2 * Resizable virtual memory filesystem for Linux.
4 * Copyright (C) 2000 Linus Torvalds.
6 * 2000-2001 Christoph Rohland
9 * Copyright (C) 2002-2011 Hugh Dickins.
10 * Copyright (C) 2011 Google Inc.
11 * Copyright (C) 2002-2005 VERITAS Software Corporation.
12 * Copyright (C) 2004 Andi Kleen, SuSE Labs
14 * Extended attribute support for tmpfs:
15 * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
16 * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
19 * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
21 * This file is released under the GPL.
25 #include <linux/init.h>
26 #include <linux/vfs.h>
27 #include <linux/mount.h>
28 #include <linux/ramfs.h>
29 #include <linux/pagemap.h>
30 #include <linux/file.h>
32 #include <linux/export.h>
33 #include <linux/swap.h>
34 #include <linux/uio.h>
36 static struct vfsmount
*shm_mnt
;
40 * This virtual memory filesystem is heavily based on the ramfs. It
41 * extends ramfs by the ability to use swap and honor resource limits
42 * which makes it a completely usable filesystem.
45 #include <linux/xattr.h>
46 #include <linux/exportfs.h>
47 #include <linux/posix_acl.h>
48 #include <linux/posix_acl_xattr.h>
49 #include <linux/mman.h>
50 #include <linux/string.h>
51 #include <linux/slab.h>
52 #include <linux/backing-dev.h>
53 #include <linux/shmem_fs.h>
54 #include <linux/writeback.h>
55 #include <linux/blkdev.h>
56 #include <linux/pagevec.h>
57 #include <linux/percpu_counter.h>
58 #include <linux/falloc.h>
59 #include <linux/splice.h>
60 #include <linux/security.h>
61 #include <linux/swapops.h>
62 #include <linux/mempolicy.h>
63 #include <linux/namei.h>
64 #include <linux/ctype.h>
65 #include <linux/migrate.h>
66 #include <linux/highmem.h>
67 #include <linux/seq_file.h>
68 #include <linux/magic.h>
69 #include <linux/syscalls.h>
70 #include <linux/fcntl.h>
71 #include <uapi/linux/memfd.h>
73 #include <asm/uaccess.h>
74 #include <asm/pgtable.h>
76 #define BLOCKS_PER_PAGE (PAGE_CACHE_SIZE/512)
77 #define VM_ACCT(size) (PAGE_CACHE_ALIGN(size) >> PAGE_SHIFT)
79 /* Pretend that each entry is of this size in directory's i_size */
80 #define BOGO_DIRENT_SIZE 20
82 /* Symlink up to this size is kmalloc'ed instead of using a swappable page */
83 #define SHORT_SYMLINK_LEN 128
86 * shmem_fallocate communicates with shmem_fault or shmem_writepage via
87 * inode->i_private (with i_mutex making sure that it has only one user at
88 * a time): we would prefer not to enlarge the shmem inode just for that.
91 wait_queue_head_t
*waitq
; /* faults into hole wait for punch to end */
92 pgoff_t start
; /* start of range currently being fallocated */
93 pgoff_t next
; /* the next page offset to be fallocated */
94 pgoff_t nr_falloced
; /* how many new pages have been fallocated */
95 pgoff_t nr_unswapped
; /* how often writepage refused to swap out */
98 /* Flag allocation requirements to shmem_getpage */
100 SGP_READ
, /* don't exceed i_size, don't allocate page */
101 SGP_CACHE
, /* don't exceed i_size, may allocate page */
102 SGP_DIRTY
, /* like SGP_CACHE, but set new page dirty */
103 SGP_WRITE
, /* may exceed i_size, may allocate !Uptodate page */
104 SGP_FALLOC
, /* like SGP_WRITE, but make existing page Uptodate */
108 static unsigned long shmem_default_max_blocks(void)
110 return totalram_pages
/ 2;
113 static unsigned long shmem_default_max_inodes(void)
115 return min(totalram_pages
- totalhigh_pages
, totalram_pages
/ 2);
119 static bool shmem_should_replace_page(struct page
*page
, gfp_t gfp
);
120 static int shmem_replace_page(struct page
**pagep
, gfp_t gfp
,
121 struct shmem_inode_info
*info
, pgoff_t index
);
122 static int shmem_getpage_gfp(struct inode
*inode
, pgoff_t index
,
123 struct page
**pagep
, enum sgp_type sgp
, gfp_t gfp
, int *fault_type
);
125 static inline int shmem_getpage(struct inode
*inode
, pgoff_t index
,
126 struct page
**pagep
, enum sgp_type sgp
, int *fault_type
)
128 return shmem_getpage_gfp(inode
, index
, pagep
, sgp
,
129 mapping_gfp_mask(inode
->i_mapping
), fault_type
);
132 static inline struct shmem_sb_info
*SHMEM_SB(struct super_block
*sb
)
134 return sb
->s_fs_info
;
138 * shmem_file_setup pre-accounts the whole fixed size of a VM object,
139 * for shared memory and for shared anonymous (/dev/zero) mappings
140 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
141 * consistent with the pre-accounting of private mappings ...
143 static inline int shmem_acct_size(unsigned long flags
, loff_t size
)
145 return (flags
& VM_NORESERVE
) ?
146 0 : security_vm_enough_memory_mm(current
->mm
, VM_ACCT(size
));
149 static inline void shmem_unacct_size(unsigned long flags
, loff_t size
)
151 if (!(flags
& VM_NORESERVE
))
152 vm_unacct_memory(VM_ACCT(size
));
155 static inline int shmem_reacct_size(unsigned long flags
,
156 loff_t oldsize
, loff_t newsize
)
158 if (!(flags
& VM_NORESERVE
)) {
159 if (VM_ACCT(newsize
) > VM_ACCT(oldsize
))
160 return security_vm_enough_memory_mm(current
->mm
,
161 VM_ACCT(newsize
) - VM_ACCT(oldsize
));
162 else if (VM_ACCT(newsize
) < VM_ACCT(oldsize
))
163 vm_unacct_memory(VM_ACCT(oldsize
) - VM_ACCT(newsize
));
169 * ... whereas tmpfs objects are accounted incrementally as
170 * pages are allocated, in order to allow huge sparse files.
171 * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
172 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
174 static inline int shmem_acct_block(unsigned long flags
)
176 return (flags
& VM_NORESERVE
) ?
177 security_vm_enough_memory_mm(current
->mm
, VM_ACCT(PAGE_CACHE_SIZE
)) : 0;
180 static inline void shmem_unacct_blocks(unsigned long flags
, long pages
)
182 if (flags
& VM_NORESERVE
)
183 vm_unacct_memory(pages
* VM_ACCT(PAGE_CACHE_SIZE
));
186 static const struct super_operations shmem_ops
;
187 static const struct address_space_operations shmem_aops
;
188 static const struct file_operations shmem_file_operations
;
189 static const struct inode_operations shmem_inode_operations
;
190 static const struct inode_operations shmem_dir_inode_operations
;
191 static const struct inode_operations shmem_special_inode_operations
;
192 static const struct vm_operations_struct shmem_vm_ops
;
194 static LIST_HEAD(shmem_swaplist
);
195 static DEFINE_MUTEX(shmem_swaplist_mutex
);
197 static int shmem_reserve_inode(struct super_block
*sb
)
199 struct shmem_sb_info
*sbinfo
= SHMEM_SB(sb
);
200 if (sbinfo
->max_inodes
) {
201 spin_lock(&sbinfo
->stat_lock
);
202 if (!sbinfo
->free_inodes
) {
203 spin_unlock(&sbinfo
->stat_lock
);
206 sbinfo
->free_inodes
--;
207 spin_unlock(&sbinfo
->stat_lock
);
212 static void shmem_free_inode(struct super_block
*sb
)
214 struct shmem_sb_info
*sbinfo
= SHMEM_SB(sb
);
215 if (sbinfo
->max_inodes
) {
216 spin_lock(&sbinfo
->stat_lock
);
217 sbinfo
->free_inodes
++;
218 spin_unlock(&sbinfo
->stat_lock
);
223 * shmem_recalc_inode - recalculate the block usage of an inode
224 * @inode: inode to recalc
226 * We have to calculate the free blocks since the mm can drop
227 * undirtied hole pages behind our back.
229 * But normally info->alloced == inode->i_mapping->nrpages + info->swapped
230 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
232 * It has to be called with the spinlock held.
234 static void shmem_recalc_inode(struct inode
*inode
)
236 struct shmem_inode_info
*info
= SHMEM_I(inode
);
239 freed
= info
->alloced
- info
->swapped
- inode
->i_mapping
->nrpages
;
241 struct shmem_sb_info
*sbinfo
= SHMEM_SB(inode
->i_sb
);
242 if (sbinfo
->max_blocks
)
243 percpu_counter_add(&sbinfo
->used_blocks
, -freed
);
244 info
->alloced
-= freed
;
245 inode
->i_blocks
-= freed
* BLOCKS_PER_PAGE
;
246 shmem_unacct_blocks(info
->flags
, freed
);
251 * Replace item expected in radix tree by a new item, while holding tree lock.
253 static int shmem_radix_tree_replace(struct address_space
*mapping
,
254 pgoff_t index
, void *expected
, void *replacement
)
259 VM_BUG_ON(!expected
);
260 VM_BUG_ON(!replacement
);
261 pslot
= radix_tree_lookup_slot(&mapping
->page_tree
, index
);
264 item
= radix_tree_deref_slot_protected(pslot
, &mapping
->tree_lock
);
265 if (item
!= expected
)
267 radix_tree_replace_slot(pslot
, replacement
);
272 * Sometimes, before we decide whether to proceed or to fail, we must check
273 * that an entry was not already brought back from swap by a racing thread.
275 * Checking page is not enough: by the time a SwapCache page is locked, it
276 * might be reused, and again be SwapCache, using the same swap as before.
278 static bool shmem_confirm_swap(struct address_space
*mapping
,
279 pgoff_t index
, swp_entry_t swap
)
284 item
= radix_tree_lookup(&mapping
->page_tree
, index
);
286 return item
== swp_to_radix_entry(swap
);
290 * Like add_to_page_cache_locked, but error if expected item has gone.
292 static int shmem_add_to_page_cache(struct page
*page
,
293 struct address_space
*mapping
,
294 pgoff_t index
, void *expected
)
298 VM_BUG_ON_PAGE(!PageLocked(page
), page
);
299 VM_BUG_ON_PAGE(!PageSwapBacked(page
), page
);
301 page_cache_get(page
);
302 page
->mapping
= mapping
;
305 spin_lock_irq(&mapping
->tree_lock
);
307 error
= radix_tree_insert(&mapping
->page_tree
, index
, page
);
309 error
= shmem_radix_tree_replace(mapping
, index
, expected
,
313 __inc_zone_page_state(page
, NR_FILE_PAGES
);
314 __inc_zone_page_state(page
, NR_SHMEM
);
315 spin_unlock_irq(&mapping
->tree_lock
);
317 page
->mapping
= NULL
;
318 spin_unlock_irq(&mapping
->tree_lock
);
319 page_cache_release(page
);
325 * Like delete_from_page_cache, but substitutes swap for page.
327 static void shmem_delete_from_page_cache(struct page
*page
, void *radswap
)
329 struct address_space
*mapping
= page
->mapping
;
332 spin_lock_irq(&mapping
->tree_lock
);
333 error
= shmem_radix_tree_replace(mapping
, page
->index
, page
, radswap
);
334 page
->mapping
= NULL
;
336 __dec_zone_page_state(page
, NR_FILE_PAGES
);
337 __dec_zone_page_state(page
, NR_SHMEM
);
338 spin_unlock_irq(&mapping
->tree_lock
);
339 page_cache_release(page
);
344 * Remove swap entry from radix tree, free the swap and its page cache.
346 static int shmem_free_swap(struct address_space
*mapping
,
347 pgoff_t index
, void *radswap
)
351 spin_lock_irq(&mapping
->tree_lock
);
352 old
= radix_tree_delete_item(&mapping
->page_tree
, index
, radswap
);
353 spin_unlock_irq(&mapping
->tree_lock
);
356 free_swap_and_cache(radix_to_swp_entry(radswap
));
361 * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
363 void shmem_unlock_mapping(struct address_space
*mapping
)
366 pgoff_t indices
[PAGEVEC_SIZE
];
369 pagevec_init(&pvec
, 0);
371 * Minor point, but we might as well stop if someone else SHM_LOCKs it.
373 while (!mapping_unevictable(mapping
)) {
375 * Avoid pagevec_lookup(): find_get_pages() returns 0 as if it
376 * has finished, if it hits a row of PAGEVEC_SIZE swap entries.
378 pvec
.nr
= find_get_entries(mapping
, index
,
379 PAGEVEC_SIZE
, pvec
.pages
, indices
);
382 index
= indices
[pvec
.nr
- 1] + 1;
383 pagevec_remove_exceptionals(&pvec
);
384 check_move_unevictable_pages(pvec
.pages
, pvec
.nr
);
385 pagevec_release(&pvec
);
391 * Remove range of pages and swap entries from radix tree, and free them.
