bus: mhi: core: Fix some error return code
[linux/fpc-iii.git] / net / xdp / xsk.c
blobc350108aa38de784b2652bffcc1732191e93ed88
1 // SPDX-License-Identifier: GPL-2.0
2 /* XDP sockets
4 * AF_XDP sockets allows a channel between XDP programs and userspace
5 * applications.
6 * Copyright(c) 2018 Intel Corporation.
8 * Author(s): Björn Töpel <bjorn.topel@intel.com>
9 * Magnus Karlsson <magnus.karlsson@intel.com>
12 #define pr_fmt(fmt) "AF_XDP: %s: " fmt, __func__
14 #include <linux/if_xdp.h>
15 #include <linux/init.h>
16 #include <linux/sched/mm.h>
17 #include <linux/sched/signal.h>
18 #include <linux/sched/task.h>
19 #include <linux/socket.h>
20 #include <linux/file.h>
21 #include <linux/uaccess.h>
22 #include <linux/net.h>
23 #include <linux/netdevice.h>
24 #include <linux/rculist.h>
25 #include <net/xdp_sock.h>
26 #include <net/xdp.h>
28 #include "xsk_queue.h"
29 #include "xdp_umem.h"
30 #include "xsk.h"
32 #define TX_BATCH_SIZE 16
34 static DEFINE_PER_CPU(struct list_head, xskmap_flush_list);
36 bool xsk_is_setup_for_bpf_map(struct xdp_sock *xs)
38 return READ_ONCE(xs->rx) && READ_ONCE(xs->umem) &&
39 READ_ONCE(xs->umem->fq);
42 bool xsk_umem_has_addrs(struct xdp_umem *umem, u32 cnt)
44 return xskq_cons_has_entries(umem->fq, cnt);
46 EXPORT_SYMBOL(xsk_umem_has_addrs);
48 bool xsk_umem_peek_addr(struct xdp_umem *umem, u64 *addr)
50 return xskq_cons_peek_addr(umem->fq, addr, umem);
52 EXPORT_SYMBOL(xsk_umem_peek_addr);
54 void xsk_umem_release_addr(struct xdp_umem *umem)
56 xskq_cons_release(umem->fq);
58 EXPORT_SYMBOL(xsk_umem_release_addr);
60 void xsk_set_rx_need_wakeup(struct xdp_umem *umem)
62 if (umem->need_wakeup & XDP_WAKEUP_RX)
63 return;
65 umem->fq->ring->flags |= XDP_RING_NEED_WAKEUP;
66 umem->need_wakeup |= XDP_WAKEUP_RX;
68 EXPORT_SYMBOL(xsk_set_rx_need_wakeup);
70 void xsk_set_tx_need_wakeup(struct xdp_umem *umem)
72 struct xdp_sock *xs;
74 if (umem->need_wakeup & XDP_WAKEUP_TX)
75 return;
77 rcu_read_lock();
78 list_for_each_entry_rcu(xs, &umem->xsk_list, list) {
79 xs->tx->ring->flags |= XDP_RING_NEED_WAKEUP;
81 rcu_read_unlock();
83 umem->need_wakeup |= XDP_WAKEUP_TX;
85 EXPORT_SYMBOL(xsk_set_tx_need_wakeup);
87 void xsk_clear_rx_need_wakeup(struct xdp_umem *umem)
89 if (!(umem->need_wakeup & XDP_WAKEUP_RX))
90 return;
92 umem->fq->ring->flags &= ~XDP_RING_NEED_WAKEUP;
93 umem->need_wakeup &= ~XDP_WAKEUP_RX;
95 EXPORT_SYMBOL(xsk_clear_rx_need_wakeup);
97 void xsk_clear_tx_need_wakeup(struct xdp_umem *umem)
99 struct xdp_sock *xs;
101 if (!(umem->need_wakeup & XDP_WAKEUP_TX))
102 return;
104 rcu_read_lock();
105 list_for_each_entry_rcu(xs, &umem->xsk_list, list) {
106 xs->tx->ring->flags &= ~XDP_RING_NEED_WAKEUP;
108 rcu_read_unlock();
110 umem->need_wakeup &= ~XDP_WAKEUP_TX;
112 EXPORT_SYMBOL(xsk_clear_tx_need_wakeup);
114 bool xsk_umem_uses_need_wakeup(struct xdp_umem *umem)
116 return umem->flags & XDP_UMEM_USES_NEED_WAKEUP;
118 EXPORT_SYMBOL(xsk_umem_uses_need_wakeup);
120 /* If a buffer crosses a page boundary, we need to do 2 memcpy's, one for
121 * each page. This is only required in copy mode.
