_serv_agg
!= agg
) /* agg was inactive */
322 qfq_activate_agg(q
, agg
, enqueue
); /* schedule agg */
326 static struct qfq_aggregate
*qfq_choose_next_agg(struct qfq_sched
*);
328 static void qfq_destroy_agg(struct qfq_sched
*q
, struct qfq_aggregate
*agg
)
330 hlist_del_init(&agg
->nonfull_next
);
331 q
->wsum
-= agg
->class_weight
;
333 q
->iwsum
= ONE_FP
/ q
->wsum
;
335 if (q
->in_serv_agg
== agg
)
336 q
->in_serv_agg
= qfq_choose_next_agg(q
);
340 /* Deschedule class from within its parent aggregate. */
341 static void qfq_deactivate_class(struct qfq_sched
*q
, struct qfq_class
*cl
)
343 struct qfq_aggregate
*agg
= cl
->agg
;
346 list_del(&cl
->alist
); /* remove from RR queue of the aggregate */
347 if (list_empty(&agg
->active
)) /* agg is now inactive */
348 qfq_deactivate_agg(q
, agg
);
351 /* Remove class from its parent aggregate. */
352 static void qfq_rm_from_agg(struct qfq_sched
*q
, struct qfq_class
*cl
)
354 struct qfq_aggregate
*agg
= cl
->agg
;
357 if (agg
->num_classes
== 1) { /* agg being emptied, destroy it */
358 qfq_destroy_agg(q
, agg
);
361 qfq_update_agg(q
, agg
, agg
->num_classes
-1);
364 /* Deschedule class and remove it from its parent aggregate. */
365 static void qfq_deact_rm_from_agg(struct qfq_sched
*q
, struct qfq_class
*cl
)
367 if (cl
->qdisc
->q
.qlen
> 0) /* class is active */
368 qfq_deactivate_class(q
, cl
);
370 qfq_rm_from_agg(q
, cl
);
373 /* Move class to a new aggregate, matching the new class weight and/or lmax */
374 static int qfq_change_agg(struct Qdisc
*sch
, struct qfq_class
*cl
, u32 weight
,
377 struct qfq_sched
*q
= qdisc_priv(sch
);
378 struct qfq_aggregate
*new_agg
= qfq_find_agg(q
, lmax
, weight
);
380 if (new_agg
== NULL
) { /* create new aggregate */
381 new_agg
= kzalloc(sizeof(*new_agg
), GFP_ATOMIC
);
384 qfq_init_agg(q
, new_agg
, lmax
, weight
);
386 qfq_deact_rm_from_agg(q
, cl
);
387 qfq_add_to_agg(q
, new_agg
, cl
);
392 static int qfq_change_class(struct Qdisc
*sch
, u32 classid
, u32 parentid
,
393 struct nlattr
**tca
, unsigned long *arg
,
394 struct netlink_ext_ack
*extack
)
396 struct qfq_sched
*q
= qdisc_priv(sch
);
397 struct qfq_class
*cl
= (struct qfq_class
*)*arg
;
398 bool existing
= false;
399 struct nlattr
*tb
[TCA_QFQ_MAX
+ 1];
400 struct qfq_aggregate
*new_agg
= NULL
;
401 u32 weight
, lmax
, inv_w
;
405 if (tca
[TCA_OPTIONS
] == NULL
) {
406 pr_notice("qfq: no options\n");
410 err
= nla_parse_nested_deprecated(tb
, TCA_QFQ_MAX
, tca
[TCA_OPTIONS
],
415 if (tb
[TCA_QFQ_WEIGHT
]) {
416 weight
= nla_get_u32(tb
[TCA_QFQ_WEIGHT
]);
417 if (!weight
|| weight
> (1UL << QFQ_MAX_WSHIFT
)) {
418 pr_notice("qfq: invalid weight %u\n", weight
);
424 if (tb
[TCA_QFQ_LMAX
]) {
425 lmax
= nla_get_u32(tb
[TCA_QFQ_LMAX
]);
426 if (lmax
< QFQ_MIN_LMAX
|| lmax
> (1UL << QFQ_MTU_SHIFT
)) {
427 pr_notice("qfq: invalid max length %u\n", lmax
);
431 lmax
= psched_mtu(qdisc_dev(sch
));
433 inv_w
= ONE_FP
/ weight
;
434 weight
= ONE_FP
/ inv_w
;
437 lmax
== cl
->agg
->lmax
&&
438 weight
== cl
->agg
->class_weight
)
439 return 0; /* nothing to change */
441 delta_w
= weight
- (cl
? cl
->agg
->class_weight
: 0);
443 if (q
->wsum
+ delta_w
> QFQ_MAX_WSUM
) {
444 pr_notice("qfq: total weight out of range (%d + %u)\n",
449 if (cl
!= NULL
) { /* modify existing class */
451 err
= gen_replace_estimator(&cl
->bstats
, NULL
,
454 qdisc_root_sleeping_running(sch
),
463 /* create and init new class */
464 cl
= kzalloc(sizeof(struct qfq_class
), GFP_KERNEL
);
468 cl
->common
.classid
= classid
;
471 cl
->qdisc
= qdisc_create_dflt(sch
->dev_queue
, &pfifo_qdisc_ops
,
473 if (cl
->qdisc
== NULL
)
474 cl
->qdisc
= &noop_qdisc
;
477 err
= gen_new_estimator(&cl
->bstats
, NULL
,
480 qdisc_root_sleeping_running(sch
),
486 if (cl
->qdisc
!= &noop_qdisc
)
487 qdisc_hash_add(cl
->qdisc
, true);
489 qdisc_class_hash_insert(&q
->clhash
, &cl
->common
);
490 sch_tree_unlock(sch
);
492 qdisc_class_hash_grow(sch