392 * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
394 static void shmem_undo_range(struct inode
*inode
, loff_t lstart
, loff_t lend
,
397 struct address_space
*mapping
= inode
->i_mapping
;
398 struct shmem_inode_info
*info
= SHMEM_I(inode
);
399 pgoff_t start
= (lstart
+ PAGE_CACHE_SIZE
- 1) >> PAGE_CACHE_SHIFT
;
400 pgoff_t end
= (lend
+ 1) >> PAGE_CACHE_SHIFT
;
401 unsigned int partial_start
= lstart
& (PAGE_CACHE_SIZE
- 1);
402 unsigned int partial_end
= (lend
+ 1) & (PAGE_CACHE_SIZE
- 1);
404 pgoff_t indices
[PAGEVEC_SIZE
];
405 long nr_swaps_freed
= 0;
410 end
= -1; /* unsigned, so actually very big */
412 pagevec_init(&pvec
, 0);
414 while (index
< end
) {
415 pvec
.nr
= find_get_entries(mapping
, index
,
416 min(end
- index
, (pgoff_t
)PAGEVEC_SIZE
),
417 pvec
.pages
, indices
);
420 for (i
= 0; i
< pagevec_count(&pvec
); i
++) {
421 struct page
*page
= pvec
.pages
[i
];
427 if (radix_tree_exceptional_entry(page
)) {
430 nr_swaps_freed
+= !shmem_free_swap(mapping
,
435 if (!trylock_page(page
))
437 if (!unfalloc
|| !PageUptodate(page
)) {
438 if (page
->mapping
== mapping
) {
439 VM_BUG_ON_PAGE(PageWriteback(page
), page
);
440 truncate_inode_page(mapping
, page
);
445 pagevec_remove_exceptionals(&pvec
);
446 pagevec_release(&pvec
);
452 struct page
*page
= NULL
;
453 shmem_getpage(inode
, start
- 1, &page
, SGP_READ
, NULL
);
455 unsigned int top
= PAGE_CACHE_SIZE
;
460 zero_user_segment(page
, partial_start
, top
);
461 set_page_dirty(page
);
463 page_cache_release(page
);
467 struct page
*page
= NULL
;
468 shmem_getpage(inode
, end
, &page
, SGP_READ
, NULL
);
470 zero_user_segment(page
, 0, partial_end
);
471 set_page_dirty(page
);
473 page_cache_release(page
);
480 while (index
< end
) {
483 pvec
.nr
= find_get_entries(mapping
, index
,
484 min(end
- index
, (pgoff_t
)PAGEVEC_SIZE
),
485 pvec
.pages
, indices
);
487 /* If all gone or hole-punch or unfalloc, we're done */
488 if (index
== start
|| end
!= -1)
490 /* But if truncating, restart to make sure all gone */
494 for (i
= 0; i
< pagevec_count(&pvec
); i
++) {
495 struct page
*page
= pvec
.pages
[i
];
501 if (radix_tree_exceptional_entry(page
)) {
504 if (shmem_free_swap(mapping
, index
, page
)) {
505 /* Swap was replaced by page: retry */
514 if (!unfalloc
|| !PageUptodate(page
)) {
515 if (page
->mapping
== mapping
) {
516 VM_BUG_ON_PAGE(PageWriteback(page
), page
);
517 truncate_inode_page(mapping
, page
);
519 /* Page was replaced by swap: retry */
527 pagevec_remove_exceptionals(&pvec
);
528 pagevec_release(&pvec
);
532 spin_lock(&info
->lock
);
533 info
->swapped
-= nr_swaps_freed
;
534 shmem_recalc_inode(inode
);
535 spin_unlock(&info
->lock
);
538 void shmem_truncate_range(struct inode
*inode
, loff_t lstart
, loff_t lend
)
540 shmem_undo_range(inode
, lstart
, lend
, false);
541 inode
->i_ctime
= inode
->i_mtime
= CURRENT_TIME
;
543 EXPORT_SYMBOL_GPL(shmem_truncate_range
);
545 static int shmem_setattr(struct dentry
*dentry
, struct iattr
*attr
)
547 struct inode
*inode
= d_inode(dentry
);
548 struct shmem_inode_info
*info
= SHMEM_I(inode
);
551 error
= inode_change_ok(inode
, attr
);
555 if (S_ISREG(inode
->i_mode
) && (attr
->ia_valid
& ATTR_SIZE
)) {
556 loff_t oldsize
= inode
->i_size
;
557 loff_t newsize
= attr
->ia_size
;
559 /* protected by i_mutex */
560 if ((newsize
< oldsize
&& (info
->seals
& F_SEAL_SHRINK
)) ||
561 (newsize
> oldsize
&& (info
->seals
& F_SEAL_GROW
)))
564 if (newsize
!= oldsize
) {
565 error
= shmem_reacct_size(SHMEM_I(inode
)->flags
,
569 i_size_write(inode
, newsize
);
570 inode
->i_ctime
= inode
->i_mtime
= CURRENT_TIME
;
572 if (newsize
< oldsize
) {
573 loff_t holebegin
= round_up(newsize
, PAGE_SIZE
);
574 unmap_mapping_range(inode
->i_mapping
, holebegin
, 0, 1);
575 shmem_truncate_range(inode
, newsize
, (loff_t
)-1);
576 /* unmap again to remove racily COWed private pages */
577 unmap_mapping_range(inode
->i_mapping
, holebegin
, 0, 1);
581 setattr_copy(inode
, attr
);
582 if (attr
->ia_valid
& ATTR_MODE
)
583 error
= posix_acl_chmod(inode
, inode
->i_mode
);
587 static void shmem_evict_inode(struct inode
*inode
)
589 struct shmem_inode_info
*info
= SHMEM_I(inode
);
591 if (inode
->i_mapping
->a_ops
== &shmem_aops
) {
592 shmem_unacct_size(info
->flags
, inode
->i_size
);
594 shmem_truncate_range(inode
, 0, (loff_t
)-1);
595 if (!list_empty(&info
->swaplist
)) {
596 mutex_lock(&shmem_swaplist_mutex
);
597 list_del_init(&info
->swaplist
);
598 mutex_unlock(&shmem_swaplist_mutex
);
601 kfree(info
->symlink
);
603 simple_xattrs_free(&info
->xattrs
);
604 WARN_ON(inode
->i_blocks
);
605 shmem_free_inode(inode
->i_sb
);
610 * If swap found in inode, free it and move page from swapcache to filecache.
612 static int shmem_unuse_inode(struct shmem_inode_info
*info
,
613 swp_entry_t swap
, struct page
**pagep
)
615 struct address_space
*mapping
= info
->vfs_inode
.i_mapping
;
621 radswap
= swp_to_radix_entry(swap
);
622 index
= radix_tree_locate_item(&mapping
->page_tree
, radswap
);
624 return -EAGAIN
; /* tell shmem_unuse we found nothing */
627 * Move _head_ to start search for next from here.
628 * But be careful: shmem_evict_inode checks list_empty without taking
629 * mutex, and there's an instant in list_move_tail when info->swaplist
630 * would appear empty, if it were the only one on shmem_swaplist.
632 if (shmem_swaplist
.next
!= &info
->swaplist
)
633 list_move_tail(&shmem_swaplist
, &info
->swaplist
);
635 gfp
= mapping_gfp_mask(mapping
);
636 if (shmem_should_replace_page(*pagep
, gfp
)) {
637 mutex_unlock(&shmem_swaplist_mutex
);
638 error
= shmem_replace_page(pagep
, gfp
, info
, index
);
639 mutex_lock(&shmem_swaplist_mutex
);
641 * We needed to drop mutex to make that restrictive page
642 * allocation, but the inode might have been freed while we
643 * dropped it: although a racing shmem_evict_inode() cannot
644 * complete without emptying the radix_tree, our page lock
645 * on this swapcache page is not enough to prevent that -
646 * free_swap_and_cache() of our swap entry will only
647 * trylock_page(), removing swap from radix_tree whatever.
649 * We must not proceed to shmem_add_to_page_cache() if the
650 * inode has been freed, but of course we cannot rely on
651 * inode or mapping or info to check that. However, we can
652 * safely check if our swap entry is still in use (and here
653 * it can't have got reused for another page): if it's still
654 * in use, then the inode cannot have been freed yet, and we
655 * can safely proceed (if it's no longer in use, that tells
656 * nothing about the inode, but we don't need to unuse swap).
658 if (!page_swapcount(*pagep
))
663 * We rely on shmem_swaplist_mutex, not only to protect the swaplist,
664 * but also to hold up shmem_evict_inode(): so inode cannot be freed
665 * beneath us (pagelock doesn't help until the page is in pagecache).
668 error
= shmem_add_to_page_cache(*pagep
, mapping
, index
,
670 if (error
!= -ENOMEM
) {
672 * Truncation and eviction use free_swap_and_cache(), which
673 * only does trylock page: if we raced, best clean up here.
675 delete_from_swap_cache(*pagep
);
676 set_page_dirty(*pagep
);
678 spin_lock(&info
->lock
);
680 spin_unlock(&info
->lock
);
688 * Search through swapped inodes to find and replace swap by page.
690 int shmem_unuse(swp_entry_t swap
, struct page
*page
)
692 struct list_head
*this, *next
;
693 struct shmem_inode_info
*info
;
694 struct mem_cgroup
*memcg
;
698 * There's a faint possibility that swap page was replaced before
699 * caller locked it: caller will come back later with the right page.
701 if (unlikely(!PageSwapCache(page
) || page_private(page
) != swap
.val
))
705 * Charge page using GFP_KERNEL while we can wait, before taking
706 * the shmem_swaplist_mutex which might hold up shmem_writepage().
707 * Charged back to the user (not to caller) when swap account is used.
709 error
= mem_cgroup_try_charge(page
, current
->mm
, GFP_KERNEL
, &memcg
);
712 /* No radix_tree_preload: swap entry keeps a place for page in tree */
715 mutex_lock(&shmem_swaplist_mutex
);
716 list_for_each_safe(this, next
, &shmem_swaplist
) {
717 info
= list_entry(this, struct shmem_inode_info
, swaplist
);
719 error
= shmem_unuse_inode(info
, swap
, &page
);
721 list_del_init(&info
->swaplist
);
723 if (error
!= -EAGAIN
)
725 /* found nothing in this: move on to search the next */
727 mutex_unlock(&shmem_swaplist_mutex
);
730 if (error
!= -ENOMEM
)
732 mem_cgroup_cancel_charge(page
, memcg
);
734 mem_cgroup_commit_charge(page
, memcg
, true);
737 page_cache_release(page
);
742 * Move the page from the page cache to the swap cache.
744 static int shmem_writepage(struct page
*page
, struct writeback_control
*wbc
)
746 struct shmem_inode_info
*info
;
747 struct address_space
*mapping
;
752 BUG_ON(!PageLocked(page
));
753 mapping
= page
->mapping
;
755 inode
= mapping
->host
;
756 info
= SHMEM_I(inode
);
757 if (info
->flags
& VM_LOCKED
)
759 if (!total_swap_pages
)
763 * Our capabilities prevent regular writeback or sync from ever calling
764 * shmem_writepage; but a stacking filesystem might use ->writepage of
765 * its underlying filesystem, in which case tmpfs should write out to
766 * swap only in response to memory pressure, and not for the writeback
769 if (!wbc
->for_reclaim
) {
770 WARN_ON_ONCE(1); /* Still happens? Tell us about it! */
775 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
776 * value into swapfile.c, the only way we can correctly account for a
777 * fallocated page arriving here is now to initialize it and write it.
779 * That's okay for a page already fallocated earlier, but if we have
780 * not yet completed the fallocation, then (a) we want to keep track
781 * of this page in case we have to undo it, and (b) it may not be a
782 * good idea to continue anyway, once we're pushing into swap. So
783 * reactivate the page, and let shmem_fallocate() quit when too many.
785 if (!PageUptodate(page
)) {
786 if (inode
->i_private
) {
787 struct shmem_falloc
*shmem_falloc
;
788 spin_lock(&inode
->i_lock
);
789 shmem_falloc
= inode
->i_private
;
791 !shmem_falloc
->waitq
&&
792 index
>= shmem_falloc
->start
&&
793 index
< shmem_falloc
->next
)
794 shmem_falloc
->nr_unswapped
++;
797 spin_unlock(&inode
->i_lock
);
801 clear_highpage(page
);
802 flush_dcache_page(page
);
803 SetPageUptodate(page
);
806 swap
= get_swap_page();
811 * Add inode to shmem_unuse()'s list of swapped-out inodes,
812 * if it's not already there. Do it now before the page is
813 * moved to swap cache, when its pagelock no longer protects
814 * the inode from eviction. But don't unlock the mutex until
815 * we've incremented swapped, because shmem_unuse_inode() will
816 * prune a !swapped inode from the swaplist under this mutex.