123 static void __xsk_rcv_memcpy(struct xdp_umem *umem, u64 addr, void *from_buf,
124 u32 len, u32 metalen)
126 void *to_buf = xdp_umem_get_data(umem, addr);
128 addr = xsk_umem_add_offset_to_addr(addr);
129 if (xskq_cons_crosses_non_contig_pg(umem, addr, len + metalen)) {
130 void *next_pg_addr = umem->pages[(addr >> PAGE_SHIFT) + 1].addr;
131 u64 page_start = addr & ~(PAGE_SIZE - 1);
132 u64 first_len = PAGE_SIZE - (addr - page_start);
134 memcpy(to_buf, from_buf, first_len);
135 memcpy(next_pg_addr, from_buf + first_len,
136 len + metalen - first_len);
138 return;
141 memcpy(to_buf, from_buf, len + metalen);
144 static int __xsk_rcv(struct xdp_sock *xs, struct xdp_buff *xdp, u32 len)
146 u64 offset = xs->umem->headroom;
147 u64 addr, memcpy_addr;
148 void *from_buf;
149 u32 metalen;
150 int err;
152 if (!xskq_cons_peek_addr(xs->umem->fq, &addr, xs->umem) ||
153 len > xs->umem->chunk_size_nohr - XDP_PACKET_HEADROOM) {
154 xs->rx_dropped++;
155 return -ENOSPC;
158 if (unlikely(xdp_data_meta_unsupported(xdp))) {
159 from_buf = xdp->data;
160 metalen = 0;
161 } else {
162 from_buf = xdp->data_meta;
163 metalen = xdp->data - xdp->data_meta;
166 memcpy_addr = xsk_umem_adjust_offset(xs->umem, addr, offset);
167 __xsk_rcv_memcpy(xs->umem, memcpy_addr, from_buf, len, metalen);
169 offset += metalen;
170 addr = xsk_umem_adjust_offset(xs->umem, addr, offset);
171 err = xskq_prod_reserve_desc(xs->rx, addr, len);
172 if (!err) {
173 xskq_cons_release(xs->umem->fq);
174 xdp_return_buff(xdp);
175 return 0;
178 xs->rx_dropped++;
179 return err;
182 static int __xsk_rcv_zc(struct xdp_sock *xs, struct xdp_buff *xdp, u32 len)
184 int err = xskq_prod_reserve_desc(xs->rx, xdp->handle, len);
186 if (err)
187 xs->rx_dropped++;
189 return err;
192 static bool xsk_is_bound(struct xdp_sock *xs)
194 if (READ_ONCE(xs->state) == XSK_BOUND) {
195 /* Matches smp_wmb() in bind(). */
196 smp_rmb();
197 return true;
199 return false;
202 static int xsk_rcv(struct xdp_sock *xs, struct xdp_buff *xdp)
204 u32 len;
206 if (!xsk_is_bound(xs))
207 return -EINVAL;
209 if (xs->dev != xdp->rxq->dev || xs->queue_id != xdp->rxq->queue_index)
210 return -EINVAL;
212 len = xdp->data_end - xdp->data;
214 return (xdp->rxq->mem.type == MEM_TYPE_ZERO_COPY) ?
215 __xsk_rcv_zc(xs, xdp, len) : __xsk_rcv(xs, xdp, len);
218 static void xsk_flush(struct xdp_sock *xs)
220 xskq_prod_submit(xs->rx);
221 __xskq_cons_release(xs->umem->fq);
222 sock_def_readable(&xs->sk);
225 int xsk_generic_rcv(struct xdp_sock *xs, struct xdp_buff *xdp)
227 u32 metalen = xdp->data - xdp->data_meta;
228 u32 len = xdp->data_end - xdp->data;
229 u64 offset = xs->umem->headroom;
230 void *buffer;
231 u64 addr;
232 int err;
234 spin_lock_bh(&xs->rx_lock);
236 if (xs->dev != xdp->rxq->dev || xs->queue_id != xdp->rxq->queue_index) {
237 err = -EINVAL;
238 goto out_unlock;
241 if (!xskq_cons_peek_addr(xs->umem->fq, &addr, xs->umem) ||
242 len > xs->umem->chunk_size_nohr - XDP_PACKET_HEADROOM) {
243 err = -ENOSPC;
244 goto out_drop;
247 addr = xsk_umem_adjust_offset(xs->umem, addr, offset);
248 buffer = xdp_umem_get_data(xs->umem, addr);
249 memcpy(buffer, xdp->data_meta, len + metalen);
251 addr = xsk_umem_adjust_offset(xs->umem, addr, metalen);
252 err = xskq_prod_reserve_desc(xs->rx, addr, len);
253 if (err)
254 goto out_drop;
256 xskq_cons_release(xs->umem->fq);
257 xskq_prod_submit(xs->rx);
259 spin_unlock_bh(&xs->rx_lock);
261 xs->sk.sk_data_ready(&xs->sk);
262 return 0;
264 out_drop:
265 xs->rx_dropped++;
266 out_unlock:
267 spin_unlock_bh(&xs->rx_lock);
268 return err;
271 int __xsk_map_redirect(struct xdp_sock *xs, struct xdp_buff *xdp)
273 struct list_head *flush_list = this_cpu_ptr(&xskmap_flush_list);
274 int err;
276 err = xsk_rcv(xs, xdp);
277 if (err)
278 return err;
280 if (!xs->flush_node.prev)
281 list_add(&xs->flush_node, flush_list);
283 return 0;
286 void __xsk_map_flush(void)
288 struct list_head *flush_list = this_cpu_ptr(&xskmap_flush_list);
289 struct xdp_sock *xs, *tmp;
291 list_for_each_entry_safe(xs, tmp, flush_list, flush_node) {
292 xsk_flush(xs);
293 __list_del_clearprev(&xs->flush_node);
297 void xsk_umem_complete_tx(struct xdp_umem *umem, u32 nb_entries)
299 xskq_prod_submit_n(umem->cq, nb_entries);
301 EXPORT_SYMBOL(xsk_umem_complete_tx);
303 void xsk_umem_consume_tx_done(struct xdp_umem *umem)
305 struct xdp_sock *xs;
307 rcu_read_lock();
308 list_for_each_entry_rcu(xs, &umem->xsk_list, list) {
309 __xskq_cons_release(xs->tx);
310 xs->sk.sk_write_space(&xs->sk);
312 rcu_read_unlock();
314 EXPORT_SYMBOL(xsk_umem_consume_tx_done);
316 bool xsk_umem_consume_tx(struct xdp_umem *umem, struct xdp_desc *desc)
318 struct xdp_sock *xs;
320 rcu_read_lock();
321 list_for_each_entry_rcu(xs, &umem->xsk_list, list) {
322 if (!xskq_cons_peek_desc(xs->tx, desc, umem))
323 continue;
325 /* This is the backpreassure mechanism for the Tx path.