, &q
->clhash
);
496 new_agg
= qfq_find_agg(q
, lmax
, weight
);
497 if (new_agg
== NULL
) { /* create new aggregate */
498 sch_tree_unlock(sch
);
499 new_agg
= kzalloc(sizeof(*new_agg
), GFP_KERNEL
);
500 if (new_agg
== NULL
) {
502 gen_kill_estimator(&cl
->rate_est
);
506 qfq_init_agg(q
, new_agg
, lmax
, weight
);
509 qfq_deact_rm_from_agg(q
, cl
);
510 qfq_add_to_agg(q
, new_agg
, cl
);
511 sch_tree_unlock(sch
);
513 *arg
= (unsigned long)cl
;
517 qdisc_put(cl
->qdisc
);
522 static void qfq_destroy_class(struct Qdisc
*sch
, struct qfq_class
*cl
)
524 struct qfq_sched
*q
= qdisc_priv(sch
);
526 qfq_rm_from_agg(q
, cl
);
527 gen_kill_estimator(&cl
->rate_est
);
528 qdisc_put(cl
->qdisc
);
532 static int qfq_delete_class(struct Qdisc
*sch
, unsigned long arg
)
534 struct qfq_sched
*q
= qdisc_priv(sch
);
535 struct qfq_class
*cl
= (struct qfq_class
*)arg
;
537 if (cl
->filter_cnt
> 0)
542 qdisc_purge_queue(cl
->qdisc
);
543 qdisc_class_hash_remove(&q
->clhash
, &cl
->common
);
545 sch_tree_unlock(sch
);
547 qfq_destroy_class(sch
, cl
);
551 static unsigned long qfq_search_class(struct Qdisc
*sch
, u32 classid
)
553 return (unsigned long)qfq_find_class(sch
, classid
);
556 static struct tcf_block
*qfq_tcf_block(struct Qdisc
*sch
, unsigned long cl
,
557 struct netlink_ext_ack
*extack
)
559 struct qfq_sched
*q
= qdisc_priv(sch
);
567 static unsigned long qfq_bind_tcf(struct Qdisc
*sch
, unsigned long parent
,
570 struct qfq_class
*cl
= qfq_find_class(sch
, classid
);
575 return (unsigned long)cl
;
578 static void qfq_unbind_tcf(struct Qdisc
*sch
, unsigned long arg
)
580 struct qfq_class
*cl
= (struct qfq_class
*)arg
;
585 static int qfq_graft_class(struct Qdisc
*sch
, unsigned long arg
,
586 struct Qdisc
*new, struct Qdisc
**old
,
587 struct netlink_ext_ack
*extack
)
589 struct qfq_class
*cl
= (struct qfq_class
*)arg
;
592 new = qdisc_create_dflt(sch
->dev_queue
, &pfifo_qdisc_ops
,
593 cl
->common
.classid
, NULL
);
598 *old
= qdisc_replace(sch
, new, &cl
->qdisc
);
602 static struct Qdisc
*qfq_class_leaf(struct Qdisc
*sch
, unsigned long arg
)
604 struct qfq_class
*cl
= (struct qfq_class
*)arg
;
609 static int qfq_dump_class(struct Qdisc
*sch
, unsigned long arg
,
610 struct sk_buff
*skb
, struct tcmsg
*tcm
)
612 struct qfq_class
*cl
= (struct qfq_class
*)arg
;
615 tcm
->tcm_parent
= TC_H_ROOT
;
616 tcm
->tcm_handle
= cl
->common
.classid
;
617 tcm
->tcm_info
= cl
->qdisc
->handle
;
619 nest
= nla_nest_start_noflag(skb
, TCA_OPTIONS
);
621 goto nla_put_failure
;
622 if (nla_put_u32(skb
, TCA_QFQ_WEIGHT
, cl
->agg
->class_weight
) ||
623 nla_put_u32(skb
, TCA_QFQ_LMAX
, cl
->agg
->lmax
))
624 goto nla_put_failure
;
625 return nla_nest_end(skb
, nest
);
628 nla_nest_cancel(skb
, nest
);
632 static int qfq_dump_class_stats(struct Qdisc
*sch
, unsigned long arg
,
635 struct qfq_class
*cl
= (struct qfq_class
*)arg
;
636 struct tc_qfq_stats xstats
;
638 memset(&xstats
, 0, sizeof(xstats
));
640 xstats
.weight
= cl
->agg
->class_weight
;
641 xstats
.lmax
= cl
->agg
->lmax
;
643 if (gnet_stats_copy_basic(qdisc_root_sleeping_running(sch
),
644 d
, NULL
, &cl
->bstats
) < 0 ||
645 gnet_stats_copy_rate_est(d
, &cl
->rate_est
) < 0 ||
646 qdisc_qstats_copy(d
, cl
->qdisc
) < 0)
649 return gnet_stats_copy_app(d
, &xstats
, sizeof(xstats
));
652 static void qfq_walk(struct Qdisc
*sch
, struct qdisc_walker
*arg
)
654 struct qfq_sched
*q
= qdisc_priv(sch
);
655 struct qfq_class
*cl
;
661 for (i
= 0; i
< q
->clhash
.hashsize
; i
++) {
662 hlist_for_each_entry(cl
, &q
->clhash
.hash
[i
], common
.hnode
) {
663 if (arg
->count
< arg
->skip
) {
667 if (arg
->fn(sch
, (unsigned long)cl
, arg
) < 0) {
676 static struct qfq_class
*qfq_classify(struct sk_buff
*skb
, struct Qdisc
*sch
,
679 struct qfq_sched
*q
= qdisc_priv(sch
);
680 struct qfq_class
*cl
;
681 struct tcf_result res
;
682 struct tcf_proto
*fl
;
685 if (TC_H_MAJ(skb
->priority
