2 * Kernel-based Virtual Machine driver for Linux
4 * derived from drivers/kvm/kvm_main.c
6 * Copyright (C) 2006 Qumranet, Inc.
7 * Copyright (C) 2008 Qumranet, Inc.
8 * Copyright IBM Corporation, 2008
9 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
12 * Avi Kivity <avi@qumranet.com>
13 * Yaniv Kamay <yaniv@qumranet.com>
14 * Amit Shah <amit.shah@qumranet.com>
15 * Ben-Ami Yassour <benami@il.ibm.com>
17 * This work is licensed under the terms of the GNU GPL, version 2. See
18 * the COPYING file in the top-level directory.
22 #include <linux/kvm_host.h>
27 #include "kvm_cache_regs.h"
30 #include "assigned-dev.h"
34 #include <linux/clocksource.h>
35 #include <linux/interrupt.h>
36 #include <linux/kvm.h>
38 #include <linux/vmalloc.h>
39 #include <linux/export.h>
40 #include <linux/moduleparam.h>
41 #include <linux/mman.h>
42 #include <linux/highmem.h>
43 #include <linux/iommu.h>
44 #include <linux/intel-iommu.h>
45 #include <linux/cpufreq.h>
46 #include <linux/user-return-notifier.h>
47 #include <linux/srcu.h>
48 #include <linux/slab.h>
49 #include <linux/perf_event.h>
50 #include <linux/uaccess.h>
51 #include <linux/hash.h>
52 #include <linux/pci.h>
53 #include <linux/timekeeper_internal.h>
54 #include <linux/pvclock_gtod.h>
55 #include <linux/kvm_irqfd.h>
56 #include <linux/irqbypass.h>
57 #include <trace/events/kvm.h>
59 #include <asm/debugreg.h>
63 #include <linux/kernel_stat.h>
64 #include <asm/fpu/internal.h> /* Ugh! */
65 #include <asm/pvclock.h>
66 #include <asm/div64.h>
67 #include <asm/irq_remapping.h>
69 #define CREATE_TRACE_POINTS
72 #define MAX_IO_MSRS 256
73 #define KVM_MAX_MCE_BANKS 32
74 u64 __read_mostly kvm_mce_cap_supported
= MCG_CTL_P
| MCG_SER_P
;
75 EXPORT_SYMBOL_GPL(kvm_mce_cap_supported
);
77 #define emul_to_vcpu(ctxt) \
78 container_of(ctxt, struct kvm_vcpu, arch.emulate_ctxt)
81 * - enable syscall per default because its emulated by KVM
82 * - enable LME and LMA per default on 64 bit KVM
86 u64 __read_mostly efer_reserved_bits
= ~((u64
)(EFER_SCE
| EFER_LME
| EFER_LMA
));
88 static u64 __read_mostly efer_reserved_bits
= ~((u64
)EFER_SCE
);
91 #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
92 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
94 #define KVM_X2APIC_API_VALID_FLAGS (KVM_X2APIC_API_USE_32BIT_IDS | \
95 KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
97 static void update_cr8_intercept(struct kvm_vcpu
*vcpu
);
98 static void process_nmi(struct kvm_vcpu
*vcpu
);
99 static void enter_smm(struct kvm_vcpu
*vcpu
);
100 static void __kvm_set_rflags(struct kvm_vcpu
*vcpu
, unsigned long rflags
);
102 struct kvm_x86_ops
*kvm_x86_ops __read_mostly
;
103 EXPORT_SYMBOL_GPL(kvm_x86_ops
);
105 static bool __read_mostly ignore_msrs
= 0;
106 module_param(ignore_msrs
, bool, S_IRUGO
| S_IWUSR
);
108 unsigned int min_timer_period_us
= 500;
109 module_param(min_timer_period_us
, uint
, S_IRUGO
| S_IWUSR
);
111 static bool __read_mostly kvmclock_periodic_sync
= true;
112 module_param(kvmclock_periodic_sync
, bool, S_IRUGO
);
114 bool __read_mostly kvm_has_tsc_control
;
115 EXPORT_SYMBOL_GPL(kvm_has_tsc_control
);
116 u32 __read_mostly kvm_max_guest_tsc_khz
;
117 EXPORT_SYMBOL_GPL(kvm_max_guest_tsc_khz
);
118 u8 __read_mostly kvm_tsc_scaling_ratio_frac_bits
;
119 EXPORT_SYMBOL_GPL(kvm_tsc_scaling_ratio_frac_bits
);
120 u64 __read_mostly kvm_max_tsc_scaling_ratio
;
121 EXPORT_SYMBOL_GPL(kvm_max_tsc_scaling_ratio
);
122 u64 __read_mostly kvm_default_tsc_scaling_ratio
;
123 EXPORT_SYMBOL_GPL(kvm_default_tsc_scaling_ratio
);
125 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */
126 static u32 __read_mostly tsc_tolerance_ppm
= 250;
127 module_param(tsc_tolerance_ppm
, uint
, S_IRUGO
| S_IWUSR
);
129 /* lapic timer advance (tscdeadline mode only) in nanoseconds */
130 unsigned int __read_mostly lapic_timer_advance_ns
= 0;
131 module_param(lapic_timer_advance_ns
, uint
, S_IRUGO
| S_IWUSR
);
133 static bool __read_mostly vector_hashing
= true;
134 module_param(vector_hashing
, bool, S_IRUGO
);
136 static bool __read_mostly backwards_tsc_observed
= false;
138 #define KVM_NR_SHARED_MSRS 16
140 struct kvm_shared_msrs_global
{
142 u32 msrs
[KVM_NR_SHARED_MSRS
];
145 struct kvm_shared_msrs
{
146 struct user_return_notifier urn
;
148 struct kvm_shared_msr_values
{
151 } values
[KVM_NR_SHARED_MSRS
];
154 static struct kvm_shared_msrs_global __read_mostly shared_msrs_global
;
155 static struct kvm_shared_msrs __percpu
*shared_msrs
;
157 struct kvm_stats_debugfs_item debugfs_entries
[] = {
158 { "pf_fixed", VCPU_STAT(pf_fixed
) },
159 { "pf_guest", VCPU_STAT(pf_guest
) },
160 { "tlb_flush", VCPU_STAT(tlb_flush
) },
161 { "invlpg", VCPU_STAT(invlpg
) },
162 { "exits", VCPU_STAT(exits
) },
163 { "io_exits", VCPU_STAT(io_exits
) },
164 { "mmio_exits", VCPU_STAT(mmio_exits
) },
165 { "signal_exits", VCPU_STAT(signal_exits
) },
166 { "irq_window", VCPU_STAT(irq_window_exits
) },
167 { "nmi_window", VCPU_STAT(nmi_window_exits
) },
168 { "halt_exits", VCPU_STAT(halt_exits
) },
169 { "halt_successful_poll", VCPU_STAT(halt_successful_poll
) },
170 { "halt_attempted_poll", VCPU_STAT(halt_attempted_poll
) },
171 { "halt_poll_invalid", VCPU_STAT(halt_poll_invalid
) },
172 { "halt_wakeup", VCPU_STAT(halt_wakeup
) },
173 { "hypercalls", VCPU_STAT(hypercalls
) },
174 { "request_irq", VCPU_STAT(request_irq_exits
) },
175 { "irq_exits", VCPU_STAT(irq_exits
) },
176 { "host_state_reload", VCPU_STAT(host_state_reload
) },
177 { "efer_reload", VCPU_STAT(efer_reload
) },
178 { "fpu_reload", VCPU_STAT(fpu_reload
) },
179 { "insn_emulation", VCPU_STAT(insn_emulation
) },
180 { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail
) },
181 { "irq_injections", VCPU_STAT(irq_injections
) },
182 { "nmi_injections", VCPU_STAT(nmi_injections
) },
183 { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped
) },
184 { "mmu_pte_write", VM_STAT(mmu_pte_write
) },
185 { "mmu_pte_updated", VM_STAT(mmu_pte_updated
) },
186 { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped
) },
187 { "mmu_flooded", VM_STAT(mmu_flooded
) },
188 { "mmu_recycled", VM_STAT(mmu_recycled
) },
189 { "mmu_cache_miss", VM_STAT(mmu_cache_miss
) },
190 { "mmu_unsync", VM_STAT(mmu_unsync
) },
191 { "remote_tlb_flush", VM_STAT(remote_tlb_flush
) },
192 { "largepages", VM_STAT(lpages
) },
196 u64 __read_mostly host_xcr0
;
198 static int emulator_fix_hypercall(struct x86_emulate_ctxt
*ctxt
);
200 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu
*vcpu
)
203 for (i
= 0; i
< roundup_pow_of_two(ASYNC_PF_PER_VCPU
); i
++)
204 vcpu
->arch
.apf
.gfns
[i
] = ~0;
207 static void kvm_on_user_return(struct user_return_notifier
*urn
)
210 struct kvm_shared_msrs
*locals
211 = container_of(urn
, struct kvm_shared_msrs
, urn
);
212 struct kvm_shared_msr_values
*values
;
216 * Disabling irqs at this point since the following code could be
217 * interrupted and executed through kvm_arch_hardware_disable()
219 local_irq_save(flags
);
220 if (locals
->registered
) {
221 locals
->registered
= false;
222 user_return_notifier_unregister(urn
);
224 local_irq_restore(flags
);
225 for (slot
= 0; slot
< shared_msrs_global
.nr
; ++slot
) {
226 values
= &locals
->values
[slot
];
227 if (values
->host
!= values
->curr
) {
228 wrmsrl(shared_msrs_global
.msrs
[slot
], values
->host
);
229 values
->curr
= values
->host
;
234 static void shared_msr_update(unsigned slot
, u32 msr
)
237 unsigned int cpu
= smp_processor_id();
238 struct kvm_shared_msrs
*smsr
= per_cpu_ptr(shared_msrs
, cpu
);
240 /* only read, and nobody should modify it at this time,
241 * so don't need lock */
242 if (slot
>= shared_msrs_global
.nr
) {
243 printk(KERN_ERR
"kvm: invalid MSR slot!");
246 rdmsrl_safe(msr
, &value
);
247 smsr
->values
[slot
].host
= value
;
248 smsr
->values
[slot
].curr
= value
;
251 void kvm_define_shared_msr(unsigned slot
, u32 msr
)
253 BUG_ON(slot
>= KVM_NR_SHARED_MSRS
);
254 shared_msrs_global
.msrs
[slot
] = msr
;
255 if (slot
>= shared_msrs_global
.nr
)
256 shared_msrs_global
.nr
= slot
+ 1;
258 EXPORT_SYMBOL_GPL(kvm_define_shared_msr
);
260 static void kvm_shared_msr_cpu_online(void)
264 for (i
= 0; i
< shared_msrs_global
.nr
; ++i
)
265 shared_msr_update(i
, shared_msrs_global
.msrs
[i
]);
268 int kvm_set_shared_msr(unsigned slot
, u64 value
, u64 mask
)
270 unsigned int cpu
= smp_processor_id();
271 struct kvm_shared_msrs
*smsr
= per_cpu_ptr(shared_msrs
, cpu
);
274 if (((value
^ smsr
->values
[slot
].curr
) & mask
) == 0)
276 smsr
->values
[slot
].curr
= value
;
277 err
= wrmsrl_safe(shared_msrs_global
.msrs
[slot
], value
);
281 if (!smsr
->registered
) {
282 smsr
->urn
.on_user_return
= kvm_on_user_return
;
283 user_return_notifier_register(&smsr
->urn
);
284 smsr
->registered
= true;
288 EXPORT_SYMBOL_GPL(kvm_set_shared_msr
);
290 static void drop_user_return_notifiers(void)
292 unsigned int cpu
= smp_processor_id();
293 struct kvm_shared_msrs
*smsr
= per_cpu_ptr(shared_msrs
, cpu
);
295 if (smsr
->registered
)
296 kvm_on_user_return(&smsr
->urn
);
299 u64
kvm_get_apic_base(struct kvm_vcpu
*vcpu
)
301 return vcpu
->arch
.apic_base
;
303 EXPORT_SYMBOL_GPL(kvm_get_apic_base
);
305 int kvm_set_apic_base(struct kvm_vcpu
*vcpu
, struct msr_data
*msr_info
)
307 u64 old_state
= vcpu
->arch
.apic_base
&
308 (MSR_IA32_APICBASE_ENABLE
| X2APIC_ENABLE
);
309 u64 new_state
= msr_info
->data
&
310 (MSR_IA32_APICBASE_ENABLE
| X2APIC_ENABLE
);
311 u64 reserved_bits
= ((~0ULL) << cpuid_maxphyaddr(vcpu
)) |
312 0x2ff | (guest_cpuid_has_x2apic(vcpu
) ? 0 : X2APIC_ENABLE
);
314 if (!msr_info
->host_initiated
&&
315 ((msr_info
->data
& reserved_bits
) != 0 ||
316 new_state
== X2APIC_ENABLE
||
317 (new_state
== MSR_IA32_APICBASE_ENABLE
&&
318 old_state
== (MSR_IA32_APICBASE_ENABLE
| X2APIC_ENABLE
)) ||
319 (new_state
== (MSR_IA32_APICBASE_ENABLE
| X2APIC_ENABLE
) &&
323 kvm_lapic_set_base(vcpu
, msr_info
->data
);
326 EXPORT_SYMBOL_GPL(kvm_set_apic_base
);
328 asmlinkage __visible
void kvm_spurious_fault(void)
330 /* Fault while not rebooting. We want the trace. */
333 EXPORT_SYMBOL_GPL(kvm_spurious_fault
);
335 #define EXCPT_BENIGN 0
336 #define EXCPT_CONTRIBUTORY 1
339 static int exception_class(int vector
)
349 return EXCPT_CONTRIBUTORY
;
356 #define EXCPT_FAULT 0
358 #define EXCPT_ABORT 2
359 #define EXCPT_INTERRUPT 3
361 static int exception_type(int vector
)
365 if (WARN_ON(vector
> 31 || vector
== NMI_VECTOR
))
366 return EXCPT_INTERRUPT
;
370 /* #DB is trap, as instruction watchpoints are handled elsewhere */
371 if (mask
& ((1 << DB_VECTOR
) | (1 << BP_VECTOR
) | (1 << OF_VECTOR
)))
374 if (mask
& ((1 << DF_VECTOR
) | (1 << MC_VECTOR
)))
377 /* Reserved exceptions will result in fault */
381 static void kvm_multiple_exception(struct kvm_vcpu
*vcpu
,
382 unsigned nr
, bool has_error
, u32 error_code
,
388 kvm_make_request(KVM_REQ_EVENT
, vcpu
);
390 if (!vcpu
->arch
.exception
.pending
) {
392 if (has_error
&& !is_protmode(vcpu
))
394 vcpu
->arch
.exception
.pending
= true;
395 vcpu
->arch
.exception
.has_error_code
= has_error
;
396 vcpu
->arch
.exception
.nr
= nr
;
397 vcpu
->arch
.exception
.error_code
= error_code
;
398 vcpu
->arch
.exception
.reinject
= reinject
;
402 /* to check exception */
403 prev_nr
= vcpu
->arch
.exception
.nr
;
404 if (prev_nr
== DF_VECTOR
) {
405 /* triple fault -> shutdown */
406 kvm_make_request(KVM_REQ_TRIPLE_FAULT
, vcpu
);
409 class1
= exception_class(prev_nr
);
410 class2
= exception_class(nr
);
411 if ((class1
== EXCPT_CONTRIBUTORY
&& class2
== EXCPT_CONTRIBUTORY
)
412 || (class1
== EXCPT_PF
&& class2
!= EXCPT_BENIGN
)) {
413 /* generate double fault per SDM Table 5-5 */
414 vcpu
->arch
.exception
.pending
= true;
415 vcpu
->arch
.exception
.has_error_code
= true;
416 vcpu
->arch
.exception
.nr
= DF_VECTOR
;
417 vcpu
->arch
.exception
.error_code
= 0;
419 /* replace previous exception with a new one in a hope
420 that instruction re-execution will regenerate lost
425 void kvm_queue_exception(struct kvm_vcpu
*vcpu
, unsigned nr
)
427 kvm_multiple_exception(vcpu
, nr
, false, 0, false);
429 EXPORT_SYMBOL_GPL(kvm_queue_exception
);
431 void kvm_requeue_exception(struct kvm_vcpu
*vcpu
, unsigned nr
)
433 kvm_multiple_exception(vcpu
, nr
, false, 0, true);
435 EXPORT_SYMBOL_GPL(kvm_requeue_exception
);
437 void kvm_complete_insn_gp(struct kvm_vcpu
*vcpu
, int err
)
440 kvm_inject_gp(vcpu
, 0);
442 kvm_x86_ops
->skip_emulated_instruction(vcpu
);
444 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp
);
446 void kvm_inject_page_fault(struct kvm_vcpu
*vcpu
, struct x86_exception
*fault
)
448 ++vcpu
->stat
.pf_guest
;
449 vcpu
->arch
.cr2
= fault
->address
;
450 kvm_queue_exception_e(vcpu
, PF_VECTOR
, fault
->error_code
);
452 EXPORT_SYMBOL_GPL(kvm_inject_page_fault
);
454 static bool kvm_propagate_fault(struct kvm_vcpu
*vcpu
, struct x86_exception
*fault
)
456 if (mmu_is_nested(vcpu
) && !fault
->nested_page_fault
)
457 vcpu
->arch
.nested_mmu
.inject_page_fault(vcpu
, fault
);
459 vcpu
->arch
.mmu
.inject_page_fault(vcpu
, fault
);
461 return fault
->nested_page_fault
;
464 void kvm_inject_nmi(struct kvm_vcpu
*vcpu
)
466 atomic_inc(&vcpu
->arch
.nmi_queued
);
467 kvm_make_request(KVM_REQ_NMI
, vcpu
);
469 EXPORT_SYMBOL_GPL(kvm_inject_nmi
);
471 void kvm_queue_exception_e(struct kvm_vcpu
*vcpu
, unsigned nr
, u32 error_code
)
473 kvm_multiple_exception(vcpu
, nr
, true, error_code
, false);
475 EXPORT_SYMBOL_GPL(kvm_queue_exception_e
);
477 void kvm_requeue_exception_e(struct kvm_vcpu
*vcpu
, unsigned nr
, u32 error_code
)
479 kvm_multiple_exception(vcpu
, nr
, true, error_code
, true);
481 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e
);
484 * Checks if cpl <= required_cpl; if true, return true. Otherwise queue
485 * a #GP and return false.
487 bool kvm_require_cpl(struct kvm_vcpu
*vcpu
, int required_cpl
)
489 if (kvm_x86_ops
->get_cpl(vcpu
) <= required_cpl
)
491 kvm_queue_exception_e(vcpu
, GP_VECTOR
, 0);
494 EXPORT_SYMBOL_GPL(kvm_require_cpl
);
496 bool kvm_require_dr(struct kvm_vcpu
*vcpu
, int dr
)
498 if ((dr
!= 4 && dr
!= 5) || !kvm_read_cr4_bits(vcpu
, X86_CR4_DE
))
501 kvm_queue_exception(vcpu
, UD_VECTOR
);
504 EXPORT_SYMBOL_GPL(kvm_require_dr
);
507 * This function will be used to read from the physical memory of the currently
508 * running guest. The difference to kvm_vcpu_read_guest_page is that this function
509 * can read from guest physical or from the guest's guest physical memory.
511 int kvm_read_guest_page_mmu(struct kvm_vcpu
*vcpu
, struct kvm_mmu
*mmu
,
512 gfn_t ngfn
, void *data
, int offset
, int len
,
515 struct x86_exception exception
;
519 ngpa
= gfn_to_gpa(ngfn
);
520 real_gfn
= mmu
->translate_gpa(vcpu
, ngpa
, access
, &exception
);
521 if (real_gfn
== UNMAPPED_GVA
)
524 real_gfn
= gpa_to_gfn(real_gfn
);
526 return kvm_vcpu_read_guest_page(vcpu
, real_gfn
, data
, offset
, len
);
528 EXPORT_SYMBOL_GPL(kvm_read_guest_page_mmu
);
530 static int kvm_read_nested_guest_page(struct kvm_vcpu
*vcpu
, gfn_t gfn
,
531 void *data
, int offset
, int len
, u32 access
)
533 return kvm_read_guest_page_mmu(vcpu
, vcpu
->arch
.walk_mmu
, gfn
,
534 data
, offset
, len
, access
);
538 * Load the pae pdptrs. Return true is they are all valid.
540 int load_pdptrs(struct kvm_vcpu
*vcpu
, struct kvm_mmu
*mmu
, unsigned long cr3
)
542 gfn_t pdpt_gfn
= cr3
>> PAGE_SHIFT
;
543 unsigned offset
= ((cr3
& (PAGE_SIZE
-1)) >> 5) << 2;
546 u64 pdpte
[ARRAY_SIZE(mmu
->pdptrs
)];
548 ret
= kvm_read_guest_page_mmu(vcpu
, mmu
, pdpt_gfn
, pdpte
,
549 offset
* sizeof(u64
), sizeof(pdpte
),
550 PFERR_USER_MASK
|PFERR_WRITE_MASK
);
555 for (i
= 0; i
< ARRAY_SIZE(pdpte
); ++i
) {
556 if ((pdpte
[i
] & PT_PRESENT_MASK
) &&
558 vcpu
->arch
.mmu
.guest_rsvd_check
.rsvd_bits_mask
[0][2])) {
565 memcpy(mmu
->pdptrs
, pdpte
, sizeof(mmu
->pdptrs
));
566 __set_bit(VCPU_EXREG_PDPTR
,
567 (unsigned long *)&vcpu
->arch
.regs_avail
);
568 __set_bit(VCPU_EXREG_PDPTR
,
569 (unsigned long *)&vcpu
->arch
.regs_dirty
);
574 EXPORT_SYMBOL_GPL(load_pdptrs
);
576 static bool pdptrs_changed(struct kvm_vcpu
*vcpu
)
578 u64 pdpte
[ARRAY_SIZE(vcpu
->arch
.walk_mmu
->pdptrs
)];
584 if (is_long_mode(vcpu
) || !is_pae(vcpu
))
587 if (!test_bit(VCPU_EXREG_PDPTR
,
588 (unsigned long *)&vcpu
->arch
.regs_avail
))
591 gfn
= (kvm_read_cr3(vcpu
) & ~31u) >> PAGE_SHIFT
;
592 offset
= (kvm_read_cr3(vcpu
) & ~31u) & (PAGE_SIZE
- 1);
593 r
= kvm_read_nested_guest_page(vcpu
, gfn
, pdpte
, offset
, sizeof(pdpte
),
594 PFERR_USER_MASK
| PFERR_WRITE_MASK
);
597 changed
= memcmp(pdpte
, vcpu
->arch
.walk_mmu
->pdptrs
, sizeof(pdpte
)) != 0;
603 int kvm_set_cr0(struct kvm_vcpu
*vcpu
, unsigned long cr0
)
605 unsigned long old_cr0
= kvm_read_cr0(vcpu
);
606 unsigned long update_bits
= X86_CR0_PG
| X86_CR0_WP
;
611 if (cr0
& 0xffffffff00000000UL
)
615 cr0
&= ~CR0_RESERVED_BITS
;
617 if ((cr0
& X86_CR0_NW
) && !(cr0
& X86_CR0_CD
))
620 if ((cr0
& X86_CR0_PG
) && !(cr0
& X86_CR0_PE
))
623 if (!is_paging(vcpu
) && (cr0
& X86_CR0_PG
)) {
625 if ((vcpu
->arch
.efer
& EFER_LME
)) {
630 kvm_x86_ops
->get_cs_db_l_bits(vcpu
, &cs_db
, &cs_l
);
635 if (is_pae(vcpu
) && !load_pdptrs(vcpu
, vcpu
->arch
.walk_mmu
,
640 if (!(cr0
& X86_CR0_PG
) && kvm_read_cr4_bits(vcpu
, X86_CR4_PCIDE
))
643 kvm_x86_ops
->set_cr0(vcpu
, cr0
);
645 if ((cr0
^ old_cr0
) & X86_CR0_PG
) {
646 kvm_clear_async_pf_completion_queue(vcpu
);
647 kvm_async_pf_hash_reset(vcpu
);
650 if ((cr0
^ old_cr0
) & update_bits
)
651 kvm_mmu_reset_context(vcpu
);
653 if (((cr0
^ old_cr0
) & X86_CR0_CD
) &&
654 kvm_arch_has_noncoherent_dma(vcpu
->kvm
) &&
655 !kvm_check_has_quirk(vcpu
->kvm
, KVM_X86_QUIRK_CD_NW_CLEARED
))
656 kvm_zap_gfn_range(vcpu
->kvm
, 0, ~0ULL);
660 EXPORT_SYMBOL_GPL(kvm_set_cr0
);
662 void kvm_lmsw(struct kvm_vcpu
*vcpu
, unsigned long msw
)
664 (void)kvm_set_cr0(vcpu
, kvm_read_cr0_bits(vcpu
, ~0x0eul
) | (msw
& 0x0f));
666 EXPORT_SYMBOL_GPL(kvm_lmsw
);
668 static void kvm_load_guest_xcr0(struct kvm_vcpu
*vcpu
)
670 if (kvm_read_cr4_bits(vcpu
, X86_CR4_OSXSAVE
) &&
671 !vcpu
->guest_xcr0_loaded
) {
672 /* kvm_set_xcr() also depends on this */
673 xsetbv(XCR_XFEATURE_ENABLED_MASK
, vcpu
->arch
.xcr0
);
674 vcpu
->guest_xcr0_loaded
= 1;
678 static void kvm_put_guest_xcr0(struct kvm_vcpu
*vcpu
)
680 if (vcpu
->guest_xcr0_loaded
) {
681 if (vcpu
->arch
.xcr0
!= host_xcr0
)
682 xsetbv(XCR_XFEATURE_ENABLED_MASK
, host_xcr0
);
683 vcpu
->guest_xcr0_loaded
= 0;
687 static int __kvm_set_xcr(struct kvm_vcpu
*vcpu
, u32 index
, u64 xcr
)
690 u64 old_xcr0
= vcpu
->arch
.xcr0
;
693 /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now */
694 if (index
!= XCR_XFEATURE_ENABLED_MASK
)
696 if (!(xcr0
& XFEATURE_MASK_FP
))
698 if ((xcr0
& XFEATURE_MASK_YMM
) && !(xcr0
& XFEATURE_MASK_SSE
))
702 * Do not allow the guest to set bits that we do not support
703 * saving. However, xcr0 bit 0 is always set, even if the
704 * emulated CPU does not support XSAVE (see fx_init).
