2 * several functions that help interpret ARC instructions
3 * used for unaligned accesses, kprobes and kgdb
5 * Copyright (C) 2004, 2007-2010, 2011-2012 Synopsys, Inc. (www.synopsys.com)
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
12 #include <linux/types.h>
13 #include <linux/kprobes.h>
14 #include <linux/slab.h>
15 #include <linux/uaccess.h>
16 #include <asm/disasm.h>
18 #if defined(CONFIG_KGDB) || defined(CONFIG_ARC_EMUL_UNALIGNED) || \
19 defined(CONFIG_KPROBES)
21 /* disasm_instr: Analyses instruction at addr, stores
24 void __kprobes
disasm_instr(unsigned long addr
, struct disasm_state
*state
,
25 int userspace
, struct pt_regs
*regs
, struct callee_regs
*cregs
)
28 int fieldC
= 0, fieldCisReg
= 0;
29 uint16_t word1
= 0, word0
= 0;
30 int subopcode
, is_linked
, op_format
;
33 int bytes_not_copied
= 0;
35 memset(state
, 0, sizeof(struct disasm_state
));
37 /* This fetches the upper part of the 32 bit instruction
38 * in both the cases of Little Endian or Big Endian configurations. */
40 bytes_not_copied
= copy_from_user(ins_buf
,
41 (const void __user
*) addr
, 8);
42 if (bytes_not_copied
> 6)
46 ins_ptr
= (uint16_t *) addr
;
49 word1
= *((uint16_t *)addr
);
51 state
->major_opcode
= (word1
>> 11) & 0x1F;
53 /* Check if the instruction is 32 bit or 16 bit instruction */
54 if (state
->major_opcode
< 0x0B) {
55 if (bytes_not_copied
> 4)
58 word0
= *((uint16_t *)(addr
+2));
59 state
->words
[0] = (word1
<< 16) | word0
;
62 state
->words
[0] = word1
;
65 /* Read the second word in case of limm */
66 word1
= *((uint16_t *)(addr
+ state
->instr_len
));
67 word0
= *((uint16_t *)(addr
+ state
->instr_len
+ 2));
68 state
->words
[1] = (word1
<< 16) | word0
;
70 switch (state
->major_opcode
) {
74 /* unconditional branch s25, conditional branch s21 */
75 fieldA
= (IS_BIT(state
->words
[0], 16)) ?
76 FIELD_s25(state
->words
[0]) :
77 FIELD_s21(state
->words
[0]);
79 state
->delay_slot
= IS_BIT(state
->words
[0], 5);
80 state
->target
= fieldA
+ (addr
& ~0x3);
81 state
->flow
= direct_jump
;
85 if (IS_BIT(state
->words
[0], 16)) {
87 /* unconditional branch s25, conditional branch s21 */
88 fieldA
= (IS_BIT(state
->words
[0], 17)) ?
89 (FIELD_s25(state
->words
[0]) & ~0x3) :
90 FIELD_s21(state
->words
[0]);
92 state
->flow
= direct_call
;
94 /*Branch On Compare */
95 fieldA
= FIELD_s9(state
->words
[0]) & ~0x3;
96 state
->flow
= direct_jump
;
99 state
->delay_slot
= IS_BIT(state
->words
[0], 5);
100 state
->target
= fieldA
+ (addr
& ~0x3);
101 state
->is_branch
= 1;
104 case op_LD
: /* LD<zz> a,[b,s9] */
106 state
->di
= BITS(state
->words
[0], 11, 11);
109 state
->x
= BITS(state
->words
[0], 6, 6);
110 state
->zz
= BITS(state
->words
[0], 7, 8);
111 state
->aa
= BITS(state
->words
[0], 9, 10);
112 state
->wb_reg
= FIELD_B(state
->words
[0]);
113 if (state
->wb_reg
== REG_LIMM
) {
114 state
->instr_len
+= 4;
116 state
->src1
= state
->words
[1];
118 state
->src1
= get_reg(state
->wb_reg
, regs
, cregs
);
120 state
->src2
= FIELD_s9(state
->words
[0]);