818 mutex_lock(&shmem_swaplist_mutex
);
819 if (list_empty(&info
->swaplist
))
820 list_add_tail(&info
->swaplist
, &shmem_swaplist
);
822 if (add_to_swap_cache(page
, swap
, GFP_ATOMIC
) == 0) {
823 swap_shmem_alloc(swap
);
824 shmem_delete_from_page_cache(page
, swp_to_radix_entry(swap
));
826 spin_lock(&info
->lock
);
828 shmem_recalc_inode(inode
);
829 spin_unlock(&info
->lock
);
831 mutex_unlock(&shmem_swaplist_mutex
);
832 BUG_ON(page_mapped(page
));
833 swap_writepage(page
, wbc
);
837 mutex_unlock(&shmem_swaplist_mutex
);
838 swapcache_free(swap
);
840 set_page_dirty(page
);
841 if (wbc
->for_reclaim
)
842 return AOP_WRITEPAGE_ACTIVATE
; /* Return with page locked */
849 static void shmem_show_mpol(struct seq_file
*seq
, struct mempolicy
*mpol
)
853 if (!mpol
|| mpol
->mode
== MPOL_DEFAULT
)
854 return; /* show nothing */
856 mpol_to_str(buffer
, sizeof(buffer
), mpol
);
858 seq_printf(seq
, ",mpol=%s", buffer
);
861 static struct mempolicy
*shmem_get_sbmpol(struct shmem_sb_info
*sbinfo
)
863 struct mempolicy
*mpol
= NULL
;
865 spin_lock(&sbinfo
->stat_lock
); /* prevent replace/use races */
868 spin_unlock(&sbinfo
->stat_lock
);
872 #endif /* CONFIG_TMPFS */
874 static struct page
*shmem_swapin(swp_entry_t swap
, gfp_t gfp
,
875 struct shmem_inode_info
*info
, pgoff_t index
)
877 struct vm_area_struct pvma
;
880 /* Create a pseudo vma that just contains the policy */
882 /* Bias interleave by inode number to distribute better across nodes */
883 pvma
.vm_pgoff
= index
+ info
->vfs_inode
.i_ino
;
885 pvma
.vm_policy
= mpol_shared_policy_lookup(&info
->policy
, index
);
887 page
= swapin_readahead(swap
, gfp
, &pvma
, 0);
889 /* Drop reference taken by mpol_shared_policy_lookup() */
890 mpol_cond_put(pvma
.vm_policy
);
895 static struct page
*shmem_alloc_page(gfp_t gfp
,
896 struct shmem_inode_info
*info
, pgoff_t index
)
898 struct vm_area_struct pvma
;
901 /* Create a pseudo vma that just contains the policy */
903 /* Bias interleave by inode number to distribute better across nodes */
904 pvma
.vm_pgoff
= index
+ info
->vfs_inode
.i_ino
;
906 pvma
.vm_policy
= mpol_shared_policy_lookup(&info
->policy
, index
);
908 page
= alloc_page_vma(gfp
, &pvma
, 0);
910 /* Drop reference taken by mpol_shared_policy_lookup() */
911 mpol_cond_put(pvma
.vm_policy
);
915 #else /* !CONFIG_NUMA */
917 static inline void shmem_show_mpol(struct seq_file
*seq
, struct mempolicy
*mpol
)
920 #endif /* CONFIG_TMPFS */
922 static inline struct page
*shmem_swapin(swp_entry_t swap
, gfp_t gfp
,
923 struct shmem_inode_info
*info
, pgoff_t index
)
925 return swapin_readahead(swap
, gfp
, NULL
, 0);
928 static inline struct page
*shmem_alloc_page(gfp_t gfp
,
929 struct shmem_inode_info
*info
, pgoff_t index
)
931 return alloc_page(gfp
);
933 #endif /* CONFIG_NUMA */
935 #if !defined(CONFIG_NUMA) || !defined(CONFIG_TMPFS)
936 static inline struct mempolicy
*shmem_get_sbmpol(struct shmem_sb_info
*sbinfo
)
943 * When a page is moved from swapcache to shmem filecache (either by the
944 * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of
945 * shmem_unuse_inode()), it may have been read in earlier from swap, in
946 * ignorance of the mapping it belongs to. If that mapping has special
947 * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
948 * we may need to copy to a suitable page before moving to filecache.
950 * In a future release, this may well be extended to respect cpuset and
951 * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
952 * but for now it is a simple matter of zone.
954 static bool shmem_should_replace_page(struct page
*page
, gfp_t gfp
)
956 return page_zonenum(page
) > gfp_zone(gfp
);
959 static int shmem_replace_page(struct page
**pagep
, gfp_t gfp
,
960 struct shmem_inode_info
*info
, pgoff_t index
)
962 struct page
*oldpage
, *newpage
;
963 struct address_space
*swap_mapping
;
968 swap_index
= page_private(oldpage
);
969 swap_mapping
= page_mapping(oldpage
);
972 * We have arrived here because our zones are constrained, so don't
973 * limit chance of success by further cpuset and node constraints.
975 gfp
&= ~GFP_CONSTRAINT_MASK
;
976 newpage
= shmem_alloc_page(gfp
, info
, index
);
980 page_cache_get(newpage
);
981 copy_highpage(newpage
, oldpage
);
982 flush_dcache_page(newpage
);
984 __set_page_locked(newpage
);
985 SetPageUptodate(newpage
);
986 SetPageSwapBacked(newpage
);
987 set_page_private(newpage
, swap_index
);
988 SetPageSwapCache(newpage
);
991 * Our caller will very soon move newpage out of swapcache, but it's
992 * a nice clean interface for us to replace oldpage by newpage there.
994 spin_lock_irq(&swap_mapping
->tree_lock
);
995 error
= shmem_radix_tree_replace(swap_mapping
, swap_index
, oldpage
,
998 __inc_zone_page_state(newpage
, NR_FILE_PAGES
);
999 __dec_zone_page_state(oldpage
, NR_FILE_PAGES
);
1001 spin_unlock_irq(&swap_mapping
->tree_lock
);
1003 if (unlikely(error
)) {
1005 * Is this possible? I think not, now that our callers check
1006 * both PageSwapCache and page_private after getting page lock;
1007 * but be defensive. Reverse old to newpage for clear and free.
1011 mem_cgroup_migrate(oldpage
, newpage
, true);
1012 lru_cache_add_anon(newpage
);
1016 ClearPageSwapCache(oldpage
);
1017 set_page_private(oldpage
, 0);
1019 unlock_page(oldpage
);
1020 page_cache_release(oldpage
);
1021 page_cache_release(oldpage
);
1026 * shmem_getpage_gfp - find page in cache, or get from swap, or allocate
1028 * If we allocate a new one we do not mark it dirty. That's up to the
1029 * vm. If we swap it in we mark it dirty since we also free the swap
1030 * entry since a page cannot live in both the swap and page cache
1032 static int shmem_getpage_gfp(struct inode
*inode
, pgoff_t index
,
1033 struct page
**pagep
, enum sgp_type sgp
, gfp_t gfp
, int *fault_type
)
1035 struct address_space
*mapping
= inode
->i_mapping
;
1036 struct shmem_inode_info
*info
;
1037 struct shmem_sb_info
*sbinfo
;
1038 struct mem_cgroup
*memcg
;
1045 if (index
> (MAX_LFS_FILESIZE
>> PAGE_CACHE_SHIFT
))
1049 page
= find_lock_entry(mapping
, index
);
1050 if (radix_tree_exceptional_entry(page
)) {
1051 swap
= radix_to_swp_entry(page
);
1055 if (sgp
!= SGP_WRITE
&& sgp
!= SGP_FALLOC
&&
1056 ((loff_t
)index
<< PAGE_CACHE_SHIFT
) >= i_size_read(inode
)) {
1061 if (page
&& sgp
== SGP_WRITE
)
1062 mark_page_accessed(page
);
1064 /* fallocated page? */
1065 if (page
&& !PageUptodate(page
)) {
1066 if (sgp
!= SGP_READ
)
1069 page_cache_release(page
);
1072 if (page
|| (sgp
== SGP_READ
&& !swap
.val
)) {
1078 * Fast cache lookup did not find it:
1079 * bring it back from swap or allocate.
1081 info
= SHMEM_I(inode
);
1082 sbinfo
= SHMEM_SB(inode
->i_sb
);
1085 /* Look it up and read it in.. */
1086 page
= lookup_swap_cache(swap
);
1088 /* here we actually do the io */
1090 *fault_type
|= VM_FAULT_MAJOR
;
1091 page
= shmem_swapin(swap
, gfp
, info
, index
);
1098 /* We have to do this with page locked to prevent races */
1100 if (!PageSwapCache(page
) || page_private(page
) != swap
.val
||
1101 !shmem_confirm_swap(mapping
, index
, swap
)) {
1102 error
= -EEXIST
; /* try again */
1105 if (!PageUptodate(page
)) {
1109 wait_on_page_writeback(page
);
1111 if (shmem_should_replace_page(page
, gfp
)) {
1112 error
= shmem_replace_page(&page
, gfp
, info
, index
);
1117 error
= mem_cgroup_try_charge(page
, current
->mm
, gfp
, &memcg
);
1119 error
= shmem_add_to_page_cache(page
, mapping
, index
,
1120 swp_to_radix_entry(swap
));
1122 * We already confirmed swap under page lock, and make
1123 * no memory allocation here, so usually no possibility
1124 * of error; but free_swap_and_cache() only trylocks a
1125 * page, so it is just possible that the entry has been
1126 * truncated or holepunched since swap was confirmed.
1127 * shmem_undo_range() will have done some of the
1128 * unaccounting, now delete_from_swap_cache() will do
1130 * Reset swap.val? No, leave it so "failed" goes back to
1131 * "repeat": reading a hole and writing should succeed.
1134 mem_cgroup_cancel_charge(page
, memcg
);
1135 delete_from_swap_cache(page
);
1141 mem_cgroup_commit_charge(page
, memcg
, true);
1143 spin_lock(&info
->lock
);
1145 shmem_recalc_inode(inode
);
1146 spin_unlock(&info
->lock
);
1148 if (sgp
== SGP_WRITE
)
1149 mark_page_accessed(page
);
1151 delete_from_swap_cache(page
);
1152 set_page_dirty(page
);
1156 if (shmem_acct_block(info
->flags
)) {
1160 if (sbinfo
->max_blocks
) {
1161 if (percpu_counter_compare(&sbinfo
->used_blocks
,
1162 sbinfo
->max_blocks
) >= 0) {
1166 percpu_counter_inc(&sbinfo
->used_blocks
);
1169 page
= shmem_alloc_page(gfp
, info
, index
);
1175 __SetPageSwapBacked(page
);
1176 __set_page_locked(page
);
1177 if (sgp
== SGP_WRITE
)
1178 __SetPageReferenced(page
);
1180 error
= mem_cgroup_try_charge(page
, current
->mm
, gfp
, &memcg
);
1183 error
= radix_tree_maybe_preload(gfp
& GFP_RECLAIM_MASK
);
1185 error
= shmem_add_to_page_cache(page
, mapping
, index
,
1187 radix_tree_preload_end();
1190 mem_cgroup_cancel_charge(page
, memcg
);
1193 mem_cgroup_commit_charge(page
, memcg
, false);
1194 lru_cache_add_anon(page
);
1196 spin_lock(&info
->lock
);
1198 inode
->i_blocks
+= BLOCKS_PER_PAGE
;
1199 shmem_recalc_inode(inode
);
1200 spin_unlock(&info
->lock
);
1204 * Let SGP_FALLOC use the SGP_WRITE optimization on a new page.
1206 if (sgp
== SGP_FALLOC
)
1210 * Let SGP_WRITE caller clear ends if write does not fill page;
1211 * but SGP_FALLOC on a page fallocated earlier must initialize
1212 * it now, lest undo on failure cancel our earlier guarantee.
1214 if (sgp
!= SGP_WRITE
) {
1215 clear_highpage(page
);
1216 flush_dcache_page(page
);
1217 SetPageUptodate(page
);
1219 if (sgp
== SGP_DIRTY
)
1220 set_page_dirty(page
);
1223 /* Perhaps the file has been truncated since we checked */
1224 if (sgp
!= SGP_WRITE
&& sgp
!= SGP_FALLOC
&&
1225 ((loff_t
)index
<< PAGE_CACHE_SHIFT
) >= i_size_read(inode
)) {
1239 info
= SHMEM_I(inode
);
1240 ClearPageDirty(page
);
1241 delete_from_page_cache(page
);
1242 spin_lock(&info
->lock
);
1244 inode
->i_blocks
-= BLOCKS_PER_PAGE
;
1245 spin_unlock(&info
->lock
);
1247 sbinfo
= SHMEM_SB(inode
->i_sb
);
1248 if (sbinfo
->max_blocks
)
1249 percpu_counter_add(&sbinfo
->used_blocks
, -1);
1251 shmem_unacct_blocks(info
->flags
, 1);
1253 if (swap
.val
&& error
!= -EINVAL
&&
1254 !shmem_confirm_swap(mapping
, index
, swap
))
1259 page_cache_release(page
);
1261 if (error
== -ENOSPC
&& !once
++) {
1262 info
= SHMEM_I(inode
);
1263 spin_lock(&info
->lock
);
1264 shmem_recalc_inode(inode
);
1265 spin_unlock(&info
->lock
);
1268 if (error
== -EEXIST
) /* from above or from radix_tree_insert */
1273 static int shmem_fault(struct vm_area_struct
*vma
, struct vm_fault
*vmf
)
1275 struct inode
*inode
= file_inode(vma
->vm_file
);
1277 int ret
= VM_FAULT_LOCKED
;
1280 * Trinity finds that probing a hole which tmpfs is punching can
1281 * prevent the hole-punch from ever completing: which in turn
1282 * locks writers out with its hold on i_mutex. So refrain from
1283 * faulting pages into the hole while it's being punched. Although
1284 * shmem_undo_range() does remove the additions, it may be unable to
1285 * keep up, as each new page needs its own unmap_mapping_range() call,
1286 * and the i_mmap tree grows ever slower to scan if new vmas are added.
1288 * It does not matter if we sometimes reach this check just before the
1289 * hole-punch begins, so that one fault then races with the punch:
1290 * we just need to make racing faults a rare case.
1292 * The implementation below would be much simpler if we just used a
1293 * standard mutex or completion: but we cannot take i_mutex in fault,
1294 * and bloating every shmem inode for this unlikely case would be sad.