326 * Reserve space in the completion queue and only proceed
327 * if there is space in it. This avoids having to implement
328 * any buffering in the Tx path.
330 if (xskq_prod_reserve_addr(umem->cq, desc->addr))
331 goto out;
333 xskq_cons_release(xs->tx);
334 rcu_read_unlock();
335 return true;
338 out:
339 rcu_read_unlock();
340 return false;
342 EXPORT_SYMBOL(xsk_umem_consume_tx);
344 static int xsk_wakeup(struct xdp_sock *xs, u8 flags)
346 struct net_device *dev = xs->dev;
347 int err;
349 rcu_read_lock();
350 err = dev->netdev_ops->ndo_xsk_wakeup(dev, xs->queue_id, flags);
351 rcu_read_unlock();
353 return err;
356 static int xsk_zc_xmit(struct xdp_sock *xs)
358 return xsk_wakeup(xs, XDP_WAKEUP_TX);
361 static void xsk_destruct_skb(struct sk_buff *skb)
363 u64 addr = (u64)(long)skb_shinfo(skb)->destructor_arg;
364 struct xdp_sock *xs = xdp_sk(skb->sk);
365 unsigned long flags;
367 spin_lock_irqsave(&xs->tx_completion_lock, flags);
368 xskq_prod_submit_addr(xs->umem->cq, addr);
369 spin_unlock_irqrestore(&xs->tx_completion_lock, flags);
371 sock_wfree(skb);
374 static int xsk_generic_xmit(struct sock *sk)
376 struct xdp_sock *xs = xdp_sk(sk);
377 u32 max_batch = TX_BATCH_SIZE;
378 bool sent_frame = false;
379 struct xdp_desc desc;
380 struct sk_buff *skb;
381 int err = 0;
383 mutex_lock(&xs->mutex);
385 if (xs->queue_id >= xs->dev->real_num_tx_queues)
386 goto out;
388 while (xskq_cons_peek_desc(xs->tx, &desc, xs->umem)) {
389 char *buffer;
390 u64 addr;
391 u32 len;
393 if (max_batch-- == 0) {
394 err = -EAGAIN;
395 goto out;
398 len = desc.len;
399 skb = sock_alloc_send_skb(sk, len, 1, &err);
400 if (unlikely(!skb)) {
401 err = -EAGAIN;
402 goto out;
405 skb_put(skb, len);
406 addr = desc.addr;
407 buffer = xdp_umem_get_data(xs->umem, addr);
408 err = skb_store_bits(skb, 0, buffer, len);
409 /* This is the backpreassure mechanism for the Tx path.
410 * Reserve space in the completion queue and only proceed
411 * if there is space in it. This avoids having to implement
412 * any buffering in the Tx path.