121 state
->dest
= FIELD_A(state
->words
[0]);
122 state
->pref
= (state
->dest
== REG_LIMM
);
127 state
->di
= BITS(state
->words
[0], 5, 5);
130 state
->aa
= BITS(state
->words
[0], 3, 4);
131 state
->zz
= BITS(state
->words
[0], 1, 2);
132 state
->src1
= FIELD_C(state
->words
[0]);
133 if (state
->src1
== REG_LIMM
) {
134 state
->instr_len
+= 4;
135 state
->src1
= state
->words
[1];
137 state
->src1
= get_reg(state
->src1
, regs
, cregs
);
139 state
->wb_reg
= FIELD_B(state
->words
[0]);
140 if (state
->wb_reg
== REG_LIMM
) {
142 state
->instr_len
+= 4;
143 state
->src2
= state
->words
[1];
145 state
->src2
= get_reg(state
->wb_reg
, regs
, cregs
);
147 state
->src3
= FIELD_s9(state
->words
[0]);
151 subopcode
= MINOR_OPCODE(state
->words
[0]);
156 case 35: /* JLcc.D */
159 if (subopcode
== 33 || subopcode
== 35)
160 state
->delay_slot
= 1;
162 if (subopcode
== 34 || subopcode
== 35)
166 op_format
= BITS(state
->words
[0], 22, 23);
167 if (op_format
== 0 || ((op_format
== 3) &&
168 (!IS_BIT(state
->words
[0], 5)))) {
169 fieldC
= FIELD_C(state
->words
[0]);
171 if (fieldC
== REG_LIMM
) {
172 fieldC
= state
->words
[1];
173 state
->instr_len
+= 4;
177 } else if (op_format
== 1 || ((op_format
== 3)
178 && (IS_BIT(state
->words
[0], 5)))) {
179 fieldC
= FIELD_C(state
->words
[0]);
182 fieldC
= FIELD_s12(state
->words
[0]);
186 state
->target
= fieldC
;
187 state
->flow
= is_linked
?
188 direct_call
: direct_jump
;
190 state
->target
= get_reg(fieldC
, regs
, cregs
);
191 state
->flow
= is_linked
?
192 indirect_call
: indirect_jump
;
194 state
->is_branch
= 1;
198 if (BITS(state
->words
[0], 22, 23) == 3) {
199 /* Conditional LPcc u7 */
200 fieldC
= FIELD_C(state
->words
[0]);
202 fieldC
= fieldC
<< 1;
203 fieldC
+= (addr
& ~0x03);
204 state
->is_branch
= 1;
205 state
->flow
= direct_jump
;
206 state
->target
= fieldC
;
208 /* For Unconditional lp, next pc is the fall through
209 * which is updated */
212 case 48 ... 55: /* LD a,[b,c] */
213 state
->di
= BITS(state
->words
[0], 15, 15);
216 state
->x
= BITS(state
->words
[0], 16, 16);
217 state
->zz
= BITS(state
->words
[0], 17, 18);
218 state
->aa
= BITS(state
->words
[0], 22, 23);
219 state
->wb_reg
= FIELD_B(state
->words
[0]);
220 if (state
->wb_reg
== REG_LIMM
) {
221 state
->instr_len
+= 4;
222 state
->src1
= state
->words
[1];
224 state
->src1
= get_reg(state
->wb_reg
, regs
,
227 state
->src2
= FIELD_C(state
->words
[0]);
228 if (state
->src2
== REG_LIMM
) {
229 state
->instr_len
+= 4;
230 state
->src2
= state
->words
[1];
232 state
->src2
= get_reg(state
->src2
, regs
,
235 state
->dest
= FIELD_A(state
->words
[0]);
236 if (state
->dest
== REG_LIMM
)
241 /* still need to check for limm to extract instr len */
242 /* MOV is special case because it only takes 2 args */
243 switch (BITS(state
->words
[0], 22, 23)) {
244 case 0: /* OP a,b,c */
245 if (FIELD_C(state
->words
[0]) == REG_LIMM
)
246 state
->instr_len
+= 4;
248 case 1: /* OP a,b,u6 */
250 case 2: /* OP b,b,s12 */
252 case 3: /* OP.cc b,b,c/u6 */