1296 if (unlikely(inode
->i_private
)) {
1297 struct shmem_falloc
*shmem_falloc
;
1299 spin_lock(&inode
->i_lock
);
1300 shmem_falloc
= inode
->i_private
;
1302 shmem_falloc
->waitq
&&
1303 vmf
->pgoff
>= shmem_falloc
->start
&&
1304 vmf
->pgoff
< shmem_falloc
->next
) {
1305 wait_queue_head_t
*shmem_falloc_waitq
;
1306 DEFINE_WAIT(shmem_fault_wait
);
1308 ret
= VM_FAULT_NOPAGE
;
1309 if ((vmf
->flags
& FAULT_FLAG_ALLOW_RETRY
) &&
1310 !(vmf
->flags
& FAULT_FLAG_RETRY_NOWAIT
)) {
1311 /* It's polite to up mmap_sem if we can */
1312 up_read(&vma
->vm_mm
->mmap_sem
);
1313 ret
= VM_FAULT_RETRY
;
1316 shmem_falloc_waitq
= shmem_falloc
->waitq
;
1317 prepare_to_wait(shmem_falloc_waitq
, &shmem_fault_wait
,
1318 TASK_UNINTERRUPTIBLE
);
1319 spin_unlock(&inode
->i_lock
);
1323 * shmem_falloc_waitq points into the shmem_fallocate()
1324 * stack of the hole-punching task: shmem_falloc_waitq
1325 * is usually invalid by the time we reach here, but
1326 * finish_wait() does not dereference it in that case;
1327 * though i_lock needed lest racing with wake_up_all().
1329 spin_lock(&inode
->i_lock
);
1330 finish_wait(shmem_falloc_waitq
, &shmem_fault_wait
);
1331 spin_unlock(&inode
->i_lock
);
1334 spin_unlock(&inode
->i_lock
);
1337 error
= shmem_getpage(inode
, vmf
->pgoff
, &vmf
->page
, SGP_CACHE
, &ret
);
1339 return ((error
== -ENOMEM
) ? VM_FAULT_OOM
: VM_FAULT_SIGBUS
);
1341 if (ret
& VM_FAULT_MAJOR
) {
1342 count_vm_event(PGMAJFAULT
);
1343 mem_cgroup_count_vm_event(vma
->vm_mm
, PGMAJFAULT
);
1349 static int shmem_set_policy(struct vm_area_struct
*vma
, struct mempolicy
*mpol
)
1351 struct inode
*inode
= file_inode(vma
->vm_file
);
1352 return mpol_set_shared_policy(&SHMEM_I(inode
)->policy
, vma
, mpol
);
1355 static struct mempolicy
*shmem_get_policy(struct vm_area_struct
*vma
,
1358 struct inode
*inode
= file_inode(vma
->vm_file
);
1361 index
= ((addr
- vma
->vm_start
) >> PAGE_SHIFT
) + vma
->vm_pgoff
;
1362 return mpol_shared_policy_lookup(&SHMEM_I(inode
)->policy
, index
);
1366 int shmem_lock(struct file
*file
, int lock
, struct user_struct
*user
)
1368 struct inode
*inode
= file_inode(file
);
1369 struct shmem_inode_info
*info
= SHMEM_I(inode
);
1370 int retval
= -ENOMEM
;
1372 spin_lock(&info
->lock
);
1373 if (lock
&& !(info
->flags
& VM_LOCKED
)) {
1374 if (!user_shm_lock(inode
->i_size
, user
))
1376 info
->flags
|= VM_LOCKED
;
1377 mapping_set_unevictable(file
->f_mapping
);
1379 if (!lock
&& (info
->flags
& VM_LOCKED
) && user
) {
1380 user_shm_unlock(inode
->i_size
, user
);
1381 info
->flags
&= ~VM_LOCKED
;
1382 mapping_clear_unevictable(file
->f_mapping
);
1387 spin_unlock(&info
->lock
);
1391 static int shmem_mmap(struct file
*file
, struct vm_area_struct
*vma
)
1393 file_accessed(file
);
1394 vma
->vm_ops
= &shmem_vm_ops
;
1398 static struct inode
*shmem_get_inode(struct super_block
*sb
, const struct inode
*dir
,
1399 umode_t mode
, dev_t dev
, unsigned long flags
)
1401 struct inode
*inode
;
1402 struct shmem_inode_info
*info
;
1403 struct shmem_sb_info
*sbinfo
= SHMEM_SB(sb
);
1405 if (shmem_reserve_inode(sb
))
1408 inode
= new_inode(sb
);
1410 inode
->i_ino
= get_next_ino();
1411 inode_init_owner(inode
, dir
, mode
);
1412 inode
->i_blocks
= 0;
1413 inode
->i_atime
= inode
->i_mtime
= inode
->i_ctime
= CURRENT_TIME
;
1414 inode
->i_generation
= get_seconds();
1415 info
= SHMEM_I(inode
);
1416 memset(info
, 0, (char *)inode
- (char *)info
);
1417 spin_lock_init(&info
->lock
);
1418 info
->seals
= F_SEAL_SEAL
;
1419 info
->flags
= flags
& VM_NORESERVE
;
1420 INIT_LIST_HEAD(&info
->swaplist
);
1421 simple_xattrs_init(&info
->xattrs
);
1422 cache_no_acl(inode
);
1424 switch (mode
& S_IFMT
) {
1426 inode
->i_op
= &shmem_special_inode_operations
;
1427 init_special_inode(inode
, mode
, dev
);
1430 inode
->i_mapping
->a_ops
= &shmem_aops
;
1431 inode
->i_op
= &shmem_inode_operations
;
1432 inode
->i_fop
= &shmem_file_operations
;
1433 mpol_shared_policy_init(&info
->policy
,
1434 shmem_get_sbmpol(sbinfo
));
1438 /* Some things misbehave if size == 0 on a directory */
1439 inode
->i_size
= 2 * BOGO_DIRENT_SIZE
;
1440 inode
->i_op
= &shmem_dir_inode_operations
;
1441 inode
->i_fop
= &simple_dir_operations
;
1445 * Must not load anything in the rbtree,
1446 * mpol_free_shared_policy will not be called.
1448 mpol_shared_policy_init(&info
->policy
, NULL
);
1452 shmem_free_inode(sb
);
1456 bool shmem_mapping(struct address_space
*mapping
)
1461 return mapping
->host
->i_sb
->s_op
== &shmem_ops
;
1465 static const struct inode_operations shmem_symlink_inode_operations
;
1466 static const struct inode_operations shmem_short_symlink_operations
;
1468 #ifdef CONFIG_TMPFS_XATTR
1469 static int shmem_initxattrs(struct inode
*, const struct xattr
*, void *);
1471 #define shmem_initxattrs NULL
1475 shmem_write_begin(struct file
*file
, struct address_space
*mapping
,
1476 loff_t pos
, unsigned len
, unsigned flags
,
1477 struct page
**pagep
, void **fsdata
)
1479 struct inode
*inode
= mapping
->host
;
1480 struct shmem_inode_info
*info
= SHMEM_I(inode
);
1481 pgoff_t index
= pos
>> PAGE_CACHE_SHIFT
;
1483 /* i_mutex is held by caller */
1484 if (unlikely(info
->seals
)) {
1485 if (info
->seals
& F_SEAL_WRITE
)
1487 if ((info
->seals
& F_SEAL_GROW
) && pos
+ len
> inode
->i_size
)
1491 return shmem_getpage(inode
, index
, pagep
, SGP_WRITE
, NULL
);
1495 shmem_write_end(struct file
*file
, struct address_space
*mapping
,
1496 loff_t pos
, unsigned len
, unsigned copied
,
1497 struct page
*page
, void *fsdata
)
1499 struct inode
*inode
= mapping
->host
;
1501 if (pos
+ copied
> inode
->i_size
)
1502 i_size_write(inode
, pos
+ copied
);
1504 if (!PageUptodate(page
)) {
1505 if (copied
< PAGE_CACHE_SIZE
) {
1506 unsigned from
= pos
& (PAGE_CACHE_SIZE
- 1);
1507 zero_user_segments(page
, 0, from
,
1508 from
+ copied
, PAGE_CACHE_SIZE
);
1510 SetPageUptodate(page
);
1512 set_page_dirty(page
);
1514 page_cache_release(page
);
1519 static ssize_t
shmem_file_read_iter(struct kiocb
*iocb
, struct iov_iter
*to
)
1521 struct file
*file
= iocb
->ki_filp
;
1522 struct inode
*inode
= file_inode(file
);
1523 struct address_space
*mapping
= inode
->i_mapping
;
1525 unsigned long offset
;
1526 enum sgp_type sgp
= SGP_READ
;
1529 loff_t
*ppos
= &iocb
->ki_pos
;
1532 * Might this read be for a stacking filesystem? Then when reading
1533 * holes of a sparse file, we actually need to allocate those pages,
1534 * and even mark them dirty, so it cannot exceed the max_blocks limit.
1536 if (!iter_is_iovec(to
))
1539 index
= *ppos
>> PAGE_CACHE_SHIFT
;
1540 offset
= *ppos
& ~PAGE_CACHE_MASK
;
1543 struct page
*page
= NULL
;
1545 unsigned long nr
, ret
;
1546 loff_t i_size
= i_size_read(inode
);
1548 end_index
= i_size
>> PAGE_CACHE_SHIFT
;
1549 if (index
> end_index
)
1551 if (index
== end_index
) {
1552 nr
= i_size
& ~PAGE_CACHE_MASK
;
1557 error
= shmem_getpage(inode
, index
, &page
, sgp
, NULL
);
1559 if (error
== -EINVAL
)
1567 * We must evaluate after, since reads (unlike writes)
1568 * are called without i_mutex protection against truncate
1570 nr
= PAGE_CACHE_SIZE
;
1571 i_size
= i_size_read(inode
);
1572 end_index
= i_size
>> PAGE_CACHE_SHIFT
;
1573 if (index
== end_index
) {
1574 nr
= i_size
& ~PAGE_CACHE_MASK
;
1577 page_cache_release(page
);
1585 * If users can be writing to this page using arbitrary
1586 * virtual addresses, take care about potential aliasing
1587 * before reading the page on the kernel side.
1589 if (mapping_writably_mapped(mapping
))
1590 flush_dcache_page(page
);
1592 * Mark the page accessed if we read the beginning.
1595 mark_page_accessed(page
);
1597 page
= ZERO_PAGE(0);
1598 page_cache_get(page
);
1602 * Ok, we have the page, and it's up-to-date, so
1603 * now we can copy it to user space...
1605 ret
= copy_page_to_iter(page
, offset
, nr
, to
);
1608 index
+= offset
>> PAGE_CACHE_SHIFT
;
1609 offset
&= ~PAGE_CACHE_MASK
;
1611 page_cache_release(page
);
1612 if (!iov_iter_count(to
))
1621 *ppos
= ((loff_t
) index
<< PAGE_CACHE_SHIFT
) + offset
;
1622 file_accessed(file
);
1623 return retval
? retval
: error
;
1626 static ssize_t
shmem_file_splice_read(struct file
*in
, loff_t
*ppos
,
1627 struct pipe_inode_info
*pipe
, size_t len
,
1630 struct address_space
*mapping
= in
->f_mapping
;
1631 struct inode
*inode
= mapping
->host
;
1632 unsigned int loff
, nr_pages
, req_pages
;
1633 struct page
*pages
[PIPE_DEF_BUFFERS
];
1634 struct partial_page partial
[PIPE_DEF_BUFFERS
];
1636 pgoff_t index
, end_index
;
1639 struct splice_pipe_desc spd
= {
1642 .nr_pages_max
= PIPE_DEF_BUFFERS
,
1644 .ops
= &page_cache_pipe_buf_ops
,
1645 .spd_release
= spd_release_page
,
1648 isize
= i_size_read(inode
);
1649 if (unlikely(*ppos
>= isize
))
1652 left
= isize
- *ppos
;
1653 if (unlikely(left
< len
))
1656 if (splice_grow_spd(pipe
, &spd
))
1659 index
= *ppos
>> PAGE_CACHE_SHIFT
;
1660 loff
= *ppos
& ~PAGE_CACHE_MASK
;
1661 req_pages
= (len
+ loff
+ PAGE_CACHE_SIZE
- 1) >> PAGE_CACHE_SHIFT
;
1662 nr_pages
= min(req_pages
, spd
.nr_pages_max
);
1664 spd
.nr_pages
= find_get_pages_contig(mapping
, index
,
1665 nr_pages
, spd
.pages
);
1666 index
+= spd
.nr_pages
;
1669 while (spd
.nr_pages
< nr_pages
) {
1670 error
= shmem_getpage(inode
, index
, &page
, SGP_CACHE
, NULL
);
1674 spd
.pages
[spd
.nr_pages
++] = page
;
1678 index
= *ppos
>> PAGE_CACHE_SHIFT
;
1679 nr_pages
= spd
.nr_pages
;
1682 for (page_nr
= 0; page_nr
< nr_pages
; page_nr
++) {
1683 unsigned int this_len
;
1688 this_len
= min_t(unsigned long, len
, PAGE_CACHE_SIZE
- loff
);
1689 page
= spd
.pages
[page_nr
];
1691 if (!PageUptodate(page
) || page
->mapping
!= mapping
) {
1692 error
= shmem_getpage(inode
, index
, &page
,
1697 page_cache_release(spd
.pages
[page_nr
]);
1698 spd
.pages
[page_nr
] = page
;
1701 isize
= i_size_read(inode
);
1702 end_index
= (isize
- 1) >> PAGE_CACHE_SHIFT
;
1703 if (unlikely(!isize
|| index
> end_index
))
1706 if (end_index
== index
) {
1709 plen
= ((isize
- 1) & ~PAGE_CACHE_MASK
) + 1;
1713 this_len
= min(this_len
, plen
- loff
);
1717 spd
.partial
[page_nr
].offset
= loff
;
1718 spd
.partial
[page_nr
].len
= this_len
;
1725 while (page_nr
< nr_pages
)
1726 page_cache_release(spd
.pages
[page_nr
++]);
1729 error
= splice_to_pipe(pipe
, &spd
);
1731 splice_shrink_spd(&spd
);
1741 * llseek SEEK_DATA or SEEK_HOLE through the radix_tree.