^ sch
->handle
) == 0) {
686 pr_debug("qfq_classify: found %d\n", skb
->priority
);
687 cl
= qfq_find_class(sch
, skb
->priority
);
692 *qerr
= NET_XMIT_SUCCESS
| __NET_XMIT_BYPASS
;
693 fl
= rcu_dereference_bh(q
->filter_list
);
694 result
= tcf_classify(skb
, fl
, &res
, false);
696 #ifdef CONFIG_NET_CLS_ACT
701 *qerr
= NET_XMIT_SUCCESS
| __NET_XMIT_STOLEN
;
707 cl
= (struct qfq_class
*)res
.class;
709 cl
= qfq_find_class(sch
, res
.classid
);
716 /* Generic comparison function, handling wraparound. */
717 static inline int qfq_gt(u64 a
, u64 b
)
719 return (s64
)(a
- b
) > 0;
722 /* Round a precise timestamp to its slotted value. */
723 static inline u64
qfq_round_down(u64 ts
, unsigned int shift
)
725 return ts
& ~((1ULL << shift
) - 1);
728 /* return the pointer to the group with lowest index in the bitmap */
729 static inline struct qfq_group
*qfq_ffs(struct qfq_sched
*q
,
730 unsigned long bitmap
)
732 int index
= __ffs(bitmap
);
733 return &q
->groups
[index
];
735 /* Calculate a mask to mimic what would be ffs_from(). */
736 static inline unsigned long mask_from(unsigned long bitmap
, int from
)
738 return bitmap
& ~((1UL << from
) - 1);
742 * The state computation relies on ER=0, IR=1, EB=2, IB=3
743 * First compute eligibility comparing grp->S, q->V,
744 * then check if someone is blocking us and possibly add EB
746 static int qfq_calc_state(struct qfq_sched
*q
, const struct qfq_group
*grp
)
748 /* if S > V we are not eligible */
749 unsigned int state
= qfq_gt(grp
->S
, q
->V
);
750 unsigned long mask
= mask_from(q
->bitmaps
[ER
], grp
->index
);
751 struct qfq_group
*next
;
754 next
= qfq_ffs(q
, mask
);
755 if (qfq_gt(grp
->F
, next
->F
))
765 * q->bitmaps[dst] |= q->bitmaps[src] & mask;
766 * q->bitmaps[src] &= ~mask;
767 * but we should make sure that src != dst
769 static inline void qfq_move_groups(struct qfq_sched
*q
, unsigned long mask
,
772 q
->bitmaps
[dst
] |= q
->bitmaps
[src
] & mask
;
773 q
->bitmaps
[src
] &= ~mask
;
776 static void qfq_unblock_groups(struct qfq_sched
*q
, int index
, u64 old_F
)
778 unsigned long mask
= mask_from(q
->bitmaps
[ER
], index
+ 1);
779 struct qfq_group
*next
;
782 next
= qfq_ffs(q
, mask
);
783 if (!qfq_gt(next
->F
, old_F
))
787 mask
= (1UL << index
) - 1;
788 qfq_move_groups(q
, mask
, EB
, ER
);
789 qfq_move_groups(q
, mask
, IB
, IR
);
796 old_V >>= q->min_slot_shift;
802 static void qfq_make_eligible(struct qfq_sched
*q
)
804 unsigned long vslot
= q
->V
>> q
->min_slot_shift
;
805 unsigned long old_vslot
= q
->oldV
>> q
->min_slot_shift
;
807 if (vslot
!= old_vslot
) {
809 int last_flip_pos
= fls(vslot
^ old_vslot
);
811 if (last_flip_pos
> 31) /* higher than the number of groups */
812 mask
= ~0UL; /* make all groups eligible */
814 mask
= (1UL << last_flip_pos
) - 1;
816 qfq_move_groups(q
, mask
, IR
, ER
);
817 qfq_move_groups(q
, mask
, IB
, EB
);
822 * The index of the slot in which the input aggregate agg is to be
823 * inserted must not be higher than QFQ_MAX_SLOTS-2. There is a '-2'
824 * and not a '-1' because the start time of the group may be moved
825 * backward by one slot after the aggregate has been inserted, and
826 * this would cause non-empty slots to be right-shifted by one
829 * QFQ+ fully satisfies this bound to the slot index if the parameters
830 * of the classes are not changed dynamically, and if QFQ+ never
831 * happens to postpone the service of agg unjustly, i.e., it never
832 * happens that the aggregate becomes backlogged and eligible, or just
833 * eligible, while an aggregate with a higher approximated finish time
834 * is being served. In particular, in this case QFQ+ guarantees that
835 * the timestamps of agg are low enough that the slot index is never
836 * higher than 2. Unfortunately, QFQ+ cannot provide the same
837 * guarantee if it happens to unjustly postpone the service of agg, or
838 * if the parameters of some class are changed.