706 valid_bits
= vcpu
->arch
.guest_supported_xcr0
| XFEATURE_MASK_FP
;
707 if (xcr0
& ~valid_bits
)
710 if ((!(xcr0
& XFEATURE_MASK_BNDREGS
)) !=
711 (!(xcr0
& XFEATURE_MASK_BNDCSR
)))
714 if (xcr0
& XFEATURE_MASK_AVX512
) {
715 if (!(xcr0
& XFEATURE_MASK_YMM
))
717 if ((xcr0
& XFEATURE_MASK_AVX512
) != XFEATURE_MASK_AVX512
)
720 vcpu
->arch
.xcr0
= xcr0
;
722 if ((xcr0
^ old_xcr0
) & XFEATURE_MASK_EXTEND
)
723 kvm_update_cpuid(vcpu
);
727 int kvm_set_xcr(struct kvm_vcpu
*vcpu
, u32 index
, u64 xcr
)
729 if (kvm_x86_ops
->get_cpl(vcpu
) != 0 ||
730 __kvm_set_xcr(vcpu
, index
, xcr
)) {
731 kvm_inject_gp(vcpu
, 0);
736 EXPORT_SYMBOL_GPL(kvm_set_xcr
);
738 int kvm_set_cr4(struct kvm_vcpu
*vcpu
, unsigned long cr4
)
740 unsigned long old_cr4
= kvm_read_cr4(vcpu
);
741 unsigned long pdptr_bits
= X86_CR4_PGE
| X86_CR4_PSE
| X86_CR4_PAE
|
742 X86_CR4_SMEP
| X86_CR4_SMAP
| X86_CR4_PKE
;
744 if (cr4
& CR4_RESERVED_BITS
)
747 if (!guest_cpuid_has_xsave(vcpu
) && (cr4
& X86_CR4_OSXSAVE
))
750 if (!guest_cpuid_has_smep(vcpu
) && (cr4
& X86_CR4_SMEP
))
753 if (!guest_cpuid_has_smap(vcpu
) && (cr4
& X86_CR4_SMAP
))
756 if (!guest_cpuid_has_fsgsbase(vcpu
) && (cr4
& X86_CR4_FSGSBASE
))
759 if (!guest_cpuid_has_pku(vcpu
) && (cr4
& X86_CR4_PKE
))
762 if (is_long_mode(vcpu
)) {
763 if (!(cr4
& X86_CR4_PAE
))
765 } else if (is_paging(vcpu
) && (cr4
& X86_CR4_PAE
)
766 && ((cr4
^ old_cr4
) & pdptr_bits
)
767 && !load_pdptrs(vcpu
, vcpu
->arch
.walk_mmu
,
771 if ((cr4
& X86_CR4_PCIDE
) && !(old_cr4
& X86_CR4_PCIDE
)) {
772 if (!guest_cpuid_has_pcid(vcpu
))
775 /* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */
776 if ((kvm_read_cr3(vcpu
) & X86_CR3_PCID_MASK
) || !is_long_mode(vcpu
))
780 if (kvm_x86_ops
->set_cr4(vcpu
, cr4
))
783 if (((cr4
^ old_cr4
) & pdptr_bits
) ||
784 (!(cr4
& X86_CR4_PCIDE
) && (old_cr4
& X86_CR4_PCIDE
)))
785 kvm_mmu_reset_context(vcpu
);
787 if ((cr4
^ old_cr4
) & (X86_CR4_OSXSAVE
| X86_CR4_PKE
))
788 kvm_update_cpuid(vcpu
);
792 EXPORT_SYMBOL_GPL(kvm_set_cr4
);
794 int kvm_set_cr3(struct kvm_vcpu
*vcpu
, unsigned long cr3
)
797 cr3
&= ~CR3_PCID_INVD
;
800 if (cr3
== kvm_read_cr3(vcpu
) && !pdptrs_changed(vcpu
)) {
801 kvm_mmu_sync_roots(vcpu
);
802 kvm_make_request(KVM_REQ_TLB_FLUSH
, vcpu
);
806 if (is_long_mode(vcpu
)) {
807 if (cr3
& CR3_L_MODE_RESERVED_BITS
)
809 } else if (is_pae(vcpu
) && is_paging(vcpu
) &&
810 !load_pdptrs(vcpu
, vcpu
->arch
.walk_mmu
, cr3
))
813 vcpu
->arch
.cr3
= cr3
;
814 __set_bit(VCPU_EXREG_CR3
, (ulong
*)&vcpu
->arch
.regs_avail
);
815 kvm_mmu_new_cr3(vcpu
);
818 EXPORT_SYMBOL_GPL(kvm_set_cr3
);
820 int kvm_set_cr8(struct kvm_vcpu
*vcpu
, unsigned long cr8
)
822 if (cr8
& CR8_RESERVED_BITS
)
824 if (lapic_in_kernel(vcpu
))
825 kvm_lapic_set_tpr(vcpu
, cr8
);
827 vcpu
->arch
.cr8
= cr8
;
830 EXPORT_SYMBOL_GPL(kvm_set_cr8
);
832 unsigned long kvm_get_cr8(struct kvm_vcpu
*vcpu
)
834 if (lapic_in_kernel(vcpu
))
835 return kvm_lapic_get_cr8(vcpu
);
837 return vcpu
->arch
.cr8
;
839 EXPORT_SYMBOL_GPL(kvm_get_cr8
);
841 static void kvm_update_dr0123(struct kvm_vcpu
*vcpu
)
845 if (!(vcpu
->guest_debug
& KVM_GUESTDBG_USE_HW_BP
)) {
846 for (i
= 0; i
< KVM_NR_DB_REGS
; i
++)
847 vcpu
->arch
.eff_db
[i
] = vcpu
->arch
.db
[i
];
848 vcpu
->arch
.switch_db_regs
|= KVM_DEBUGREG_RELOAD
;
852 static void kvm_update_dr6(struct kvm_vcpu
*vcpu
)
854 if (!(vcpu
->guest_debug
& KVM_GUESTDBG_USE_HW_BP
))
855 kvm_x86_ops
->set_dr6(vcpu
, vcpu
->arch
.dr6
);
858 static void kvm_update_dr7(struct kvm_vcpu
*vcpu
)
862 if (vcpu
->guest_debug
& KVM_GUESTDBG_USE_HW_BP
)
863 dr7
= vcpu
->arch
.guest_debug_dr7
;
865 dr7
= vcpu
->arch
.dr7
;
866 kvm_x86_ops
->set_dr7(vcpu
, dr7
);
867 vcpu
->arch
.switch_db_regs
&= ~KVM_DEBUGREG_BP_ENABLED
;
868 if (dr7
& DR7_BP_EN_MASK
)
869 vcpu
->arch
.switch_db_regs
|= KVM_DEBUGREG_BP_ENABLED
;
872 static u64
kvm_dr6_fixed(struct kvm_vcpu
*vcpu
)
874 u64 fixed
= DR6_FIXED_1
;
876 if (!guest_cpuid_has_rtm(vcpu
))
881 static int __kvm_set_dr(struct kvm_vcpu
*vcpu
, int dr
, unsigned long val
)
885 vcpu
->arch
.db
[dr
] = val
;
886 if (!(vcpu
->guest_debug
& KVM_GUESTDBG_USE_HW_BP
))
887 vcpu
->arch
.eff_db
[dr
] = val
;
892 if (val
& 0xffffffff00000000ULL
)
894 vcpu
->arch
.dr6
= (val
& DR6_VOLATILE
) | kvm_dr6_fixed(vcpu
);
895 kvm_update_dr6(vcpu
);
900 if (val
& 0xffffffff00000000ULL
)
902 vcpu
->arch
.dr7
= (val
& DR7_VOLATILE
) | DR7_FIXED_1
;
903 kvm_update_dr7(vcpu
);
910 int kvm_set_dr(struct kvm_vcpu
*vcpu
, int dr
, unsigned long val
)
912 if (__kvm_set_dr(vcpu
, dr
, val
)) {
913 kvm_inject_gp(vcpu
, 0);
918 EXPORT_SYMBOL_GPL(kvm_set_dr
);
920 int kvm_get_dr(struct kvm_vcpu
*vcpu
, int dr
, unsigned long *val
)
924 *val
= vcpu
->arch
.db
[dr
];
929 if (vcpu
->guest_debug
& KVM_GUESTDBG_USE_HW_BP
)
930 *val
= vcpu
->arch
.dr6
;
932 *val
= kvm_x86_ops
->get_dr6(vcpu
);
937 *val
= vcpu
->arch
.dr7
;
942 EXPORT_SYMBOL_GPL(kvm_get_dr
);
944 bool kvm_rdpmc(struct kvm_vcpu
*vcpu
)
946 u32 ecx
= kvm_register_read(vcpu
, VCPU_REGS_RCX
);
950 err
= kvm_pmu_rdpmc(vcpu
, ecx
, &data
);
953 kvm_register_write(vcpu
, VCPU_REGS_RAX
, (u32
)data
);
954 kvm_register_write(vcpu
, VCPU_REGS_RDX
, data
>> 32);
957 EXPORT_SYMBOL_GPL(kvm_rdpmc
);
960 * List of msr numbers which we expose to userspace through KVM_GET_MSRS
961 * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
963 * This list is modified at module load time to reflect the
964 * capabilities of the host cpu. This capabilities test skips MSRs that are
965 * kvm-specific. Those are put in emulated_msrs; filtering of emulated_msrs
966 * may depend on host virtualization features rather than host cpu features.
969 static u32 msrs_to_save
[] = {
970 MSR_IA32_SYSENTER_CS
, MSR_IA32_SYSENTER_ESP
, MSR_IA32_SYSENTER_EIP
,
973 MSR_CSTAR
, MSR_KERNEL_GS_BASE
, MSR_SYSCALL_MASK
, MSR_LSTAR
,
975 MSR_IA32_TSC
, MSR_IA32_CR_PAT
, MSR_VM_HSAVE_PA
,
976 MSR_IA32_FEATURE_CONTROL
, MSR_IA32_BNDCFGS
, MSR_TSC_AUX
,
979 static unsigned num_msrs_to_save
;
981 static u32 emulated_msrs
[] = {
982 MSR_KVM_SYSTEM_TIME
, MSR_KVM_WALL_CLOCK
,
983 MSR_KVM_SYSTEM_TIME_NEW
, MSR_KVM_WALL_CLOCK_NEW
,
984 HV_X64_MSR_GUEST_OS_ID
, HV_X64_MSR_HYPERCALL
,
985 HV_X64_MSR_TIME_REF_COUNT
, HV_X64_MSR_REFERENCE_TSC
,
986 HV_X64_MSR_CRASH_P0
, HV_X64_MSR_CRASH_P1
, HV_X64_MSR_CRASH_P2
,
987 HV_X64_MSR_CRASH_P3
, HV_X64_MSR_CRASH_P4
, HV_X64_MSR_CRASH_CTL
,
990 HV_X64_MSR_VP_RUNTIME
,
992 HV_X64_MSR_STIMER0_CONFIG
,
993 HV_X64_MSR_APIC_ASSIST_PAGE
, MSR_KVM_ASYNC_PF_EN
, MSR_KVM_STEAL_TIME
,
997 MSR_IA32_TSCDEADLINE
,
998 MSR_IA32_MISC_ENABLE
,
1001 MSR_IA32_MCG_EXT_CTL
,
1005 static unsigned num_emulated_msrs
;
1007 bool kvm_valid_efer(struct kvm_vcpu
*vcpu
, u64 efer
)
1009 if (efer
& efer_reserved_bits
)
1012 if (efer
& EFER_FFXSR
) {
1013 struct kvm_cpuid_entry2
*feat
;
1015 feat
= kvm_find_cpuid_entry(vcpu
, 0x80000001, 0);
1016 if (!feat
|| !(feat
->edx
& bit(X86_FEATURE_FXSR_OPT
)))
1020 if (efer
& EFER_SVME
) {
1021 struct kvm_cpuid_entry2
*feat
;
1023 feat
= kvm_find_cpuid_entry(vcpu
, 0x80000001, 0);
1024 if (!feat
|| !(feat
->ecx
& bit(X86_FEATURE_SVM
)))
1030 EXPORT_SYMBOL_GPL(kvm_valid_efer
);
1032 static int set_efer(struct kvm_vcpu
*vcpu
, u64 efer
)
1034 u64 old_efer
= vcpu
->arch
.efer
;
1036 if (!kvm_valid_efer(vcpu
, efer
))
1040 && (vcpu
->arch
.efer
& EFER_LME
) != (efer
& EFER_LME
))
1044 efer
|= vcpu
->arch
.efer
& EFER_LMA
;
1046 kvm_x86_ops
->set_efer(vcpu
, efer
);
1048 /* Update reserved bits */
1049 if ((efer
^ old_efer
) & EFER_NX
)
1050 kvm_mmu_reset_context(vcpu
);
1055 void kvm_enable_efer_bits(u64 mask
)
1057 efer_reserved_bits
&= ~mask
;
1059 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits
);
1062 * Writes msr value into into the appropriate "register".
1063 * Returns 0 on success, non-0 otherwise.
1064 * Assumes vcpu_load() was already called.
1066 int kvm_set_msr(struct kvm_vcpu
*vcpu
, struct msr_data
*msr
)
1068 switch (msr
->index
) {
1071 case MSR_KERNEL_GS_BASE
:
1074 if (is_noncanonical_address(msr
->data
))
1077 case MSR_IA32_SYSENTER_EIP
:
1078 case MSR_IA32_SYSENTER_ESP
:
1080 * IA32_SYSENTER_ESP and IA32_SYSENTER_EIP cause #GP if
1081 * non-canonical address is written on Intel but not on
1082 * AMD (which ignores the top 32-bits, because it does
1083 * not implement 64-bit SYSENTER).
1085 * 64-bit code should hence be able to write a non-canonical
1086 * value on AMD. Making the address canonical ensures that
1087 * vmentry does not fail on Intel after writing a non-canonical
1088 * value, and that something deterministic happens if the guest
1089 * invokes 64-bit SYSENTER.
1091 msr
->data
= get_canonical(msr
->data
);
1093 return kvm_x86_ops
->set_msr(vcpu
, msr
);
1095 EXPORT_SYMBOL_GPL(kvm_set_msr
);
1098 * Adapt set_msr() to msr_io()'s calling convention
1100 static int do_get_msr(struct kvm_vcpu
*vcpu
, unsigned index
, u64
*data
)
1102 struct msr_data msr
;
1106 msr
.host_initiated
= true;
1107 r
= kvm_get_msr(vcpu
, &msr
);
1115 static int do_set_msr(struct kvm_vcpu
*vcpu
, unsigned index
, u64
*data
)
1117 struct msr_data msr
;
1121 msr
.host_initiated
= true;
1122 return kvm_set_msr(vcpu
, &msr
);
1125 #ifdef CONFIG_X86_64
1126 struct pvclock_gtod_data
{
1129 struct { /* extract of a clocksource struct */
1141 static struct pvclock_gtod_data pvclock_gtod_data
;
1143 static void update_pvclock_gtod(struct timekeeper
*tk
)
1145 struct pvclock_gtod_data
*vdata
= &pvclock_gtod_data
;
1148 boot_ns
= ktime_to_ns(ktime_add(tk
->tkr_mono
.base
, tk
->offs_boot
));
1150 write_seqcount_begin(&vdata
->seq
);
1152 /* copy pvclock gtod data */
1153 vdata
->clock
.vclock_mode
= tk
->tkr_mono
.clock
->archdata
.vclock_mode
;
1154 vdata
->clock
.cycle_last
= tk
->tkr_mono
.cycle_last
;
1155 vdata
->clock
.mask
= tk
->tkr_mono
.mask
;
1156 vdata
->clock
.mult
= tk
->tkr_mono
.mult
;
1157 vdata
->clock
.shift
= tk
->tkr_mono
.shift
;
1159 vdata
->boot_ns
= boot_ns
;
1160 vdata
->nsec_base
= tk
->tkr_mono
.xtime_nsec
;
1162 write_seqcount_end(&vdata
->seq
);
1166 void kvm_set_pending_timer(struct kvm_vcpu
*vcpu
)
1169 * Note: KVM_REQ_PENDING_TIMER is implicitly checked in
1170 * vcpu_enter_guest. This function is only called from
1171 * the physical CPU that is running vcpu.
1173 kvm_make_request(KVM_REQ_PENDING_TIMER
, vcpu
);
1176 static void kvm_write_wall_clock(struct kvm
*kvm
, gpa_t wall_clock
)
1180 struct pvclock_wall_clock wc
;
1181 struct timespec64 boot
;
1186 r
= kvm_read_guest(kvm
, wall_clock
, &version
, sizeof(version
));
1191 ++version
; /* first time write, random junk */
1195 if (kvm_write_guest(kvm
, wall_clock
, &version
, sizeof(version
)))
1199 * The guest calculates current wall clock time by adding
1200 * system time (updated by kvm_guest_time_update below) to the
1201 * wall clock specified here. guest system time equals host
1202 * system time for us, thus we must fill in host boot time here.
1204 getboottime64(&boot
);
1206 if (kvm
->arch
.kvmclock_offset
) {
1207 struct timespec64 ts
= ns_to_timespec64(kvm
->arch
.kvmclock_offset
);
1208 boot
= timespec64_sub(boot
, ts
);
1210 wc
.sec
= (u32
)boot
.tv_sec
; /* overflow in 2106 guest time */
1211 wc
.nsec
= boot
.tv_nsec
;
1212 wc
.version
= version
;
1214 kvm_write_guest(kvm
, wall_clock
, &wc
, sizeof(wc
));
1217 kvm_write_guest(kvm
, wall_clock
, &version
, sizeof(version
));
1220 static uint32_t div_frac(uint32_t dividend
, uint32_t divisor
)
1222 do_shl32_div32(dividend
, divisor
);
1226 static void kvm_get_time_scale(uint64_t scaled_hz
, uint64_t base_hz
,
1227 s8
*pshift
, u32
*pmultiplier
)
1235 scaled64
= scaled_hz
;
1236 while (tps64
> scaled64
*2 || tps64
& 0xffffffff00000000ULL
) {
1241 tps32
= (uint32_t)tps64
;
1242 while (tps32
<= scaled64
|| scaled64
& 0xffffffff00000000ULL
) {
1243 if (scaled64
& 0xffffffff00000000ULL
|| tps32
& 0x80000000)
1251 *pmultiplier
= div_frac(scaled64
, tps32
);
1253 pr_debug("%s: base_hz %llu => %llu, shift %d, mul %u\n",
1254 __func__
, base_hz
, scaled_hz
, shift
, *pmultiplier
);
1257 #ifdef CONFIG_X86_64
1258 static atomic_t kvm_guest_has_master_clock
= ATOMIC_INIT(0);
1261 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz
);
1262 static unsigned long max_tsc_khz
;
1264 static u32
adjust_tsc_khz(u32 khz
, s32 ppm
)
1266 u64 v
= (u64
)khz
* (1000000 + ppm
);
1271 static int set_tsc_khz(struct kvm_vcpu
*vcpu
, u32 user_tsc_khz
, bool scale
)
1275 /* Guest TSC same frequency as host TSC? */
1277 vcpu
->arch
.tsc_scaling_ratio
= kvm_default_tsc_scaling_ratio
;
1281 /* TSC scaling supported? */
1282 if (!kvm_has_tsc_control
) {
1283 if (user_tsc_khz
> tsc_khz
) {
1284 vcpu
->arch
.tsc_catchup
= 1;
1285 vcpu
->arch
.tsc_always_catchup
= 1;
1288 WARN(1, "user requested TSC rate below hardware speed\n");
1293 /* TSC scaling required - calculate ratio */
1294 ratio
= mul_u64_u32_div(1ULL << kvm_tsc_scaling_ratio_frac_bits
,
1295 user_tsc_khz
, tsc_khz
);
1297 if (ratio
== 0 || ratio
>= kvm_max_tsc_scaling_ratio
) {
1298 WARN_ONCE(1, "Invalid TSC scaling ratio - virtual-tsc-khz=%u\n",
1303 vcpu
->arch
.tsc_scaling_ratio
= ratio
;
1307 static int kvm_set_tsc_khz(struct kvm_vcpu
*vcpu
, u32 user_tsc_khz
)
1309 u32 thresh_lo
, thresh_hi
;
1310 int use_scaling
= 0;
1312 /* tsc_khz can be zero if TSC calibration fails */
1313 if (user_tsc_khz
== 0) {
1314 /* set tsc_scaling_ratio to a safe value */
1315 vcpu
->arch
.tsc_scaling_ratio
= kvm_default_tsc_scaling_ratio
;
1319 /* Compute a scale to convert nanoseconds in TSC cycles */
1320 kvm_get_time_scale(user_tsc_khz
* 1000LL, NSEC_PER_SEC
,
1321 &vcpu
->arch
.virtual_tsc_shift
,
1322 &vcpu
->arch
.virtual_tsc_mult
);
1323 vcpu
->arch
.virtual_tsc_khz
= user_tsc_khz
;
1326 * Compute the variation in TSC rate which is acceptable
1327 * within the range of tolerance and decide if the
1328 * rate being applied is within that bounds of the hardware
1329 * rate. If so, no scaling or compensation need be done.
1331 thresh_lo
= adjust_tsc_khz(tsc_khz
, -tsc_tolerance_ppm
);
1332 thresh_hi
= adjust_tsc_khz(tsc_khz
, tsc_tolerance_ppm
);
1333 if (user_tsc_khz
< thresh_lo
|| user_tsc_khz
> thresh_hi
) {
1334 pr_debug("kvm: requested TSC rate %u falls outside tolerance [%u,%u]\n", user_tsc_khz
, thresh_lo
, thresh_hi
);
1337 return set_tsc_khz(vcpu
, user_tsc_khz
, use_scaling
);
1340 static u64
compute_guest_tsc(struct kvm_vcpu
*vcpu
, s64 kernel_ns
)
1342 u64 tsc
= pvclock_scale_delta(kernel_ns
-vcpu
->arch
.this_tsc_nsec
,
1343 vcpu
->arch
.virtual_tsc_mult
,
1344 vcpu
->arch
.virtual_tsc_shift
);
1345 tsc
+= vcpu
->arch
.this_tsc_write
;
1349 static void kvm_track_tsc_matching(struct kvm_vcpu
*vcpu
)
1351 #ifdef CONFIG_X86_64
1353 struct kvm_arch
*ka
= &vcpu
->kvm
->arch
;
1354 struct pvclock_gtod_data
*gtod
= &pvclock_gtod_data
;
1356 vcpus_matched
= (ka
->nr_vcpus_matched_tsc
+ 1 ==
1357 atomic_read(&vcpu
->kvm
->online_vcpus
));
1360 * Once the masterclock is enabled, always perform request in
1361 * order to update it.
1363 * In order to enable masterclock, the host clocksource must be TSC
1364 * and the vcpus need to have matched TSCs. When that happens,
1365 * perform request to enable masterclock.
1367 if (ka
->use_master_clock
||
1368 (gtod
->clock
.vclock_mode
== VCLOCK_TSC
&& vcpus_matched
))
1369 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE
, vcpu
);
1371 trace_kvm_track_tsc(vcpu
->vcpu_id
, ka
->nr_vcpus_matched_tsc
,
1372 atomic_read(&vcpu
->kvm
->online_vcpus
),
1373 ka
->use_master_clock
, gtod
->clock
.vclock_mode
);
1377 static void update_ia32_tsc_adjust_msr(struct kvm_vcpu
*vcpu
, s64 offset
)
1379 u64 curr_offset
= vcpu
->arch
.tsc_offset
;
1380 vcpu
->arch
.ia32_tsc_adjust_msr
+= offset
- curr_offset
;
1384 * Multiply tsc by a fixed point number represented by ratio.
1386 * The most significant 64-N bits (mult) of ratio represent the
1387 * integral part of the fixed point number; the remaining N bits
1388 * (frac) represent the fractional part, ie. ratio represents a fixed
1389 * point number (mult + frac * 2^(-N)).
1391 * N equals to kvm_tsc_scaling_ratio_frac_bits.