1743 static pgoff_t
shmem_seek_hole_data(struct address_space
*mapping
,
1744 pgoff_t index
, pgoff_t end
, int whence
)
1747 struct pagevec pvec
;
1748 pgoff_t indices
[PAGEVEC_SIZE
];
1752 pagevec_init(&pvec
, 0);
1753 pvec
.nr
= 1; /* start small: we may be there already */
1755 pvec
.nr
= find_get_entries(mapping
, index
,
1756 pvec
.nr
, pvec
.pages
, indices
);
1758 if (whence
== SEEK_DATA
)
1762 for (i
= 0; i
< pvec
.nr
; i
++, index
++) {
1763 if (index
< indices
[i
]) {
1764 if (whence
== SEEK_HOLE
) {
1770 page
= pvec
.pages
[i
];
1771 if (page
&& !radix_tree_exceptional_entry(page
)) {
1772 if (!PageUptodate(page
))
1776 (page
&& whence
== SEEK_DATA
) ||
1777 (!page
&& whence
== SEEK_HOLE
)) {
1782 pagevec_remove_exceptionals(&pvec
);
1783 pagevec_release(&pvec
);
1784 pvec
.nr
= PAGEVEC_SIZE
;
1790 static loff_t
shmem_file_llseek(struct file
*file
, loff_t offset
, int whence
)
1792 struct address_space
*mapping
= file
->f_mapping
;
1793 struct inode
*inode
= mapping
->host
;
1797 if (whence
!= SEEK_DATA
&& whence
!= SEEK_HOLE
)
1798 return generic_file_llseek_size(file
, offset
, whence
,
1799 MAX_LFS_FILESIZE
, i_size_read(inode
));
1800 mutex_lock(&inode
->i_mutex
);
1801 /* We're holding i_mutex so we can access i_size directly */
1805 else if (offset
>= inode
->i_size
)
1808 start
= offset
>> PAGE_CACHE_SHIFT
;
1809 end
= (inode
->i_size
+ PAGE_CACHE_SIZE
- 1) >> PAGE_CACHE_SHIFT
;
1810 new_offset
= shmem_seek_hole_data(mapping
, start
, end
, whence
);
1811 new_offset
<<= PAGE_CACHE_SHIFT
;
1812 if (new_offset
> offset
) {
1813 if (new_offset
< inode
->i_size
)
1814 offset
= new_offset
;
1815 else if (whence
== SEEK_DATA
)
1818 offset
= inode
->i_size
;
1823 offset
= vfs_setpos(file
, offset
, MAX_LFS_FILESIZE
);
1824 mutex_unlock(&inode
->i_mutex
);
1829 * We need a tag: a new tag would expand every radix_tree_node by 8 bytes,
1830 * so reuse a tag which we firmly believe is never set or cleared on shmem.
1832 #define SHMEM_TAG_PINNED PAGECACHE_TAG_TOWRITE
1833 #define LAST_SCAN 4 /* about 150ms max */
1835 static void shmem_tag_pins(struct address_space
*mapping
)
1837 struct radix_tree_iter iter
;
1847 radix_tree_for_each_slot(slot
, &mapping
->page_tree
, &iter
, start
) {
1848 page
= radix_tree_deref_slot(slot
);
1849 if (!page
|| radix_tree_exception(page
)) {
1850 if (radix_tree_deref_retry(page
))
1852 } else if (page_count(page
) - page_mapcount(page
) > 1) {
1853 spin_lock_irq(&mapping
->tree_lock
);
1854 radix_tree_tag_set(&mapping
->page_tree
, iter
.index
,
1856 spin_unlock_irq(&mapping
->tree_lock
);
1859 if (need_resched()) {
1861 start
= iter
.index
+ 1;
1869 * Setting SEAL_WRITE requires us to verify there's no pending writer. However,
1870 * via get_user_pages(), drivers might have some pending I/O without any active
1871 * user-space mappings (eg., direct-IO, AIO). Therefore, we look at all pages
1872 * and see whether it has an elevated ref-count. If so, we tag them and wait for
1873 * them to be dropped.
1874 * The caller must guarantee that no new user will acquire writable references
1875 * to those pages to avoid races.
1877 static int shmem_wait_for_pins(struct address_space
*mapping
)
1879 struct radix_tree_iter iter
;
1885 shmem_tag_pins(mapping
);
1888 for (scan
= 0; scan
<= LAST_SCAN
; scan
++) {
1889 if (!radix_tree_tagged(&mapping
->page_tree
, SHMEM_TAG_PINNED
))
1893 lru_add_drain_all();
1894 else if (schedule_timeout_killable((HZ
<< scan
) / 200))
1900 radix_tree_for_each_tagged(slot
, &mapping
->page_tree
, &iter
,
1901 start
, SHMEM_TAG_PINNED
) {
1903 page
= radix_tree_deref_slot(slot
);
1904 if (radix_tree_exception(page
)) {
1905 if (radix_tree_deref_retry(page
))
1912 page_count(page
) - page_mapcount(page
) != 1) {
1913 if (scan
< LAST_SCAN
)
1914 goto continue_resched
;
1917 * On the last scan, we clean up all those tags
1918 * we inserted; but make a note that we still
1919 * found pages pinned.
1924 spin_lock_irq(&mapping
->tree_lock
);
1925 radix_tree_tag_clear(&mapping
->page_tree
,
1926 iter
.index
, SHMEM_TAG_PINNED
);
1927 spin_unlock_irq(&mapping
->tree_lock
);
1929 if (need_resched()) {
1931 start
= iter
.index
+ 1;
1941 #define F_ALL_SEALS (F_SEAL_SEAL | \
1946 int shmem_add_seals(struct file
*file
, unsigned int seals
)
1948 struct inode
*inode
= file_inode(file
);
1949 struct shmem_inode_info
*info
= SHMEM_I(inode
);
1954 * Sealing allows multiple parties to share a shmem-file but restrict
1955 * access to a specific subset of file operations. Seals can only be
1956 * added, but never removed. This way, mutually untrusted parties can
1957 * share common memory regions with a well-defined policy. A malicious
1958 * peer can thus never perform unwanted operations on a shared object.
1960 * Seals are only supported on special shmem-files and always affect
1961 * the whole underlying inode. Once a seal is set, it may prevent some
1962 * kinds of access to the file. Currently, the following seals are
1964 * SEAL_SEAL: Prevent further seals from being set on this file
1965 * SEAL_SHRINK: Prevent the file from shrinking
1966 * SEAL_GROW: Prevent the file from growing
1967 * SEAL_WRITE: Prevent write access to the file
1969 * As we don't require any trust relationship between two parties, we
1970 * must prevent seals from being removed. Therefore, sealing a file
1971 * only adds a given set of seals to the file, it never touches
1972 * existing seals. Furthermore, the "setting seals"-operation can be
1973 * sealed itself, which basically prevents any further seal from being
1976 * Semantics of sealing are only defined on volatile files. Only
1977 * anonymous shmem files support sealing. More importantly, seals are
1978 * never written to disk. Therefore, there's no plan to support it on
1982 if (file
->f_op
!= &shmem_file_operations
)
1984 if (!(file
->f_mode
& FMODE_WRITE
))
1986 if (seals
& ~(unsigned int)F_ALL_SEALS
)
1989 mutex_lock(&inode
->i_mutex
);
1991 if (info
->seals
& F_SEAL_SEAL
) {
1996 if ((seals
& F_SEAL_WRITE
) && !(info
->seals
& F_SEAL_WRITE
)) {
1997 error
= mapping_deny_writable(file
->f_mapping
);
2001 error
= shmem_wait_for_pins(file
->f_mapping
);
2003 mapping_allow_writable(file
->f_mapping
);
2008 info
->seals
|= seals
;
2012 mutex_unlock(&inode
->i_mutex
);
2015 EXPORT_SYMBOL_GPL(shmem_add_seals
);
2017 int shmem_get_seals(struct file
*file
)
2019 if (file
->f_op
!= &shmem_file_operations
)
2022 return SHMEM_I(file_inode(file
))->seals
;
2024 EXPORT_SYMBOL_GPL(shmem_get_seals
);
2026 long shmem_fcntl(struct file
*file
, unsigned int cmd
, unsigned long arg
)
2032 /* disallow upper 32bit */
2036 error
= shmem_add_seals(file
, arg
);
2039 error
= shmem_get_seals(file
);
2049 static long shmem_fallocate(struct file
*file
, int mode
, loff_t offset
,
2052 struct inode
*inode
= file_inode(file
);
2053 struct shmem_sb_info
*sbinfo
= SHMEM_SB(inode
->i_sb
);
2054 struct shmem_inode_info
*info
= SHMEM_I(inode
);
2055 struct shmem_falloc shmem_falloc
;
2056 pgoff_t start
, index
, end
;
2059 if (mode
& ~(FALLOC_FL_KEEP_SIZE
| FALLOC_FL_PUNCH_HOLE
))
2062 mutex_lock(&inode
->i_mutex
);
2064 if (mode
& FALLOC_FL_PUNCH_HOLE
) {
2065 struct address_space
*mapping
= file
->f_mapping
;
2066 loff_t unmap_start
= round_up(offset
, PAGE_SIZE
);
2067 loff_t unmap_end
= round_down(offset
+ len
, PAGE_SIZE
) - 1;
2068 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq
);
2070 /* protected by i_mutex */
2071 if (info
->seals
& F_SEAL_WRITE
) {
2076 shmem_falloc
.waitq
= &shmem_falloc_waitq
;
2077 shmem_falloc
.start
= unmap_start
>> PAGE_SHIFT
;
2078 shmem_falloc
.next
= (unmap_end
+ 1) >> PAGE_SHIFT
;
2079 spin_lock(&inode
->i_lock
);
2080 inode
->i_private
= &shmem_falloc
;
2081 spin_unlock(&inode
->i_lock
);
2083 if ((u64
)unmap_end
> (u64
)unmap_start
)
2084 unmap_mapping_range(mapping
, unmap_start
,
2085 1 + unmap_end
- unmap_start
, 0);
2086 shmem_truncate_range(inode
, offset
, offset
+ len
- 1);
2087 /* No need to unmap again: hole-punching leaves COWed pages */
2089 spin_lock(&inode
->i_lock
);
2090 inode
->i_private
= NULL
;
2091 wake_up_all(&shmem_falloc_waitq
);
2092 spin_unlock(&inode
->i_lock
);
2097 /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
2098 error
= inode_newsize_ok(inode
, offset
+ len
);
2102 if ((info
->seals
& F_SEAL_GROW
) && offset
+ len
> inode
->i_size
) {
2107 start
= offset
>> PAGE_CACHE_SHIFT
;
2108 end
= (offset
+ len
+ PAGE_CACHE_SIZE
- 1) >> PAGE_CACHE_SHIFT
;
2109 /* Try to avoid a swapstorm if len is impossible to satisfy */
2110 if (sbinfo
->max_blocks
&& end
- start
> sbinfo
->max_blocks
) {
2115 shmem_falloc
.waitq
= NULL
;
2116 shmem_falloc
.start
= start
;
2117 shmem_falloc
.next
= start
;
2118 shmem_falloc
.nr_falloced
= 0;
2119 shmem_falloc
.nr_unswapped
= 0;
2120 spin_lock(&inode
->i_lock
);
2121 inode
->i_private
= &shmem_falloc
;
2122 spin_unlock(&inode
->i_lock
);
2124 for (index
= start
; index
< end
; index
++) {
2128 * Good, the fallocate(2) manpage permits EINTR: we may have
2129 * been interrupted because we are using up too much memory.
2131 if (signal_pending(current
))
2133 else if (shmem_falloc
.nr_unswapped
> shmem_falloc
.nr_falloced
)
2136 error
= shmem_getpage(inode
, index
, &page
, SGP_FALLOC
,
2139 /* Remove the !PageUptodate pages we added */
2140 shmem_undo_range(inode
,
2141 (loff_t
)start
<< PAGE_CACHE_SHIFT
,
2142 (loff_t
)index
<< PAGE_CACHE_SHIFT
, true);
2147 * Inform shmem_writepage() how far we have reached.
2148 * No need for lock or barrier: we have the page lock.
2150 shmem_falloc
.next
++;
2151 if (!PageUptodate(page
))
2152 shmem_falloc
.nr_falloced
++;
2155 * If !PageUptodate, leave it that way so that freeable pages
2156 * can be recognized if we need to rollback on error later.
2157 * But set_page_dirty so that memory pressure will swap rather
2158 * than free the pages we are allocating (and SGP_CACHE pages
2159 * might still be clean: we now need to mark those dirty too).