414 if (unlikely(err) || xskq_prod_reserve(xs->umem->cq)) {
415 kfree_skb(skb);
416 goto out;
419 skb->dev = xs->dev;
420 skb->priority = sk->sk_priority;
421 skb->mark = sk->sk_mark;
422 skb_shinfo(skb)->destructor_arg = (void *)(long)desc.addr;
423 skb->destructor = xsk_destruct_skb;
425 err = dev_direct_xmit(skb, xs->queue_id);
426 xskq_cons_release(xs->tx);
427 /* Ignore NET_XMIT_CN as packet might have been sent */
428 if (err == NET_XMIT_DROP || err == NETDEV_TX_BUSY) {
429 /* SKB completed but not sent */
430 err = -EBUSY;
431 goto out;
434 sent_frame = true;
437 out:
438 if (sent_frame)
439 sk->sk_write_space(sk);
441 mutex_unlock(&xs->mutex);
442 return err;
445 static int __xsk_sendmsg(struct sock *sk)
447 struct xdp_sock *xs = xdp_sk(sk);
449 if (unlikely(!(xs->dev->flags & IFF_UP)))
450 return -ENETDOWN;
451 if (unlikely(!xs->tx))
452 return -ENOBUFS;
454 return xs->zc ? xsk_zc_xmit(xs) : xsk_generic_xmit(sk);
457 static int xsk_sendmsg(struct socket *sock, struct msghdr *m, size_t total_len)
459 bool need_wait = !(m->msg_flags & MSG_DONTWAIT);
460 struct sock *sk = sock->sk;
461 struct xdp_sock *xs = xdp_sk(sk);
463 if (unlikely(!xsk_is_bound(xs)))
464 return -ENXIO;
465 if (unlikely(need_wait))
466 return -EOPNOTSUPP;
468 return __xsk_sendmsg(sk);
471 static __poll_t xsk_poll(struct file *file, struct socket *sock,
472 struct poll_table_struct *wait)
474 __poll_t mask = datagram_poll(file, sock, wait);
475 struct sock *sk = sock->sk;
476 struct xdp_sock *xs = xdp_sk(sk);
477 struct xdp_umem *umem;
479 if (unlikely(!xsk_is_bound(xs)))
480 return mask;
482 umem = xs->umem;
484 if (umem->need_wakeup) {
485 if (xs->zc)
486 xsk_wakeup(xs, umem->need_wakeup);
487 else
488 /* Poll needs to drive Tx also in copy mode */
489 __xsk_sendmsg(sk);
492 if (xs->rx && !xskq_prod_is_empty(xs->rx))
493 mask |= EPOLLIN | EPOLLRDNORM;
494 if (xs->tx && !xskq_cons_is_full(xs->tx))
495 mask |= EPOLLOUT | EPOLLWRNORM;
497 return mask;
500 static int xsk_init_queue(u32 entries, struct xsk_queue **queue,
501 bool umem_queue)
503 struct xsk_queue *q;
505 if (entries == 0 || *queue || !is_power_of_2(entries))
506 return -EINVAL;
508 q = xskq_create(entries, umem_queue);
509 if (!q)
510 return -ENOMEM;
512 /* Make sure queue is ready before it can be seen by others */
513 smp_wmb();
514 WRITE_ONCE(*queue, q);
515 return 0;
518 static void xsk_unbind_dev(struct xdp_sock *xs)
520 struct net_device *dev = xs->dev;
522 if (xs->state != XSK_BOUND)
523 return;
524 WRITE_ONCE(xs->state, XSK_UNBOUND);
526 /* Wait for driver to stop using the xdp socket. */
527 xdp_del_sk_umem(xs->umem, xs);
528 xs->dev = NULL;
529 synchronize_net();
530 dev_put(dev);
533 static struct xsk_map *xsk_get_map_list_entry(struct xdp_sock *xs,
534 struct xdp_sock ***map_entry)
536 struct xsk_map *map = NULL;
537 struct xsk_map_node *node;
539 *map_entry = NULL;
541 spin_lock_bh(&xs->map_list_lock);
542 node = list_first_entry_or_null(&xs->map_list, struct xsk_map_node,
543 node);
544 if (node) {
545 WARN_ON(xsk_map_inc(node->map));
546 map = node->map;
547 *map_entry = node->map_entry;
549 spin_unlock_bh(&xs->map_list_lock);
550 return map;
553 static void xsk_delete_from_maps(struct xdp_sock *xs)
555 /* This function removes the current XDP socket from all the
556 * maps it resides in. We need to take extra care here, due to
557 * the two locks involved. Each map has a lock synchronizing
558 * updates to the entries, and each socket has a lock that
559 * synchronizes access to the list of maps (map_list). For
560 * deadlock avoidance the locks need to be taken in the order
561 * "map lock"->"socket map list lock". We start off by
562 * accessing the socket map list, and take a reference to the
563 * map to guarantee existence between the
564 * xsk_get_map_list_entry() and xsk_map_try_sock_delete()
565 * calls. Then we ask the map to remove the socket, which
566 * tries to remove the socket from the map. Note that there
567 * might be updates to the map between
568 * xsk_get_map_list_entry() and xsk_map_try_sock_delete().
570 struct xdp_sock **map_entry = NULL;
571 struct xsk_map *map;
573 while ((map = xsk_get_map_list_entry(xs, &map_entry))) {
574 xsk_map_try_sock_delete(map, xs, map_entry);
575 xsk_map_put(map);
579 static int xsk_release(struct socket *sock)
581 struct sock *sk = sock->sk;
582 struct xdp_sock *xs = xdp_sk(sk);
583 struct net *net;
585 if (!sk)
586 return 0;
588 net = sock_net(sk);
590 mutex_lock(&net->xdp.lock);
591 sk_del_node_init_rcu(sk);
592 mutex_unlock(&net->xdp.lock);
594 local_bh_disable();
595 sock_prot_inuse_add(net, sk->sk_prot, -1);
596 local_bh_enable();
598 xsk_delete_from_maps(xs);
599 mutex_lock(&xs->mutex);
600 xsk_unbind_dev(xs);
601 mutex_unlock(&xs->mutex);
603 xskq_destroy(xs->rx);
604 xskq_destroy(xs->tx);
606 sock_orphan(sk);
607 sock->sk = NULL;
609 sk_refcnt_debug_release(sk);
610 sock_put(sk);
612 return 0;
615 static struct socket *xsk_lookup_xsk_from_fd(int fd)
617 struct socket *sock;
618 int err;
620 sock = sockfd_lookup(fd, &err);
621 if (!sock)
622 return ERR_PTR(-ENOTSOCK);
624 if (sock->sk->sk_family != PF_XDP) {
625 sockfd_put(sock);
626 return ERR_PTR(-ENOPROTOOPT);
629 return sock;
632 /* Check if umem pages are contiguous.