1393 static inline u64
__scale_tsc(u64 ratio
, u64 tsc
)
1395 return mul_u64_u64_shr(tsc
, ratio
, kvm_tsc_scaling_ratio_frac_bits
);
1398 u64
kvm_scale_tsc(struct kvm_vcpu
*vcpu
, u64 tsc
)
1401 u64 ratio
= vcpu
->arch
.tsc_scaling_ratio
;
1403 if (ratio
!= kvm_default_tsc_scaling_ratio
)
1404 _tsc
= __scale_tsc(ratio
, tsc
);
1408 EXPORT_SYMBOL_GPL(kvm_scale_tsc
);
1410 static u64
kvm_compute_tsc_offset(struct kvm_vcpu
*vcpu
, u64 target_tsc
)
1414 tsc
= kvm_scale_tsc(vcpu
, rdtsc());
1416 return target_tsc
- tsc
;
1419 u64
kvm_read_l1_tsc(struct kvm_vcpu
*vcpu
, u64 host_tsc
)
1421 return vcpu
->arch
.tsc_offset
+ kvm_scale_tsc(vcpu
, host_tsc
);
1423 EXPORT_SYMBOL_GPL(kvm_read_l1_tsc
);
1425 static void kvm_vcpu_write_tsc_offset(struct kvm_vcpu
*vcpu
, u64 offset
)
1427 kvm_x86_ops
->write_tsc_offset(vcpu
, offset
);
1428 vcpu
->arch
.tsc_offset
= offset
;
1431 void kvm_write_tsc(struct kvm_vcpu
*vcpu
, struct msr_data
*msr
)
1433 struct kvm
*kvm
= vcpu
->kvm
;
1434 u64 offset
, ns
, elapsed
;
1435 unsigned long flags
;
1438 bool already_matched
;
1439 u64 data
= msr
->data
;
1441 raw_spin_lock_irqsave(&kvm
->arch
.tsc_write_lock
, flags
);
1442 offset
= kvm_compute_tsc_offset(vcpu
, data
);
1443 ns
= ktime_get_boot_ns();
1444 elapsed
= ns
- kvm
->arch
.last_tsc_nsec
;
1446 if (vcpu
->arch
.virtual_tsc_khz
) {
1449 /* n.b - signed multiplication and division required */
1450 usdiff
= data
- kvm
->arch
.last_tsc_write
;
1451 #ifdef CONFIG_X86_64
1452 usdiff
= (usdiff
* 1000) / vcpu
->arch
.virtual_tsc_khz
;
1454 /* do_div() only does unsigned */
1455 asm("1: idivl %[divisor]\n"
1456 "2: xor %%edx, %%edx\n"
1457 " movl $0, %[faulted]\n"
1459 ".section .fixup,\"ax\"\n"
1460 "4: movl $1, %[faulted]\n"
1464 _ASM_EXTABLE(1b
, 4b
)
1466 : "=A"(usdiff
), [faulted
] "=r" (faulted
)
1467 : "A"(usdiff
* 1000), [divisor
] "rm"(vcpu
->arch
.virtual_tsc_khz
));
1470 do_div(elapsed
, 1000);
1475 /* idivl overflow => difference is larger than USEC_PER_SEC */
1477 usdiff
= USEC_PER_SEC
;
1479 usdiff
= USEC_PER_SEC
; /* disable TSC match window below */
1482 * Special case: TSC write with a small delta (1 second) of virtual
1483 * cycle time against real time is interpreted as an attempt to
1484 * synchronize the CPU.
1486 * For a reliable TSC, we can match TSC offsets, and for an unstable
1487 * TSC, we add elapsed time in this computation. We could let the
1488 * compensation code attempt to catch up if we fall behind, but
1489 * it's better to try to match offsets from the beginning.
1491 if (usdiff
< USEC_PER_SEC
&&
1492 vcpu
->arch
.virtual_tsc_khz
== kvm
->arch
.last_tsc_khz
) {
1493 if (!check_tsc_unstable()) {
1494 offset
= kvm
->arch
.cur_tsc_offset
;
1495 pr_debug("kvm: matched tsc offset for %llu\n", data
);
1497 u64 delta
= nsec_to_cycles(vcpu
, elapsed
);
1499 offset
= kvm_compute_tsc_offset(vcpu
, data
);
1500 pr_debug("kvm: adjusted tsc offset by %llu\n", delta
);
1503 already_matched
= (vcpu
->arch
.this_tsc_generation
== kvm
->arch
.cur_tsc_generation
);
1506 * We split periods of matched TSC writes into generations.
1507 * For each generation, we track the original measured
1508 * nanosecond time, offset, and write, so if TSCs are in
1509 * sync, we can match exact offset, and if not, we can match
1510 * exact software computation in compute_guest_tsc()
1512 * These values are tracked in kvm->arch.cur_xxx variables.
1514 kvm
->arch
.cur_tsc_generation
++;
1515 kvm
->arch
.cur_tsc_nsec
= ns
;
1516 kvm
->arch
.cur_tsc_write
= data
;
1517 kvm
->arch
.cur_tsc_offset
= offset
;
1519 pr_debug("kvm: new tsc generation %llu, clock %llu\n",
1520 kvm
->arch
.cur_tsc_generation
, data
);
1524 * We also track th most recent recorded KHZ, write and time to
1525 * allow the matching interval to be extended at each write.
1527 kvm
->arch
.last_tsc_nsec
= ns
;
1528 kvm
->arch
.last_tsc_write
= data
;
1529 kvm
->arch
.last_tsc_khz
= vcpu
->arch
.virtual_tsc_khz
;
1531 vcpu
->arch
.last_guest_tsc
= data
;
1533 /* Keep track of which generation this VCPU has synchronized to */
1534 vcpu
->arch
.this_tsc_generation
= kvm
->arch
.cur_tsc_generation
;
1535 vcpu
->arch
.this_tsc_nsec
= kvm
->arch
.cur_tsc_nsec
;
1536 vcpu
->arch
.this_tsc_write
= kvm
->arch
.cur_tsc_write
;
1538 if (guest_cpuid_has_tsc_adjust(vcpu
) && !msr
->host_initiated
)
1539 update_ia32_tsc_adjust_msr(vcpu
, offset
);
1540 kvm_vcpu_write_tsc_offset(vcpu
, offset
);
1541 raw_spin_unlock_irqrestore(&kvm
->arch
.tsc_write_lock
, flags
);
1543 spin_lock(&kvm
->arch
.pvclock_gtod_sync_lock
);
1545 kvm
->arch
.nr_vcpus_matched_tsc
= 0;
1546 } else if (!already_matched
) {
1547 kvm
->arch
.nr_vcpus_matched_tsc
++;
1550 kvm_track_tsc_matching(vcpu
);
1551 spin_unlock(&kvm
->arch
.pvclock_gtod_sync_lock
);
1554 EXPORT_SYMBOL_GPL(kvm_write_tsc
);
1556 static inline void adjust_tsc_offset_guest(struct kvm_vcpu
*vcpu
,
1559 kvm_vcpu_write_tsc_offset(vcpu
, vcpu
->arch
.tsc_offset
+ adjustment
);
1562 static inline void adjust_tsc_offset_host(struct kvm_vcpu
*vcpu
, s64 adjustment
)
1564 if (vcpu
->arch
.tsc_scaling_ratio
!= kvm_default_tsc_scaling_ratio
)
1565 WARN_ON(adjustment
< 0);
1566 adjustment
= kvm_scale_tsc(vcpu
, (u64
) adjustment
);
1567 adjust_tsc_offset_guest(vcpu
, adjustment
);
1570 #ifdef CONFIG_X86_64
1572 static cycle_t
read_tsc(void)
1574 cycle_t ret
= (cycle_t
)rdtsc_ordered();
1575 u64 last
= pvclock_gtod_data
.clock
.cycle_last
;
1577 if (likely(ret
>= last
))
1581 * GCC likes to generate cmov here, but this branch is extremely
1582 * predictable (it's just a function of time and the likely is
1583 * very likely) and there's a data dependence, so force GCC
1584 * to generate a branch instead. I don't barrier() because
1585 * we don't actually need a barrier, and if this function
1586 * ever gets inlined it will generate worse code.
1592 static inline u64
vgettsc(cycle_t
*cycle_now
)
1595 struct pvclock_gtod_data
*gtod
= &pvclock_gtod_data
;
1597 *cycle_now
= read_tsc();
1599 v
= (*cycle_now
- gtod
->clock
.cycle_last
) & gtod
->clock
.mask
;
1600 return v
* gtod
->clock
.mult
;
1603 static int do_monotonic_boot(s64
*t
, cycle_t
*cycle_now
)
1605 struct pvclock_gtod_data
*gtod
= &pvclock_gtod_data
;
1611 seq
= read_seqcount_begin(>od
->seq
);
1612 mode
= gtod
->clock
.vclock_mode
;
1613 ns
= gtod
->nsec_base
;
1614 ns
+= vgettsc(cycle_now
);
1615 ns
>>= gtod
->clock
.shift
;
1616 ns
+= gtod
->boot_ns
;
1617 } while (unlikely(read_seqcount_retry(>od
->seq
, seq
)));
1623 /* returns true if host is using tsc clocksource */
1624 static bool kvm_get_time_and_clockread(s64
*kernel_ns
, cycle_t
*cycle_now
)
1626 /* checked again under seqlock below */
1627 if (pvclock_gtod_data
.clock
.vclock_mode
!= VCLOCK_TSC
)
1630 return do_monotonic_boot(kernel_ns
, cycle_now
) == VCLOCK_TSC
;
1636 * Assuming a stable TSC across physical CPUS, and a stable TSC
1637 * across virtual CPUs, the following condition is possible.
1638 * Each numbered line represents an event visible to both
1639 * CPUs at the next numbered event.
1641 * "timespecX" represents host monotonic time. "tscX" represents
1644 * VCPU0 on CPU0 | VCPU1 on CPU1
1646 * 1. read timespec0,tsc0
1647 * 2. | timespec1 = timespec0 + N
1649 * 3. transition to guest | transition to guest
1650 * 4. ret0 = timespec0 + (rdtsc - tsc0) |
1651 * 5. | ret1 = timespec1 + (rdtsc - tsc1)
1652 * | ret1 = timespec0 + N + (rdtsc - (tsc0 + M))
1654 * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity:
1657 * - timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M))
1659 * - 0 < N - M => M < N
1661 * That is, when timespec0 != timespec1, M < N. Unfortunately that is not
1662 * always the case (the difference between two distinct xtime instances
1663 * might be smaller then the difference between corresponding TSC reads,
1664 * when updating guest vcpus pvclock areas).
1666 * To avoid that problem, do not allow visibility of distinct
1667 * system_timestamp/tsc_timestamp values simultaneously: use a master
1668 * copy of host monotonic time values. Update that master copy
1671 * Rely on synchronization of host TSCs and guest TSCs for monotonicity.
1675 static void pvclock_update_vm_gtod_copy(struct kvm
*kvm
)
1677 #ifdef CONFIG_X86_64
1678 struct kvm_arch
*ka
= &kvm
->arch
;
1680 bool host_tsc_clocksource
, vcpus_matched
;
1682 vcpus_matched
= (ka
->nr_vcpus_matched_tsc
+ 1 ==
1683 atomic_read(&kvm
->online_vcpus
));
1686 * If the host uses TSC clock, then passthrough TSC as stable
1689 host_tsc_clocksource
= kvm_get_time_and_clockread(
1690 &ka
->master_kernel_ns
,
1691 &ka
->master_cycle_now
);
1693 ka
->use_master_clock
= host_tsc_clocksource
&& vcpus_matched
1694 && !backwards_tsc_observed
1695 && !ka
->boot_vcpu_runs_old_kvmclock
;
1697 if (ka
->use_master_clock
)
1698 atomic_set(&kvm_guest_has_master_clock
, 1);
1700 vclock_mode
= pvclock_gtod_data
.clock
.vclock_mode
;
1701 trace_kvm_update_master_clock(ka
->use_master_clock
, vclock_mode
,
1706 void kvm_make_mclock_inprogress_request(struct kvm
*kvm
)
1708 kvm_make_all_cpus_request(kvm
, KVM_REQ_MCLOCK_INPROGRESS
);
1711 static void kvm_gen_update_masterclock(struct kvm
*kvm
)
1713 #ifdef CONFIG_X86_64
1715 struct kvm_vcpu
*vcpu
;
1716 struct kvm_arch
*ka
= &kvm
->arch
;
1718 spin_lock(&ka
->pvclock_gtod_sync_lock
);
1719 kvm_make_mclock_inprogress_request(kvm
);
1720 /* no guest entries from this point */
1721 pvclock_update_vm_gtod_copy(kvm
);
1723 kvm_for_each_vcpu(i
, vcpu
, kvm
)
1724 kvm_make_request(KVM_REQ_CLOCK_UPDATE
, vcpu
);
1726 /* guest entries allowed */
1727 kvm_for_each_vcpu(i
, vcpu
, kvm
)
1728 clear_bit(KVM_REQ_MCLOCK_INPROGRESS
, &vcpu
->requests
);
1730 spin_unlock(&ka
->pvclock_gtod_sync_lock
);
1734 static u64
__get_kvmclock_ns(struct kvm
*kvm
)
1736 struct kvm_arch
*ka
= &kvm
->arch
;
1737 struct pvclock_vcpu_time_info hv_clock
;
1740 spin_lock(&ka
->pvclock_gtod_sync_lock
);
1741 if (!ka
->use_master_clock
) {
1742 spin_unlock(&ka
->pvclock_gtod_sync_lock
);
1743 return ktime_get_boot_ns() + ka
->kvmclock_offset
;
1746 hv_clock
.tsc_timestamp
= ka
->master_cycle_now
;
1747 hv_clock
.system_time
= ka
->master_kernel_ns
+ ka
->kvmclock_offset
;
1748 spin_unlock(&ka
->pvclock_gtod_sync_lock
);
1750 /* both __this_cpu_read() and rdtsc() should be on the same cpu */
1753 kvm_get_time_scale(NSEC_PER_SEC
, __this_cpu_read(cpu_tsc_khz
) * 1000LL,
1754 &hv_clock
.tsc_shift
,
1755 &hv_clock
.tsc_to_system_mul
);
1756 ret
= __pvclock_read_cycles(&hv_clock
, rdtsc());
1763 u64
get_kvmclock_ns(struct kvm
*kvm
)
1765 unsigned long flags
;
1768 local_irq_save(flags
);
1769 ns
= __get_kvmclock_ns(kvm
);
1770 local_irq_restore(flags
);
1775 static void kvm_setup_pvclock_page(struct kvm_vcpu
*v
)
1777 struct kvm_vcpu_arch
*vcpu
= &v
->arch
;
1778 struct pvclock_vcpu_time_info guest_hv_clock
;
1780 if (unlikely(kvm_read_guest_cached(v
->kvm
, &vcpu
->pv_time
,
1781 &guest_hv_clock
, sizeof(guest_hv_clock
))))
1784 /* This VCPU is paused, but it's legal for a guest to read another
1785 * VCPU's kvmclock, so we really have to follow the specification where
1786 * it says that version is odd if data is being modified, and even after
1789 * Version field updates must be kept separate. This is because
1790 * kvm_write_guest_cached might use a "rep movs" instruction, and
1791 * writes within a string instruction are weakly ordered. So there
1792 * are three writes overall.
1794 * As a small optimization, only write the version field in the first
1795 * and third write. The vcpu->pv_time cache is still valid, because the
1796 * version field is the first in the struct.
1798 BUILD_BUG_ON(offsetof(struct pvclock_vcpu_time_info
, version
) != 0);
1800 vcpu
->hv_clock
.version
= guest_hv_clock
.version
+ 1;
1801 kvm_write_guest_cached(v
->kvm
, &vcpu
->pv_time
,
1803 sizeof(vcpu
->hv_clock
.version
));
1807 /* retain PVCLOCK_GUEST_STOPPED if set in guest copy */
1808 vcpu
->hv_clock
.flags
|= (guest_hv_clock
.flags
& PVCLOCK_GUEST_STOPPED
);
1810 if (vcpu
->pvclock_set_guest_stopped_request
) {
1811 vcpu
->hv_clock
.flags
|= PVCLOCK_GUEST_STOPPED
;
1812 vcpu
->pvclock_set_guest_stopped_request
= false;
1815 trace_kvm_pvclock_update(v
->vcpu_id
, &vcpu
->hv_clock
);
1817 kvm_write_guest_cached(v
->kvm
, &vcpu
->pv_time
,
1819 sizeof(vcpu
->hv_clock
));
1823 vcpu
->hv_clock
.version
++;
1824 kvm_write_guest_cached(v
->kvm
, &vcpu
->pv_time
,
1826 sizeof(vcpu
->hv_clock
.version
));
1829 static int kvm_guest_time_update(struct kvm_vcpu
*v
)
1831 unsigned long flags
, tgt_tsc_khz
;
1832 struct kvm_vcpu_arch
*vcpu
= &v
->arch
;
1833 struct kvm_arch
*ka
= &v
->kvm
->arch
;
1835 u64 tsc_timestamp
, host_tsc
;
1837 bool use_master_clock
;
1843 * If the host uses TSC clock, then passthrough TSC as stable
1846 spin_lock(&ka
->pvclock_gtod_sync_lock
);
1847 use_master_clock
= ka
->use_master_clock
;
1848 if (use_master_clock
) {
1849 host_tsc
= ka
->master_cycle_now
;
1850 kernel_ns
= ka
->master_kernel_ns
;
1852 spin_unlock(&ka
->pvclock_gtod_sync_lock
);
1854 /* Keep irq disabled to prevent changes to the clock */
1855 local_irq_save(flags
);
1856 tgt_tsc_khz
= __this_cpu_read(cpu_tsc_khz
);
1857 if (unlikely(tgt_tsc_khz
== 0)) {
1858 local_irq_restore(flags
);
1859 kvm_make_request(KVM_REQ_CLOCK_UPDATE
, v
);
1862 if (!use_master_clock
) {
1864 kernel_ns
= ktime_get_boot_ns();
1867 tsc_timestamp
= kvm_read_l1_tsc(v
, host_tsc
);
1870 * We may have to catch up the TSC to match elapsed wall clock
1871 * time for two reasons, even if kvmclock is used.
1872 * 1) CPU could have been running below the maximum TSC rate
1873 * 2) Broken TSC compensation resets the base at each VCPU
1874 * entry to avoid unknown leaps of TSC even when running
1875 * again on the same CPU. This may cause apparent elapsed
1876 * time to disappear, and the guest to stand still or run
1879 if (vcpu
->tsc_catchup
) {
1880 u64 tsc
= compute_guest_tsc(v
, kernel_ns
);
1881 if (tsc
> tsc_timestamp
) {
1882 adjust_tsc_offset_guest(v
, tsc
- tsc_timestamp
);
1883 tsc_timestamp
= tsc
;
1887 local_irq_restore(flags
);
1889 /* With all the info we got, fill in the values */
1891 if (kvm_has_tsc_control
)
1892 tgt_tsc_khz
= kvm_scale_tsc(v
, tgt_tsc_khz
);
1894 if (unlikely(vcpu
->hw_tsc_khz
!= tgt_tsc_khz
)) {
1895 kvm_get_time_scale(NSEC_PER_SEC
, tgt_tsc_khz
* 1000LL,
1896 &vcpu
->hv_clock
.tsc_shift
,
1897 &vcpu
->hv_clock
.tsc_to_system_mul
);
1898 vcpu
->hw_tsc_khz
= tgt_tsc_khz
;
1901 vcpu
->hv_clock
.tsc_timestamp
= tsc_timestamp
;
1902 vcpu
->hv_clock
.system_time
= kernel_ns
+ v
->kvm
->arch
.kvmclock_offset
;
1903 vcpu
->last_guest_tsc
= tsc_timestamp
;
1905 /* If the host uses TSC clocksource, then it is stable */
1907 if (use_master_clock
)
1908 pvclock_flags
|= PVCLOCK_TSC_STABLE_BIT
;
1910 vcpu
->hv_clock
.flags
= pvclock_flags
;
1912 if (vcpu
->pv_time_enabled
)
1913 kvm_setup_pvclock_page(v
);
1914 if (v
== kvm_get_vcpu(v
->kvm
, 0))
1915 kvm_hv_setup_tsc_page(v
->kvm
, &vcpu
->hv_clock
);
1920 * kvmclock updates which are isolated to a given vcpu, such as
1921 * vcpu->cpu migration, should not allow system_timestamp from
1922 * the rest of the vcpus to remain static. Otherwise ntp frequency
1923 * correction applies to one vcpu's system_timestamp but not
1926 * So in those cases, request a kvmclock update for all vcpus.
1927 * We need to rate-limit these requests though, as they can
1928 * considerably slow guests that have a large number of vcpus.
1929 * The time for a remote vcpu to update its kvmclock is bound
1930 * by the delay we use to rate-limit the updates.