2161 set_page_dirty(page
);
2163 page_cache_release(page
);
2167 if (!(mode
& FALLOC_FL_KEEP_SIZE
) && offset
+ len
> inode
->i_size
)
2168 i_size_write(inode
, offset
+ len
);
2169 inode
->i_ctime
= CURRENT_TIME
;
2171 spin_lock(&inode
->i_lock
);
2172 inode
->i_private
= NULL
;
2173 spin_unlock(&inode
->i_lock
);
2175 mutex_unlock(&inode
->i_mutex
);
2179 static int shmem_statfs(struct dentry
*dentry
, struct kstatfs
*buf
)
2181 struct shmem_sb_info
*sbinfo
= SHMEM_SB(dentry
->d_sb
);
2183 buf
->f_type
= TMPFS_MAGIC
;
2184 buf
->f_bsize
= PAGE_CACHE_SIZE
;
2185 buf
->f_namelen
= NAME_MAX
;
2186 if (sbinfo
->max_blocks
) {
2187 buf
->f_blocks
= sbinfo
->max_blocks
;
2189 buf
->f_bfree
= sbinfo
->max_blocks
-
2190 percpu_counter_sum(&sbinfo
->used_blocks
);
2192 if (sbinfo
->max_inodes
) {
2193 buf
->f_files
= sbinfo
->max_inodes
;
2194 buf
->f_ffree
= sbinfo
->free_inodes
;
2196 /* else leave those fields 0 like simple_statfs */
2201 * File creation. Allocate an inode, and we're done..
2204 shmem_mknod(struct inode
*dir
, struct dentry
*dentry
, umode_t mode
, dev_t dev
)
2206 struct inode
*inode
;
2207 int error
= -ENOSPC
;
2209 inode
= shmem_get_inode(dir
->i_sb
, dir
, mode
, dev
, VM_NORESERVE
);
2211 error
= simple_acl_create(dir
, inode
);
2214 error
= security_inode_init_security(inode
, dir
,
2216 shmem_initxattrs
, NULL
);
2217 if (error
&& error
!= -EOPNOTSUPP
)
2221 dir
->i_size
+= BOGO_DIRENT_SIZE
;
2222 dir
->i_ctime
= dir
->i_mtime
= CURRENT_TIME
;
2223 d_instantiate(dentry
, inode
);
2224 dget(dentry
); /* Extra count - pin the dentry in core */
2233 shmem_tmpfile(struct inode
*dir
, struct dentry
*dentry
, umode_t mode
)
2235 struct inode
*inode
;
2236 int error
= -ENOSPC
;
2238 inode
= shmem_get_inode(dir
->i_sb
, dir
, mode
, 0, VM_NORESERVE
);
2240 error
= security_inode_init_security(inode
, dir
,
2242 shmem_initxattrs
, NULL
);
2243 if (error
&& error
!= -EOPNOTSUPP
)
2245 error
= simple_acl_create(dir
, inode
);
2248 d_tmpfile(dentry
, inode
);
2256 static int shmem_mkdir(struct inode
*dir
, struct dentry
*dentry
, umode_t mode
)
2260 if ((error
= shmem_mknod(dir
, dentry
, mode
| S_IFDIR
, 0)))
2266 static int shmem_create(struct inode
*dir
, struct dentry
*dentry
, umode_t mode
,
2269 return shmem_mknod(dir
, dentry
, mode
| S_IFREG
, 0);
2275 static int shmem_link(struct dentry
*old_dentry
, struct inode
*dir
, struct dentry
*dentry
)
2277 struct inode
*inode
= d_inode(old_dentry
);
2281 * No ordinary (disk based) filesystem counts links as inodes;
2282 * but each new link needs a new dentry, pinning lowmem, and
2283 * tmpfs dentries cannot be pruned until they are unlinked.
2285 ret
= shmem_reserve_inode(inode
->i_sb
);
2289 dir
->i_size
+= BOGO_DIRENT_SIZE
;
2290 inode
->i_ctime
= dir
->i_ctime
= dir
->i_mtime
= CURRENT_TIME
;
2292 ihold(inode
); /* New dentry reference */
2293 dget(dentry
); /* Extra pinning count for the created dentry */
2294 d_instantiate(dentry
, inode
);
2299 static int shmem_unlink(struct inode
*dir
, struct dentry
*dentry
)
2301 struct inode
*inode
= d_inode(dentry
);
2303 if (inode
->i_nlink
> 1 && !S_ISDIR(inode
->i_mode
))
2304 shmem_free_inode(inode
->i_sb
);
2306 dir
->i_size
-= BOGO_DIRENT_SIZE
;
2307 inode
->i_ctime
= dir
->i_ctime
= dir
->i_mtime
= CURRENT_TIME
;
2309 dput(dentry
); /* Undo the count from "create" - this does all the work */
2313 static int shmem_rmdir(struct inode
*dir
, struct dentry
*dentry
)
2315 if (!simple_empty(dentry
))
2318 drop_nlink(d_inode(dentry
));
2320 return shmem_unlink(dir
, dentry
);
2323 static int shmem_exchange(struct inode
*old_dir
, struct dentry
*old_dentry
, struct inode
*new_dir
, struct dentry
*new_dentry
)
2325 bool old_is_dir
= d_is_dir(old_dentry
);
2326 bool new_is_dir
= d_is_dir(new_dentry
);
2328 if (old_dir
!= new_dir
&& old_is_dir
!= new_is_dir
) {
2330 drop_nlink(old_dir
);
2333 drop_nlink(new_dir
);
2337 old_dir
->i_ctime
= old_dir
->i_mtime
=
2338 new_dir
->i_ctime
= new_dir
->i_mtime
=
2339 d_inode(old_dentry
)->i_ctime
=
2340 d_inode(new_dentry
)->i_ctime
= CURRENT_TIME
;
2345 static int shmem_whiteout(struct inode
*old_dir
, struct dentry
*old_dentry
)
2347 struct dentry
*whiteout
;
2350 whiteout
= d_alloc(old_dentry
->d_parent
, &old_dentry
->d_name
);
2354 error
= shmem_mknod(old_dir
, whiteout
,
2355 S_IFCHR
| WHITEOUT_MODE
, WHITEOUT_DEV
);
2361 * Cheat and hash the whiteout while the old dentry is still in
2362 * place, instead of playing games with FS_RENAME_DOES_D_MOVE.
2364 * d_lookup() will consistently find one of them at this point,
2365 * not sure which one, but that isn't even important.
2372 * The VFS layer already does all the dentry stuff for rename,
2373 * we just have to decrement the usage count for the target if
2374 * it exists so that the VFS layer correctly free's it when it
2377 static int shmem_rename2(struct inode
*old_dir
, struct dentry
*old_dentry
, struct inode
*new_dir
, struct dentry
*new_dentry
, unsigned int flags
)
2379 struct inode
*inode
= d_inode(old_dentry
);
2380 int they_are_dirs
= S_ISDIR(inode
->i_mode
);
2382 if (flags
& ~(RENAME_NOREPLACE
| RENAME_EXCHANGE
| RENAME_WHITEOUT
))
2385 if (flags
& RENAME_EXCHANGE
)
2386 return shmem_exchange(old_dir
, old_dentry
, new_dir
, new_dentry
);
2388 if (!simple_empty(new_dentry
))
2391 if (flags
& RENAME_WHITEOUT
) {
2394 error
= shmem_whiteout(old_dir
, old_dentry
);
2399 if (d_really_is_positive(new_dentry
)) {
2400 (void) shmem_unlink(new_dir
, new_dentry
);
2401 if (they_are_dirs
) {
2402 drop_nlink(d_inode(new_dentry
));
2403 drop_nlink(old_dir
);
2405 } else if (they_are_dirs
) {
2406 drop_nlink(old_dir
);
2410 old_dir
->i_size
-= BOGO_DIRENT_SIZE
;
2411 new_dir
->i_size
+= BOGO_DIRENT_SIZE
;
2412 old_dir
->i_ctime
= old_dir
->i_mtime
=
2413 new_dir
->i_ctime
= new_dir
->i_mtime
=
2414 inode
->i_ctime
= CURRENT_TIME
;
2418 static int shmem_symlink(struct inode
*dir
, struct dentry
*dentry
, const char *symname
)
2422 struct inode
*inode
;
2425 struct shmem_inode_info
*info
;
2427 len
= strlen(symname
) + 1;
2428 if (len
> PAGE_CACHE_SIZE
)
2429 return -ENAMETOOLONG
;
2431 inode
= shmem_get_inode(dir
->i_sb
, dir
, S_IFLNK
|S_IRWXUGO
, 0, VM_NORESERVE
);
2435 error
= security_inode_init_security(inode
, dir
, &dentry
->d_name
,
2436 shmem_initxattrs
, NULL
);
2438 if (error
!= -EOPNOTSUPP
) {
2445 info
= SHMEM_I(inode
);
2446 inode
->i_size
= len
-1;
2447 if (len
<= SHORT_SYMLINK_LEN
) {
2448 info
->symlink
= kmemdup(symname
, len
, GFP_KERNEL
);
2449 if (!info
->symlink
) {
2453 inode
->i_op
= &shmem_short_symlink_operations
;
2455 error
= shmem_getpage(inode
, 0, &page
, SGP_WRITE
, NULL
);
2460 inode
->i_mapping
->a_ops
= &shmem_aops
;
2461 inode
->i_op
= &shmem_symlink_inode_operations
;
2462 kaddr
= kmap_atomic(page
);
2463 memcpy(kaddr
, symname
, len
);
2464 kunmap_atomic(kaddr
);
2465 SetPageUptodate(page
);
2466 set_page_dirty(page
);
2468 page_cache_release(page
);
2470 dir
->i_size
+= BOGO_DIRENT_SIZE
;
2471 dir
->i_ctime
= dir
->i_mtime
= CURRENT_TIME
;
2472 d_instantiate(dentry
, inode
);
2477 static void *shmem_follow_short_symlink(struct dentry
*dentry
, struct nameidata
*nd
)
2479 nd_set_link(nd
, SHMEM_I(d_inode(dentry
))->symlink
);
2483 static void *shmem_follow_link(struct dentry
*dentry
, struct nameidata
*nd
)
2485 struct page
*page
= NULL
;
2486 int error
= shmem_getpage(d_inode(dentry
), 0, &page
, SGP_READ
, NULL
);
2487 nd_set_link(nd
, error
? ERR_PTR(error
) : kmap(page
));
2493 static void shmem_put_link(struct dentry
*dentry
, struct nameidata
*nd
, void *cookie
)
2495 if (!IS_ERR(nd_get_link(nd
))) {
2496 struct page
*page
= cookie
;
2498 mark_page_accessed(page
);
2499 page_cache_release(page
);
2503 #ifdef CONFIG_TMPFS_XATTR
2505 * Superblocks without xattr inode operations may get some security.* xattr
2506 * support from the LSM "for free". As soon as we have any other xattrs
2507 * like ACLs, we also need to implement the security.* handlers at
2508 * filesystem level, though.
2512 * Callback for security_inode_init_security() for acquiring xattrs.
2514 static int shmem_initxattrs(struct inode
*inode
,
2515 const struct xattr
*xattr_array
,
2518 struct shmem_inode_info
*info
= SHMEM_I(inode
);
2519 const struct xattr
*xattr
;
2520 struct simple_xattr
*new_xattr
;
2523 for (xattr
= xattr_array
; xattr
->name
!= NULL
; xattr
++) {
2524 new_xattr
= simple_xattr_alloc(xattr
->value
, xattr
->value_len
);
2528 len
= strlen(xattr
->name
) + 1;
2529 new_xattr
->name
= kmalloc(XATTR_SECURITY_PREFIX_LEN
+ len
,
2531 if (!new_xattr
->name
) {
2536 memcpy(new_xattr
->name
, XATTR_SECURITY_PREFIX
,
2537 XATTR_SECURITY_PREFIX_LEN
);
2538 memcpy(new_xattr
->name
+ XATTR_SECURITY_PREFIX_LEN
,
2541 simple_xattr_list_add(&info
->xattrs
, new_xattr
);
2547 static const struct xattr_handler
*shmem_xattr_handlers
[] = {
2548 #ifdef CONFIG_TMPFS_POSIX_ACL
2549 &posix_acl_access_xattr_handler
,
2550 &posix_acl_default_xattr_handler
,
2555 static int shmem_xattr_validate(const char *name
)
2557 struct { const char *prefix
; size_t len
; } arr
[] = {
2558 { XATTR_SECURITY_PREFIX
, XATTR_SECURITY_PREFIX_LEN
},
2559 { XATTR_TRUSTED_PREFIX
, XATTR_TRUSTED_PREFIX_LEN
}
2563 for (i
= 0; i
< ARRAY_SIZE(arr
); i
++) {
2564 size_t preflen
= arr
[i
].len
;
2565 if (strncmp(name
, arr
[i
].prefix
, preflen
) == 0) {
2574 static ssize_t
shmem_getxattr(struct dentry
*dentry
, const char *name
,
2575 void *buffer
, size_t size
)
2577 struct shmem_inode_info
*info
= SHMEM_I(d_inode(dentry
));
2581 * If this is a request for a synthetic attribute in the system.*
2582 * namespace use the generic infrastructure to resolve a handler
2583 * for it via sb->s_xattr.
2585 if (!strncmp(name
, XATTR_SYSTEM_PREFIX
, XATTR_SYSTEM_PREFIX_LEN
))
2586 return generic_getxattr(dentry
, name
, buffer
, size
);
2588 err
= shmem_xattr_validate(name
);
2592 return simple_xattr_get(&info
->xattrs
, name
, buffer
, size
);
2595 static int shmem_setxattr(struct dentry
*dentry
, const char *name
,
2596 const void *value
, size_t size
, int flags
)
2598 struct shmem_inode_info
*info
= SHMEM_I(d_inode(dentry
));
2602 * If this is a request for a synthetic attribute in the system.*
2603 * namespace use the generic infrastructure to resolve a handler
2604 * for it via sb->s_xattr.