633 * If zero-copy mode, use the DMA address to do the page contiguity check
634 * For all other modes we use addr (kernel virtual address)
635 * Store the result in the low bits of addr.
637 static void xsk_check_page_contiguity(struct xdp_umem *umem, u32 flags)
639 struct xdp_umem_page *pgs = umem->pages;
640 int i, is_contig;
642 for (i = 0; i < umem->npgs - 1; i++) {
643 is_contig = (flags & XDP_ZEROCOPY) ?
644 (pgs[i].dma + PAGE_SIZE == pgs[i + 1].dma) :
645 (pgs[i].addr + PAGE_SIZE == pgs[i + 1].addr);
646 pgs[i].addr += is_contig << XSK_NEXT_PG_CONTIG_SHIFT;
650 static int xsk_bind(struct socket *sock, struct sockaddr *addr, int addr_len)
652 struct sockaddr_xdp *sxdp = (struct sockaddr_xdp *)addr;
653 struct sock *sk = sock->sk;
654 struct xdp_sock *xs = xdp_sk(sk);
655 struct net_device *dev;
656 u32 flags, qid;
657 int err = 0;
659 if (addr_len < sizeof(struct sockaddr_xdp))
660 return -EINVAL;
661 if (sxdp->sxdp_family != AF_XDP)
662 return -EINVAL;
664 flags = sxdp->sxdp_flags;
665 if (flags & ~(XDP_SHARED_UMEM | XDP_COPY | XDP_ZEROCOPY |
666 XDP_USE_NEED_WAKEUP))
667 return -EINVAL;
669 rtnl_lock();
670 mutex_lock(&xs->mutex);
671 if (xs->state != XSK_READY) {
672 err = -EBUSY;
673 goto out_release;
676 dev = dev_get_by_index(sock_net(sk), sxdp->sxdp_ifindex);
677 if (!dev) {
678 err = -ENODEV;
679 goto out_release;
682 if (!xs->rx && !xs->tx) {
683 err = -EINVAL;
684 goto out_unlock;
687 qid = sxdp->sxdp_queue_id;
689 if (flags & XDP_SHARED_UMEM) {
690 struct xdp_sock *umem_xs;
691 struct socket *sock;
693 if ((flags & XDP_COPY) || (flags & XDP_ZEROCOPY) ||
694 (flags & XDP_USE_NEED_WAKEUP)) {
695 /* Cannot specify flags for shared sockets. */
696 err = -EINVAL;
697 goto out_unlock;
700 if (xs->umem) {
701 /* We have already our own. */
702 err = -EINVAL;
703 goto out_unlock;
706 sock = xsk_lookup_xsk_from_fd(sxdp->sxdp_shared_umem_fd);
707 if (IS_ERR(sock)) {
708 err = PTR_ERR(sock);
709 goto out_unlock;
712 umem_xs = xdp_sk(sock->sk);
713 if (!xsk_is_bound(umem_xs)) {
714 err = -EBADF;
715 sockfd_put(sock);
716 goto out_unlock;
718 if (umem_xs->dev != dev || umem_xs->queue_id != qid) {
719 err = -EINVAL;
720 sockfd_put(sock);
721 goto out_unlock;
724 xdp_get_umem(umem_xs->umem);
725 WRITE_ONCE(xs->umem, umem_xs->umem);
726 sockfd_put(sock);
727 } else if (!xs->umem || !xdp_umem_validate_queues(xs->umem)) {
728 err = -EINVAL;
729 goto out_unlock;
730 } else {
731 /* This xsk has its own umem. */
732 xskq_set_umem(xs->umem->fq, xs->umem->size,
733 xs->umem->chunk_mask);
734 xskq_set_umem(xs->umem->cq, xs->umem->size,
735 xs->umem->chunk_mask);
737 err = xdp_umem_assign_dev(xs->umem, dev, qid, flags);
738 if (err)
739 goto out_unlock;
741 xsk_check_page_contiguity(xs->umem, flags);
744 xs->dev = dev;
745 xs->zc = xs->umem->zc;
746 xs->queue_id = qid;
747 xskq_set_umem(xs->rx, xs->umem->size, xs->umem->chunk_mask);
748 xskq_set_umem(xs->tx, xs->umem->size, xs->umem->chunk_mask);
749 xdp_add_sk_umem(xs->umem, xs);
751 out_unlock:
752 if (err) {
753 dev_put(dev);
754 } else {
755 /* Matches smp_rmb() in bind() for shared umem
756 * sockets, and xsk_is_bound().