840 * As for the first event, i.e., an out-of-order service, the
841 * upper bound to the slot index guaranteed by QFQ+ grows to
843 * QFQ_MAX_AGG_CLASSES * ((1<<QFQ_MTU_SHIFT)/QFQ_MIN_LMAX) *
844 * (current_max_weight/current_wsum) <= 2 + 8 * 128 * 1.
846 * The following function deals with this problem by backward-shifting
847 * the timestamps of agg, if needed, so as to guarantee that the slot
848 * index is never higher than QFQ_MAX_SLOTS-2. This backward-shift may
849 * cause the service of other aggregates to be postponed, yet the
850 * worst-case guarantees of these aggregates are not violated. In
851 * fact, in case of no out-of-order service, the timestamps of agg
852 * would have been even lower than they are after the backward shift,
853 * because QFQ+ would have guaranteed a maximum value equal to 2 for
854 * the slot index, and 2 < QFQ_MAX_SLOTS-2. Hence the aggregates whose
855 * service is postponed because of the backward-shift would have
856 * however waited for the service of agg before being served.
858 * The other event that may cause the slot index to be higher than 2
859 * for agg is a recent change of the parameters of some class. If the
860 * weight of a class is increased or the lmax (max_pkt_size) of the
861 * class is decreased, then a new aggregate with smaller slot size
862 * than the original parent aggregate of the class may happen to be
863 * activated. The activation of this aggregate should be properly
864 * delayed to when the service of the class has finished in the ideal
865 * system tracked by QFQ+. If the activation of the aggregate is not
866 * delayed to this reference time instant, then this aggregate may be
867 * unjustly served before other aggregates waiting for service. This
868 * may cause the above bound to the slot index to be violated for some
869 * of these unlucky aggregates.
871 * Instead of delaying the activation of the new aggregate, which is
872 * quite complex, the above-discussed capping of the slot index is
873 * used to handle also the consequences of a change of the parameters
876 static void qfq_slot_insert(struct qfq_group
*grp
, struct qfq_aggregate
*agg
,
879 u64 slot
= (roundedS
- grp
->S
) >> grp
->slot_shift
;
880 unsigned int i
; /* slot index in the bucket list */
882 if (unlikely(slot
> QFQ_MAX_SLOTS
- 2)) {
883 u64 deltaS
= roundedS
- grp
->S
-
884 ((u64
)(QFQ_MAX_SLOTS
- 2)<<grp
->slot_shift
);
887 slot
= QFQ_MAX_SLOTS
- 2;
890 i
= (grp
->front
+ slot
) % QFQ_MAX_SLOTS
;
892 hlist_add_head(&agg
->next
, &grp
->slots
[i
]);
893 __set_bit(slot
, &grp
->full_slots
);
896 /* Maybe introduce hlist_first_entry?? */
897 static struct qfq_aggregate
*qfq_slot_head(struct qfq_group
*grp
)
899 return hlist_entry(grp
->slots
[grp
->front
].first
,
900 struct qfq_aggregate
, next
);
904 * remove the entry from the slot
906 static void qfq_front_slot_remove(struct qfq_group
*grp
)
908 struct qfq_aggregate
*agg
= qfq_slot_head(grp
);
911 hlist_del(&agg
->next
);
912 if (hlist_empty(&grp
->slots
[grp
->front
]))
913 __clear_bit(0, &grp
->full_slots
);
917 * Returns the first aggregate in the first non-empty bucket of the
918 * group. As a side effect, adjusts the bucket list so the first
919 * non-empty bucket is at position 0 in full_slots.
921 static struct qfq_aggregate
*qfq_slot_scan(struct qfq_group
*grp
)
925 pr_debug("qfq slot_scan: grp %u full %#lx\n",
926 grp
->index
, grp
->full_slots
);
928 if (grp
->full_slots
== 0)
931 i
= __ffs(grp
->full_slots
); /* zero based */
933 grp
->front
= (grp
->front
+ i
) % QFQ_MAX_SLOTS
;
934 grp
->full_slots
>>= i
;
937 return qfq_slot_head(grp
);
941 * adjust the bucket list. When the start time of a group decreases,
942 * we move the index down (modulo QFQ_MAX_SLOTS) so we don't need to
943 * move the objects. The mask of occupied slots must be shifted
944 * because we use ffs() to find the first non-empty slot.
945 * This covers decreases in the group's start time, but what about
946 * increases of the start time ?