2606 if (!strncmp(name
, XATTR_SYSTEM_PREFIX
, XATTR_SYSTEM_PREFIX_LEN
))
2607 return generic_setxattr(dentry
, name
, value
, size
, flags
);
2609 err
= shmem_xattr_validate(name
);
2613 return simple_xattr_set(&info
->xattrs
, name
, value
, size
, flags
);
2616 static int shmem_removexattr(struct dentry
*dentry
, const char *name
)
2618 struct shmem_inode_info
*info
= SHMEM_I(d_inode(dentry
));
2622 * If this is a request for a synthetic attribute in the system.*
2623 * namespace use the generic infrastructure to resolve a handler
2624 * for it via sb->s_xattr.
2626 if (!strncmp(name
, XATTR_SYSTEM_PREFIX
, XATTR_SYSTEM_PREFIX_LEN
))
2627 return generic_removexattr(dentry
, name
);
2629 err
= shmem_xattr_validate(name
);
2633 return simple_xattr_remove(&info
->xattrs
, name
);
2636 static ssize_t
shmem_listxattr(struct dentry
*dentry
, char *buffer
, size_t size
)
2638 struct shmem_inode_info
*info
= SHMEM_I(d_inode(dentry
));
2639 return simple_xattr_list(&info
->xattrs
, buffer
, size
);
2641 #endif /* CONFIG_TMPFS_XATTR */
2643 static const struct inode_operations shmem_short_symlink_operations
= {
2644 .readlink
= generic_readlink
,
2645 .follow_link
= shmem_follow_short_symlink
,
2646 #ifdef CONFIG_TMPFS_XATTR
2647 .setxattr
= shmem_setxattr
,
2648 .getxattr
= shmem_getxattr
,
2649 .listxattr
= shmem_listxattr
,
2650 .removexattr
= shmem_removexattr
,
2654 static const struct inode_operations shmem_symlink_inode_operations
= {
2655 .readlink
= generic_readlink
,
2656 .follow_link
= shmem_follow_link
,
2657 .put_link
= shmem_put_link
,
2658 #ifdef CONFIG_TMPFS_XATTR
2659 .setxattr
= shmem_setxattr
,
2660 .getxattr
= shmem_getxattr
,
2661 .listxattr
= shmem_listxattr
,
2662 .removexattr
= shmem_removexattr
,
2666 static struct dentry
*shmem_get_parent(struct dentry
*child
)
2668 return ERR_PTR(-ESTALE
);
2671 static int shmem_match(struct inode
*ino
, void *vfh
)
2675 inum
= (inum
<< 32) | fh
[1];
2676 return ino
->i_ino
== inum
&& fh
[0] == ino
->i_generation
;
2679 static struct dentry
*shmem_fh_to_dentry(struct super_block
*sb
,
2680 struct fid
*fid
, int fh_len
, int fh_type
)
2682 struct inode
*inode
;
2683 struct dentry
*dentry
= NULL
;
2690 inum
= (inum
<< 32) | fid
->raw
[1];
2692 inode
= ilookup5(sb
, (unsigned long)(inum
+ fid
->raw
[0]),
2693 shmem_match
, fid
->raw
);
2695 dentry
= d_find_alias(inode
);
2702 static int shmem_encode_fh(struct inode
*inode
, __u32
*fh
, int *len
,
2703 struct inode
*parent
)
2707 return FILEID_INVALID
;
2710 if (inode_unhashed(inode
)) {
2711 /* Unfortunately insert_inode_hash is not idempotent,
2712 * so as we hash inodes here rather than at creation
2713 * time, we need a lock to ensure we only try
2716 static DEFINE_SPINLOCK(lock
);
2718 if (inode_unhashed(inode
))
2719 __insert_inode_hash(inode
,
2720 inode
->i_ino
+ inode
->i_generation
);
2724 fh
[0] = inode
->i_generation
;
2725 fh
[1] = inode
->i_ino
;
2726 fh
[2] = ((__u64
)inode
->i_ino
) >> 32;
2732 static const struct export_operations shmem_export_ops
= {
2733 .get_parent
= shmem_get_parent
,
2734 .encode_fh
= shmem_encode_fh
,
2735 .fh_to_dentry
= shmem_fh_to_dentry
,
2738 static int shmem_parse_options(char *options
, struct shmem_sb_info
*sbinfo
,
2741 char *this_char
, *value
, *rest
;
2742 struct mempolicy
*mpol
= NULL
;
2746 while (options
!= NULL
) {
2747 this_char
= options
;
2750 * NUL-terminate this option: unfortunately,
2751 * mount options form a comma-separated list,
2752 * but mpol's nodelist may also contain commas.
2754 options
= strchr(options
, ',');
2755 if (options
== NULL
)
2758 if (!isdigit(*options
)) {
2765 if ((value
= strchr(this_char
,'=')) != NULL
) {
2769 "tmpfs: No value for mount option '%s'\n",
2774 if (!strcmp(this_char
,"size")) {
2775 unsigned long long size
;
2776 size
= memparse(value
,&rest
);
2778 size
<<= PAGE_SHIFT
;
2779 size
*= totalram_pages
;
2785 sbinfo
->max_blocks
=
2786 DIV_ROUND_UP(size
, PAGE_CACHE_SIZE
);
2787 } else if (!strcmp(this_char
,"nr_blocks")) {
2788 sbinfo
->max_blocks
= memparse(value
, &rest
);
2791 } else if (!strcmp(this_char
,"nr_inodes")) {
2792 sbinfo
->max_inodes
= memparse(value
, &rest
);
2795 } else if (!strcmp(this_char
,"mode")) {
2798 sbinfo
->mode
= simple_strtoul(value
, &rest
, 8) & 07777;
2801 } else if (!strcmp(this_char
,"uid")) {
2804 uid
= simple_strtoul(value
, &rest
, 0);
2807 sbinfo
->uid
= make_kuid(current_user_ns(), uid
);
2808 if (!uid_valid(sbinfo
->uid
))
2810 } else if (!strcmp(this_char
,"gid")) {
2813 gid
= simple_strtoul(value
, &rest
, 0);
2816 sbinfo
->gid
= make_kgid(current_user_ns(), gid
);
2817 if (!gid_valid(sbinfo
->gid
))
2819 } else if (!strcmp(this_char
,"mpol")) {
2822 if (mpol_parse_str(value
, &mpol
))
2825 printk(KERN_ERR
"tmpfs: Bad mount option %s\n",
2830 sbinfo
->mpol
= mpol
;
2834 printk(KERN_ERR
"tmpfs: Bad value '%s' for mount option '%s'\n",
2842 static int shmem_remount_fs(struct super_block
*sb
, int *flags
, char *data
)
2844 struct shmem_sb_info
*sbinfo
= SHMEM_SB(sb
);
2845 struct shmem_sb_info config
= *sbinfo
;
2846 unsigned long inodes
;
2847 int error
= -EINVAL
;
2850 if (shmem_parse_options(data
, &config
, true))
2853 spin_lock(&sbinfo
->stat_lock
);
2854 inodes
= sbinfo
->max_inodes
- sbinfo
->free_inodes
;
2855 if (percpu_counter_compare(&sbinfo
->used_blocks
, config
.max_blocks
) > 0)
2857 if (config
.max_inodes
< inodes
)
2860 * Those tests disallow limited->unlimited while any are in use;
2861 * but we must separately disallow unlimited->limited, because
2862 * in that case we have no record of how much is already in use.
2864 if (config
.max_blocks
&& !sbinfo
->max_blocks
)
2866 if (config
.max_inodes
&& !sbinfo
->max_inodes
)
2870 sbinfo
->max_blocks
= config
.max_blocks
;
2871 sbinfo
->max_inodes
= config
.max_inodes
;
2872 sbinfo
->free_inodes
= config
.max_inodes
- inodes
;
2875 * Preserve previous mempolicy unless mpol remount option was specified.
2878 mpol_put(sbinfo
->mpol
);
2879 sbinfo
->mpol
= config
.mpol
; /* transfers initial ref */
2882 spin_unlock(&sbinfo
->stat_lock
);
2886 static int shmem_show_options(struct seq_file
*seq
, struct dentry
*root
)
2888 struct shmem_sb_info
*sbinfo
= SHMEM_SB(root
->d_sb
);
2890 if (sbinfo
->max_blocks
!= shmem_default_max_blocks())
2891 seq_printf(seq
, ",size=%luk",
2892 sbinfo
->max_blocks
<< (PAGE_CACHE_SHIFT
- 10));
2893 if (sbinfo
->max_inodes
!= shmem_default_max_inodes())
2894 seq_printf(seq
, ",nr_inodes=%lu", sbinfo
->max_inodes
);
2895 if (sbinfo
->mode
!= (S_IRWXUGO
| S_ISVTX
))
2896 seq_printf(seq
, ",mode=%03ho", sbinfo
->mode
);
2897 if (!uid_eq(sbinfo
->uid
, GLOBAL_ROOT_UID
))
2898 seq_printf(seq
, ",uid=%u",
2899 from_kuid_munged(&init_user_ns
, sbinfo
->uid
));
2900 if (!gid_eq(sbinfo
->gid
, GLOBAL_ROOT_GID
))
2901 seq_printf(seq
, ",gid=%u",
2902 from_kgid_munged(&init_user_ns
, sbinfo
->gid
));
2903 shmem_show_mpol(seq
, sbinfo
->mpol
);
2907 #define MFD_NAME_PREFIX "memfd:"
2908 #define MFD_NAME_PREFIX_LEN (sizeof(MFD_NAME_PREFIX) - 1)
2909 #define MFD_NAME_MAX_LEN (NAME_MAX - MFD_NAME_PREFIX_LEN)
2911 #define MFD_ALL_FLAGS (MFD_CLOEXEC | MFD_ALLOW_SEALING)
2913 SYSCALL_DEFINE2(memfd_create
,
2914 const char __user
*, uname
,
2915 unsigned int, flags
)
2917 struct shmem_inode_info
*info
;
2923 if (flags
& ~(unsigned int)MFD_ALL_FLAGS
)
2926 /* length includes terminating zero */
2927 len
= strnlen_user(uname
, MFD_NAME_MAX_LEN
+ 1);
2930 if (len
> MFD_NAME_MAX_LEN
+ 1)
2933 name
= kmalloc(len
+ MFD_NAME_PREFIX_LEN
, GFP_TEMPORARY
);
2937 strcpy(name
, MFD_NAME_PREFIX
);
2938 if (copy_from_user(&name
[MFD_NAME_PREFIX_LEN
], uname
, len
)) {
2943 /* terminating-zero may have changed after strnlen_user() returned */
2944 if (name
[len
+ MFD_NAME_PREFIX_LEN
- 1]) {
2949 fd
= get_unused_fd_flags((flags
& MFD_CLOEXEC
) ? O_CLOEXEC
: 0);
2955 file
= shmem_file_setup(name
, 0, VM_NORESERVE
);
2957 error
= PTR_ERR(file
);
2960 info
= SHMEM_I(file_inode(file
));
2961 file
->f_mode
|= FMODE_LSEEK
| FMODE_PREAD
| FMODE_PWRITE
;
2962 file
->f_flags
|= O_RDWR
| O_LARGEFILE
;
2963 if (flags
& MFD_ALLOW_SEALING
)
2964 info
->seals
&= ~F_SEAL_SEAL
;
2966 fd_install(fd
, file
);
2977 #endif /* CONFIG_TMPFS */
2979 static void shmem_put_super(struct super_block
*sb
)
2981 struct shmem_sb_info
*sbinfo
= SHMEM_SB(sb
);
2983 percpu_counter_destroy(&sbinfo
->used_blocks
);
2984 mpol_put(sbinfo
->mpol
);
2986 sb
->s_fs_info
= NULL
;
2989 int shmem_fill_super(struct super_block
*sb
, void *data
, int silent
)
2991 struct inode
*inode
;
2992 struct shmem_sb_info
*sbinfo
;
2995 /* Round up to L1_CACHE_BYTES to resist false sharing */
2996 sbinfo
= kzalloc(max((int)sizeof(struct shmem_sb_info
),
2997 L1_CACHE_BYTES
), GFP_KERNEL
);
3001 sbinfo
->mode
= S_IRWXUGO
| S_ISVTX
;
3002 sbinfo
->uid
= current_fsuid();
3003 sbinfo
->gid
= current_fsgid();
3004 sb
->s_fs_info
= sbinfo
;
3008 * Per default we only allow half of the physical ram per
3009 * tmpfs instance, limiting inodes to one per page of lowmem;
3010 * but the internal instance is left unlimited.