758 smp_wmb();
759 WRITE_ONCE(xs->state, XSK_BOUND);
761 out_release:
762 mutex_unlock(&xs->mutex);
763 rtnl_unlock();
764 return err;
767 struct xdp_umem_reg_v1 {
768 __u64 addr; /* Start of packet data area */
769 __u64 len; /* Length of packet data area */
770 __u32 chunk_size;
771 __u32 headroom;
774 static int xsk_setsockopt(struct socket *sock, int level, int optname,
775 char __user *optval, unsigned int optlen)
777 struct sock *sk = sock->sk;
778 struct xdp_sock *xs = xdp_sk(sk);
779 int err;
781 if (level != SOL_XDP)
782 return -ENOPROTOOPT;
784 switch (optname) {
785 case XDP_RX_RING:
786 case XDP_TX_RING:
788 struct xsk_queue **q;
789 int entries;
791 if (optlen < sizeof(entries))
792 return -EINVAL;
793 if (copy_from_user(&entries, optval, sizeof(entries)))
794 return -EFAULT;
796 mutex_lock(&xs->mutex);
797 if (xs->state != XSK_READY) {
798 mutex_unlock(&xs->mutex);
799 return -EBUSY;
801 q = (optname == XDP_TX_RING) ? &xs->tx : &xs->rx;
802 err = xsk_init_queue(entries, q, false);
803 if (!err && optname == XDP_TX_RING)
804 /* Tx needs to be explicitly woken up the first time */
805 xs->tx->ring->flags |= XDP_RING_NEED_WAKEUP;
806 mutex_unlock(&xs->mutex);
807 return err;
809 case XDP_UMEM_REG:
811 size_t mr_size = sizeof(struct xdp_umem_reg);
812 struct xdp_umem_reg mr = {};
813 struct xdp_umem *umem;
815 if (optlen < sizeof(struct xdp_umem_reg_v1))
816 return -EINVAL;
817 else if (optlen < sizeof(mr))
818 mr_size = sizeof(struct xdp_umem_reg_v1);
820 if (copy_from_user(&mr, optval, mr_size))
821 return -EFAULT;
823 mutex_lock(&xs->mutex);
824 if (xs->state != XSK_READY || xs->umem) {
825 mutex_unlock(&xs->mutex);
826 return -EBUSY;
829 umem = xdp_umem_create(&mr);
830 if (IS_ERR(umem)) {
831 mutex_unlock(&xs->mutex);
832 return PTR_ERR(umem);
835 /* Make sure umem is ready before it can be seen by others */
836 smp_wmb();
837 WRITE_ONCE(xs->umem, umem);
838 mutex_unlock(&xs->mutex);
839 return 0;
841 case XDP_UMEM_FILL_RING:
842 case XDP_UMEM_COMPLETION_RING:
844 struct xsk_queue **q;
845 int entries;
847 if (copy_from_user(&entries, optval, sizeof(entries)))
848 return -EFAULT;
850 mutex_lock(&xs->mutex);
851 if (xs->state != XSK_READY) {
852 mutex_unlock(&xs->mutex);
853 return -EBUSY;
855 if (!xs->umem) {
856 mutex_unlock(&xs->mutex);
857 return -EINVAL;
860 q = (optname == XDP_UMEM_FILL_RING) ? &xs->umem->fq :
861 &xs->umem->cq;
862 err = xsk_init_queue(entries, q, true);
863 mutex_unlock(&xs->mutex);
864 return err;
866 default:
867 break;
870 return -ENOPROTOOPT;
873 static void xsk_enter_rxtx_offsets(struct xdp_ring_offset_v1 *ring)
875 ring->producer = offsetof(struct xdp_rxtx_ring, ptrs.producer);
876 ring->consumer = offsetof(struct xdp_rxtx_ring, ptrs.consumer);
877 ring->desc = offsetof(struct xdp_rxtx_ring, desc);
880 static void xsk_enter_umem_offsets(struct xdp_ring_offset_v1 *ring)
882 ring->producer = offsetof(struct xdp_umem_ring, ptrs.producer);
883 ring->consumer = offsetof(struct xdp_umem_ring, ptrs.consumer);
884 ring->desc = offsetof(struct xdp_umem_ring, desc);
887 static int xsk_getsockopt(struct socket *sock, int level, int optname,
888 char __user *optval, int __user *optlen)
890 struct sock *sk = sock->sk;
891 struct xdp_sock *xs = xdp_sk(sk);
892 int len;
894 if (level != SOL_XDP)
895 return -ENOPROTOOPT;
897 if (get_user(len, optlen))
898 return -EFAULT;
899 if (len < 0)
900 return -EINVAL;
902 switch (optname) {
903 case XDP_STATISTICS:
905 struct xdp_statistics stats;
907 if (len < sizeof(stats))
908 return -EINVAL;
910 mutex_lock(&xs->mutex);
911 stats.rx_dropped = xs->rx_dropped;
912 stats.rx_invalid_descs = xskq_nb_invalid_descs(xs->rx);
913 stats.tx_invalid_descs = xskq_nb_invalid_descs(xs->tx);
914 mutex_unlock(&xs->mutex);
916 if (copy_to_user(optval, &stats, sizeof(stats)))
917 return -EFAULT;
918 if (put_user(sizeof(stats), optlen))
919 return -EFAULT;
921 return 0;
923 case XDP_MMAP_OFFSETS:
925 struct xdp_mmap_offsets off;
926 struct xdp_mmap_offsets_v1 off_v1;
927 bool flags_supported = true;
928 void *to_copy;
930 if (len < sizeof(off_v1))
931 return -EINVAL;
932 else if (len < sizeof(off))
933 flags_supported = false;
935 if (flags_supported) {
936 /* xdp_ring_offset is identical to xdp_ring_offset_v1
937 * except for the flags field added to the end.