947 * Here too we should make sure that i is less than 32
949 static void qfq_slot_rotate(struct qfq_group
*grp
, u64 roundedS
)
951 unsigned int i
= (grp
->S
- roundedS
) >> grp
->slot_shift
;
953 grp
->full_slots
<<= i
;
954 grp
->front
= (grp
->front
- i
) % QFQ_MAX_SLOTS
;
957 static void qfq_update_eligible(struct qfq_sched
*q
)
959 struct qfq_group
*grp
;
960 unsigned long ineligible
;
962 ineligible
= q
->bitmaps
[IR
] | q
->bitmaps
[IB
];
964 if (!q
->bitmaps
[ER
]) {
965 grp
= qfq_ffs(q
, ineligible
);
966 if (qfq_gt(grp
->S
, q
->V
))
969 qfq_make_eligible(q
);
973 /* Dequeue head packet of the head class in the DRR queue of the aggregate. */
974 static void agg_dequeue(struct qfq_aggregate
*agg
,
975 struct qfq_class
*cl
, unsigned int len
)
977 qdisc_dequeue_peeked(cl
->qdisc
);
979 cl
->deficit
-= (int) len
;
981 if (cl
->qdisc
->q
.qlen
== 0) /* no more packets, remove from list */
982 list_del(&cl
->alist
);
983 else if (cl
->deficit
< qdisc_pkt_len(cl
->qdisc
->ops
->peek(cl
->qdisc
))) {
984 cl
->deficit
+= agg
->lmax
;
985 list_move_tail(&cl
->alist
, &agg
->active
);
989 static inline struct sk_buff
*qfq_peek_skb(struct qfq_aggregate
*agg
,
990 struct qfq_class
**cl
,
995 *cl
= list_first_entry(&agg
->active
, struct qfq_class
, alist
);
996 skb
= (*cl
)->qdisc
->ops
->peek((*cl
)->qdisc
);
998 WARN_ONCE(1, "qfq_dequeue: non-workconserving leaf\n");
1000 *len
= qdisc_pkt_len(skb
);
1005 /* Update F according to the actual service received by the aggregate. */
1006 static inline void charge_actual_service(struct qfq_aggregate
*agg
)
1008 /* Compute the service received by the aggregate, taking into
1009 * account that, after decreasing the number of classes in
1010 * agg, it may happen that
1011 * agg->initial_budget - agg->budget > agg->bugdetmax
1013 u32 service_received
= min(agg
->budgetmax
,
1014 agg
->initial_budget
- agg
->budget
);
1016 agg
->F
= agg
->S
+ (u64
)service_received
* agg
->inv_w
;
1019 /* Assign a reasonable start time for a new aggregate in group i.
1020 * Admissible values for \hat(F) are multiples of \sigma_i
1021 * no greater than V+\sigma_i . Larger values mean that
1022 * we had a wraparound so we consider the timestamp to be stale.
1024 * If F is not stale and F >= V then we set S = F.
1025 * Otherwise we should assign S = V, but this may violate
1026 * the ordering in EB (see [2]). So, if we have groups in ER,
1027 * set S to the F_j of the first group j which would be blocking us.
1028 * We are guaranteed not to move S backward because
1029 * otherwise our group i would still be blocked.
1031 static void qfq_update_start(struct qfq_sched
*q
, struct qfq_aggregate
*agg
)
1034 u64 limit
, roundedF
;
1035 int slot_shift
= agg
->grp
->slot_shift
;
1037 roundedF
= qfq_round_down(agg
->F
, slot_shift
);
1038 limit
= qfq_round_down(q
->V
, slot_shift
) + (1ULL << slot_shift
);
1040 if (!qfq_gt(agg
->F
, q
->V
) || qfq_gt(roundedF
, limit
)) {
1041 /* timestamp was stale */
1042 mask
= mask_from(q
->bitmaps
[ER
], agg
->grp
->index
);
1044 struct qfq_group
*next
= qfq_ffs(q
, mask
);
1045 if (qfq_gt(roundedF
, next
->F
)) {
1046 if (qfq_gt(limit
, next
->F
))
1048 else /* preserve timestamp correctness */
1054 } else /* timestamp is not stale */
1058 /* Update the timestamps of agg before scheduling/rescheduling it for
1059 * service. In particular, assign to agg->F its maximum possible
1060 * value, i.e., the virtual finish time with which the aggregate
1061 * should be labeled if it used all its budget once in service.
1064 qfq_update_agg_ts(struct qfq_sched
*q
,
1065 struct qfq_aggregate
*agg
, enum update_reason reason
)
1067 if (reason
!= requeue
)
1068 qfq_update_start(q
, agg
);
1069 else /* just charge agg for the service received */
1072 agg
->F
= agg
->S
+ (u64
)agg
->budgetmax
* agg
->inv_w
;
1075 static void qfq_schedule_agg(struct qfq_sched
*q
, struct qfq_aggregate
*agg
);
1077 static struct sk_buff
*qfq_dequeue(struct Qdisc
*sch
)
1079 struct qfq_sched
*q
= qdisc_priv(sch
);
1080 struct qfq_aggregate
*in_serv_agg
= q
->in_serv_agg
;
1081 struct qfq_class
*cl
;
1082 struct sk_buff
*skb
= NULL
;
1083 /* next-packet len, 0 means no more active classes in in-service agg */
1084 unsigned int len
= 0;
1086 if (in_serv_agg
== NULL
)
1089 if (!list_empty(&in_serv_agg
->active
))
1090 skb
= qfq_peek_skb(in_serv_agg
, &cl
, &len
);
1093 * If there are no active classes in the in-service aggregate,
1094 * or if the aggregate has not enough budget to serve its next
1095 * class, then choose the next aggregate to serve.
1097 if (len
== 0 || in_serv_agg
->budget
< len
) {
1098 charge_actual_service(in_serv_agg
);
1100 /* recharge the budget of the aggregate */
1101 in_serv_agg
->initial_budget
= in_serv_agg
->budget
=
1102 in_serv_agg
->budgetmax
;
1104 if (!list_empty(&in_serv_agg
->active
)) {
1106 * Still active: reschedule for
1107 * service. Possible optimization: if no other
1108 * aggregate is active, then there is no point
1109 * in rescheduling this aggregate, and we can
1110 * just keep it as the in-service one. This
1111 * should be however a corner case, and to
1112 * handle it, we would need to maintain an
1113 * extra num_active_aggs field.