1933 #define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100)
1935 static void kvmclock_update_fn(struct work_struct
*work
)
1938 struct delayed_work
*dwork
= to_delayed_work(work
);
1939 struct kvm_arch
*ka
= container_of(dwork
, struct kvm_arch
,
1940 kvmclock_update_work
);
1941 struct kvm
*kvm
= container_of(ka
, struct kvm
, arch
);
1942 struct kvm_vcpu
*vcpu
;
1944 kvm_for_each_vcpu(i
, vcpu
, kvm
) {
1945 kvm_make_request(KVM_REQ_CLOCK_UPDATE
, vcpu
);
1946 kvm_vcpu_kick(vcpu
);
1950 static void kvm_gen_kvmclock_update(struct kvm_vcpu
*v
)
1952 struct kvm
*kvm
= v
->kvm
;
1954 kvm_make_request(KVM_REQ_CLOCK_UPDATE
, v
);
1955 schedule_delayed_work(&kvm
->arch
.kvmclock_update_work
,
1956 KVMCLOCK_UPDATE_DELAY
);
1959 #define KVMCLOCK_SYNC_PERIOD (300 * HZ)
1961 static void kvmclock_sync_fn(struct work_struct
*work
)
1963 struct delayed_work
*dwork
= to_delayed_work(work
);
1964 struct kvm_arch
*ka
= container_of(dwork
, struct kvm_arch
,
1965 kvmclock_sync_work
);
1966 struct kvm
*kvm
= container_of(ka
, struct kvm
, arch
);
1968 if (!kvmclock_periodic_sync
)
1971 schedule_delayed_work(&kvm
->arch
.kvmclock_update_work
, 0);
1972 schedule_delayed_work(&kvm
->arch
.kvmclock_sync_work
,
1973 KVMCLOCK_SYNC_PERIOD
);
1976 static int set_msr_mce(struct kvm_vcpu
*vcpu
, u32 msr
, u64 data
)
1978 u64 mcg_cap
= vcpu
->arch
.mcg_cap
;
1979 unsigned bank_num
= mcg_cap
& 0xff;
1982 case MSR_IA32_MCG_STATUS
:
1983 vcpu
->arch
.mcg_status
= data
;
1985 case MSR_IA32_MCG_CTL
:
1986 if (!(mcg_cap
& MCG_CTL_P
))
1988 if (data
!= 0 && data
!= ~(u64
)0)
1990 vcpu
->arch
.mcg_ctl
= data
;
1993 if (msr
>= MSR_IA32_MC0_CTL
&&
1994 msr
< MSR_IA32_MCx_CTL(bank_num
)) {
1995 u32 offset
= msr
- MSR_IA32_MC0_CTL
;
1996 /* only 0 or all 1s can be written to IA32_MCi_CTL
1997 * some Linux kernels though clear bit 10 in bank 4 to
1998 * workaround a BIOS/GART TBL issue on AMD K8s, ignore
1999 * this to avoid an uncatched #GP in the guest
2001 if ((offset
& 0x3) == 0 &&
2002 data
!= 0 && (data
| (1 << 10)) != ~(u64
)0)
2004 vcpu
->arch
.mce_banks
[offset
] = data
;
2012 static int xen_hvm_config(struct kvm_vcpu
*vcpu
, u64 data
)
2014 struct kvm
*kvm
= vcpu
->kvm
;
2015 int lm
= is_long_mode(vcpu
);
2016 u8
*blob_addr
= lm
? (u8
*)(long)kvm
->arch
.xen_hvm_config
.blob_addr_64
2017 : (u8
*)(long)kvm
->arch
.xen_hvm_config
.blob_addr_32
;
2018 u8 blob_size
= lm
? kvm
->arch
.xen_hvm_config
.blob_size_64
2019 : kvm
->arch
.xen_hvm_config
.blob_size_32
;
2020 u32 page_num
= data
& ~PAGE_MASK
;
2021 u64 page_addr
= data
& PAGE_MASK
;
2026 if (page_num
>= blob_size
)
2029 page
= memdup_user(blob_addr
+ (page_num
* PAGE_SIZE
), PAGE_SIZE
);
2034 if (kvm_vcpu_write_guest(vcpu
, page_addr
, page
, PAGE_SIZE
))
2043 static int kvm_pv_enable_async_pf(struct kvm_vcpu
*vcpu
, u64 data
)
2045 gpa_t gpa
= data
& ~0x3f;
2047 /* Bits 2:5 are reserved, Should be zero */
2051 vcpu
->arch
.apf
.msr_val
= data
;
2053 if (!(data
& KVM_ASYNC_PF_ENABLED
)) {
2054 kvm_clear_async_pf_completion_queue(vcpu
);
2055 kvm_async_pf_hash_reset(vcpu
);
2059 if (kvm_gfn_to_hva_cache_init(vcpu
->kvm
, &vcpu
->arch
.apf
.data
, gpa
,
2063 vcpu
->arch
.apf
.send_user_only
= !(data
& KVM_ASYNC_PF_SEND_ALWAYS
);
2064 kvm_async_pf_wakeup_all(vcpu
);
2068 static void kvmclock_reset(struct kvm_vcpu
*vcpu
)
2070 vcpu
->arch
.pv_time_enabled
= false;
2073 static void record_steal_time(struct kvm_vcpu
*vcpu
)
2075 if (!(vcpu
->arch
.st
.msr_val
& KVM_MSR_ENABLED
))
2078 if (unlikely(kvm_read_guest_cached(vcpu
->kvm
, &vcpu
->arch
.st
.stime
,
2079 &vcpu
->arch
.st
.steal
, sizeof(struct kvm_steal_time
))))
2082 if (vcpu
->arch
.st
.steal
.version
& 1)
2083 vcpu
->arch
.st
.steal
.version
+= 1; /* first time write, random junk */
2085 vcpu
->arch
.st
.steal
.version
+= 1;
2087 kvm_write_guest_cached(vcpu
->kvm
, &vcpu
->arch
.st
.stime
,
2088 &vcpu
->arch
.st
.steal
, sizeof(struct kvm_steal_time
));
2092 vcpu
->arch
.st
.steal
.steal
+= current
->sched_info
.run_delay
-
2093 vcpu
->arch
.st
.last_steal
;
2094 vcpu
->arch
.st
.last_steal
= current
->sched_info
.run_delay
;
2096 kvm_write_guest_cached(vcpu
->kvm
, &vcpu
->arch
.st
.stime
,
2097 &vcpu
->arch
.st
.steal
, sizeof(struct kvm_steal_time
));
2101 vcpu
->arch
.st
.steal
.version
+= 1;
2103 kvm_write_guest_cached(vcpu
->kvm
, &vcpu
->arch
.st
.stime
,
2104 &vcpu
->arch
.st
.steal
, sizeof(struct kvm_steal_time
));
2107 int kvm_set_msr_common(struct kvm_vcpu
*vcpu
, struct msr_data
*msr_info
)
2110 u32 msr
= msr_info
->index
;
2111 u64 data
= msr_info
->data
;
2114 case MSR_AMD64_NB_CFG
:
2115 case MSR_IA32_UCODE_REV
:
2116 case MSR_IA32_UCODE_WRITE
:
2117 case MSR_VM_HSAVE_PA
:
2118 case MSR_AMD64_PATCH_LOADER
:
2119 case MSR_AMD64_BU_CFG2
:
2123 return set_efer(vcpu
, data
);
2125 data
&= ~(u64
)0x40; /* ignore flush filter disable */
2126 data
&= ~(u64
)0x100; /* ignore ignne emulation enable */
2127 data
&= ~(u64
)0x8; /* ignore TLB cache disable */
2128 data
&= ~(u64
)0x40000; /* ignore Mc status write enable */
2130 vcpu_unimpl(vcpu
, "unimplemented HWCR wrmsr: 0x%llx\n",
2135 case MSR_FAM10H_MMIO_CONF_BASE
:
2137 vcpu_unimpl(vcpu
, "unimplemented MMIO_CONF_BASE wrmsr: "
2142 case MSR_IA32_DEBUGCTLMSR
:
2144 /* We support the non-activated case already */
2146 } else if (data
& ~(DEBUGCTLMSR_LBR
| DEBUGCTLMSR_BTF
)) {
2147 /* Values other than LBR and BTF are vendor-specific,
2148 thus reserved and should throw a #GP */
2151 vcpu_unimpl(vcpu
, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
2154 case 0x200 ... 0x2ff:
2155 return kvm_mtrr_set_msr(vcpu
, msr
, data
);
2156 case MSR_IA32_APICBASE
:
2157 return kvm_set_apic_base(vcpu
, msr_info
);
2158 case APIC_BASE_MSR
... APIC_BASE_MSR
+ 0x3ff:
2159 return kvm_x2apic_msr_write(vcpu
, msr
, data
);
2160 case MSR_IA32_TSCDEADLINE
:
2161 kvm_set_lapic_tscdeadline_msr(vcpu
, data
);
2163 case MSR_IA32_TSC_ADJUST
:
2164 if (guest_cpuid_has_tsc_adjust(vcpu
)) {
2165 if (!msr_info
->host_initiated
) {
2166 s64 adj
= data
- vcpu
->arch
.ia32_tsc_adjust_msr
;
2167 adjust_tsc_offset_guest(vcpu
, adj
);
2169 vcpu
->arch
.ia32_tsc_adjust_msr
= data
;
2172 case MSR_IA32_MISC_ENABLE
:
2173 vcpu
->arch
.ia32_misc_enable_msr
= data
;
2175 case MSR_IA32_SMBASE
:
2176 if (!msr_info
->host_initiated
)
2178 vcpu
->arch
.smbase
= data
;
2180 case MSR_KVM_WALL_CLOCK_NEW
:
2181 case MSR_KVM_WALL_CLOCK
:
2182 vcpu
->kvm
->arch
.wall_clock
= data
;
2183 kvm_write_wall_clock(vcpu
->kvm
, data
);
2185 case MSR_KVM_SYSTEM_TIME_NEW
:
2186 case MSR_KVM_SYSTEM_TIME
: {
2188 struct kvm_arch
*ka
= &vcpu
->kvm
->arch
;
2190 kvmclock_reset(vcpu
);
2192 if (vcpu
->vcpu_id
== 0 && !msr_info
->host_initiated
) {
2193 bool tmp
= (msr
== MSR_KVM_SYSTEM_TIME
);
2195 if (ka
->boot_vcpu_runs_old_kvmclock
!= tmp
)
2196 set_bit(KVM_REQ_MASTERCLOCK_UPDATE
,
2199 ka
->boot_vcpu_runs_old_kvmclock
= tmp
;
2202 vcpu
->arch
.time
= data
;
2203 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE
, vcpu
);
2205 /* we verify if the enable bit is set... */
2209 gpa_offset
= data
& ~(PAGE_MASK
| 1);
2211 if (kvm_gfn_to_hva_cache_init(vcpu
->kvm
,
2212 &vcpu
->arch
.pv_time
, data
& ~1ULL,
2213 sizeof(struct pvclock_vcpu_time_info
)))
2214 vcpu
->arch
.pv_time_enabled
= false;
2216 vcpu
->arch
.pv_time_enabled
= true;
2220 case MSR_KVM_ASYNC_PF_EN
:
2221 if (kvm_pv_enable_async_pf(vcpu
, data
))
2224 case MSR_KVM_STEAL_TIME
:
2226 if (unlikely(!sched_info_on()))
2229 if (data
& KVM_STEAL_RESERVED_MASK
)
2232 if (kvm_gfn_to_hva_cache_init(vcpu
->kvm
, &vcpu
->arch
.st
.stime
,
2233 data
& KVM_STEAL_VALID_BITS
,
2234 sizeof(struct kvm_steal_time
)))
2237 vcpu
->arch
.st
.msr_val
= data
;
2239 if (!(data
& KVM_MSR_ENABLED
))
2242 kvm_make_request(KVM_REQ_STEAL_UPDATE
, vcpu
);
2245 case MSR_KVM_PV_EOI_EN
:
2246 if (kvm_lapic_enable_pv_eoi(vcpu
, data
))
2250 case MSR_IA32_MCG_CTL
:
2251 case MSR_IA32_MCG_STATUS
:
2252 case MSR_IA32_MC0_CTL
... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS
) - 1:
2253 return set_msr_mce(vcpu
, msr
, data
);
2255 case MSR_K7_PERFCTR0
... MSR_K7_PERFCTR3
:
2256 case MSR_P6_PERFCTR0
... MSR_P6_PERFCTR1
:
2257 pr
= true; /* fall through */
2258 case MSR_K7_EVNTSEL0
... MSR_K7_EVNTSEL3
:
2259 case MSR_P6_EVNTSEL0
... MSR_P6_EVNTSEL1
:
2260 if (kvm_pmu_is_valid_msr(vcpu
, msr
))
2261 return kvm_pmu_set_msr(vcpu
, msr_info
);
2263 if (pr
|| data
!= 0)
2264 vcpu_unimpl(vcpu
, "disabled perfctr wrmsr: "
2265 "0x%x data 0x%llx\n", msr
, data
);
2267 case MSR_K7_CLK_CTL
:
2269 * Ignore all writes to this no longer documented MSR.
2270 * Writes are only relevant for old K7 processors,
2271 * all pre-dating SVM, but a recommended workaround from
2272 * AMD for these chips. It is possible to specify the
2273 * affected processor models on the command line, hence
2274 * the need to ignore the workaround.
2277 case HV_X64_MSR_GUEST_OS_ID
... HV_X64_MSR_SINT15
:
2278 case HV_X64_MSR_CRASH_P0
... HV_X64_MSR_CRASH_P4
:
2279 case HV_X64_MSR_CRASH_CTL
:
2280 case HV_X64_MSR_STIMER0_CONFIG
... HV_X64_MSR_STIMER3_COUNT
:
2281 return kvm_hv_set_msr_common(vcpu
, msr
, data
,
2282 msr_info
->host_initiated
);
2283 case MSR_IA32_BBL_CR_CTL3
:
2284 /* Drop writes to this legacy MSR -- see rdmsr
2285 * counterpart for further detail.
2287 vcpu_unimpl(vcpu
, "ignored wrmsr: 0x%x data 0x%llx\n", msr
, data
);
2289 case MSR_AMD64_OSVW_ID_LENGTH
:
2290 if (!guest_cpuid_has_osvw(vcpu
))
2292 vcpu
->arch
.osvw
.length
= data
;
2294 case MSR_AMD64_OSVW_STATUS
:
2295 if (!guest_cpuid_has_osvw(vcpu
))
2297 vcpu
->arch
.osvw
.status
= data
;
2300 if (msr
&& (msr
== vcpu
->kvm
->arch
.xen_hvm_config
.msr
))
2301 return xen_hvm_config(vcpu
, data
);
2302 if (kvm_pmu_is_valid_msr(vcpu
, msr
))
2303 return kvm_pmu_set_msr(vcpu
, msr_info
);
2305 vcpu_unimpl(vcpu
, "unhandled wrmsr: 0x%x data 0x%llx\n",
2309 vcpu_unimpl(vcpu
, "ignored wrmsr: 0x%x data 0x%llx\n",
2316 EXPORT_SYMBOL_GPL(kvm_set_msr_common
);
2320 * Reads an msr value (of 'msr_index') into 'pdata'.
2321 * Returns 0 on success, non-0 otherwise.
2322 * Assumes vcpu_load() was already called.
2324 int kvm_get_msr(struct kvm_vcpu
*vcpu
, struct msr_data
*msr
)
2326 return kvm_x86_ops
->get_msr(vcpu
, msr
);
2328 EXPORT_SYMBOL_GPL(kvm_get_msr
);
2330 static int get_msr_mce(struct kvm_vcpu
*vcpu
, u32 msr
, u64
*pdata
)
2333 u64 mcg_cap
= vcpu
->arch
.mcg_cap
;
2334 unsigned bank_num
= mcg_cap
& 0xff;
2337 case MSR_IA32_P5_MC_ADDR
:
2338 case MSR_IA32_P5_MC_TYPE
:
2341 case MSR_IA32_MCG_CAP
:
2342 data
= vcpu
->arch
.mcg_cap
;
2344 case MSR_IA32_MCG_CTL
:
2345 if (!(mcg_cap
& MCG_CTL_P
))
2347 data
= vcpu
->arch
.mcg_ctl
;
2349 case MSR_IA32_MCG_STATUS
:
2350 data
= vcpu
->arch
.mcg_status
;
2353 if (msr
>= MSR_IA32_MC0_CTL
&&
2354 msr
< MSR_IA32_MCx_CTL(bank_num
)) {
2355 u32 offset
= msr
- MSR_IA32_MC0_CTL
;
2356 data
= vcpu
->arch
.mce_banks
[offset
];
2365 int kvm_get_msr_common(struct kvm_vcpu
*vcpu
, struct msr_data
*msr_info
)
2367 switch (msr_info
->index
) {
2368 case MSR_IA32_PLATFORM_ID
:
2369 case MSR_IA32_EBL_CR_POWERON
:
2370 case MSR_IA32_DEBUGCTLMSR
:
2371 case MSR_IA32_LASTBRANCHFROMIP
:
2372 case MSR_IA32_LASTBRANCHTOIP
:
2373 case MSR_IA32_LASTINTFROMIP
:
2374 case MSR_IA32_LASTINTTOIP
:
2376 case MSR_K8_TSEG_ADDR
:
2377 case MSR_K8_TSEG_MASK
:
2379 case MSR_VM_HSAVE_PA
:
2380 case MSR_K8_INT_PENDING_MSG
:
2381 case MSR_AMD64_NB_CFG
:
2382 case MSR_FAM10H_MMIO_CONF_BASE
:
2383 case MSR_AMD64_BU_CFG2
:
2384 case MSR_IA32_PERF_CTL
:
2387 case MSR_K7_EVNTSEL0
... MSR_K7_EVNTSEL3
:
2388 case MSR_K7_PERFCTR0
... MSR_K7_PERFCTR3
:
2389 case MSR_P6_PERFCTR0
... MSR_P6_PERFCTR1
:
2390 case MSR_P6_EVNTSEL0
... MSR_P6_EVNTSEL1
:
2391 if (kvm_pmu_is_valid_msr(vcpu
, msr_info
->index
))
2392 return kvm_pmu_get_msr(vcpu
, msr_info
->index
, &msr_info
->data
);
2395 case MSR_IA32_UCODE_REV
:
2396 msr_info
->data
= 0x100000000ULL
;
2399 case 0x200 ... 0x2ff:
2400 return kvm_mtrr_get_msr(vcpu
, msr_info
->index
, &msr_info
->data
);
2401 case 0xcd: /* fsb frequency */
2405 * MSR_EBC_FREQUENCY_ID
2406 * Conservative value valid for even the basic CPU models.
2407 * Models 0,1: 000 in bits 23:21 indicating a bus speed of
2408 * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
2409 * and 266MHz for model 3, or 4. Set Core Clock
2410 * Frequency to System Bus Frequency Ratio to 1 (bits
2411 * 31:24) even though these are only valid for CPU
2412 * models > 2, however guests may end up dividing or
2413 * multiplying by zero otherwise.
2415 case MSR_EBC_FREQUENCY_ID
:
2416 msr_info
->data
= 1 << 24;
2418 case MSR_IA32_APICBASE
:
2419 msr_info
->data
= kvm_get_apic_base(vcpu
);
2421 case APIC_BASE_MSR
... APIC_BASE_MSR
+ 0x3ff:
2422 return kvm_x2apic_msr_read(vcpu
, msr_info
->index
, &msr_info
->data
);
2424 case MSR_IA32_TSCDEADLINE
:
2425 msr_info
->data
= kvm_get_lapic_tscdeadline_msr(vcpu
);
2427 case MSR_IA32_TSC_ADJUST
:
2428 msr_info
->data
= (u64
)vcpu
->arch
.ia32_tsc_adjust_msr
;
2430 case MSR_IA32_MISC_ENABLE
:
2431 msr_info
->data
= vcpu
->arch
.ia32_misc_enable_msr
;
2433 case MSR_IA32_SMBASE
:
2434 if (!msr_info
->host_initiated
)
2436 msr_info
->data
= vcpu
->arch
.smbase
;
2438 case MSR_IA32_PERF_STATUS
:
2439 /* TSC increment by tick */
2440 msr_info
->data
= 1000ULL;
2441 /* CPU multiplier */
2442 msr_info
->data
|= (((uint64_t)4ULL) << 40);
2445 msr_info
->data
= vcpu
->arch
.efer
;
2447 case MSR_KVM_WALL_CLOCK
:
2448 case MSR_KVM_WALL_CLOCK_NEW
:
2449 msr_info
->data
= vcpu
->kvm
->arch
.wall_clock
;
2451 case MSR_KVM_SYSTEM_TIME
:
2452 case MSR_KVM_SYSTEM_TIME_NEW
:
2453 msr_info
->data
= vcpu
->arch
.time
;
2455 case MSR_KVM_ASYNC_PF_EN
:
2456 msr_info
->data
= vcpu
->arch
.apf
.msr_val
;
2458 case MSR_KVM_STEAL_TIME
:
2459 msr_info
->data
= vcpu
->arch
.st
.msr_val
;
2461 case MSR_KVM_PV_EOI_EN
:
2462 msr_info
->data
= vcpu
->arch
.pv_eoi
.msr_val
;
2464 case MSR_IA32_P5_MC_ADDR
:
2465 case MSR_IA32_P5_MC_TYPE
:
2466 case MSR_IA32_MCG_CAP
:
2467 case MSR_IA32_MCG_CTL
:
2468 case MSR_IA32_MCG_STATUS
:
2469 case MSR_IA32_MC0_CTL
... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS
) - 1:
2470 return get_msr_mce(vcpu
, msr_info
->index
, &msr_info
->data
);
2471 case MSR_K7_CLK_CTL
:
2473 * Provide expected ramp-up count for K7. All other
2474 * are set to zero, indicating minimum divisors for
2477 * This prevents guest kernels on AMD host with CPU
2478 * type 6, model 8 and higher from exploding due to
2479 * the rdmsr failing.
2481 msr_info
->data
= 0x20000000;
2483 case HV_X64_MSR_GUEST_OS_ID
... HV_X64_MSR_SINT15
:
2484 case HV_X64_MSR_CRASH_P0
... HV_X64_MSR_CRASH_P4
:
2485 case HV_X64_MSR_CRASH_CTL
:
2486 case HV_X64_MSR_STIMER0_CONFIG
... HV_X64_MSR_STIMER3_COUNT
:
2487 return kvm_hv_get_msr_common(vcpu
,
2488 msr_info
->index
, &msr_info
->data
);
2490 case MSR_IA32_BBL_CR_CTL3
:
2491 /* This legacy MSR exists but isn't fully documented in current
2492 * silicon. It is however accessed by winxp in very narrow
2493 * scenarios where it sets bit #19, itself documented as
2494 * a "reserved" bit. Best effort attempt to source coherent
2495 * read data here should the balance of the register be
2496 * interpreted by the guest:
2498 * L2 cache control register 3: 64GB range, 256KB size,
2499 * enabled, latency 0x1, configured
2501 msr_info
->data
= 0xbe702111;
2503 case MSR_AMD64_OSVW_ID_LENGTH
:
2504 if (!guest_cpuid_has_osvw(vcpu
))
2506 msr_info
->data
= vcpu
->arch
.osvw
.length
;
2508 case MSR_AMD64_OSVW_STATUS
:
2509 if (!guest_cpuid_has_osvw(vcpu
))
2511 msr_info
->data
= vcpu
->arch
.osvw
.status
;
2514 if (kvm_pmu_is_valid_msr(vcpu
, msr_info
->index
))
2515 return kvm_pmu_get_msr(vcpu
, msr_info
->index
, &msr_info
->data
);
2517 vcpu_unimpl(vcpu
, "unhandled rdmsr: 0x%x\n", msr_info
->index
);
2520 vcpu_unimpl(vcpu
, "ignored rdmsr: 0x%x\n", msr_info
->index
);
2527 EXPORT_SYMBOL_GPL(kvm_get_msr_common
);
2530 * Read or write a bunch of msrs. All parameters are kernel addresses.
2532 * @return number of msrs set successfully.
2534 static int __msr_io(struct kvm_vcpu
*vcpu
, struct kvm_msrs
*msrs
,
2535 struct kvm_msr_entry
*entries
,
2536 int (*do_msr
)(struct kvm_vcpu
*vcpu
,
2537 unsigned index
, u64
*data
))
2541 idx
= srcu_read_lock(&vcpu
->kvm
->srcu
);
2542 for (i
= 0; i
< msrs
->nmsrs
; ++i
)
2543 if (do_msr(vcpu
, entries
[i
].index
, &entries
[i
].data
))
2545 srcu_read_unlock(&vcpu
->kvm
->srcu
, idx
);
2551 * Read or write a bunch of msrs. Parameters are user addresses.
2553 * @return number of msrs set successfully.
2555 static int msr_io(struct kvm_vcpu
*vcpu
, struct kvm_msrs __user
*user_msrs
,
2556 int (*do_msr
)(struct kvm_vcpu
*vcpu
,
2557 unsigned index
, u64
*data
),
2560 struct kvm_msrs msrs
;
2561 struct kvm_msr_entry
*entries
;
2566 if (copy_from_user(&msrs
, user_msrs
, sizeof msrs
))
2570 if (msrs
.nmsrs
>= MAX_IO_MSRS
)
2573 size
= sizeof(struct kvm_msr_entry
) * msrs
.nmsrs
;
2574 entries
= memdup_user(user_msrs
->entries
, size
);
2575 if (IS_ERR(entries
)) {
2576 r
= PTR_ERR(entries
);
2580 r
= n
= __msr_io(vcpu
, &msrs
, entries
, do_msr
);
2585 if (writeback
&& copy_to_user(user_msrs
->entries
, entries
, size
))
2596 int kvm_vm_ioctl_check_extension(struct kvm
*kvm
, long ext
)
2601 case KVM_CAP_IRQCHIP
:
2603 case KVM_CAP_MMU_SHADOW_CACHE_CONTROL
:
2604 case KVM_CAP_SET_TSS_ADDR
:
2605 case KVM_CAP_EXT_CPUID
:
2606 case KVM_CAP_EXT_EMUL_CPUID
:
2607 case KVM_CAP_CLOCKSOURCE
:
2609 case KVM_CAP_NOP_IO_DELAY
:
2610 case KVM_CAP_MP_STATE
:
2611 case KVM_CAP_SYNC_MMU
:
2612 case KVM_CAP_USER_NMI
:
2613 case KVM_CAP_REINJECT_CONTROL
:
2614 case KVM_CAP_IRQ_INJECT_STATUS
:
2615 case KVM_CAP_IOEVENTFD
:
2616 case KVM_CAP_IOEVENTFD_NO_LENGTH
:
2618 case KVM_CAP_PIT_STATE2
:
2619 case KVM_CAP_SET_IDENTITY_MAP_ADDR
:
2620 case KVM_CAP_XEN_HVM
:
2621 case KVM_CAP_VCPU_EVENTS
:
2622 case KVM_CAP_HYPERV
:
2623 case KVM_CAP_HYPERV_VAPIC
:
2624 case KVM_CAP_HYPERV_SPIN
:
2625 case KVM_CAP_HYPERV_SYNIC
:
2626 case KVM_CAP_PCI_SEGMENT
:
2627 case KVM_CAP_DEBUGREGS
:
2628 case KVM_CAP_X86_ROBUST_SINGLESTEP
:
2630 case KVM_CAP_ASYNC_PF
:
2631 case KVM_CAP_GET_TSC_KHZ
:
2632 case KVM_CAP_KVMCLOCK_CTRL
:
2633 case KVM_CAP_READONLY_MEM
:
2634 case KVM_CAP_HYPERV_TIME
:
2635 case KVM_CAP_IOAPIC_POLARITY_IGNORED
:
2636 case KVM_CAP_TSC_DEADLINE_TIMER
:
2637 case KVM_CAP_ENABLE_CAP_VM
:
2638 case KVM_CAP_DISABLE_QUIRKS
:
2639 case KVM_CAP_SET_BOOT_CPU_ID
:
2640 case KVM_CAP_SPLIT_IRQCHIP
:
2641 #ifdef CONFIG_KVM_DEVICE_ASSIGNMENT
2642 case KVM_CAP_ASSIGN_DEV_IRQ
:
2643 case KVM_CAP_PCI_2_3
:
2647 case KVM_CAP_ADJUST_CLOCK
:
2648 r
= KVM_CLOCK_TSC_STABLE
;
2650 case KVM_CAP_X86_SMM
:
2651 /* SMBASE is usually relocated above 1M on modern chipsets,
2652 * and SMM handlers might indeed rely on 4G segment limits,
2653 * so do not report SMM to be available if real mode is
2654 * emulated via vm86 mode. Still, do not go to great lengths
2655 * to avoid userspace's usage of the feature, because it is a
2656 * fringe case that is not enabled except via specific settings
2657 * of the module parameters.