939 xsk_enter_rxtx_offsets((struct xdp_ring_offset_v1 *)
940 &off.rx);
941 xsk_enter_rxtx_offsets((struct xdp_ring_offset_v1 *)
942 &off.tx);
943 xsk_enter_umem_offsets((struct xdp_ring_offset_v1 *)
944 &off.fr);
945 xsk_enter_umem_offsets((struct xdp_ring_offset_v1 *)
946 &off.cr);
947 off.rx.flags = offsetof(struct xdp_rxtx_ring,
948 ptrs.flags);
949 off.tx.flags = offsetof(struct xdp_rxtx_ring,
950 ptrs.flags);
951 off.fr.flags = offsetof(struct xdp_umem_ring,
952 ptrs.flags);
953 off.cr.flags = offsetof(struct xdp_umem_ring,
954 ptrs.flags);
956 len = sizeof(off);
957 to_copy = &off;
958 } else {
959 xsk_enter_rxtx_offsets(&off_v1.rx);
960 xsk_enter_rxtx_offsets(&off_v1.tx);
961 xsk_enter_umem_offsets(&off_v1.fr);
962 xsk_enter_umem_offsets(&off_v1.cr);
964 len = sizeof(off_v1);
965 to_copy = &off_v1;
968 if (copy_to_user(optval, to_copy, len))
969 return -EFAULT;
970 if (put_user(len, optlen))
971 return -EFAULT;
973 return 0;
975 case XDP_OPTIONS:
977 struct xdp_options opts = {};
979 if (len < sizeof(opts))
980 return -EINVAL;
982 mutex_lock(&xs->mutex);
983 if (xs->zc)
984 opts.flags |= XDP_OPTIONS_ZEROCOPY;
985 mutex_unlock(&xs->mutex);
987 len = sizeof(opts);
988 if (copy_to_user(optval, &opts, len))
989 return -EFAULT;
990 if (put_user(len, optlen))
991 return -EFAULT;
993 return 0;
995 default:
996 break;
999 return -EOPNOTSUPP;
1002 static int xsk_mmap(struct file *file, struct socket *sock,
1003 struct vm_area_struct *vma)
1005 loff_t offset = (loff_t)vma->vm_pgoff << PAGE_SHIFT;
1006 unsigned long size = vma->vm_end - vma->vm_start;
1007 struct xdp_sock *xs = xdp_sk(sock->sk);
1008 struct xsk_queue *q = NULL;
1009 struct xdp_umem *umem;
1010 unsigned long pfn;
1011 struct page *qpg;
1013 if (READ_ONCE(xs->state) != XSK_READY)
1014 return -EBUSY;
1016 if (offset == XDP_PGOFF_RX_RING) {
1017 q = READ_ONCE(xs->rx);
1018 } else if (offset == XDP_PGOFF_TX_RING) {
1019 q = READ_ONCE(xs->tx);
1020 } else {
1021 umem = READ_ONCE(xs->umem);
1022 if (!umem)
1023 return -EINVAL;
1025 /* Matches the smp_wmb() in XDP_UMEM_REG */
1026 smp_rmb();
1027 if (offset == XDP_UMEM_PGOFF_FILL_RING)
1028 q = READ_ONCE(umem->fq);
1029 else if (offset == XDP_UMEM_PGOFF_COMPLETION_RING)
1030 q = READ_ONCE(umem->cq);
1033 if (!q)
1034 return -EINVAL;
1036 /* Matches the smp_wmb() in xsk_init_queue */
1037 smp_rmb();
1038 qpg = virt_to_head_page(q->ring);
1039 if (size > page_size(qpg))
1040 return -EINVAL;
1042 pfn = virt_to_phys(q->ring) >> PAGE_SHIFT;
1043 return remap_pfn_range(vma, vma->vm_start, pfn,
1044 size, vma->vm_page_prot);
1047 static int xsk_notifier(struct notifier_block *this,
1048 unsigned long msg, void *ptr)
1050 struct net_device *dev = netdev_notifier_info_to_dev(ptr);
1051 struct net *net = dev_net(dev);
1052 struct sock *sk;
1054 switch (msg) {
1055 case NETDEV_UNREGISTER:
1056 mutex_lock(&net->xdp.lock);
1057 sk_for_each(sk, &net->xdp.list) {
1058 struct xdp_sock *xs = xdp_sk(sk);
1060 mutex_lock(&xs->mutex);
1061 if (xs->dev == dev) {
1062 sk->sk_err = ENETDOWN;
1063 if (!sock_flag(sk, SOCK_DEAD))
1064 sk->sk_error_report(sk);
1066 xsk_unbind_dev(xs);
1068 /* Clear device references in umem. */
1069 xdp_umem_clear_dev(xs->umem);
1071 mutex_unlock(&xs->mutex);
1073 mutex_unlock(&net->xdp.lock);
1074 break;
1076 return NOTIFY_DONE;