1115 qfq_update_agg_ts(q
, in_serv_agg
, requeue
);
1116 qfq_schedule_agg(q
, in_serv_agg
);
1117 } else if (sch
->q
.qlen
== 0) { /* no aggregate to serve */
1118 q
->in_serv_agg
= NULL
;
1123 * If we get here, there are other aggregates queued:
1124 * choose the new aggregate to serve.
1126 in_serv_agg
= q
->in_serv_agg
= qfq_choose_next_agg(q
);
1127 skb
= qfq_peek_skb(in_serv_agg
, &cl
, &len
);
1132 qdisc_qstats_backlog_dec(sch
, skb
);
1134 qdisc_bstats_update(sch
, skb
);
1136 agg_dequeue(in_serv_agg
, cl
, len
);
1137 /* If lmax is lowered, through qfq_change_class, for a class
1138 * owning pending packets with larger size than the new value
1139 * of lmax, then the following condition may hold.
1141 if (unlikely(in_serv_agg
->budget
< len
))
1142 in_serv_agg
->budget
= 0;
1144 in_serv_agg
->budget
-= len
;
1146 q
->V
+= (u64
)len
* q
->iwsum
;
1147 pr_debug("qfq dequeue: len %u F %lld now %lld\n",
1148 len
, (unsigned long long) in_serv_agg
->F
,
1149 (unsigned long long) q
->V
);
1154 static struct qfq_aggregate
*qfq_choose_next_agg(struct qfq_sched
*q
)
1156 struct qfq_group
*grp
;
1157 struct qfq_aggregate
*agg
, *new_front_agg
;
1160 qfq_update_eligible(q
);
1163 if (!q
->bitmaps
[ER
])
1166 grp
= qfq_ffs(q
, q
->bitmaps
[ER
]);
1169 agg
= qfq_slot_head(grp
);
1171 /* agg starts to be served, remove it from schedule */
1172 qfq_front_slot_remove(grp
);
1174 new_front_agg
= qfq_slot_scan(grp
);
1176 if (new_front_agg
== NULL
) /* group is now inactive, remove from ER */
1177 __clear_bit(grp
->index
, &q
->bitmaps
[ER
]);
1179 u64 roundedS
= qfq_round_down(new_front_agg
->S
,
1183 if (grp
->S
== roundedS
)
1186 grp
->F
= roundedS
+ (2ULL << grp
->slot_shift
);
1187 __clear_bit(grp
->index
, &q
->bitmaps
[ER
]);
1188 s
= qfq_calc_state(q
, grp
);
1189 __set_bit(grp
->index
, &q
->bitmaps
[s
]);
1192 qfq_unblock_groups(q
, grp
->index
, old_F
);
1197 static int qfq_enqueue(struct sk_buff
*skb
, struct Qdisc
*sch
,
1198 struct sk_buff
**to_free
)
1200 unsigned int len
= qdisc_pkt_len(skb
), gso_segs
;
1201 struct qfq_sched
*q
= qdisc_priv(sch
);
1202 struct qfq_class
*cl
;
1203 struct qfq_aggregate
*agg
;
1207 cl
= qfq_classify(skb
, sch
, &err
);
1209 if (err
& __NET_XMIT_BYPASS
)
1210 qdisc_qstats_drop(sch
);
1211 __qdisc_drop(skb
, to_free
);
1214 pr_debug("qfq_enqueue: cl = %x\n", cl
->common
.classid
);
1216 if (unlikely(cl
->agg
->lmax
< len
)) {
1217 pr_debug("qfq: increasing maxpkt from %u to %u for class %u",
1218 cl
->agg
->lmax
, len
, cl
->common
.classid
);
1219 err
= qfq_change_agg(sch
, cl
, cl
->agg
->class_weight
, len
);
1222 return qdisc_drop(skb
, sch
, to_free
);
1226 gso_segs
= skb_is_gso(skb
) ? skb_shinfo(skb
)->gso_segs
: 1;
1227 first
= !cl
->qdisc
->q
.qlen
;
1228 err
= qdisc_enqueue(skb
, cl
->qdisc
, to_free
);
1229 if (unlikely(err
!= NET_XMIT_SUCCESS
)) {
1230 pr_debug("qfq_enqueue: enqueue failed %d\n", err
);
1231 if (net_xmit_drop_count(err
)) {
1233 qdisc_qstats_drop(sch
);
1238 cl
->bstats
.bytes
+= len
;
1239 cl
->bstats
.packets
+= gso_segs
;
1240 sch
->qstats
.backlog
+= len
;
1244 /* if the queue was not empty, then done here */
1246 if (unlikely(skb
== cl
->qdisc
->ops
->peek(cl
->qdisc
)) &&
1247 list_first_entry(&agg
->active
, struct qfq_class
, alist
)
1248 == cl
&& cl
->deficit
< len
)
1249 list_move_tail(&cl
->alist
, &agg
->active
);
1254 /* schedule class for service within the aggregate */
1255 cl
->deficit
= agg
->lmax
;
1256 list_add_tail(&cl
->alist
, &agg
->active
);
1258 if (list_first_entry(&agg
->active
, struct qfq_class
, alist
) != cl
||
1259 q
->in_serv_agg
== agg
)
1260 return err
; /* non-empty or in service, nothing else to do */
1262 qfq_activate_agg(q
, agg
, enqueue
);
1268 * Schedule aggregate according to its timestamps.