2659 r
= kvm_x86_ops
->cpu_has_high_real_mode_segbase();
2661 case KVM_CAP_COALESCED_MMIO
:
2662 r
= KVM_COALESCED_MMIO_PAGE_OFFSET
;
2665 r
= !kvm_x86_ops
->cpu_has_accelerated_tpr();
2667 case KVM_CAP_NR_VCPUS
:
2668 r
= KVM_SOFT_MAX_VCPUS
;
2670 case KVM_CAP_MAX_VCPUS
:
2673 case KVM_CAP_NR_MEMSLOTS
:
2674 r
= KVM_USER_MEM_SLOTS
;
2676 case KVM_CAP_PV_MMU
: /* obsolete */
2679 #ifdef CONFIG_KVM_DEVICE_ASSIGNMENT
2681 r
= iommu_present(&pci_bus_type
);
2685 r
= KVM_MAX_MCE_BANKS
;
2688 r
= boot_cpu_has(X86_FEATURE_XSAVE
);
2690 case KVM_CAP_TSC_CONTROL
:
2691 r
= kvm_has_tsc_control
;
2693 case KVM_CAP_X2APIC_API
:
2694 r
= KVM_X2APIC_API_VALID_FLAGS
;
2704 long kvm_arch_dev_ioctl(struct file
*filp
,
2705 unsigned int ioctl
, unsigned long arg
)
2707 void __user
*argp
= (void __user
*)arg
;
2711 case KVM_GET_MSR_INDEX_LIST
: {
2712 struct kvm_msr_list __user
*user_msr_list
= argp
;
2713 struct kvm_msr_list msr_list
;
2717 if (copy_from_user(&msr_list
, user_msr_list
, sizeof msr_list
))
2720 msr_list
.nmsrs
= num_msrs_to_save
+ num_emulated_msrs
;
2721 if (copy_to_user(user_msr_list
, &msr_list
, sizeof msr_list
))
2724 if (n
< msr_list
.nmsrs
)
2727 if (copy_to_user(user_msr_list
->indices
, &msrs_to_save
,
2728 num_msrs_to_save
* sizeof(u32
)))
2730 if (copy_to_user(user_msr_list
->indices
+ num_msrs_to_save
,
2732 num_emulated_msrs
* sizeof(u32
)))
2737 case KVM_GET_SUPPORTED_CPUID
:
2738 case KVM_GET_EMULATED_CPUID
: {
2739 struct kvm_cpuid2 __user
*cpuid_arg
= argp
;
2740 struct kvm_cpuid2 cpuid
;
2743 if (copy_from_user(&cpuid
, cpuid_arg
, sizeof cpuid
))
2746 r
= kvm_dev_ioctl_get_cpuid(&cpuid
, cpuid_arg
->entries
,
2752 if (copy_to_user(cpuid_arg
, &cpuid
, sizeof cpuid
))
2757 case KVM_X86_GET_MCE_CAP_SUPPORTED
: {
2759 if (copy_to_user(argp
, &kvm_mce_cap_supported
,
2760 sizeof(kvm_mce_cap_supported
)))
2772 static void wbinvd_ipi(void *garbage
)
2777 static bool need_emulate_wbinvd(struct kvm_vcpu
*vcpu
)
2779 return kvm_arch_has_noncoherent_dma(vcpu
->kvm
);
2782 static inline void kvm_migrate_timers(struct kvm_vcpu
*vcpu
)
2784 set_bit(KVM_REQ_MIGRATE_TIMER
, &vcpu
->requests
);
2787 void kvm_arch_vcpu_load(struct kvm_vcpu
*vcpu
, int cpu
)
2789 /* Address WBINVD may be executed by guest */
2790 if (need_emulate_wbinvd(vcpu
)) {
2791 if (kvm_x86_ops
->has_wbinvd_exit())
2792 cpumask_set_cpu(cpu
, vcpu
->arch
.wbinvd_dirty_mask
);
2793 else if (vcpu
->cpu
!= -1 && vcpu
->cpu
!= cpu
)
2794 smp_call_function_single(vcpu
->cpu
,
2795 wbinvd_ipi
, NULL
, 1);
2798 kvm_x86_ops
->vcpu_load(vcpu
, cpu
);
2800 /* Apply any externally detected TSC adjustments (due to suspend) */
2801 if (unlikely(vcpu
->arch
.tsc_offset_adjustment
)) {
2802 adjust_tsc_offset_host(vcpu
, vcpu
->arch
.tsc_offset_adjustment
);
2803 vcpu
->arch
.tsc_offset_adjustment
= 0;
2804 kvm_make_request(KVM_REQ_CLOCK_UPDATE
, vcpu
);
2807 if (unlikely(vcpu
->cpu
!= cpu
) || check_tsc_unstable()) {
2808 s64 tsc_delta
= !vcpu
->arch
.last_host_tsc
? 0 :
2809 rdtsc() - vcpu
->arch
.last_host_tsc
;
2811 mark_tsc_unstable("KVM discovered backwards TSC");
2813 if (check_tsc_unstable()) {
2814 u64 offset
= kvm_compute_tsc_offset(vcpu
,
2815 vcpu
->arch
.last_guest_tsc
);
2816 kvm_vcpu_write_tsc_offset(vcpu
, offset
);
2817 vcpu
->arch
.tsc_catchup
= 1;
2819 if (kvm_lapic_hv_timer_in_use(vcpu
) &&
2820 kvm_x86_ops
->set_hv_timer(vcpu
,
2821 kvm_get_lapic_tscdeadline_msr(vcpu
)))
2822 kvm_lapic_switch_to_sw_timer(vcpu
);
2824 * On a host with synchronized TSC, there is no need to update
2825 * kvmclock on vcpu->cpu migration
2827 if (!vcpu
->kvm
->arch
.use_master_clock
|| vcpu
->cpu
== -1)
2828 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE
, vcpu
);
2829 if (vcpu
->cpu
!= cpu
)
2830 kvm_migrate_timers(vcpu
);
2834 kvm_make_request(KVM_REQ_STEAL_UPDATE
, vcpu
);
2837 void kvm_arch_vcpu_put(struct kvm_vcpu
*vcpu
)
2839 kvm_x86_ops
->vcpu_put(vcpu
);
2840 kvm_put_guest_fpu(vcpu
);
2841 vcpu
->arch
.last_host_tsc
= rdtsc();
2844 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu
*vcpu
,
2845 struct kvm_lapic_state
*s
)
2847 if (vcpu
->arch
.apicv_active
)
2848 kvm_x86_ops
->sync_pir_to_irr(vcpu
);
2850 return kvm_apic_get_state(vcpu
, s
);
2853 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu
*vcpu
,
2854 struct kvm_lapic_state
*s
)
2858 r
= kvm_apic_set_state(vcpu
, s
);
2861 update_cr8_intercept(vcpu
);
2866 static int kvm_cpu_accept_dm_intr(struct kvm_vcpu
*vcpu
)
2868 return (!lapic_in_kernel(vcpu
) ||
2869 kvm_apic_accept_pic_intr(vcpu
));
2873 * if userspace requested an interrupt window, check that the
2874 * interrupt window is open.
2876 * No need to exit to userspace if we already have an interrupt queued.
2878 static int kvm_vcpu_ready_for_interrupt_injection(struct kvm_vcpu
*vcpu
)
2880 return kvm_arch_interrupt_allowed(vcpu
) &&
2881 !kvm_cpu_has_interrupt(vcpu
) &&
2882 !kvm_event_needs_reinjection(vcpu
) &&
2883 kvm_cpu_accept_dm_intr(vcpu
);
2886 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu
*vcpu
,
2887 struct kvm_interrupt
*irq
)
2889 if (irq
->irq
>= KVM_NR_INTERRUPTS
)
2892 if (!irqchip_in_kernel(vcpu
->kvm
)) {
2893 kvm_queue_interrupt(vcpu
, irq
->irq
, false);
2894 kvm_make_request(KVM_REQ_EVENT
, vcpu
);
2899 * With in-kernel LAPIC, we only use this to inject EXTINT, so
2900 * fail for in-kernel 8259.
2902 if (pic_in_kernel(vcpu
->kvm
))
2905 if (vcpu
->arch
.pending_external_vector
!= -1)
2908 vcpu
->arch
.pending_external_vector
= irq
->irq
;
2909 kvm_make_request(KVM_REQ_EVENT
, vcpu
);
2913 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu
*vcpu
)
2915 kvm_inject_nmi(vcpu
);
2920 static int kvm_vcpu_ioctl_smi(struct kvm_vcpu
*vcpu
)
2922 kvm_make_request(KVM_REQ_SMI
, vcpu
);
2927 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu
*vcpu
,
2928 struct kvm_tpr_access_ctl
*tac
)
2932 vcpu
->arch
.tpr_access_reporting
= !!tac
->enabled
;
2936 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu
*vcpu
,
2940 unsigned bank_num
= mcg_cap
& 0xff, bank
;
2943 if (!bank_num
|| bank_num
>= KVM_MAX_MCE_BANKS
)
2945 if (mcg_cap
& ~(kvm_mce_cap_supported
| 0xff | 0xff0000))
2948 vcpu
->arch
.mcg_cap
= mcg_cap
;
2949 /* Init IA32_MCG_CTL to all 1s */
2950 if (mcg_cap
& MCG_CTL_P
)
2951 vcpu
->arch
.mcg_ctl
= ~(u64
)0;
2952 /* Init IA32_MCi_CTL to all 1s */
2953 for (bank
= 0; bank
< bank_num
; bank
++)
2954 vcpu
->arch
.mce_banks
[bank
*4] = ~(u64
)0;
2956 if (kvm_x86_ops
->setup_mce
)
2957 kvm_x86_ops
->setup_mce(vcpu
);
2962 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu
*vcpu
,
2963 struct kvm_x86_mce
*mce
)
2965 u64 mcg_cap
= vcpu
->arch
.mcg_cap
;
2966 unsigned bank_num
= mcg_cap
& 0xff;
2967 u64
*banks
= vcpu
->arch
.mce_banks
;
2969 if (mce
->bank
>= bank_num
|| !(mce
->status
& MCI_STATUS_VAL
))
2972 * if IA32_MCG_CTL is not all 1s, the uncorrected error
2973 * reporting is disabled
2975 if ((mce
->status
& MCI_STATUS_UC
) && (mcg_cap
& MCG_CTL_P
) &&
2976 vcpu
->arch
.mcg_ctl
!= ~(u64
)0)
2978 banks
+= 4 * mce
->bank
;
2980 * if IA32_MCi_CTL is not all 1s, the uncorrected error
2981 * reporting is disabled for the bank
2983 if ((mce
->status
& MCI_STATUS_UC
) && banks
[0] != ~(u64
)0)
2985 if (mce
->status
& MCI_STATUS_UC
) {
2986 if ((vcpu
->arch
.mcg_status
& MCG_STATUS_MCIP
) ||
2987 !kvm_read_cr4_bits(vcpu
, X86_CR4_MCE
)) {
2988 kvm_make_request(KVM_REQ_TRIPLE_FAULT
, vcpu
);
2991 if (banks
[1] & MCI_STATUS_VAL
)
2992 mce
->status
|= MCI_STATUS_OVER
;
2993 banks
[2] = mce
->addr
;
2994 banks
[3] = mce
->misc
;
2995 vcpu
->arch
.mcg_status
= mce
->mcg_status
;
2996 banks
[1] = mce
->status
;
2997 kvm_queue_exception(vcpu
, MC_VECTOR
);
2998 } else if (!(banks
[1] & MCI_STATUS_VAL
)
2999 || !(banks
[1] & MCI_STATUS_UC
)) {
3000 if (banks
[1] & MCI_STATUS_VAL
)
3001 mce
->status
|= MCI_STATUS_OVER
;
3002 banks
[2] = mce
->addr
;
3003 banks
[3] = mce
->misc
;
3004 banks
[1] = mce
->status
;
3006 banks
[1] |= MCI_STATUS_OVER
;
3010 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu
*vcpu
,
3011 struct kvm_vcpu_events
*events
)
3014 events
->exception
.injected
=
3015 vcpu
->arch
.exception
.pending
&&
3016 !kvm_exception_is_soft(vcpu
->arch
.exception
.nr
);
3017 events
->exception
.nr
= vcpu
->arch
.exception
.nr
;
3018 events
->exception
.has_error_code
= vcpu
->arch
.exception
.has_error_code
;
3019 events
->exception
.pad
= 0;
3020 events
->exception
.error_code
= vcpu
->arch
.exception
.error_code
;
3022 events
->interrupt
.injected
=
3023 vcpu
->arch
.interrupt
.pending
&& !vcpu
->arch
.interrupt
.soft
;
3024 events
->interrupt
.nr
= vcpu
->arch
.interrupt
.nr
;
3025 events
->interrupt
.soft
= 0;
3026 events
->interrupt
.shadow
= kvm_x86_ops
->get_interrupt_shadow(vcpu
);
3028 events
->nmi
.injected
= vcpu
->arch
.nmi_injected
;
3029 events
->nmi
.pending
= vcpu
->arch
.nmi_pending
!= 0;
3030 events
->nmi
.masked
= kvm_x86_ops
->get_nmi_mask(vcpu
);
3031 events
->nmi
.pad
= 0;
3033 events
->sipi_vector
= 0; /* never valid when reporting to user space */
3035 events
->smi
.smm
= is_smm(vcpu
);
3036 events
->smi
.pending
= vcpu
->arch
.smi_pending
;
3037 events
->smi
.smm_inside_nmi
=
3038 !!(vcpu
->arch
.hflags
& HF_SMM_INSIDE_NMI_MASK
);
3039 events
->smi
.latched_init
= kvm_lapic_latched_init(vcpu
);
3041 events
->flags
= (KVM_VCPUEVENT_VALID_NMI_PENDING
3042 | KVM_VCPUEVENT_VALID_SHADOW
3043 | KVM_VCPUEVENT_VALID_SMM
);
3044 memset(&events
->reserved
, 0, sizeof(events
->reserved
));
3047 static void kvm_set_hflags(struct kvm_vcpu
*vcpu
, unsigned emul_flags
);
3049 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu
*vcpu
,
3050 struct kvm_vcpu_events
*events
)
3052 if (events
->flags
& ~(KVM_VCPUEVENT_VALID_NMI_PENDING
3053 | KVM_VCPUEVENT_VALID_SIPI_VECTOR
3054 | KVM_VCPUEVENT_VALID_SHADOW
3055 | KVM_VCPUEVENT_VALID_SMM
))
3058 if (events
->exception
.injected
&&
3059 (events
->exception
.nr
> 31 || events
->exception
.nr
== NMI_VECTOR
))
3062 /* INITs are latched while in SMM */
3063 if (events
->flags
& KVM_VCPUEVENT_VALID_SMM
&&
3064 (events
->smi
.smm
|| events
->smi
.pending
) &&
3065 vcpu
->arch
.mp_state
== KVM_MP_STATE_INIT_RECEIVED
)
3069 vcpu
->arch
.exception
.pending
= events
->exception
.injected
;
3070 vcpu
->arch
.exception
.nr
= events
->exception
.nr
;
3071 vcpu
->arch
.exception
.has_error_code
= events
->exception
.has_error_code
;
3072 vcpu
->arch
.exception
.error_code
= events
->exception
.error_code
;
3074 vcpu
->arch
.interrupt
.pending
= events
->interrupt
.injected
;
3075 vcpu
->arch
.interrupt
.nr
= events
->interrupt
.nr
;
3076 vcpu
->arch
.interrupt
.soft
= events
->interrupt
.soft
;
3077 if (events
->flags
& KVM_VCPUEVENT_VALID_SHADOW
)
3078 kvm_x86_ops
->set_interrupt_shadow(vcpu
,
3079 events
->interrupt
.shadow
);
3081 vcpu
->arch
.nmi_injected
= events
->nmi
.injected
;
3082 if (events
->flags
& KVM_VCPUEVENT_VALID_NMI_PENDING
)
3083 vcpu
->arch
.nmi_pending
= events
->nmi
.pending
;
3084 kvm_x86_ops
->set_nmi_mask(vcpu
, events
->nmi
.masked
);
3086 if (events
->flags
& KVM_VCPUEVENT_VALID_SIPI_VECTOR
&&
3087 lapic_in_kernel(vcpu
))
3088 vcpu
->arch
.apic
->sipi_vector
= events
->sipi_vector
;
3090 if (events
->flags
& KVM_VCPUEVENT_VALID_SMM
) {
3091 u32 hflags
= vcpu
->arch
.hflags
;
3092 if (events
->smi
.smm
)
3093 hflags
|= HF_SMM_MASK
;
3095 hflags
&= ~HF_SMM_MASK
;
3096 kvm_set_hflags(vcpu
, hflags
);
3098 vcpu
->arch
.smi_pending
= events
->smi
.pending
;
3099 if (events
->smi
.smm_inside_nmi
)
3100 vcpu
->arch
.hflags
|= HF_SMM_INSIDE_NMI_MASK
;
3102 vcpu
->arch
.hflags
&= ~HF_SMM_INSIDE_NMI_MASK
;
3103 if (lapic_in_kernel(vcpu
)) {
3104 if (events
->smi
.latched_init
)
3105 set_bit(KVM_APIC_INIT
, &vcpu
->arch
.apic
->pending_events
);
3107 clear_bit(KVM_APIC_INIT
, &vcpu
->arch
.apic
->pending_events
);
3111 kvm_make_request(KVM_REQ_EVENT
, vcpu
);
3116 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu
*vcpu
,
3117 struct kvm_debugregs
*dbgregs
)
3121 memcpy(dbgregs
->db
, vcpu
->arch
.db
, sizeof(vcpu
->arch
.db
));
3122 kvm_get_dr(vcpu
, 6, &val
);
3124 dbgregs
->dr7
= vcpu
->arch
.dr7
;
3126 memset(&dbgregs
->reserved
, 0, sizeof(dbgregs
->reserved
));
3129 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu
*vcpu
,
3130 struct kvm_debugregs
*dbgregs
)
3135 if (dbgregs
->dr6
& ~0xffffffffull
)
3137 if (dbgregs
->dr7
& ~0xffffffffull
)
3140 memcpy(vcpu
->arch
.db
, dbgregs
->db
, sizeof(vcpu
->arch
.db
));
3141 kvm_update_dr0123(vcpu
);
3142 vcpu
->arch
.dr6
= dbgregs
->dr6
;
3143 kvm_update_dr6(vcpu
);
3144 vcpu
->arch
.dr7
= dbgregs
->dr7
;
3145 kvm_update_dr7(vcpu
);
3150 #define XSTATE_COMPACTION_ENABLED (1ULL << 63)
3152 static void fill_xsave(u8
*dest
, struct kvm_vcpu
*vcpu
)
3154 struct xregs_state
*xsave
= &vcpu
->arch
.guest_fpu
.state
.xsave
;
3155 u64 xstate_bv
= xsave
->header
.xfeatures
;
3159 * Copy legacy XSAVE area, to avoid complications with CPUID
3160 * leaves 0 and 1 in the loop below.
3162 memcpy(dest
, xsave
, XSAVE_HDR_OFFSET
);
3165 xstate_bv
&= vcpu
->arch
.guest_supported_xcr0
| XFEATURE_MASK_FPSSE
;
3166 *(u64
*)(dest
+ XSAVE_HDR_OFFSET
) = xstate_bv
;
3169 * Copy each region from the possibly compacted offset to the
3170 * non-compacted offset.
3172 valid
= xstate_bv
& ~XFEATURE_MASK_FPSSE
;
3174 u64 feature
= valid
& -valid
;
3175 int index
= fls64(feature
) - 1;
3176 void *src
= get_xsave_addr(xsave
, feature
);
3179 u32 size
, offset
, ecx
, edx
;
3180 cpuid_count(XSTATE_CPUID
, index
,
3181 &size
, &offset
, &ecx
, &edx
);
3182 memcpy(dest
+ offset
, src
, size
);
3189 static void load_xsave(struct kvm_vcpu
*vcpu
, u8
*src
)
3191 struct xregs_state
*xsave
= &vcpu
->arch
.guest_fpu
.state
.xsave
;
3192 u64 xstate_bv
= *(u64
*)(src
+ XSAVE_HDR_OFFSET
);
3196 * Copy legacy XSAVE area, to avoid complications with CPUID
3197 * leaves 0 and 1 in the loop below.
3199 memcpy(xsave
, src
, XSAVE_HDR_OFFSET
);
3201 /* Set XSTATE_BV and possibly XCOMP_BV. */
3202 xsave
->header
.xfeatures
= xstate_bv
;
3203 if (boot_cpu_has(X86_FEATURE_XSAVES
))
3204 xsave
->header
.xcomp_bv
= host_xcr0
| XSTATE_COMPACTION_ENABLED
;
3207 * Copy each region from the non-compacted offset to the
3208 * possibly compacted offset.
3210 valid
= xstate_bv
& ~XFEATURE_MASK_FPSSE
;
3212 u64 feature
= valid
& -valid
;
3213 int index
= fls64(feature
) - 1;
3214 void *dest
= get_xsave_addr(xsave
, feature
);
3217 u32 size
, offset
, ecx
, edx
;
3218 cpuid_count(XSTATE_CPUID
, index
,
3219 &size
, &offset
, &ecx
, &edx
);
3220 memcpy(dest
, src
+ offset
, size
);
3227 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu
*vcpu
,
3228 struct kvm_xsave
*guest_xsave
)
3230 if (boot_cpu_has(X86_FEATURE_XSAVE
)) {
3231 memset(guest_xsave
, 0, sizeof(struct kvm_xsave
));
3232 fill_xsave((u8
*) guest_xsave
->region
, vcpu
);
3234 memcpy(guest_xsave
->region
,
3235 &vcpu
->arch
.guest_fpu
.state
.fxsave
,
3236 sizeof(struct fxregs_state
));
3237 *(u64
*)&guest_xsave
->region
[XSAVE_HDR_OFFSET
/ sizeof(u32
)] =
3238 XFEATURE_MASK_FPSSE
;
3242 #define XSAVE_MXCSR_OFFSET 24
3244 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu
*vcpu
,
3245 struct kvm_xsave
*guest_xsave
)
3248 *(u64
*)&guest_xsave
->region
[XSAVE_HDR_OFFSET
/ sizeof(u32
)];
3249 u32 mxcsr
= *(u32
*)&guest_xsave
->region
[XSAVE_MXCSR_OFFSET
/ sizeof(u32
)];
3251 if (boot_cpu_has(X86_FEATURE_XSAVE
)) {
3253 * Here we allow setting states that are not present in
3254 * CPUID leaf 0xD, index 0, EDX:EAX. This is for compatibility
3255 * with old userspace.
3257 if (xstate_bv
& ~kvm_supported_xcr0() ||
3258 mxcsr
& ~mxcsr_feature_mask
)
3260 load_xsave(vcpu
, (u8
*)guest_xsave
->region
);
3262 if (xstate_bv
& ~XFEATURE_MASK_FPSSE
||
3263 mxcsr
& ~mxcsr_feature_mask
)
3265 memcpy(&vcpu
->arch
.guest_fpu
.state
.fxsave
,
3266 guest_xsave
->region
, sizeof(struct fxregs_state
));
3271 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu
*vcpu
,
3272 struct kvm_xcrs
*guest_xcrs
)
3274 if (!boot_cpu_has(X86_FEATURE_XSAVE
)) {
3275 guest_xcrs
->nr_xcrs
= 0;
3279 guest_xcrs
->nr_xcrs
= 1;
3280 guest_xcrs
->flags
= 0;
3281 guest_xcrs
->xcrs
[0].xcr
= XCR_XFEATURE_ENABLED_MASK
;
3282 guest_xcrs
->xcrs
[0].value
= vcpu
->arch
.xcr0
;
3285 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu
*vcpu
,
3286 struct kvm_xcrs
*guest_xcrs
)
3290 if (!boot_cpu_has(X86_FEATURE_XSAVE
))
3293 if (guest_xcrs
->nr_xcrs
> KVM_MAX_XCRS
|| guest_xcrs
->flags
)
3296 for (i
= 0; i
< guest_xcrs
->nr_xcrs
; i
++)
3297 /* Only support XCR0 currently */
3298 if (guest_xcrs
->xcrs
[i
].xcr
== XCR_XFEATURE_ENABLED_MASK
) {
3299 r
= __kvm_set_xcr(vcpu
, XCR_XFEATURE_ENABLED_MASK
,
3300 guest_xcrs
->xcrs
[i
].value
);
3309 * kvm_set_guest_paused() indicates to the guest kernel that it has been
3310 * stopped by the hypervisor. This function will be called from the host only.
3311 * EINVAL is returned when the host attempts to set the flag for a guest that
3312 * does not support pv clocks.