1079 static struct proto xsk_proto = {
1080 .name = "XDP",
1081 .owner = THIS_MODULE,
1082 .obj_size = sizeof(struct xdp_sock),
1085 static const struct proto_ops xsk_proto_ops = {
1086 .family = PF_XDP,
1087 .owner = THIS_MODULE,
1088 .release = xsk_release,
1089 .bind = xsk_bind,
1090 .connect = sock_no_connect,
1091 .socketpair = sock_no_socketpair,
1092 .accept = sock_no_accept,
1093 .getname = sock_no_getname,
1094 .poll = xsk_poll,
1095 .ioctl = sock_no_ioctl,
1096 .listen = sock_no_listen,
1097 .shutdown = sock_no_shutdown,
1098 .setsockopt = xsk_setsockopt,
1099 .getsockopt = xsk_getsockopt,
1100 .sendmsg = xsk_sendmsg,
1101 .recvmsg = sock_no_recvmsg,
1102 .mmap = xsk_mmap,
1103 .sendpage = sock_no_sendpage,
1106 static void xsk_destruct(struct sock *sk)
1108 struct xdp_sock *xs = xdp_sk(sk);
1110 if (!sock_flag(sk, SOCK_DEAD))
1111 return;
1113 xdp_put_umem(xs->umem);
1115 sk_refcnt_debug_dec(sk);
1118 static int xsk_create(struct net *net, struct socket *sock, int protocol,
1119 int kern)
1121 struct sock *sk;
1122 struct xdp_sock *xs;
1124 if (!ns_capable(net->user_ns, CAP_NET_RAW))
1125 return -EPERM;
1126 if (sock->type != SOCK_RAW)
1127 return -ESOCKTNOSUPPORT;
1129 if (protocol)
1130 return -EPROTONOSUPPORT;
1132 sock->state = SS_UNCONNECTED;
1134 sk = sk_alloc(net, PF_XDP, GFP_KERNEL, &xsk_proto, kern);
1135 if (!sk)
1136 return -ENOBUFS;
1138 sock->ops = &xsk_proto_ops;
1140 sock_init_data(sock, sk);
1142 sk->sk_family = PF_XDP;
1144 sk->sk_destruct = xsk_destruct;
1145 sk_refcnt_debug_inc(sk);
1147 sock_set_flag(sk, SOCK_RCU_FREE);
1149 xs = xdp_sk(sk);
1150 xs->state = XSK_READY;
1151 mutex_init(&xs->mutex);
1152 spin_lock_init(&xs->rx_lock);
1153 spin_lock_init(&xs->tx_completion_lock);
1155 INIT_LIST_HEAD(&xs->map_list);
1156 spin_lock_init(&xs->map_list_lock);
1158 mutex_lock(&net->xdp.lock);
1159 sk_add_node_rcu(sk, &net->xdp.list);
1160 mutex_unlock(&net->xdp.lock);
1162 local_bh_disable();
1163 sock_prot_inuse_add(net, &xsk_proto, 1);
1164 local_bh_enable();
1166 return 0;
1169 static const struct net_proto_family xsk_family_ops = {
1170 .family = PF_XDP,
1171 .create = xsk_create,
1172 .owner = THIS_MODULE,
1175 static struct notifier_block xsk_netdev_notifier = {
1176 .notifier_call = xsk_notifier,
1179 static int __net_init xsk_net_init(struct net *net)
1181 mutex_init(&net->xdp.lock);
1182 INIT_HLIST_HEAD(&net->xdp.list);
1183 return 0;
1186 static void __net_exit xsk_net_exit(struct net *net)
1188 WARN_ON_ONCE(!hlist_empty(&net->xdp.list));
1191 static struct pernet_operations xsk_net_ops = {
1192 .init = xsk_net_init,
1193 .exit = xsk_net_exit,
1196 static int __init xsk_init(void)
1198 int err, cpu;
1200 err = proto_register(&xsk_proto, 0 /* no slab */);
1201 if (err)
1202 goto out;
1204 err = sock_register(&xsk_family_ops);
1205 if (err)
1206 goto out_proto;
1208 err = register_pernet_subsys(&xsk_net_ops);
1209 if (err)
1210 goto out_sk;
1212 err = register_netdevice_notifier(&xsk_netdev_notifier);
1213 if (err)
1214 goto out_pernet;
1216 for_each_possible_cpu(cpu)
1217 INIT_LIST_HEAD(&per_cpu(xskmap_flush_list, cpu));
1218 return 0;
1220 out_pernet:
1221 unregister_pernet_subsys(&xsk_net_ops);
1222 out_sk:
1223 sock_unregister(PF_XDP);
1224 out_proto:
1225 proto_unregister(&xsk_proto);
1226 out:
1227 return err;
1230 fs_initcall(xsk_init);