1270 static void qfq_schedule_agg(struct qfq_sched
*q
, struct qfq_aggregate
*agg
)
1272 struct qfq_group
*grp
= agg
->grp
;
1276 roundedS
= qfq_round_down(agg
->S
, grp
->slot_shift
);
1279 * Insert agg in the correct bucket.
1280 * If agg->S >= grp->S we don't need to adjust the
1281 * bucket list and simply go to the insertion phase.
1282 * Otherwise grp->S is decreasing, we must make room
1283 * in the bucket list, and also recompute the group state.
1284 * Finally, if there were no flows in this group and nobody
1285 * was in ER make sure to adjust V.
1287 if (grp
->full_slots
) {
1288 if (!qfq_gt(grp
->S
, agg
->S
))
1291 /* create a slot for this agg->S */
1292 qfq_slot_rotate(grp
, roundedS
);
1293 /* group was surely ineligible, remove */
1294 __clear_bit(grp
->index
, &q
->bitmaps
[IR
]);
1295 __clear_bit(grp
->index
, &q
->bitmaps
[IB
]);
1296 } else if (!q
->bitmaps
[ER
] && qfq_gt(roundedS
, q
->V
) &&
1297 q
->in_serv_agg
== NULL
)
1301 grp
->F
= roundedS
+ (2ULL << grp
->slot_shift
);
1302 s
= qfq_calc_state(q
, grp
);
1303 __set_bit(grp
->index
, &q
->bitmaps
[s
]);
1305 pr_debug("qfq enqueue: new state %d %#lx S %lld F %lld V %lld\n",
1307 (unsigned long long) agg
->S
,
1308 (unsigned long long) agg
->F
,
1309 (unsigned long long) q
->V
);
1312 qfq_slot_insert(grp
, agg
, roundedS
);
1316 /* Update agg ts and schedule agg for service */
1317 static void qfq_activate_agg(struct qfq_sched
*q
, struct qfq_aggregate
*agg
,
1318 enum update_reason reason
)
1320 agg
->initial_budget
= agg
->budget
= agg
->budgetmax
; /* recharge budg. */
1322 qfq_update_agg_ts(q
, agg
, reason
);
1323 if (q
->in_serv_agg
== NULL
) { /* no aggr. in service or scheduled */
1324 q
->in_serv_agg
= agg
; /* start serving this aggregate */
1325 /* update V: to be in service, agg must be eligible */
1326 q
->oldV
= q
->V
= agg
->S
;
1327 } else if (agg
!= q
->in_serv_agg
)
1328 qfq_schedule_agg(q
, agg
);
1331 static void qfq_slot_remove(struct qfq_sched
*q
, struct qfq_group
*grp
,
1332 struct qfq_aggregate
*agg
)
1334 unsigned int i
, offset
;
1337 roundedS
= qfq_round_down(agg
->S
, grp
->slot_shift
);
1338 offset
= (roundedS
- grp
->S
) >> grp
->slot_shift
;
1340 i
= (grp
->front
+ offset
) % QFQ_MAX_SLOTS
;
1342 hlist_del(&agg
->next
);
1343 if (hlist_empty(&grp
->slots
[i
]))
1344 __clear_bit(offset
, &grp
->full_slots
);
1348 * Called to forcibly deschedule an aggregate. If the aggregate is
1349 * not in the front bucket, or if the latter has other aggregates in
1350 * the front bucket, we can simply remove the aggregate with no other
1352 * Otherwise we must propagate the event up.
1354 static void qfq_deactivate_agg(struct qfq_sched
*q
, struct qfq_aggregate
*agg
)
1356 struct qfq_group
*grp
= agg
->grp
;
1361 if (agg
== q
->in_serv_agg
) {
1362 charge_actual_service(agg
);
1363 q
->in_serv_agg
= qfq_choose_next_agg(q
);
1368 qfq_slot_remove(q
, grp
, agg
);
1370 if (!grp
->full_slots
) {
1371 __clear_bit(grp
->index
, &q
->bitmaps
[IR
]);
1372 __clear_bit(grp
->index
, &q
->bitmaps
[EB
]);
1373 __clear_bit(grp
->index
, &q
->bitmaps
[IB
]);
1375 if (test_bit(grp
->index
, &q
->bitmaps
[ER
]) &&
1376 !(q
->bitmaps
[ER
] & ~((1UL << grp
->index
) - 1))) {
1377 mask
= q
->bitmaps
[ER
] & ((1UL << grp
->index
) - 1);
1379 mask
= ~((1UL << __fls(mask
)) - 1);
1382 qfq_move_groups(q
, mask
, EB
, ER
);
1383 qfq_move_groups(q
, mask
, IB
, IR
);
1385 __clear_bit(grp
->index
, &q
->bitmaps
[ER
]);
1386 } else if (hlist_empty(&grp
->slots
[grp
->front
])) {
1387 agg
= qfq_slot_scan(grp
);
1388 roundedS