3314 static int kvm_set_guest_paused(struct kvm_vcpu
*vcpu
)
3316 if (!vcpu
->arch
.pv_time_enabled
)
3318 vcpu
->arch
.pvclock_set_guest_stopped_request
= true;
3319 kvm_make_request(KVM_REQ_CLOCK_UPDATE
, vcpu
);
3323 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu
*vcpu
,
3324 struct kvm_enable_cap
*cap
)
3330 case KVM_CAP_HYPERV_SYNIC
:
3331 if (!irqchip_in_kernel(vcpu
->kvm
))
3333 return kvm_hv_activate_synic(vcpu
);
3339 long kvm_arch_vcpu_ioctl(struct file
*filp
,
3340 unsigned int ioctl
, unsigned long arg
)
3342 struct kvm_vcpu
*vcpu
= filp
->private_data
;
3343 void __user
*argp
= (void __user
*)arg
;
3346 struct kvm_lapic_state
*lapic
;
3347 struct kvm_xsave
*xsave
;
3348 struct kvm_xcrs
*xcrs
;
3354 case KVM_GET_LAPIC
: {
3356 if (!lapic_in_kernel(vcpu
))
3358 u
.lapic
= kzalloc(sizeof(struct kvm_lapic_state
), GFP_KERNEL
);
3363 r
= kvm_vcpu_ioctl_get_lapic(vcpu
, u
.lapic
);
3367 if (copy_to_user(argp
, u
.lapic
, sizeof(struct kvm_lapic_state
)))
3372 case KVM_SET_LAPIC
: {
3374 if (!lapic_in_kernel(vcpu
))
3376 u
.lapic
= memdup_user(argp
, sizeof(*u
.lapic
));
3377 if (IS_ERR(u
.lapic
))
3378 return PTR_ERR(u
.lapic
);
3380 r
= kvm_vcpu_ioctl_set_lapic(vcpu
, u
.lapic
);
3383 case KVM_INTERRUPT
: {
3384 struct kvm_interrupt irq
;
3387 if (copy_from_user(&irq
, argp
, sizeof irq
))
3389 r
= kvm_vcpu_ioctl_interrupt(vcpu
, &irq
);
3393 r
= kvm_vcpu_ioctl_nmi(vcpu
);
3397 r
= kvm_vcpu_ioctl_smi(vcpu
);
3400 case KVM_SET_CPUID
: {
3401 struct kvm_cpuid __user
*cpuid_arg
= argp
;
3402 struct kvm_cpuid cpuid
;
3405 if (copy_from_user(&cpuid
, cpuid_arg
, sizeof cpuid
))
3407 r
= kvm_vcpu_ioctl_set_cpuid(vcpu
, &cpuid
, cpuid_arg
->entries
);
3410 case KVM_SET_CPUID2
: {
3411 struct kvm_cpuid2 __user
*cpuid_arg
= argp
;
3412 struct kvm_cpuid2 cpuid
;
3415 if (copy_from_user(&cpuid
, cpuid_arg
, sizeof cpuid
))
3417 r
= kvm_vcpu_ioctl_set_cpuid2(vcpu
, &cpuid
,
3418 cpuid_arg
->entries
);
3421 case KVM_GET_CPUID2
: {
3422 struct kvm_cpuid2 __user
*cpuid_arg
= argp
;
3423 struct kvm_cpuid2 cpuid
;
3426 if (copy_from_user(&cpuid
, cpuid_arg
, sizeof cpuid
))
3428 r
= kvm_vcpu_ioctl_get_cpuid2(vcpu
, &cpuid
,
3429 cpuid_arg
->entries
);
3433 if (copy_to_user(cpuid_arg
, &cpuid
, sizeof cpuid
))
3439 r
= msr_io(vcpu
, argp
, do_get_msr
, 1);
3442 r
= msr_io(vcpu
, argp
, do_set_msr
, 0);
3444 case KVM_TPR_ACCESS_REPORTING
: {
3445 struct kvm_tpr_access_ctl tac
;
3448 if (copy_from_user(&tac
, argp
, sizeof tac
))
3450 r
= vcpu_ioctl_tpr_access_reporting(vcpu
, &tac
);
3454 if (copy_to_user(argp
, &tac
, sizeof tac
))
3459 case KVM_SET_VAPIC_ADDR
: {
3460 struct kvm_vapic_addr va
;
3464 if (!lapic_in_kernel(vcpu
))
3467 if (copy_from_user(&va
, argp
, sizeof va
))
3469 idx
= srcu_read_lock(&vcpu
->kvm
->srcu
);
3470 r
= kvm_lapic_set_vapic_addr(vcpu
, va
.vapic_addr
);
3471 srcu_read_unlock(&vcpu
->kvm
->srcu
, idx
);
3474 case KVM_X86_SETUP_MCE
: {
3478 if (copy_from_user(&mcg_cap
, argp
, sizeof mcg_cap
))
3480 r
= kvm_vcpu_ioctl_x86_setup_mce(vcpu
, mcg_cap
);
3483 case KVM_X86_SET_MCE
: {
3484 struct kvm_x86_mce mce
;
3487 if (copy_from_user(&mce
, argp
, sizeof mce
))
3489 r
= kvm_vcpu_ioctl_x86_set_mce(vcpu
, &mce
);
3492 case KVM_GET_VCPU_EVENTS
: {
3493 struct kvm_vcpu_events events
;
3495 kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu
, &events
);
3498 if (copy_to_user(argp
, &events
, sizeof(struct kvm_vcpu_events
)))
3503 case KVM_SET_VCPU_EVENTS
: {
3504 struct kvm_vcpu_events events
;
3507 if (copy_from_user(&events
, argp
, sizeof(struct kvm_vcpu_events
)))
3510 r
= kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu
, &events
);
3513 case KVM_GET_DEBUGREGS
: {
3514 struct kvm_debugregs dbgregs
;
3516 kvm_vcpu_ioctl_x86_get_debugregs(vcpu
, &dbgregs
);
3519 if (copy_to_user(argp
, &dbgregs
,
3520 sizeof(struct kvm_debugregs
)))
3525 case KVM_SET_DEBUGREGS
: {
3526 struct kvm_debugregs dbgregs
;
3529 if (copy_from_user(&dbgregs
, argp
,
3530 sizeof(struct kvm_debugregs
)))
3533 r
= kvm_vcpu_ioctl_x86_set_debugregs(vcpu
, &dbgregs
);
3536 case KVM_GET_XSAVE
: {
3537 u
.xsave
= kzalloc(sizeof(struct kvm_xsave
), GFP_KERNEL
);
3542 kvm_vcpu_ioctl_x86_get_xsave(vcpu
, u
.xsave
);
3545 if (copy_to_user(argp
, u
.xsave
, sizeof(struct kvm_xsave
)))
3550 case KVM_SET_XSAVE
: {
3551 u
.xsave
= memdup_user(argp
, sizeof(*u
.xsave
));
3552 if (IS_ERR(u
.xsave
))
3553 return PTR_ERR(u
.xsave
);
3555 r
= kvm_vcpu_ioctl_x86_set_xsave(vcpu
, u
.xsave
);
3558 case KVM_GET_XCRS
: {
3559 u
.xcrs
= kzalloc(sizeof(struct kvm_xcrs
), GFP_KERNEL
);
3564 kvm_vcpu_ioctl_x86_get_xcrs(vcpu
, u
.xcrs
);
3567 if (copy_to_user(argp
, u
.xcrs
,
3568 sizeof(struct kvm_xcrs
)))
3573 case KVM_SET_XCRS
: {
3574 u
.xcrs
= memdup_user(argp
, sizeof(*u
.xcrs
));
3576 return PTR_ERR(u
.xcrs
);
3578 r
= kvm_vcpu_ioctl_x86_set_xcrs(vcpu
, u
.xcrs
);
3581 case KVM_SET_TSC_KHZ
: {
3585 user_tsc_khz
= (u32
)arg
;
3587 if (user_tsc_khz
>= kvm_max_guest_tsc_khz
)
3590 if (user_tsc_khz
== 0)
3591 user_tsc_khz
= tsc_khz
;
3593 if (!kvm_set_tsc_khz(vcpu
, user_tsc_khz
))
3598 case KVM_GET_TSC_KHZ
: {
3599 r
= vcpu
->arch
.virtual_tsc_khz
;
3602 case KVM_KVMCLOCK_CTRL
: {
3603 r
= kvm_set_guest_paused(vcpu
);
3606 case KVM_ENABLE_CAP
: {
3607 struct kvm_enable_cap cap
;
3610 if (copy_from_user(&cap
, argp
, sizeof(cap
)))
3612 r
= kvm_vcpu_ioctl_enable_cap(vcpu
, &cap
);
3623 int kvm_arch_vcpu_fault(struct kvm_vcpu
*vcpu
, struct vm_fault
*vmf
)
3625 return VM_FAULT_SIGBUS
;
3628 static int kvm_vm_ioctl_set_tss_addr(struct kvm
*kvm
, unsigned long addr
)
3632 if (addr
> (unsigned int)(-3 * PAGE_SIZE
))
3634 ret
= kvm_x86_ops
->set_tss_addr(kvm
, addr
);
3638 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm
*kvm
,
3641 kvm
->arch
.ept_identity_map_addr
= ident_addr
;
3645 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm
*kvm
,
3646 u32 kvm_nr_mmu_pages
)
3648 if (kvm_nr_mmu_pages
< KVM_MIN_ALLOC_MMU_PAGES
)
3651 mutex_lock(&kvm
->slots_lock
);
3653 kvm_mmu_change_mmu_pages(kvm
, kvm_nr_mmu_pages
);
3654 kvm
->arch
.n_requested_mmu_pages
= kvm_nr_mmu_pages
;
3656 mutex_unlock(&kvm
->slots_lock
);
3660 static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm
*kvm
)
3662 return kvm
->arch
.n_max_mmu_pages
;
3665 static int kvm_vm_ioctl_get_irqchip(struct kvm
*kvm
, struct kvm_irqchip
*chip
)
3670 switch (chip
->chip_id
) {
3671 case KVM_IRQCHIP_PIC_MASTER
:
3672 memcpy(&chip
->chip
.pic
,
3673 &pic_irqchip(kvm
)->pics
[0],
3674 sizeof(struct kvm_pic_state
));
3676 case KVM_IRQCHIP_PIC_SLAVE
:
3677 memcpy(&chip
->chip
.pic
,
3678 &pic_irqchip(kvm
)->pics
[1],
3679 sizeof(struct kvm_pic_state
));
3681 case KVM_IRQCHIP_IOAPIC
:
3682 r
= kvm_get_ioapic(kvm
, &chip
->chip
.ioapic
);
3691 static int kvm_vm_ioctl_set_irqchip(struct kvm
*kvm
, struct kvm_irqchip
*chip
)
3696 switch (chip
->chip_id
) {
3697 case KVM_IRQCHIP_PIC_MASTER
:
3698 spin_lock(&pic_irqchip(kvm
)->lock
);
3699 memcpy(&pic_irqchip(kvm
)->pics
[0],
3701 sizeof(struct kvm_pic_state
));
3702 spin_unlock(&pic_irqchip(kvm
)->lock
);
3704 case KVM_IRQCHIP_PIC_SLAVE
:
3705 spin_lock(&pic_irqchip(kvm
)->lock
);
3706 memcpy(&pic_irqchip(kvm
)->pics
[1],
3708 sizeof(struct kvm_pic_state
));
3709 spin_unlock(&pic_irqchip(kvm
)->lock
);
3711 case KVM_IRQCHIP_IOAPIC
:
3712 r
= kvm_set_ioapic(kvm
, &chip
->chip
.ioapic
);
3718 kvm_pic_update_irq(pic_irqchip(kvm
));
3722 static int kvm_vm_ioctl_get_pit(struct kvm
*kvm
, struct kvm_pit_state
*ps
)
3724 struct kvm_kpit_state
*kps
= &kvm
->arch
.vpit
->pit_state
;
3726 BUILD_BUG_ON(sizeof(*ps
) != sizeof(kps
->channels
));
3728 mutex_lock(&kps
->lock
);
3729 memcpy(ps
, &kps
->channels
, sizeof(*ps
));
3730 mutex_unlock(&kps
->lock
);
3734 static int kvm_vm_ioctl_set_pit(struct kvm
*kvm
, struct kvm_pit_state
*ps
)
3737 struct kvm_pit
*pit
= kvm
->arch
.vpit
;
3739 mutex_lock(&pit
->pit_state
.lock
);
3740 memcpy(&pit
->pit_state
.channels
, ps
, sizeof(*ps
));
3741 for (i
= 0; i
< 3; i
++)
3742 kvm_pit_load_count(pit
, i
, ps
->channels
[i
].count
, 0);
3743 mutex_unlock(&pit
->pit_state
.lock
);
3747 static int kvm_vm_ioctl_get_pit2(struct kvm
*kvm
, struct kvm_pit_state2
*ps
)
3749 mutex_lock(&kvm
->arch
.vpit
->pit_state
.lock
);
3750 memcpy(ps
->channels
, &kvm
->arch
.vpit
->pit_state
.channels
,
3751 sizeof(ps
->channels
));
3752 ps
->flags
= kvm
->arch
.vpit
->pit_state
.flags
;
3753 mutex_unlock(&kvm
->arch
.vpit
->pit_state
.lock
);
3754 memset(&ps
->reserved
, 0, sizeof(ps
->reserved
));
3758 static int kvm_vm_ioctl_set_pit2(struct kvm
*kvm
, struct kvm_pit_state2
*ps
)
3762 u32 prev_legacy
, cur_legacy
;
3763 struct kvm_pit
*pit
= kvm
->arch
.vpit
;
3765 mutex_lock(&pit
->pit_state
.lock
);
3766 prev_legacy
= pit
->pit_state
.flags
& KVM_PIT_FLAGS_HPET_LEGACY
;
3767 cur_legacy
= ps
->flags
& KVM_PIT_FLAGS_HPET_LEGACY
;
3768 if (!prev_legacy
&& cur_legacy
)
3770 memcpy(&pit
->pit_state
.channels
, &ps
->channels
,
3771 sizeof(pit
->pit_state
.channels
));
3772 pit
->pit_state
.flags
= ps
->flags
;
3773 for (i
= 0; i
< 3; i
++)
3774 kvm_pit_load_count(pit
, i
, pit
->pit_state
.channels
[i
].count
,
3776 mutex_unlock(&pit
->pit_state
.lock
);
3780 static int kvm_vm_ioctl_reinject(struct kvm
*kvm
,
3781 struct kvm_reinject_control
*control
)
3783 struct kvm_pit
*pit
= kvm
->arch
.vpit
;
3788 /* pit->pit_state.lock was overloaded to prevent userspace from getting
3789 * an inconsistent state after running multiple KVM_REINJECT_CONTROL
3790 * ioctls in parallel. Use a separate lock if that ioctl isn't rare.
3792 mutex_lock(&pit
->pit_state
.lock
);
3793 kvm_pit_set_reinject(pit
, control
->pit_reinject
);
3794 mutex_unlock(&pit
->pit_state
.lock
);
3800 * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
3801 * @kvm: kvm instance
3802 * @log: slot id and address to which we copy the log
3804 * Steps 1-4 below provide general overview of dirty page logging. See
3805 * kvm_get_dirty_log_protect() function description for additional details.
3807 * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
3808 * always flush the TLB (step 4) even if previous step failed and the dirty
3809 * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
3810 * does not preclude user space subsequent dirty log read. Flushing TLB ensures
3811 * writes will be marked dirty for next log read.
3813 * 1. Take a snapshot of the bit and clear it if needed.
3814 * 2. Write protect the corresponding page.
3815 * 3. Copy the snapshot to the userspace.
3816 * 4. Flush TLB's if needed.
3818 int kvm_vm_ioctl_get_dirty_log(struct kvm
*kvm
, struct kvm_dirty_log
*log
)
3820 bool is_dirty
= false;
3823 mutex_lock(&kvm
->slots_lock
);
3826 * Flush potentially hardware-cached dirty pages to dirty_bitmap.
3828 if (kvm_x86_ops
->flush_log_dirty
)
3829 kvm_x86_ops
->flush_log_dirty(kvm
);
3831 r
= kvm_get_dirty_log_protect(kvm
, log
, &is_dirty
);
3834 * All the TLBs can be flushed out of mmu lock, see the comments in
3835 * kvm_mmu_slot_remove_write_access().
3837 lockdep_assert_held(&kvm
->slots_lock
);
3839 kvm_flush_remote_tlbs(kvm
);
3841 mutex_unlock(&kvm
->slots_lock
);
3845 int kvm_vm_ioctl_irq_line(struct kvm
*kvm
, struct kvm_irq_level
*irq_event
,
3848 if (!irqchip_in_kernel(kvm
))
3851 irq_event
->status
= kvm_set_irq(kvm
, KVM_USERSPACE_IRQ_SOURCE_ID
,
3852 irq_event
->irq
, irq_event
->level
,
3857 static int kvm_vm_ioctl_enable_cap(struct kvm
*kvm
,
3858 struct kvm_enable_cap
*cap
)
3866 case KVM_CAP_DISABLE_QUIRKS
:
3867 kvm
->arch
.disabled_quirks
= cap
->args
[0];
3870 case KVM_CAP_SPLIT_IRQCHIP
: {
3871 mutex_lock(&kvm
->lock
);
3873 if (cap
->args
[0] > MAX_NR_RESERVED_IOAPIC_PINS
)
3874 goto split_irqchip_unlock
;
3876 if (irqchip_in_kernel(kvm
))
3877 goto split_irqchip_unlock
;
3878 if (kvm
->created_vcpus
)
3879 goto split_irqchip_unlock
;
3880 r
= kvm_setup_empty_irq_routing(kvm
);
3882 goto split_irqchip_unlock
;
3883 /* Pairs with irqchip_in_kernel. */
3885 kvm
->arch
.irqchip_split
= true;
3886 kvm
->arch
.nr_reserved_ioapic_pins
= cap
->args
[0];
3888 split_irqchip_unlock
:
3889 mutex_unlock(&kvm
->lock
);
3892 case KVM_CAP_X2APIC_API
:
3894 if (cap
->args
[0] & ~KVM_X2APIC_API_VALID_FLAGS
)
3897 if (cap
->args
[0] & KVM_X2APIC_API_USE_32BIT_IDS
)
3898 kvm
->arch
.x2apic_format
= true;
3899 if (cap
->args
[0] & KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK
)
3900 kvm
->arch
.x2apic_broadcast_quirk_disabled
= true;
3911 long kvm_arch_vm_ioctl(struct file
*filp
,
3912 unsigned int ioctl
, unsigned long arg
)
3914 struct kvm
*kvm
= filp
->private_data
;
3915 void __user
*argp
= (void __user
*)arg
;
3918 * This union makes it completely explicit to gcc-3.x
3919 * that these two variables' stack usage should be
3920 * combined, not added together.
3923 struct kvm_pit_state ps
;
3924 struct kvm_pit_state2 ps2
;
3925 struct kvm_pit_config pit_config
;
3929 case KVM_SET_TSS_ADDR
:
3930 r
= kvm_vm_ioctl_set_tss_addr(kvm
, arg
);
3932 case KVM_SET_IDENTITY_MAP_ADDR
: {
3936 if (copy_from_user(&ident_addr
, argp
, sizeof ident_addr
))
3938 r
= kvm_vm_ioctl_set_identity_map_addr(kvm
, ident_addr
);
3941 case KVM_SET_NR_MMU_PAGES
:
3942 r
= kvm_vm_ioctl_set_nr_mmu_pages(kvm
, arg
);
3944 case KVM_GET_NR_MMU_PAGES
:
3945 r
= kvm_vm_ioctl_get_nr_mmu_pages(kvm
);
3947 case KVM_CREATE_IRQCHIP
: {
3948 struct kvm_pic
*vpic
;
3950 mutex_lock(&kvm
->lock
);
3953 goto create_irqchip_unlock
;
3955 if (kvm
->created_vcpus
)
3956 goto create_irqchip_unlock
;
3958 vpic
= kvm_create_pic(kvm
);
3960 r
= kvm_ioapic_init(kvm
);
3962 mutex_lock(&kvm
->slots_lock
);
3963 kvm_destroy_pic(vpic
);
3964 mutex_unlock(&kvm
->slots_lock
);
3965 goto create_irqchip_unlock
;
3968 goto create_irqchip_unlock
;
3969 r
= kvm_setup_default_irq_routing(kvm
);
3971 mutex_lock(&kvm
->slots_lock
);
3972 mutex_lock(&kvm
->irq_lock
);
3973 kvm_ioapic_destroy(kvm
);
3974 kvm_destroy_pic(vpic
);
3975 mutex_unlock(&kvm
->irq_lock
);
3976 mutex_unlock(&kvm
->slots_lock
);
3977 goto create_irqchip_unlock
;
3979 /* Write kvm->irq_routing before kvm->arch.vpic. */
3981 kvm
->arch
.vpic
= vpic
;
3982 create_irqchip_unlock
:
3983 mutex_unlock(&kvm
->lock
);
3986 case KVM_CREATE_PIT
:
3987 u
.pit_config
.flags
= KVM_PIT_SPEAKER_DUMMY
;
3989 case KVM_CREATE_PIT2
:
3991 if (copy_from_user(&u
.pit_config
, argp
,
3992 sizeof(struct kvm_pit_config
)))
3995 mutex_lock(&kvm
->lock
);
3998 goto create_pit_unlock
;
4000 kvm
->arch
.vpit
= kvm_create_pit(kvm
, u
.pit_config
.flags
);
4004 mutex_unlock(&kvm
->lock
);
4006 case KVM_GET_IRQCHIP
: {
4007 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
4008 struct kvm_irqchip
*chip
;
4010 chip
= memdup_user(argp
, sizeof(*chip
));
4017 if (!irqchip_in_kernel(kvm
) || irqchip_split(kvm
))
4018 goto get_irqchip_out
;
4019 r
= kvm_vm_ioctl_get_irqchip(kvm
, chip
);
4021 goto get_irqchip_out
;
4023 if (copy_to_user(argp
, chip
, sizeof *chip
))
4024 goto get_irqchip_out
;
4030 case KVM_SET_IRQCHIP
: {
4031 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
4032 struct kvm_irqchip
*chip
;
4034 chip
= memdup_user(argp
, sizeof(*chip
));
4041 if (!irqchip_in_kernel(kvm
) || irqchip_split(kvm
))
4042 goto set_irqchip_out
;
4043 r
= kvm_vm_ioctl_set_irqchip(kvm
, chip
);
4045 goto set_irqchip_out
;
4053 if (copy_from_user(&u
.ps
, argp
, sizeof(struct kvm_pit_state
)))
4056 if (!kvm
->arch
.vpit
)
4058 r
= kvm_vm_ioctl_get_pit(kvm
, &u
.ps
);
4062 if (copy_to_user(argp
, &u
.ps
, sizeof(struct kvm_pit_state
)))
4069 if (copy_from_user(&u
.ps
, argp
, sizeof u
.ps
))
4072 if (!kvm
->arch
.vpit
)
4074 r
= kvm_vm_ioctl_set_pit(kvm
, &u
.ps
);
4077 case KVM_GET_PIT2
: {
4079 if (!kvm
->arch
.vpit
)
4081 r
= kvm_vm_ioctl_get_pit2(kvm
, &u
.ps2
);
4085 if (copy_to_user(argp
, &u
.ps2
, sizeof(u
.ps2
)))
4090 case KVM_SET_PIT2
: {
4092 if (copy_from_user(&u
.ps2
, argp
, sizeof(u
.ps2
)))
4095 if (!kvm
->arch
.vpit
)
4097 r
= kvm_vm_ioctl_set_pit2(kvm
, &u
.ps2
);
4100 case KVM_REINJECT_CONTROL
: {
4101 struct kvm_reinject_control control
;
4103 if (copy_from_user(&control
, argp
, sizeof(control
)))
4105 r
= kvm_vm_ioctl_reinject(kvm
, &control
);
4108 case KVM_SET_BOOT_CPU_ID
:
4110 mutex_lock(&kvm
->lock
);
4111 if (kvm
->created_vcpus
)
4114 kvm
->arch
.bsp_vcpu_id
= arg
;
4115 mutex_unlock(&kvm
->lock
);
4117 case KVM_XEN_HVM_CONFIG
: {
4119 if (copy_from_user(&kvm
->arch
.xen_hvm_config
, argp
,
4120 sizeof(struct kvm_xen_hvm_config
)))
4123 if (kvm
->arch
.xen_hvm_config
.flags
)
4128 case KVM_SET_CLOCK
: {
4129 struct kvm_clock_data user_ns
;
4133 if (copy_from_user(&user_ns
, argp
, sizeof(user_ns
)))
4141 local_irq_disable();
4142 now_ns
= __get_kvmclock_ns(kvm
);
4143 kvm
->arch
.kvmclock_offset
+= user_ns
.clock
- now_ns
;
4145 kvm_gen_update_masterclock(kvm
);
4148 case KVM_GET_CLOCK
: {
4149 struct kvm_clock_data user_ns
;
4152 local_irq_disable();
4153 now_ns
= __get_kvmclock_ns(kvm
);
4154 user_ns
.clock
= now_ns
;
4155 user_ns
.flags
= kvm
->arch
.use_master_clock
? KVM_CLOCK_TSC_STABLE
: 0;
4157 memset(&user_ns
.pad
, 0, sizeof(user_ns
.pad
));
4160 if (copy_to_user(argp
, &user_ns
, sizeof(user_ns
)))
4165 case KVM_ENABLE_CAP
: {
4166 struct kvm_enable_cap cap
;
4169 if (copy_from_user(&cap
, argp
, sizeof(cap
)))
4171 r
= kvm_vm_ioctl_enable_cap(kvm
, &cap
);
4175 r
= kvm_vm_ioctl_assigned_device(kvm
, ioctl
, arg
);
4181 static void kvm_init_msr_list(void)
4186 for (i
= j
= 0; i
< ARRAY_SIZE(msrs_to_save
); i
++) {
4187 if (rdmsr_safe(msrs_to_save
[i
], &dummy
[0], &dummy
[1]) < 0)
4191 * Even MSRs that are valid in the host may not be exposed
4192 * to the guests in some cases.