3012 if (!(sb
->s_flags
& MS_KERNMOUNT
)) {
3013 sbinfo
->max_blocks
= shmem_default_max_blocks();
3014 sbinfo
->max_inodes
= shmem_default_max_inodes();
3015 if (shmem_parse_options(data
, sbinfo
, false)) {
3020 sb
->s_flags
|= MS_NOUSER
;
3022 sb
->s_export_op
= &shmem_export_ops
;
3023 sb
->s_flags
|= MS_NOSEC
;
3025 sb
->s_flags
|= MS_NOUSER
;
3028 spin_lock_init(&sbinfo
->stat_lock
);
3029 if (percpu_counter_init(&sbinfo
->used_blocks
, 0, GFP_KERNEL
))
3031 sbinfo
->free_inodes
= sbinfo
->max_inodes
;
3033 sb
->s_maxbytes
= MAX_LFS_FILESIZE
;
3034 sb
->s_blocksize
= PAGE_CACHE_SIZE
;
3035 sb
->s_blocksize_bits
= PAGE_CACHE_SHIFT
;
3036 sb
->s_magic
= TMPFS_MAGIC
;
3037 sb
->s_op
= &shmem_ops
;
3038 sb
->s_time_gran
= 1;
3039 #ifdef CONFIG_TMPFS_XATTR
3040 sb
->s_xattr
= shmem_xattr_handlers
;
3042 #ifdef CONFIG_TMPFS_POSIX_ACL
3043 sb
->s_flags
|= MS_POSIXACL
;
3046 inode
= shmem_get_inode(sb
, NULL
, S_IFDIR
| sbinfo
->mode
, 0, VM_NORESERVE
);
3049 inode
->i_uid
= sbinfo
->uid
;
3050 inode
->i_gid
= sbinfo
->gid
;
3051 sb
->s_root
= d_make_root(inode
);
3057 shmem_put_super(sb
);
3061 static struct kmem_cache
*shmem_inode_cachep
;
3063 static struct inode
*shmem_alloc_inode(struct super_block
*sb
)
3065 struct shmem_inode_info
*info
;
3066 info
= kmem_cache_alloc(shmem_inode_cachep
, GFP_KERNEL
);
3069 return &info
->vfs_inode
;
3072 static void shmem_destroy_callback(struct rcu_head
*head
)
3074 struct inode
*inode
= container_of(head
, struct inode
, i_rcu
);
3075 kmem_cache_free(shmem_inode_cachep
, SHMEM_I(inode
));
3078 static void shmem_destroy_inode(struct inode
*inode
)
3080 if (S_ISREG(inode
->i_mode
))
3081 mpol_free_shared_policy(&SHMEM_I(inode
)->policy
);
3082 call_rcu(&inode
->i_rcu
, shmem_destroy_callback
);
3085 static void shmem_init_inode(void *foo
)
3087 struct shmem_inode_info
*info
= foo
;
3088 inode_init_once(&info
->vfs_inode
);
3091 static int shmem_init_inodecache(void)
3093 shmem_inode_cachep
= kmem_cache_create("shmem_inode_cache",
3094 sizeof(struct shmem_inode_info
),
3095 0, SLAB_PANIC
, shmem_init_inode
);
3099 static void shmem_destroy_inodecache(void)
3101 kmem_cache_destroy(shmem_inode_cachep
);
3104 static const struct address_space_operations shmem_aops
= {
3105 .writepage
= shmem_writepage
,
3106 .set_page_dirty
= __set_page_dirty_no_writeback
,
3108 .write_begin
= shmem_write_begin
,
3109 .write_end
= shmem_write_end
,
3111 #ifdef CONFIG_MIGRATION
3112 .migratepage
= migrate_page
,
3114 .error_remove_page
= generic_error_remove_page
,
3117 static const struct file_operations shmem_file_operations
= {
3120 .llseek
= shmem_file_llseek
,
3121 .read_iter
= shmem_file_read_iter
,
3122 .write_iter
= generic_file_write_iter
,
3123 .fsync
= noop_fsync
,
3124 .splice_read
= shmem_file_splice_read
,
3125 .splice_write
= iter_file_splice_write
,
3126 .fallocate
= shmem_fallocate
,
3130 static const struct inode_operations shmem_inode_operations
= {
3131 .setattr
= shmem_setattr
,
3132 #ifdef CONFIG_TMPFS_XATTR
3133 .setxattr
= shmem_setxattr
,
3134 .getxattr
= shmem_getxattr
,
3135 .listxattr
= shmem_listxattr
,
3136 .removexattr
= shmem_removexattr
,
3137 .set_acl
= simple_set_acl
,
3141 static const struct inode_operations shmem_dir_inode_operations
= {
3143 .create
= shmem_create
,
3144 .lookup
= simple_lookup
,
3146 .unlink
= shmem_unlink
,
3147 .symlink
= shmem_symlink
,
3148 .mkdir
= shmem_mkdir
,
3149 .rmdir
= shmem_rmdir
,
3150 .mknod
= shmem_mknod
,
3151 .rename2
= shmem_rename2
,
3152 .tmpfile
= shmem_tmpfile
,
3154 #ifdef CONFIG_TMPFS_XATTR
3155 .setxattr
= shmem_setxattr
,
3156 .getxattr
= shmem_getxattr
,
3157 .listxattr
= shmem_listxattr
,
3158 .removexattr
= shmem_removexattr
,
3160 #ifdef CONFIG_TMPFS_POSIX_ACL
3161 .setattr
= shmem_setattr
,
3162 .set_acl
= simple_set_acl
,
3166 static const struct inode_operations shmem_special_inode_operations
= {
3167 #ifdef CONFIG_TMPFS_XATTR
3168 .setxattr
= shmem_setxattr
,
3169 .getxattr
= shmem_getxattr
,
3170 .listxattr
= shmem_listxattr
,
3171 .removexattr
= shmem_removexattr
,
3173 #ifdef CONFIG_TMPFS_POSIX_ACL
3174 .setattr
= shmem_setattr
,
3175 .set_acl
= simple_set_acl
,
3179 static const struct super_operations shmem_ops
= {
3180 .alloc_inode
= shmem_alloc_inode
,
3181 .destroy_inode
= shmem_destroy_inode
,
3183 .statfs
= shmem_statfs
,
3184 .remount_fs
= shmem_remount_fs
,
3185 .show_options
= shmem_show_options
,
3187 .evict_inode
= shmem_evict_inode
,
3188 .drop_inode
= generic_delete_inode
,
3189 .put_super
= shmem_put_super
,
3192 static const struct vm_operations_struct shmem_vm_ops
= {
3193 .fault
= shmem_fault
,
3194 .map_pages
= filemap_map_pages
,
3196 .set_policy
= shmem_set_policy
,
3197 .get_policy
= shmem_get_policy
,
3201 static struct dentry
*shmem_mount(struct file_system_type
*fs_type
,
3202 int flags
, const char *dev_name
, void *data
)
3204 return mount_nodev(fs_type
, flags
, data
, shmem_fill_super
);
3207 static struct file_system_type shmem_fs_type
= {
3208 .owner
= THIS_MODULE
,
3210 .mount
= shmem_mount
,
3211 .kill_sb
= kill_litter_super
,
3212 .fs_flags
= FS_USERNS_MOUNT
,
3215 int __init
shmem_init(void)
3219 /* If rootfs called this, don't re-init */
3220 if (shmem_inode_cachep
)
3223 error
= shmem_init_inodecache();
3227 error
= register_filesystem(&shmem_fs_type
);
3229 printk(KERN_ERR
"Could not register tmpfs\n");
3233 shm_mnt
= kern_mount(&shmem_fs_type
);
3234 if (IS_ERR(shm_mnt
)) {
3235 error
= PTR_ERR(shm_mnt
);
3236 printk(KERN_ERR
"Could not kern_mount tmpfs\n");
3242 unregister_filesystem(&shmem_fs_type
);
3244 shmem_destroy_inodecache();
3246 shm_mnt
= ERR_PTR(error
);
3250 #else /* !CONFIG_SHMEM */
3253 * tiny-shmem: simple shmemfs and tmpfs using ramfs code
3255 * This is intended for small system where the benefits of the full
3256 * shmem code (swap-backed and resource-limited) are outweighed by
3257 * their complexity. On systems without swap this code should be
3258 * effectively equivalent, but much lighter weight.
3261 static struct file_system_type shmem_fs_type
= {
3263 .mount
= ramfs_mount
,
3264 .kill_sb
= kill_litter_super
,
3265 .fs_flags
= FS_USERNS_MOUNT
,
3268 int __init
shmem_init(void)
3270 BUG_ON(register_filesystem(&shmem_fs_type
) != 0);
3272 shm_mnt
= kern_mount(&shmem_fs_type
);
3273 BUG_ON(IS_ERR(shm_mnt
));
3278 int shmem_unuse(swp_entry_t swap
, struct page
*page
)
3283 int shmem_lock(struct file
*file
, int lock
, struct user_struct
*user
)
3288 void shmem_unlock_mapping(struct address_space
*mapping
)
3292 void shmem_truncate_range(struct inode
*inode
, loff_t lstart
, loff_t lend
)
3294 truncate_inode_pages_range(inode
->i_mapping
, lstart
, lend
);
3296 EXPORT_SYMBOL_GPL(shmem_truncate_range
);
3298 #define shmem_vm_ops generic_file_vm_ops
3299 #define shmem_file_operations ramfs_file_operations
3300 #define shmem_get_inode(sb, dir, mode, dev, flags) ramfs_get_inode(sb, dir, mode, dev)
3301 #define shmem_acct_size(flags, size) 0
3302 #define shmem_unacct_size(flags, size) do {} while (0)
3304 #endif /* CONFIG_SHMEM */
3308 static struct dentry_operations anon_ops
= {
3309 .d_dname
= simple_dname
3312 static struct file
*__shmem_file_setup(const char *name
, loff_t size
,
3313 unsigned long flags
, unsigned int i_flags
)
3316 struct inode
*inode
;
3318 struct super_block
*sb
;
3321 if (IS_ERR(shm_mnt
))
3322 return ERR_CAST(shm_mnt
);
3324 if (size
< 0 || size
> MAX_LFS_FILESIZE
)
3325 return ERR_PTR(-EINVAL
);
3327 if (shmem_acct_size(flags
, size
))
3328 return ERR_PTR(-ENOMEM
);
3330 res
= ERR_PTR(-ENOMEM
);
3332 this.len
= strlen(name
);
3333 this.hash
= 0; /* will go */
3334 sb
= shm_mnt
->mnt_sb
;
3335 path
.mnt
= mntget(shm_mnt
);
3336 path
.dentry
= d_alloc_pseudo(sb
, &this);
3339 d_set_d_op(path
.dentry
, &anon_ops
);
3341 res
= ERR_PTR(-ENOSPC
);
3342 inode
= shmem_get_inode(sb
, NULL
, S_IFREG
| S_IRWXUGO
, 0, flags
);
3346 inode
->i_flags
|= i_flags
;
3347 d_instantiate(path
.dentry
, inode
);
3348 inode
->i_size
= size
;
3349 clear_nlink(inode
); /* It is unlinked */
3350 res
= ERR_PTR(ramfs_nommu_expand_for_mapping(inode
, size
));
3354 res
= alloc_file(&path
, FMODE_WRITE
| FMODE_READ
,
3355 &shmem_file_operations
);
3362 shmem_unacct_size(flags
, size
);
3369 * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be
3370 * kernel internal. There will be NO LSM permission checks against the
3371 * underlying inode. So users of this interface must do LSM checks at a
3372 * higher layer. The one user is the big_key implementation. LSM checks
3373 * are provided at the key level rather than the inode level.
3374 * @name: name for dentry (to be seen in /proc/<pid>/maps
3375 * @size: size to be set for the file
3376 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
3378 struct file
*shmem_kernel_file_setup(const char *name
, loff_t size
, unsigned long flags
)
3380 return __shmem_file_setup(name
, size
, flags
, S_PRIVATE
);
3384 * shmem_file_setup - get an unlinked file living in tmpfs
3385 * @name: name for dentry (to be seen in /proc/<pid>/maps
3386 * @size: size to be set for the file
3387 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
3389 struct file
*shmem_file_setup(const char *name
, loff_t size
, unsigned long flags
)
3391 return __shmem_file_setup(name
, size
, flags
, 0);
3393 EXPORT_SYMBOL_GPL(shmem_file_setup
);
3396 * shmem_zero_setup - setup a shared anonymous mapping
3397 * @vma: the vma to be mmapped is prepared by do_mmap_pgoff
3399 int shmem_zero_setup(struct vm_area_struct
*vma
)
3402 loff_t size
= vma
->vm_end
- vma
->vm_start
;
3405 * Cloning a new file under mmap_sem leads to a lock ordering conflict
3406 * between XFS directory reading and selinux: since this file is only
3407 * accessible to the user through its mapping, use S_PRIVATE flag to
3408 * bypass file security, in the same way as shmem_kernel_file_setup().
3410 file
= __shmem_file_setup("dev/zero", size
, vma
->vm_flags
, S_PRIVATE
);
3412 return PTR_ERR(file
);
3416 vma
->vm_file
= file
;
3417 vma
->vm_ops
= &shmem_vm_ops
;
3422 * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags.
3423 * @mapping: the page's address_space
3424 * @index: the page index
3425 * @gfp: the page allocator flags to use if allocating
3427 * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
3428 * with any new page allocations done using the specified allocation flags.
3429 * But read_cache_page_gfp() uses the ->readpage() method: which does not
3430 * suit tmpfs, since it may have pages in swapcache, and needs to find those
3431 * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
3433 * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
3434 * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
3436 struct page
*shmem_read_mapping_page_gfp(struct address_space
*mapping
,
3437 pgoff_t index
, gfp_t gfp
)
3440 struct inode
*inode
= mapping
->host
;
3444 BUG_ON(mapping
->a_ops
!= &shmem_aops
);
3445 error
= shmem_getpage_gfp(inode
, index
, &page
, SGP_CACHE
, gfp
, NULL
);
3447 page
= ERR_PTR(error
);
3453 * The tiny !SHMEM case uses ramfs without swap
3455 return read_cache_page_gfp(mapping
, index
, gfp
);
3458 EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp
);