= qfq_round_down(agg
->S
, grp
->slot_shift
);
1389 if (grp
->S
!= roundedS
) {
1390 __clear_bit(grp
->index
, &q
->bitmaps
[ER
]);
1391 __clear_bit(grp
->index
, &q
->bitmaps
[IR
]);
1392 __clear_bit(grp
->index
, &q
->bitmaps
[EB
]);
1393 __clear_bit(grp
->index
, &q
->bitmaps
[IB
]);
1395 grp
->F
= roundedS
+ (2ULL << grp
->slot_shift
);
1396 s
= qfq_calc_state(q
, grp
);
1397 __set_bit(grp
->index
, &q
->bitmaps
[s
]);
1402 static void qfq_qlen_notify(struct Qdisc
*sch
, unsigned long arg
)
1404 struct qfq_sched
*q
= qdisc_priv(sch
);
1405 struct qfq_class
*cl
= (struct qfq_class
*)arg
;
1407 qfq_deactivate_class(q
, cl
);
1410 static int qfq_init_qdisc(struct Qdisc
*sch
, struct nlattr
*opt
,
1411 struct netlink_ext_ack
*extack
)
1413 struct qfq_sched
*q
= qdisc_priv(sch
);
1414 struct qfq_group
*grp
;
1416 u32 max_cl_shift
, maxbudg_shift
, max_classes
;
1418 err
= tcf_block_get(&q
->block
, &q
->filter_list
, sch
, extack
);
1422 err
= qdisc_class_hash_init(&q
->clhash
);
1426 if (qdisc_dev(sch
)->tx_queue_len
+ 1 > QFQ_MAX_AGG_CLASSES
)
1427 max_classes
= QFQ_MAX_AGG_CLASSES
;
1429 max_classes
= qdisc_dev(sch
)->tx_queue_len
+ 1;
1430 /* max_cl_shift = floor(log_2(max_classes)) */
1431 max_cl_shift
= __fls(max_classes
);
1432 q
->max_agg_classes
= 1<<max_cl_shift
;
1434 /* maxbudg_shift = log2(max_len * max_classes_per_agg) */
1435 maxbudg_shift
= QFQ_MTU_SHIFT
+ max_cl_shift
;
1436 q
->min_slot_shift
= FRAC_BITS
+ maxbudg_shift
- QFQ_MAX_INDEX
;
1438 for (i
= 0; i
<= QFQ_MAX_INDEX
; i
++) {
1439 grp
= &q
->groups
[i
];
1441 grp
->slot_shift
= q
->min_slot_shift
+ i
;
1442 for (j
= 0; j
< QFQ_MAX_SLOTS
; j
++)
1443 INIT_HLIST_HEAD(&grp
->slots
[j
]);
1446 INIT_HLIST_HEAD(&q
->nonfull_aggs
);
1451 static void qfq_reset_qdisc(struct Qdisc
*sch
)
1453 struct qfq_sched
*q
= qdisc_priv(sch
);
1454 struct qfq_class
*cl
;
1457 for (i
= 0; i
< q
->clhash
.hashsize
; i
++) {
1458 hlist_for_each_entry(cl
, &q
->clhash
.hash
[i
], common
.hnode
) {
1459 if (cl
->qdisc
->q
.qlen
> 0)
1460 qfq_deactivate_class(q
, cl
);
1462 qdisc_reset(cl
->qdisc
);
1465 sch
->qstats
.backlog
= 0;
1469 static void qfq_destroy_qdisc(struct Qdisc
*sch
)
1471 struct qfq_sched
*q
= qdisc_priv(sch
);
1472 struct qfq_class
*cl
;
1473 struct hlist_node
*next
;
1476 tcf_block_put(q
->block
);
1478 for (i
= 0; i
< q
->clhash
.hashsize
; i
++) {
1479 hlist_for_each_entry_safe(cl
, next
, &q
->clhash
.hash
[i
],
1481 qfq_destroy_class(sch
, cl
);
1484 qdisc_class_hash_destroy(&q
->clhash
);
1487 static const struct Qdisc_class_ops qfq_class_ops
= {
1488 .change
= qfq_change_class
,
1489 .delete = qfq_delete_class
,
1490 .find
= qfq_search_class
,
1491 .tcf_block
= qfq_tcf_block
,
1492 .bind_tcf
= qfq_bind_tcf
,
1493 .unbind_tcf
= qfq_unbind_tcf
,
1494 .graft
= qfq_graft_class
,
1495 .leaf
= qfq_class_leaf
,
1496 .qlen_notify
= qfq_qlen_notify
,
1497 .dump
= qfq_dump_class
,
1498 .dump_stats
= qfq_dump_class_stats
,
1502 static struct Qdisc_ops qfq_qdisc_ops __read_mostly
= {
1503 .cl_ops
= &qfq_class_ops
,
1505 .priv_size
= sizeof(struct qfq_sched
),
1506 .enqueue
= qfq_enqueue
,
1507 .dequeue
= qfq_dequeue
,
1508 .peek
= qdisc_peek_dequeued
,
1509 .init
= qfq_init_qdisc
,
1510 .reset
= qfq_reset_qdisc
,
1511 .destroy
= qfq_destroy_qdisc
,
1512 .owner
= THIS_MODULE
,
1515 static int __init
qfq_init(void)
1517 return register_qdisc(&qfq_qdisc_ops
);
1520 static void __exit
qfq_exit(void)
1522 unregister_qdisc(&qfq_qdisc_ops
);
1525 module_init(qfq_init
);
1526 module_exit(qfq_exit
);
1527 MODULE_LICENSE("GPL");