4194 switch (msrs_to_save
[i
]) {
4195 case MSR_IA32_BNDCFGS
:
4196 if (!kvm_x86_ops
->mpx_supported())
4200 if (!kvm_x86_ops
->rdtscp_supported())
4208 msrs_to_save
[j
] = msrs_to_save
[i
];
4211 num_msrs_to_save
= j
;
4213 for (i
= j
= 0; i
< ARRAY_SIZE(emulated_msrs
); i
++) {
4214 switch (emulated_msrs
[i
]) {
4215 case MSR_IA32_SMBASE
:
4216 if (!kvm_x86_ops
->cpu_has_high_real_mode_segbase())
4224 emulated_msrs
[j
] = emulated_msrs
[i
];
4227 num_emulated_msrs
= j
;
4230 static int vcpu_mmio_write(struct kvm_vcpu
*vcpu
, gpa_t addr
, int len
,
4238 if (!(lapic_in_kernel(vcpu
) &&
4239 !kvm_iodevice_write(vcpu
, &vcpu
->arch
.apic
->dev
, addr
, n
, v
))
4240 && kvm_io_bus_write(vcpu
, KVM_MMIO_BUS
, addr
, n
, v
))
4251 static int vcpu_mmio_read(struct kvm_vcpu
*vcpu
, gpa_t addr
, int len
, void *v
)
4258 if (!(lapic_in_kernel(vcpu
) &&
4259 !kvm_iodevice_read(vcpu
, &vcpu
->arch
.apic
->dev
,
4261 && kvm_io_bus_read(vcpu
, KVM_MMIO_BUS
, addr
, n
, v
))
4263 trace_kvm_mmio(KVM_TRACE_MMIO_READ
, n
, addr
, *(u64
*)v
);
4273 static void kvm_set_segment(struct kvm_vcpu
*vcpu
,
4274 struct kvm_segment
*var
, int seg
)
4276 kvm_x86_ops
->set_segment(vcpu
, var
, seg
);
4279 void kvm_get_segment(struct kvm_vcpu
*vcpu
,
4280 struct kvm_segment
*var
, int seg
)
4282 kvm_x86_ops
->get_segment(vcpu
, var
, seg
);
4285 gpa_t
translate_nested_gpa(struct kvm_vcpu
*vcpu
, gpa_t gpa
, u32 access
,
4286 struct x86_exception
*exception
)
4290 BUG_ON(!mmu_is_nested(vcpu
));
4292 /* NPT walks are always user-walks */
4293 access
|= PFERR_USER_MASK
;
4294 t_gpa
= vcpu
->arch
.mmu
.gva_to_gpa(vcpu
, gpa
, access
, exception
);
4299 gpa_t
kvm_mmu_gva_to_gpa_read(struct kvm_vcpu
*vcpu
, gva_t gva
,
4300 struct x86_exception
*exception
)
4302 u32 access
= (kvm_x86_ops
->get_cpl(vcpu
) == 3) ? PFERR_USER_MASK
: 0;
4303 return vcpu
->arch
.walk_mmu
->gva_to_gpa(vcpu
, gva
, access
, exception
);
4306 gpa_t
kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu
*vcpu
, gva_t gva
,
4307 struct x86_exception
*exception
)
4309 u32 access
= (kvm_x86_ops
->get_cpl(vcpu
) == 3) ? PFERR_USER_MASK
: 0;
4310 access
|= PFERR_FETCH_MASK
;
4311 return vcpu
->arch
.walk_mmu
->gva_to_gpa(vcpu
, gva
, access
, exception
);
4314 gpa_t
kvm_mmu_gva_to_gpa_write(struct kvm_vcpu
*vcpu
, gva_t gva
,
4315 struct x86_exception
*exception
)
4317 u32 access
= (kvm_x86_ops
->get_cpl(vcpu
) == 3) ? PFERR_USER_MASK
: 0;
4318 access
|= PFERR_WRITE_MASK
;
4319 return vcpu
->arch
.walk_mmu
->gva_to_gpa(vcpu
, gva
, access
, exception
);
4322 /* uses this to access any guest's mapped memory without checking CPL */
4323 gpa_t
kvm_mmu_gva_to_gpa_system(struct kvm_vcpu
*vcpu
, gva_t gva
,
4324 struct x86_exception
*exception
)
4326 return vcpu
->arch
.walk_mmu
->gva_to_gpa(vcpu
, gva
, 0, exception
);
4329 static int kvm_read_guest_virt_helper(gva_t addr
, void *val
, unsigned int bytes
,
4330 struct kvm_vcpu
*vcpu
, u32 access
,
4331 struct x86_exception
*exception
)
4334 int r
= X86EMUL_CONTINUE
;
4337 gpa_t gpa
= vcpu
->arch
.walk_mmu
->gva_to_gpa(vcpu
, addr
, access
,
4339 unsigned offset
= addr
& (PAGE_SIZE
-1);
4340 unsigned toread
= min(bytes
, (unsigned)PAGE_SIZE
- offset
);
4343 if (gpa
== UNMAPPED_GVA
)
4344 return X86EMUL_PROPAGATE_FAULT
;
4345 ret
= kvm_vcpu_read_guest_page(vcpu
, gpa
>> PAGE_SHIFT
, data
,
4348 r
= X86EMUL_IO_NEEDED
;
4360 /* used for instruction fetching */
4361 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt
*ctxt
,
4362 gva_t addr
, void *val
, unsigned int bytes
,
4363 struct x86_exception
*exception
)
4365 struct kvm_vcpu
*vcpu
= emul_to_vcpu(ctxt
);
4366 u32 access
= (kvm_x86_ops
->get_cpl(vcpu
) == 3) ? PFERR_USER_MASK
: 0;
4370 /* Inline kvm_read_guest_virt_helper for speed. */
4371 gpa_t gpa
= vcpu
->arch
.walk_mmu
->gva_to_gpa(vcpu
, addr
, access
|PFERR_FETCH_MASK
,
4373 if (unlikely(gpa
== UNMAPPED_GVA
))
4374 return X86EMUL_PROPAGATE_FAULT
;
4376 offset
= addr
& (PAGE_SIZE
-1);
4377 if (WARN_ON(offset
+ bytes
> PAGE_SIZE
))
4378 bytes
= (unsigned)PAGE_SIZE
- offset
;
4379 ret
= kvm_vcpu_read_guest_page(vcpu
, gpa
>> PAGE_SHIFT
, val
,
4381 if (unlikely(ret
< 0))
4382 return X86EMUL_IO_NEEDED
;
4384 return X86EMUL_CONTINUE
;
4387 int kvm_read_guest_virt(struct x86_emulate_ctxt
*ctxt
,
4388 gva_t addr
, void *val
, unsigned int bytes
,
4389 struct x86_exception
*exception
)
4391 struct kvm_vcpu
*vcpu
= emul_to_vcpu(ctxt
);
4392 u32 access
= (kvm_x86_ops
->get_cpl(vcpu
) == 3) ? PFERR_USER_MASK
: 0;
4394 return kvm_read_guest_virt_helper(addr
, val
, bytes
, vcpu
, access
,
4397 EXPORT_SYMBOL_GPL(kvm_read_guest_virt
);
4399 static int kvm_read_guest_virt_system(struct x86_emulate_ctxt
*ctxt
,
4400 gva_t addr
, void *val
, unsigned int bytes
,
4401 struct x86_exception
*exception
)
4403 struct kvm_vcpu
*vcpu
= emul_to_vcpu(ctxt
);
4404 return kvm_read_guest_virt_helper(addr
, val
, bytes
, vcpu
, 0, exception
);
4407 static int kvm_read_guest_phys_system(struct x86_emulate_ctxt
*ctxt
,
4408 unsigned long addr
, void *val
, unsigned int bytes
)
4410 struct kvm_vcpu
*vcpu
= emul_to_vcpu(ctxt
);
4411 int r
= kvm_vcpu_read_guest(vcpu
, addr
, val
, bytes
);
4413 return r
< 0 ? X86EMUL_IO_NEEDED
: X86EMUL_CONTINUE
;
4416 int kvm_write_guest_virt_system(struct x86_emulate_ctxt
*ctxt
,
4417 gva_t addr
, void *val
,
4419 struct x86_exception
*exception
)
4421 struct kvm_vcpu
*vcpu
= emul_to_vcpu(ctxt
);
4423 int r
= X86EMUL_CONTINUE
;
4426 gpa_t gpa
= vcpu
->arch
.walk_mmu
->gva_to_gpa(vcpu
, addr
,
4429 unsigned offset
= addr
& (PAGE_SIZE
-1);
4430 unsigned towrite
= min(bytes
, (unsigned)PAGE_SIZE
- offset
);
4433 if (gpa
== UNMAPPED_GVA
)
4434 return X86EMUL_PROPAGATE_FAULT
;
4435 ret
= kvm_vcpu_write_guest(vcpu
, gpa
, data
, towrite
);
4437 r
= X86EMUL_IO_NEEDED
;
4448 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system
);
4450 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu
*vcpu
, unsigned long gva
,
4451 gpa_t
*gpa
, struct x86_exception
*exception
,
4454 u32 access
= ((kvm_x86_ops
->get_cpl(vcpu
) == 3) ? PFERR_USER_MASK
: 0)
4455 | (write
? PFERR_WRITE_MASK
: 0);
4458 * currently PKRU is only applied to ept enabled guest so
4459 * there is no pkey in EPT page table for L1 guest or EPT
4460 * shadow page table for L2 guest.
4462 if (vcpu_match_mmio_gva(vcpu
, gva
)
4463 && !permission_fault(vcpu
, vcpu
->arch
.walk_mmu
,
4464 vcpu
->arch
.access
, 0, access
)) {
4465 *gpa
= vcpu
->arch
.mmio_gfn
<< PAGE_SHIFT
|
4466 (gva
& (PAGE_SIZE
- 1));
4467 trace_vcpu_match_mmio(gva
, *gpa
, write
, false);
4471 *gpa
= vcpu
->arch
.walk_mmu
->gva_to_gpa(vcpu
, gva
, access
, exception
);
4473 if (*gpa
== UNMAPPED_GVA
)
4476 /* For APIC access vmexit */
4477 if ((*gpa
& PAGE_MASK
) == APIC_DEFAULT_PHYS_BASE
)
4480 if (vcpu_match_mmio_gpa(vcpu
, *gpa
)) {
4481 trace_vcpu_match_mmio(gva
, *gpa
, write
, true);
4488 int emulator_write_phys(struct kvm_vcpu
*vcpu
, gpa_t gpa
,
4489 const void *val
, int bytes
)
4493 ret
= kvm_vcpu_write_guest(vcpu
, gpa
, val
, bytes
);
4496 kvm_page_track_write(vcpu
, gpa
, val
, bytes
);
4500 struct read_write_emulator_ops
{
4501 int (*read_write_prepare
)(struct kvm_vcpu
*vcpu
, void *val
,
4503 int (*read_write_emulate
)(struct kvm_vcpu
*vcpu
, gpa_t gpa
,
4504 void *val
, int bytes
);
4505 int (*read_write_mmio
)(struct kvm_vcpu
*vcpu
, gpa_t gpa
,
4506 int bytes
, void *val
);
4507 int (*read_write_exit_mmio
)(struct kvm_vcpu
*vcpu
, gpa_t gpa
,
4508 void *val
, int bytes
);
4512 static int read_prepare(struct kvm_vcpu
*vcpu
, void *val
, int bytes
)
4514 if (vcpu
->mmio_read_completed
) {
4515 trace_kvm_mmio(KVM_TRACE_MMIO_READ
, bytes
,
4516 vcpu
->mmio_fragments
[0].gpa
, *(u64
*)val
);
4517 vcpu
->mmio_read_completed
= 0;
4524 static int read_emulate(struct kvm_vcpu
*vcpu
, gpa_t gpa
,
4525 void *val
, int bytes
)
4527 return !kvm_vcpu_read_guest(vcpu
, gpa
, val
, bytes
);
4530 static int write_emulate(struct kvm_vcpu
*vcpu
, gpa_t gpa
,
4531 void *val
, int bytes
)
4533 return emulator_write_phys(vcpu
, gpa
, val
, bytes
);
4536 static int write_mmio(struct kvm_vcpu
*vcpu
, gpa_t gpa
, int bytes
, void *val
)
4538 trace_kvm_mmio(KVM_TRACE_MMIO_WRITE
, bytes
, gpa
, *(u64
*)val
);
4539 return vcpu_mmio_write(vcpu
, gpa
, bytes
, val
);
4542 static int read_exit_mmio(struct kvm_vcpu
*vcpu
, gpa_t gpa
,
4543 void *val
, int bytes
)
4545 trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED
, bytes
, gpa
, 0);
4546 return X86EMUL_IO_NEEDED
;
4549 static int write_exit_mmio(struct kvm_vcpu
*vcpu
, gpa_t gpa
,
4550 void *val
, int bytes
)
4552 struct kvm_mmio_fragment
*frag
= &vcpu
->mmio_fragments
[0];
4554 memcpy(vcpu
->run
->mmio
.data
, frag
->data
, min(8u, frag
->len
));
4555 return X86EMUL_CONTINUE
;
4558 static const struct read_write_emulator_ops read_emultor
= {
4559 .read_write_prepare
= read_prepare
,
4560 .read_write_emulate
= read_emulate
,
4561 .read_write_mmio
= vcpu_mmio_read
,
4562 .read_write_exit_mmio
= read_exit_mmio
,
4565 static const struct read_write_emulator_ops write_emultor
= {
4566 .read_write_emulate
= write_emulate
,
4567 .read_write_mmio
= write_mmio
,
4568 .read_write_exit_mmio
= write_exit_mmio
,
4572 static int emulator_read_write_onepage(unsigned long addr
, void *val
,
4574 struct x86_exception
*exception
,
4575 struct kvm_vcpu
*vcpu
,
4576 const struct read_write_emulator_ops
*ops
)
4580 bool write
= ops
->write
;
4581 struct kvm_mmio_fragment
*frag
;
4583 ret
= vcpu_mmio_gva_to_gpa(vcpu
, addr
, &gpa
, exception
, write
);
4586 return X86EMUL_PROPAGATE_FAULT
;
4588 /* For APIC access vmexit */
4592 if (ops
->read_write_emulate(vcpu
, gpa
, val
, bytes
))
4593 return X86EMUL_CONTINUE
;
4597 * Is this MMIO handled locally?
4599 handled
= ops
->read_write_mmio(vcpu
, gpa
, bytes
, val
);
4600 if (handled
== bytes
)
4601 return X86EMUL_CONTINUE
;
4607 WARN_ON(vcpu
->mmio_nr_fragments
>= KVM_MAX_MMIO_FRAGMENTS
);
4608 frag
= &vcpu
->mmio_fragments
[vcpu
->mmio_nr_fragments
++];
4612 return X86EMUL_CONTINUE
;
4615 static int emulator_read_write(struct x86_emulate_ctxt
*ctxt
,
4617 void *val
, unsigned int bytes
,
4618 struct x86_exception
*exception
,
4619 const struct read_write_emulator_ops
*ops
)
4621 struct kvm_vcpu
*vcpu
= emul_to_vcpu(ctxt
);
4625 if (ops
->read_write_prepare
&&
4626 ops
->read_write_prepare(vcpu
, val
, bytes
))
4627 return X86EMUL_CONTINUE
;
4629 vcpu
->mmio_nr_fragments
= 0;
4631 /* Crossing a page boundary? */
4632 if (((addr
+ bytes
- 1) ^ addr
) & PAGE_MASK
) {
4635 now
= -addr
& ~PAGE_MASK
;
4636 rc
= emulator_read_write_onepage(addr
, val
, now
, exception
,
4639 if (rc
!= X86EMUL_CONTINUE
)
4642 if (ctxt
->mode
!= X86EMUL_MODE_PROT64
)
4648 rc
= emulator_read_write_onepage(addr
, val
, bytes
, exception
,
4650 if (rc
!= X86EMUL_CONTINUE
)
4653 if (!vcpu
->mmio_nr_fragments
)
4656 gpa
= vcpu
->mmio_fragments
[0].gpa
;
4658 vcpu
->mmio_needed
= 1;
4659 vcpu
->mmio_cur_fragment
= 0;
4661 vcpu
->run
->mmio
.len
= min(8u, vcpu
->mmio_fragments
[0].len
);
4662 vcpu
->run
->mmio
.is_write
= vcpu
->mmio_is_write
= ops
->write
;
4663 vcpu
->run
->exit_reason
= KVM_EXIT_MMIO
;
4664 vcpu
->run
->mmio
.phys_addr
= gpa
;
4666 return ops
->read_write_exit_mmio(vcpu
, gpa
, val
, bytes
);
4669 static int emulator_read_emulated(struct x86_emulate_ctxt
*ctxt
,
4673 struct x86_exception
*exception
)
4675 return emulator_read_write(ctxt
, addr
, val
, bytes
,
4676 exception
, &read_emultor
);
4679 static int emulator_write_emulated(struct x86_emulate_ctxt
*ctxt
,
4683 struct x86_exception
*exception
)
4685 return emulator_read_write(ctxt
, addr
, (void *)val
, bytes
,
4686 exception
, &write_emultor
);
4689 #define CMPXCHG_TYPE(t, ptr, old, new) \
4690 (cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old))
4692 #ifdef CONFIG_X86_64
4693 # define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new)
4695 # define CMPXCHG64(ptr, old, new) \
4696 (cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old))
4699 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt
*ctxt
,
4704 struct x86_exception
*exception
)
4706 struct kvm_vcpu
*vcpu
= emul_to_vcpu(ctxt
);
4712 /* guests cmpxchg8b have to be emulated atomically */
4713 if (bytes
> 8 || (bytes
& (bytes
- 1)))
4716 gpa
= kvm_mmu_gva_to_gpa_write(vcpu
, addr
, NULL
);
4718 if (gpa
== UNMAPPED_GVA
||
4719 (gpa
& PAGE_MASK
) == APIC_DEFAULT_PHYS_BASE
)
4722 if (((gpa
+ bytes
- 1) & PAGE_MASK
) != (gpa
& PAGE_MASK
))
4725 page
= kvm_vcpu_gfn_to_page(vcpu
, gpa
>> PAGE_SHIFT
);
4726 if (is_error_page(page
))
4729 kaddr
= kmap_atomic(page
);
4730 kaddr
+= offset_in_page(gpa
);
4733 exchanged
= CMPXCHG_TYPE(u8
, kaddr
, old
, new);
4736 exchanged
= CMPXCHG_TYPE(u16
, kaddr
, old
, new);
4739 exchanged
= CMPXCHG_TYPE(u32
, kaddr
, old
, new);
4742 exchanged
= CMPXCHG64(kaddr
, old
, new);
4747 kunmap_atomic(kaddr
);
4748 kvm_release_page_dirty(page
);
4751 return X86EMUL_CMPXCHG_FAILED
;
4753 kvm_vcpu_mark_page_dirty(vcpu
, gpa
>> PAGE_SHIFT
);
4754 kvm_page_track_write(vcpu
, gpa
, new, bytes
);
4756 return X86EMUL_CONTINUE
;
4759 printk_once(KERN_WARNING
"kvm: emulating exchange as write\n");
4761 return emulator_write_emulated(ctxt
, addr
, new, bytes
, exception
);
4764 static int kernel_pio(struct kvm_vcpu
*vcpu
, void *pd
)
4768 for (i
= 0; i
< vcpu
->arch
.pio
.count
; i
++) {
4769 if (vcpu
->arch
.pio
.in
)
4770 r
= kvm_io_bus_read(vcpu
, KVM_PIO_BUS
, vcpu
->arch
.pio
.port
,
4771 vcpu
->arch
.pio
.size
, pd
);
4773 r
= kvm_io_bus_write(vcpu
, KVM_PIO_BUS
,
4774 vcpu
->arch
.pio
.port
, vcpu
->arch
.pio
.size
,
4778 pd
+= vcpu
->arch
.pio
.size
;
4783 static int emulator_pio_in_out(struct kvm_vcpu
*vcpu
, int size
,
4784 unsigned short port
, void *val
,
4785 unsigned int count
, bool in
)
4787 vcpu
->arch
.pio
.port
= port
;
4788 vcpu
->arch
.pio
.in
= in
;
4789 vcpu
->arch
.pio
.count
= count
;
4790 vcpu
->arch
.pio
.size
= size
;
4792 if (!kernel_pio(vcpu
, vcpu
->arch
.pio_data
)) {
4793 vcpu
->arch
.pio
.count
= 0;
4797 vcpu
->run
->exit_reason
= KVM_EXIT_IO
;
4798 vcpu
->run
->io
.direction
= in
? KVM_EXIT_IO_IN
: KVM_EXIT_IO_OUT
;
4799 vcpu
->run
->io
.size
= size
;
4800 vcpu
->run
->io
.data_offset
= KVM_PIO_PAGE_OFFSET
* PAGE_SIZE
;
4801 vcpu
->run
->io
.count
= count
;
4802 vcpu
->run
->io
.port
= port
;
4807 static int emulator_pio_in_emulated(struct x86_emulate_ctxt
*ctxt
,
4808 int size
, unsigned short port
, void *val
,
4811 struct kvm_vcpu
*vcpu
= emul_to_vcpu(ctxt
);
4814 if (vcpu
->arch
.pio
.count
)
4817 memset(vcpu
->arch
.pio_data
, 0, size
* count
);
4819 ret
= emulator_pio_in_out(vcpu
, size
, port
, val
, count
, true);
4822 memcpy(val
, vcpu
->arch
.pio_data
, size
* count
);
4823 trace_kvm_pio(KVM_PIO_IN
, port
, size
, count
, vcpu
->arch
.pio_data
);
4824 vcpu
->arch
.pio
.count
= 0;
4831 static int emulator_pio_out_emulated(struct x86_emulate_ctxt
*ctxt
,
4832 int size
, unsigned short port
,
4833 const void *val
, unsigned int count
)
4835 struct kvm_vcpu
*vcpu
= emul_to_vcpu(ctxt
);
4837 memcpy(vcpu
->arch
.pio_data
, val
, size
* count
);
4838 trace_kvm_pio(KVM_PIO_OUT
, port
, size
, count
, vcpu
->arch
.pio_data
);
4839 return emulator_pio_in_out(vcpu
, size
, port
, (void *)val
, count
, false);
4842 static unsigned long get_segment_base(struct kvm_vcpu
*vcpu
, int seg
)
4844 return kvm_x86_ops
->get_segment_base(vcpu
, seg
);
4847 static void emulator_invlpg(struct x86_emulate_ctxt
*ctxt
, ulong address
)
4849 kvm_mmu_invlpg(emul_to_vcpu(ctxt
), address
);
4852 int kvm_emulate_wbinvd_noskip(struct kvm_vcpu
*vcpu
)
4854 if (!need_emulate_wbinvd(vcpu
))
4855 return X86EMUL_CONTINUE
;
4857 if (kvm_x86_ops
->has_wbinvd_exit()) {
4858 int cpu
= get_cpu();
4860 cpumask_set_cpu(cpu
, vcpu
->arch
.wbinvd_dirty_mask
);
4861 smp_call_function_many(vcpu
->arch
.wbinvd_dirty_mask
,
4862 wbinvd_ipi
, NULL
, 1);
4864 cpumask_clear(vcpu
->arch
.wbinvd_dirty_mask
);
4867 return X86EMUL_CONTINUE
;
4870 int kvm_emulate_wbinvd(struct kvm_vcpu
*vcpu
)
4872 kvm_x86_ops
->skip_emulated_instruction(vcpu
);
4873 return kvm_emulate_wbinvd_noskip(vcpu
);
4875 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd
);
4879 static void emulator_wbinvd(struct x86_emulate_ctxt
*ctxt
)
4881 kvm_emulate_wbinvd_noskip(emul_to_vcpu(ctxt
));
4884 static int emulator_get_dr(struct x86_emulate_ctxt
*ctxt
, int dr
,
4885 unsigned long *dest
)
4887 return kvm_get_dr(emul_to_vcpu(ctxt
), dr
, dest
);
4890 static int emulator_set_dr(struct x86_emulate_ctxt
*ctxt
, int dr
,
4891 unsigned long value
)
4894 return __kvm_set_dr(emul_to_vcpu(ctxt
), dr
, value
);
4897 static u64
mk_cr_64(u64 curr_cr
, u32 new_val
)
4899 return (curr_cr
& ~((1ULL << 32) - 1)) | new_val
;
4902 static unsigned long emulator_get_cr(struct x86_emulate_ctxt
*ctxt
, int cr
)
4904 struct kvm_vcpu
*vcpu
= emul_to_vcpu(ctxt
);
4905 unsigned long value
;
4909 value
= kvm_read_cr0(vcpu
);
4912 value
= vcpu
->arch
.cr2
;
4915 value
= kvm_read_cr3(vcpu
);
4918 value
= kvm_read_cr4(vcpu
);
4921 value
= kvm_get_cr8(vcpu
);
4924 kvm_err("%s: unexpected cr %u\n", __func__
, cr
);
4931 static int emulator_set_cr(struct x86_emulate_ctxt
*ctxt
, int cr
, ulong val
)
4933 struct kvm_vcpu
*vcpu
= emul_to_vcpu(ctxt
);
4938 res
= kvm_set_cr0(vcpu
, mk_cr_64(kvm_read_cr0(vcpu
), val
));
4941 vcpu
->arch
.cr2
= val
;
4944 res
= kvm_set_cr3(vcpu
, val
);
4947 res
= kvm_set_cr4(vcpu
, mk_cr_64(kvm_read_cr4(vcpu
), val
));
4950 res
= kvm_set_cr8(vcpu
, val
);
4953 kvm_err("%s: unexpected cr %u\n", __func__
, cr
);
4960 static int emulator_get_cpl(struct x86_emulate_ctxt
*ctxt
)
4962 return kvm_x86_ops
->get_cpl(emul_to_vcpu(ctxt
));
4965 static void emulator_get_gdt(struct x86_emulate_ctxt
*ctxt
, struct desc_ptr
*dt
)
4967 kvm_x86_ops
->get_gdt(emul_to_vcpu(ctxt
), dt
);
4970 static void emulator_get_idt(struct x86_emulate_ctxt
*ctxt
, struct desc_ptr
*dt
)
4972 kvm_x86_ops
->get_idt(emul_to_vcpu(ctxt
), dt
);
4975 static void emulator_set_gdt(struct x86_emulate_ctxt
*ctxt
, struct desc_ptr
*dt
)
4977 kvm_x86_ops
->set_gdt(emul_to_vcpu(ctxt
), dt
);
4980 static void emulator_set_idt(struct x86_emulate_ctxt
*ctxt
, struct desc_ptr
*dt
)
4982 kvm_x86_ops
->set_idt(emul_to_vcpu(ctxt
), dt
);
4985 static unsigned long emulator_get_cached_segment_base(
4986 struct x86_emulate_ctxt
*ctxt
, int seg
)
4988 return get_segment_base(emul_to_vcpu(ctxt
), seg
);
4991 static bool emulator_get_segment(struct x86_emulate_ctxt
*ctxt
, u16
*selector
,
4992 struct desc_struct
*desc
, u32
*base3
,
4995 struct kvm_segment var
;
4997 kvm_get_segment(emul_to_vcpu(ctxt
), &var
, seg
);
4998 *selector
= var
.selector
;
5001 memset(desc
, 0, sizeof(*desc
));
5007 set_desc_limit(desc
, var
.limit
);
5008 set_desc_base(desc
, (unsigned long)var
.base
);
5009 #ifdef CONFIG_X86_64
5011 *base3
= var
.base
>> 32;
5013 desc
->type
= var
.type
;
5015 desc
->dpl
= var
.dpl
;
5016 desc
->p
= var
.present
;
5017 desc
->avl
= var
.avl
;
5025 static void emulator_set_segment(struct x86_emulate_ctxt
*ctxt
, u16 selector
,
5026 struct desc_struct
*desc
, u32 base3
,
5029 struct kvm_vcpu
*vcpu
= emul_to_vcpu(ctxt
);
5030 struct kvm_segment var
;
5032 var
.selector
= selector
;
5033 var
.base
= get_desc_base(desc
);
5034 #ifdef CONFIG_X86_64
5035 var
.base
|= ((u64
)base3
) << 32;
5037 var
.limit
= get_desc_limit(desc
);
5039 var
.limit
= (var
.limit
<< 12) | 0xfff;
5040 var
.type
= desc
->type
;
5041 var
.dpl
= desc
->dpl
;
5046 var
.avl
= desc
->avl
;
5047 var
.present
= desc
->p
;
5048 var
.unusable
= !var
.present
;
5051 kvm_set_segment(vcpu
, &var
, seg
);
5055 static int emulator_get_msr(struct x86_emulate_ctxt
*ctxt
,
5056 u32 msr_index
, u64
*pdata
)
5058 struct msr_data msr
;
5061 msr
.index
= msr_index
;
5062 msr
.host_initiated
= false;
5063 r
= kvm_get_msr(emul_to_vcpu(ctxt
), &msr
);
5071 static int emulator_set_msr(struct x86_emulate_ctxt
*ctxt
,
5072 u32 msr_index
, u64 data
)
5074 struct msr_data msr
;
5077 msr
.index
= msr_index
;
5078 msr
.host_initiated
= false;
5079 return kvm_set_msr(emul_to_vcpu(ctxt
), &msr
);
5082 static u64
emulator_get_smbase(struct x86_emulate_ctxt
*ctxt
)
5084 struct kvm_vcpu
*vcpu
= emul_to_vcpu(ctxt
);
5086 return vcpu
->arch
.smbase
;
5089 static void emulator_set_smbase(struct x86_emulate_ctxt
*ctxt
, u64 smbase
)
5091 struct kvm_vcpu
*vcpu
= emul_to_vcpu(ctxt
);
5093 vcpu
->arch
.smbase
= smbase
;
5096 static int emulator_check_pmc(struct x86_emulate_ctxt
*ctxt
,
5099 return kvm_pmu_is_valid_msr_idx(emul_to_vcpu(ctxt
), pmc
);
5102 static int emulator_read_pmc(struct x86_emulate_ctxt
*ctxt
,
5103 u32 pmc
, u64
*pdata
)
5105 return kvm_pmu_rdpmc(emul_to_vcpu(ctxt
), pmc
, pdata
);
5108 static void emulator_halt(struct x86_emulate_ctxt
*ctxt
)
5110 emul_to_vcpu(ctxt
)->arch
.halt_request
= 1;
5113 static void emulator_get_fpu(struct x86_emulate_ctxt
*ctxt
)
5116 kvm_load_guest_fpu(emul_to_vcpu(ctxt
));
5118 * CR0.TS may reference the host fpu state, not the guest fpu state,
5119 * so it may be clear at this point.