253 if ((!IS_BIT(state
->words
[0], 5)) &&
254 (FIELD_C(state
->words
[0]) == REG_LIMM
))
255 state
->instr_len
+= 4;
262 /* Not a Load, Jump or Loop instruction */
263 /* still need to check for limm to extract instr len */
264 switch (BITS(state
->words
[0], 22, 23)) {
265 case 0: /* OP a,b,c */
266 if ((FIELD_B(state
->words
[0]) == REG_LIMM
) ||
267 (FIELD_C(state
->words
[0]) == REG_LIMM
))
268 state
->instr_len
+= 4;
270 case 1: /* OP a,b,u6 */
272 case 2: /* OP b,b,s12 */
274 case 3: /* OP.cc b,b,c/u6 */
275 if ((!IS_BIT(state
->words
[0], 5)) &&
276 ((FIELD_B(state
->words
[0]) == REG_LIMM
) ||
277 (FIELD_C(state
->words
[0]) == REG_LIMM
)))
278 state
->instr_len
+= 4;
285 /* 16 Bit Instructions */
286 case op_LD_ADD
: /* LD_S|LDB_S|LDW_S a,[b,c] */
287 state
->zz
= BITS(state
->words
[0], 3, 4);
288 state
->src1
= get_reg(FIELD_S_B(state
->words
[0]), regs
, cregs
);
289 state
->src2
= get_reg(FIELD_S_C(state
->words
[0]), regs
, cregs
);
290 state
->dest
= FIELD_S_A(state
->words
[0]);
294 /* check for limm, ignore mov_s h,b (== mov_s 0,b) */
295 if ((BITS(state
->words
[0], 3, 4) < 3) &&
296 (FIELD_S_H(state
->words
[0]) == REG_LIMM
))
297 state
->instr_len
+= 4;
301 subopcode
= BITS(state
->words
[0], 5, 7);
307 state
->target
= get_reg(FIELD_S_B(state
->words
[0]),
309 state
->delay_slot
= subopcode
& 1;
310 state
->flow
= (subopcode
>= 2) ?
311 direct_call
: indirect_jump
;
314 switch (BITS(state
->words
[0], 8, 10)) {
315 case 4: /* jeq_s [blink] */
316 case 5: /* jne_s [blink] */
317 case 6: /* j_s [blink] */
318 case 7: /* j_s.d [blink] */
319 state
->delay_slot
= (subopcode
== 7);
320 state
->flow
= indirect_jump
;
321 state
->target
= get_reg(31, regs
, cregs
);
330 case op_LD_S
: /* LD_S c, [b, u7] */
331 state
->src1
= get_reg(FIELD_S_B(state
->words
[0]), regs
, cregs
);
332 state
->src2
= FIELD_S_u7(state
->words
[0]);
333 state
->dest
= FIELD_S_C(state
->words
[0]);
338 /* no further handling required as byte accesses should not
339 * cause an unaligned access exception */
343 case op_LDWX_S
: /* LDWX_S c, [b, u6] */
345 /* intentional fall-through */
347 case op_LDW_S
: /* LDW_S c, [b, u6] */
349 state
->src1
= get_reg(FIELD_S_B(state
->words
[0]), regs
, cregs
);
350 state
->src2
= FIELD_S_u6(state
->words
[0]);
351 state
->dest
= FIELD_S_C(state
->words
[0]);
354 case op_ST_S
: /* ST_S c, [b, u7] */
356 state
->src1
= get_reg(FIELD_S_C(state
->words
[0]), regs
, cregs
);
357 state
->src2
= get_reg(FIELD_S_B(state
->words
[0]), regs
, cregs
);
358 state
->src3
= FIELD_S_u7(state
->words
[0]);
361 case op_STW_S
: /* STW_S c,[b,u6] */
364 state
->src1
= get_reg(FIELD_S_C(state
->words
[0]), regs
, cregs
);
365 state
->src2
= get_reg(FIELD_S_B(state
->words
[0]), regs
, cregs
);
366 state
->src3
= FIELD_S_u6(state
->words
[0]);
369 case op_SP
: /* LD_S|LDB_S b,[sp,u7], ST_S|STB_S b,[sp,u7] */
370 /* note: we are ignoring possibility of:
371 * ADD_S, SUB_S, PUSH_S, POP_S as these should not
372 * cause unaliged exception anyway */
373 state
->write
= BITS(state
->words
[0], 6, 6);
374 state
->zz
= BITS(state
->words
[0], 5, 5);
376 break; /* byte accesses should not come here */
378 state
->src1
= get_reg(28, regs
, cregs
);
379 state
->src2
= FIELD_S_u7(state
->words
[0]);
380 state
->dest
= FIELD_S_B(state
->words
[0]);
382 state
->src1
= get_reg(FIELD_S_B(state
->words
[0]), regs
,
384 state
->src2
= get_reg(28, regs
, cregs
);
385 state
->src3
= FIELD_S_u7(state
->words
[0]);
389 case op_GP
: /* LD_S|LDB_S|LDW_S r0,[gp,s11/s9/s10] */
390 /* note: ADD_S r0, gp, s11 is ignored */
391 state
->zz
= BITS(state
->words
[0], 9, 10);
392 state
->src1
= get_reg(26, regs
, cregs
);
393 state
->src2
= state
->zz
? FIELD_S_s10(state
->words
[0]) :
394 FIELD_S_s11(state
->words
[0]);
398 case op_Pcl
: /* LD_S b,[pcl,u10] */
399 state
->src1
= regs
->ret
& ~3;
400 state
->src2
= FIELD_S_u10(state
->words
[0]);
401 state
->dest
= FIELD_S_B(state
->words
[0]);
405 state
->target
= FIELD_S_s8(state
->words
[0]) + (addr
& ~0x03);
406 state
->flow
= direct_jump
;
407 state
->is_branch
= 1;
411 fieldA
= (BITS(state
->words
[0], 9, 10) == 3) ?
412 FIELD_S_s7(state
->words
[0]) :
413 FIELD_S_s10(state
->words
[0]);
414 state
->target
= fieldA
+ (addr
& ~0x03);
415 state
->flow
= direct_jump
;
416 state
->is_branch
= 1;
420 state
->target
= FIELD_S_s13(state
->words
[0]) + (addr
& ~0x03);
421 state
->flow
= direct_call
;
422 state
->is_branch
= 1;
429 if (bytes_not_copied
<= (8 - state
->instr_len
))
432 fault
: state
->fault
= 1;
435 long __kprobes
get_reg(int reg
, struct pt_regs
*regs
,
436 struct callee_regs
*cregs
)
445 if (cregs
&& (reg
<= 25)) {
462 void __kprobes
set_reg(int reg
, long val
, struct pt_regs
*regs
,
463 struct callee_regs
*cregs
)
496 * Disassembles the insn at @pc and sets @next_pc to next PC (which could be
497 * @pc +2/4/6 (ARCompact ISA allows free intermixing of 16/32 bit insns).
500 * -@tgt_if_br is set to branch target.
501 * -If branch has delay slot, @next_pc updated with actual next PC.
503 int __kprobes
disasm_next_pc(unsigned long pc
, struct pt_regs
*regs
,
504 struct callee_regs
*cregs
,
505 unsigned long *next_pc
, unsigned long *tgt_if_br
)
507 struct disasm_state instr
;
509 memset(&instr
, 0, sizeof(struct disasm_state
));
510 disasm_instr(pc
, &instr
, 0, regs
, cregs
);
512 *next_pc
= pc
+ instr
.instr_len
;
514 /* Instruction with possible two targets branch, jump and loop */
516 *tgt_if_br
= instr
.target
;
518 /* For the instructions with delay slots, the fall through is the
519 * instruction following the instruction in delay slot.
521 if (instr
.delay_slot
) {
522 struct disasm_state instr_d
;
524 disasm_instr(*next_pc
, &instr_d
, 0, regs
, cregs
);
526 *next_pc
+= instr_d
.instr_len
;
529 /* Zero Overhead Loop - end of the loop */
530 if (!(regs
->status32
& STATUS32_L
) && (*next_pc
== regs
->lp_end
)
531 && (regs
->lp_count
> 1)) {
532 *next_pc
= regs
->lp_start
;
535 return instr
.is_branch
;
538 #endif /* CONFIG_KGDB || CONFIG_ARC_EMUL_UNALIGNED || CONFIG_KPROBES */