5124 static void emulator_put_fpu(struct x86_emulate_ctxt
*ctxt
)
5129 static int emulator_intercept(struct x86_emulate_ctxt
*ctxt
,
5130 struct x86_instruction_info
*info
,
5131 enum x86_intercept_stage stage
)
5133 return kvm_x86_ops
->check_intercept(emul_to_vcpu(ctxt
), info
, stage
);
5136 static void emulator_get_cpuid(struct x86_emulate_ctxt
*ctxt
,
5137 u32
*eax
, u32
*ebx
, u32
*ecx
, u32
*edx
)
5139 kvm_cpuid(emul_to_vcpu(ctxt
), eax
, ebx
, ecx
, edx
);
5142 static ulong
emulator_read_gpr(struct x86_emulate_ctxt
*ctxt
, unsigned reg
)
5144 return kvm_register_read(emul_to_vcpu(ctxt
), reg
);
5147 static void emulator_write_gpr(struct x86_emulate_ctxt
*ctxt
, unsigned reg
, ulong val
)
5149 kvm_register_write(emul_to_vcpu(ctxt
), reg
, val
);
5152 static void emulator_set_nmi_mask(struct x86_emulate_ctxt
*ctxt
, bool masked
)
5154 kvm_x86_ops
->set_nmi_mask(emul_to_vcpu(ctxt
), masked
);
5157 static unsigned emulator_get_hflags(struct x86_emulate_ctxt
*ctxt
)
5159 return emul_to_vcpu(ctxt
)->arch
.hflags
;
5162 static void emulator_set_hflags(struct x86_emulate_ctxt
*ctxt
, unsigned emul_flags
)
5164 kvm_set_hflags(emul_to_vcpu(ctxt
), emul_flags
);
5167 static const struct x86_emulate_ops emulate_ops
= {
5168 .read_gpr
= emulator_read_gpr
,
5169 .write_gpr
= emulator_write_gpr
,
5170 .read_std
= kvm_read_guest_virt_system
,
5171 .write_std
= kvm_write_guest_virt_system
,
5172 .read_phys
= kvm_read_guest_phys_system
,
5173 .fetch
= kvm_fetch_guest_virt
,
5174 .read_emulated
= emulator_read_emulated
,
5175 .write_emulated
= emulator_write_emulated
,
5176 .cmpxchg_emulated
= emulator_cmpxchg_emulated
,
5177 .invlpg
= emulator_invlpg
,
5178 .pio_in_emulated
= emulator_pio_in_emulated
,
5179 .pio_out_emulated
= emulator_pio_out_emulated
,
5180 .get_segment
= emulator_get_segment
,
5181 .set_segment
= emulator_set_segment
,
5182 .get_cached_segment_base
= emulator_get_cached_segment_base
,
5183 .get_gdt
= emulator_get_gdt
,
5184 .get_idt
= emulator_get_idt
,
5185 .set_gdt
= emulator_set_gdt
,
5186 .set_idt
= emulator_set_idt
,
5187 .get_cr
= emulator_get_cr
,
5188 .set_cr
= emulator_set_cr
,
5189 .cpl
= emulator_get_cpl
,
5190 .get_dr
= emulator_get_dr
,
5191 .set_dr
= emulator_set_dr
,
5192 .get_smbase
= emulator_get_smbase
,
5193 .set_smbase
= emulator_set_smbase
,
5194 .set_msr
= emulator_set_msr
,
5195 .get_msr
= emulator_get_msr
,
5196 .check_pmc
= emulator_check_pmc
,
5197 .read_pmc
= emulator_read_pmc
,
5198 .halt
= emulator_halt
,
5199 .wbinvd
= emulator_wbinvd
,
5200 .fix_hypercall
= emulator_fix_hypercall
,
5201 .get_fpu
= emulator_get_fpu
,
5202 .put_fpu
= emulator_put_fpu
,
5203 .intercept
= emulator_intercept
,
5204 .get_cpuid
= emulator_get_cpuid
,
5205 .set_nmi_mask
= emulator_set_nmi_mask
,
5206 .get_hflags
= emulator_get_hflags
,
5207 .set_hflags
= emulator_set_hflags
,
5210 static void toggle_interruptibility(struct kvm_vcpu
*vcpu
, u32 mask
)
5212 u32 int_shadow
= kvm_x86_ops
->get_interrupt_shadow(vcpu
);
5214 * an sti; sti; sequence only disable interrupts for the first
5215 * instruction. So, if the last instruction, be it emulated or
5216 * not, left the system with the INT_STI flag enabled, it
5217 * means that the last instruction is an sti. We should not
5218 * leave the flag on in this case. The same goes for mov ss
5220 if (int_shadow
& mask
)
5222 if (unlikely(int_shadow
|| mask
)) {
5223 kvm_x86_ops
->set_interrupt_shadow(vcpu
, mask
);
5225 kvm_make_request(KVM_REQ_EVENT
, vcpu
);
5229 static bool inject_emulated_exception(struct kvm_vcpu
*vcpu
)
5231 struct x86_emulate_ctxt
*ctxt
= &vcpu
->arch
.emulate_ctxt
;
5232 if (ctxt
->exception
.vector
== PF_VECTOR
)
5233 return kvm_propagate_fault(vcpu
, &ctxt
->exception
);
5235 if (ctxt
->exception
.error_code_valid
)
5236 kvm_queue_exception_e(vcpu
, ctxt
->exception
.vector
,
5237 ctxt
->exception
.error_code
);
5239 kvm_queue_exception(vcpu
, ctxt
->exception
.vector
);
5243 static void init_emulate_ctxt(struct kvm_vcpu
*vcpu
)
5245 struct x86_emulate_ctxt
*ctxt
= &vcpu
->arch
.emulate_ctxt
;
5248 kvm_x86_ops
->get_cs_db_l_bits(vcpu
, &cs_db
, &cs_l
);
5250 ctxt
->eflags
= kvm_get_rflags(vcpu
);
5251 ctxt
->eip
= kvm_rip_read(vcpu
);
5252 ctxt
->mode
= (!is_protmode(vcpu
)) ? X86EMUL_MODE_REAL
:
5253 (ctxt
->eflags
& X86_EFLAGS_VM
) ? X86EMUL_MODE_VM86
:
5254 (cs_l
&& is_long_mode(vcpu
)) ? X86EMUL_MODE_PROT64
:
5255 cs_db
? X86EMUL_MODE_PROT32
:
5256 X86EMUL_MODE_PROT16
;
5257 BUILD_BUG_ON(HF_GUEST_MASK
!= X86EMUL_GUEST_MASK
);
5258 BUILD_BUG_ON(HF_SMM_MASK
!= X86EMUL_SMM_MASK
);
5259 BUILD_BUG_ON(HF_SMM_INSIDE_NMI_MASK
!= X86EMUL_SMM_INSIDE_NMI_MASK
);
5261 init_decode_cache(ctxt
);
5262 vcpu
->arch
.emulate_regs_need_sync_from_vcpu
= false;
5265 int kvm_inject_realmode_interrupt(struct kvm_vcpu
*vcpu
, int irq
, int inc_eip
)
5267 struct x86_emulate_ctxt
*ctxt
= &vcpu
->arch
.emulate_ctxt
;
5270 init_emulate_ctxt(vcpu
);
5274 ctxt
->_eip
= ctxt
->eip
+ inc_eip
;
5275 ret
= emulate_int_real(ctxt
, irq
);
5277 if (ret
!= X86EMUL_CONTINUE
)
5278 return EMULATE_FAIL
;
5280 ctxt
->eip
= ctxt
->_eip
;
5281 kvm_rip_write(vcpu
, ctxt
->eip
);
5282 kvm_set_rflags(vcpu
, ctxt
->eflags
);
5284 if (irq
== NMI_VECTOR
)
5285 vcpu
->arch
.nmi_pending
= 0;
5287 vcpu
->arch
.interrupt
.pending
= false;
5289 return EMULATE_DONE
;
5291 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt
);
5293 static int handle_emulation_failure(struct kvm_vcpu
*vcpu
)
5295 int r
= EMULATE_DONE
;
5297 ++vcpu
->stat
.insn_emulation_fail
;
5298 trace_kvm_emulate_insn_failed(vcpu
);
5299 if (!is_guest_mode(vcpu
) && kvm_x86_ops
->get_cpl(vcpu
) == 0) {
5300 vcpu
->run
->exit_reason
= KVM_EXIT_INTERNAL_ERROR
;
5301 vcpu
->run
->internal
.suberror
= KVM_INTERNAL_ERROR_EMULATION
;
5302 vcpu
->run
->internal
.ndata
= 0;
5305 kvm_queue_exception(vcpu
, UD_VECTOR
);
5310 static bool reexecute_instruction(struct kvm_vcpu
*vcpu
, gva_t cr2
,
5311 bool write_fault_to_shadow_pgtable
,
5317 if (emulation_type
& EMULTYPE_NO_REEXECUTE
)
5320 if (!vcpu
->arch
.mmu
.direct_map
) {
5322 * Write permission should be allowed since only
5323 * write access need to be emulated.
5325 gpa
= kvm_mmu_gva_to_gpa_write(vcpu
, cr2
, NULL
);
5328 * If the mapping is invalid in guest, let cpu retry
5329 * it to generate fault.
5331 if (gpa
== UNMAPPED_GVA
)
5336 * Do not retry the unhandleable instruction if it faults on the
5337 * readonly host memory, otherwise it will goto a infinite loop:
5338 * retry instruction -> write #PF -> emulation fail -> retry
5339 * instruction -> ...
5341 pfn
= gfn_to_pfn(vcpu
->kvm
, gpa_to_gfn(gpa
));
5344 * If the instruction failed on the error pfn, it can not be fixed,
5345 * report the error to userspace.
5347 if (is_error_noslot_pfn(pfn
))
5350 kvm_release_pfn_clean(pfn
);
5352 /* The instructions are well-emulated on direct mmu. */
5353 if (vcpu
->arch
.mmu
.direct_map
) {
5354 unsigned int indirect_shadow_pages
;
5356 spin_lock(&vcpu
->kvm
->mmu_lock
);
5357 indirect_shadow_pages
= vcpu
->kvm
->arch
.indirect_shadow_pages
;
5358 spin_unlock(&vcpu
->kvm
->mmu_lock
);
5360 if (indirect_shadow_pages
)
5361 kvm_mmu_unprotect_page(vcpu
->kvm
, gpa_to_gfn(gpa
));
5367 * if emulation was due to access to shadowed page table
5368 * and it failed try to unshadow page and re-enter the
5369 * guest to let CPU execute the instruction.
5371 kvm_mmu_unprotect_page(vcpu
->kvm
, gpa_to_gfn(gpa
));
5374 * If the access faults on its page table, it can not
5375 * be fixed by unprotecting shadow page and it should
5376 * be reported to userspace.
5378 return !write_fault_to_shadow_pgtable
;
5381 static bool retry_instruction(struct x86_emulate_ctxt
*ctxt
,
5382 unsigned long cr2
, int emulation_type
)
5384 struct kvm_vcpu
*vcpu
= emul_to_vcpu(ctxt
);
5385 unsigned long last_retry_eip
, last_retry_addr
, gpa
= cr2
;
5387 last_retry_eip
= vcpu
->arch
.last_retry_eip
;
5388 last_retry_addr
= vcpu
->arch
.last_retry_addr
;
5391 * If the emulation is caused by #PF and it is non-page_table
5392 * writing instruction, it means the VM-EXIT is caused by shadow
5393 * page protected, we can zap the shadow page and retry this
5394 * instruction directly.
5396 * Note: if the guest uses a non-page-table modifying instruction
5397 * on the PDE that points to the instruction, then we will unmap
5398 * the instruction and go to an infinite loop. So, we cache the
5399 * last retried eip and the last fault address, if we meet the eip
5400 * and the address again, we can break out of the potential infinite
5403 vcpu
->arch
.last_retry_eip
= vcpu
->arch
.last_retry_addr
= 0;
5405 if (!(emulation_type
& EMULTYPE_RETRY
))
5408 if (x86_page_table_writing_insn(ctxt
))
5411 if (ctxt
->eip
== last_retry_eip
&& last_retry_addr
== cr2
)
5414 vcpu
->arch
.last_retry_eip
= ctxt
->eip
;
5415 vcpu
->arch
.last_retry_addr
= cr2
;
5417 if (!vcpu
->arch
.mmu
.direct_map
)
5418 gpa
= kvm_mmu_gva_to_gpa_write(vcpu
, cr2
, NULL
);
5420 kvm_mmu_unprotect_page(vcpu
->kvm
, gpa_to_gfn(gpa
));
5425 static int complete_emulated_mmio(struct kvm_vcpu
*vcpu
);
5426 static int complete_emulated_pio(struct kvm_vcpu
*vcpu
);
5428 static void kvm_smm_changed(struct kvm_vcpu
*vcpu
)
5430 if (!(vcpu
->arch
.hflags
& HF_SMM_MASK
)) {
5431 /* This is a good place to trace that we are exiting SMM. */
5432 trace_kvm_enter_smm(vcpu
->vcpu_id
, vcpu
->arch
.smbase
, false);
5434 /* Process a latched INIT or SMI, if any. */
5435 kvm_make_request(KVM_REQ_EVENT
, vcpu
);
5438 kvm_mmu_reset_context(vcpu
);
5441 static void kvm_set_hflags(struct kvm_vcpu
*vcpu
, unsigned emul_flags
)
5443 unsigned changed
= vcpu
->arch
.hflags
^ emul_flags
;
5445 vcpu
->arch
.hflags
= emul_flags
;
5447 if (changed
& HF_SMM_MASK
)
5448 kvm_smm_changed(vcpu
);
5451 static int kvm_vcpu_check_hw_bp(unsigned long addr
, u32 type
, u32 dr7
,
5460 for (i
= 0; i
< 4; i
++, enable
>>= 2, rwlen
>>= 4)
5461 if ((enable
& 3) && (rwlen
& 15) == type
&& db
[i
] == addr
)
5466 static void kvm_vcpu_check_singlestep(struct kvm_vcpu
*vcpu
, unsigned long rflags
, int *r
)
5468 struct kvm_run
*kvm_run
= vcpu
->run
;
5471 * rflags is the old, "raw" value of the flags. The new value has
5472 * not been saved yet.
5474 * This is correct even for TF set by the guest, because "the
5475 * processor will not generate this exception after the instruction
5476 * that sets the TF flag".
5478 if (unlikely(rflags
& X86_EFLAGS_TF
)) {
5479 if (vcpu
->guest_debug
& KVM_GUESTDBG_SINGLESTEP
) {
5480 kvm_run
->debug
.arch
.dr6
= DR6_BS
| DR6_FIXED_1
|
5482 kvm_run
->debug
.arch
.pc
= vcpu
->arch
.singlestep_rip
;
5483 kvm_run
->debug
.arch
.exception
= DB_VECTOR
;
5484 kvm_run
->exit_reason
= KVM_EXIT_DEBUG
;
5485 *r
= EMULATE_USER_EXIT
;
5487 vcpu
->arch
.emulate_ctxt
.eflags
&= ~X86_EFLAGS_TF
;
5489 * "Certain debug exceptions may clear bit 0-3. The
5490 * remaining contents of the DR6 register are never
5491 * cleared by the processor".
5493 vcpu
->arch
.dr6
&= ~15;
5494 vcpu
->arch
.dr6
|= DR6_BS
| DR6_RTM
;
5495 kvm_queue_exception(vcpu
, DB_VECTOR
);
5500 static bool kvm_vcpu_check_breakpoint(struct kvm_vcpu
*vcpu
, int *r
)
5502 if (unlikely(vcpu
->guest_debug
& KVM_GUESTDBG_USE_HW_BP
) &&
5503 (vcpu
->arch
.guest_debug_dr7
& DR7_BP_EN_MASK
)) {
5504 struct kvm_run
*kvm_run
= vcpu
->run
;
5505 unsigned long eip
= kvm_get_linear_rip(vcpu
);
5506 u32 dr6
= kvm_vcpu_check_hw_bp(eip
, 0,
5507 vcpu
->arch
.guest_debug_dr7
,
5511 kvm_run
->debug
.arch
.dr6
= dr6
| DR6_FIXED_1
| DR6_RTM
;
5512 kvm_run
->debug
.arch
.pc
= eip
;
5513 kvm_run
->debug
.arch
.exception
= DB_VECTOR
;
5514 kvm_run
->exit_reason
= KVM_EXIT_DEBUG
;
5515 *r
= EMULATE_USER_EXIT
;
5520 if (unlikely(vcpu
->arch
.dr7
& DR7_BP_EN_MASK
) &&
5521 !(kvm_get_rflags(vcpu
) & X86_EFLAGS_RF
)) {
5522 unsigned long eip
= kvm_get_linear_rip(vcpu
);
5523 u32 dr6
= kvm_vcpu_check_hw_bp(eip
, 0,
5528 vcpu
->arch
.dr6
&= ~15;
5529 vcpu
->arch
.dr6
|= dr6
| DR6_RTM
;
5530 kvm_queue_exception(vcpu
, DB_VECTOR
);
5539 int x86_emulate_instruction(struct kvm_vcpu
*vcpu
,
5546 struct x86_emulate_ctxt
*ctxt
= &vcpu
->arch
.emulate_ctxt
;
5547 bool writeback
= true;
5548 bool write_fault_to_spt
= vcpu
->arch
.write_fault_to_shadow_pgtable
;
5551 * Clear write_fault_to_shadow_pgtable here to ensure it is
5554 vcpu
->arch
.write_fault_to_shadow_pgtable
= false;
5555 kvm_clear_exception_queue(vcpu
);
5557 if (!(emulation_type
& EMULTYPE_NO_DECODE
)) {
5558 init_emulate_ctxt(vcpu
);
5561 * We will reenter on the same instruction since
5562 * we do not set complete_userspace_io. This does not
5563 * handle watchpoints yet, those would be handled in
5566 if (kvm_vcpu_check_breakpoint(vcpu
, &r
))
5569 ctxt
->interruptibility
= 0;
5570 ctxt
->have_exception
= false;
5571 ctxt
->exception
.vector
= -1;
5572 ctxt
->perm_ok
= false;
5574 ctxt
->ud
= emulation_type
& EMULTYPE_TRAP_UD
;
5576 r
= x86_decode_insn(ctxt
, insn
, insn_len
);
5578 trace_kvm_emulate_insn_start(vcpu
);
5579 ++vcpu
->stat
.insn_emulation
;
5580 if (r
!= EMULATION_OK
) {
5581 if (emulation_type
& EMULTYPE_TRAP_UD
)
5582 return EMULATE_FAIL
;
5583 if (reexecute_instruction(vcpu
, cr2
, write_fault_to_spt
,
5585 return EMULATE_DONE
;
5586 if (emulation_type
& EMULTYPE_SKIP
)
5587 return EMULATE_FAIL
;
5588 return handle_emulation_failure(vcpu
);
5592 if (emulation_type
& EMULTYPE_SKIP
) {
5593 kvm_rip_write(vcpu
, ctxt
->_eip
);
5594 if (ctxt
->eflags
& X86_EFLAGS_RF
)
5595 kvm_set_rflags(vcpu
, ctxt
->eflags
& ~X86_EFLAGS_RF
);
5596 return EMULATE_DONE
;
5599 if (retry_instruction(ctxt
, cr2
, emulation_type
))
5600 return EMULATE_DONE
;
5602 /* this is needed for vmware backdoor interface to work since it
5603 changes registers values during IO operation */
5604 if (vcpu
->arch
.emulate_regs_need_sync_from_vcpu
) {
5605 vcpu
->arch
.emulate_regs_need_sync_from_vcpu
= false;
5606 emulator_invalidate_register_cache(ctxt
);
5610 r
= x86_emulate_insn(ctxt
);
5612 if (r
== EMULATION_INTERCEPTED
)
5613 return EMULATE_DONE
;
5615 if (r
== EMULATION_FAILED
) {
5616 if (reexecute_instruction(vcpu
, cr2
, write_fault_to_spt
,
5618 return EMULATE_DONE
;
5620 return handle_emulation_failure(vcpu
);
5623 if (ctxt
->have_exception
) {
5625 if (inject_emulated_exception(vcpu
))
5627 } else if (vcpu
->arch
.pio
.count
) {
5628 if (!vcpu
->arch
.pio
.in
) {
5629 /* FIXME: return into emulator if single-stepping. */
5630 vcpu
->arch
.pio
.count
= 0;
5633 vcpu
->arch
.complete_userspace_io
= complete_emulated_pio
;
5635 r
= EMULATE_USER_EXIT
;
5636 } else if (vcpu
->mmio_needed
) {
5637 if (!vcpu
->mmio_is_write
)
5639 r
= EMULATE_USER_EXIT
;
5640 vcpu
->arch
.complete_userspace_io
= complete_emulated_mmio
;
5641 } else if (r
== EMULATION_RESTART
)
5647 unsigned long rflags
= kvm_x86_ops
->get_rflags(vcpu
);
5648 toggle_interruptibility(vcpu
, ctxt
->interruptibility
);
5649 vcpu
->arch
.emulate_regs_need_sync_to_vcpu
= false;
5650 kvm_rip_write(vcpu
, ctxt
->eip
);
5651 if (r
== EMULATE_DONE
)
5652 kvm_vcpu_check_singlestep(vcpu
, rflags
, &r
);
5653 if (!ctxt
->have_exception
||
5654 exception_type(ctxt
->exception
.vector
) == EXCPT_TRAP
)
5655 __kvm_set_rflags(vcpu
, ctxt
->eflags
);
5658 * For STI, interrupts are shadowed; so KVM_REQ_EVENT will
5659 * do nothing, and it will be requested again as soon as
5660 * the shadow expires. But we still need to check here,
5661 * because POPF has no interrupt shadow.
5663 if (unlikely((ctxt
->eflags
& ~rflags
) & X86_EFLAGS_IF
))
5664 kvm_make_request(KVM_REQ_EVENT
, vcpu
);
5666 vcpu
->arch
.emulate_regs_need_sync_to_vcpu
= true;
5670 EXPORT_SYMBOL_GPL(x86_emulate_instruction
);
5672 int kvm_fast_pio_out(struct kvm_vcpu
*vcpu
, int size
, unsigned short port
)
5674 unsigned long val
= kvm_register_read(vcpu
, VCPU_REGS_RAX
);
5675 int ret
= emulator_pio_out_emulated(&vcpu
->arch
.emulate_ctxt
,
5676 size
, port
, &val
, 1);
5677 /* do not return to emulator after return from userspace */
5678 vcpu
->arch
.pio
.count
= 0;
5681 EXPORT_SYMBOL_GPL(kvm_fast_pio_out
);
5683 static int kvmclock_cpu_down_prep(unsigned int cpu
)
5685 __this_cpu_write(cpu_tsc_khz
, 0);
5689 static void tsc_khz_changed(void *data
)
5691 struct cpufreq_freqs
*freq
= data
;
5692 unsigned long khz
= 0;
5696 else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC
))
5697 khz
= cpufreq_quick_get(raw_smp_processor_id());
5700 __this_cpu_write(cpu_tsc_khz
, khz
);
5703 static int kvmclock_cpufreq_notifier(struct notifier_block
*nb
, unsigned long val
,
5706 struct cpufreq_freqs
*freq
= data
;
5708 struct kvm_vcpu
*vcpu
;
5709 int i
, send_ipi
= 0;
5712 * We allow guests to temporarily run on slowing clocks,
5713 * provided we notify them after, or to run on accelerating
5714 * clocks, provided we notify them before. Thus time never
5717 * However, we have a problem. We can't atomically update
5718 * the frequency of a given CPU from this function; it is
5719 * merely a notifier, which can be called from any CPU.
5720 * Changing the TSC frequency at arbitrary points in time
5721 * requires a recomputation of local variables related to
5722 * the TSC for each VCPU. We must flag these local variables
5723 * to be updated and be sure the update takes place with the
5724 * new frequency before any guests proceed.
5726 * Unfortunately, the combination of hotplug CPU and frequency
5727 * change creates an intractable locking scenario; the order
5728 * of when these callouts happen is undefined with respect to
5729 * CPU hotplug, and they can race with each other. As such,
5730 * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
5731 * undefined; you can actually have a CPU frequency change take
5732 * place in between the computation of X and the setting of the
5733 * variable. To protect against this problem, all updates of
5734 * the per_cpu tsc_khz variable are done in an interrupt
5735 * protected IPI, and all callers wishing to update the value
5736 * must wait for a synchronous IPI to complete (which is trivial
5737 * if the caller is on the CPU already). This establishes the
5738 * necessary total order on variable updates.
5740 * Note that because a guest time update may take place
5741 * anytime after the setting of the VCPU's request bit, the
5742 * correct TSC value must be set before the request. However,
5743 * to ensure the update actually makes it to any guest which
5744 * starts running in hardware virtualization between the set
5745 * and the acquisition of the spinlock, we must also ping the
5746 * CPU after setting the request bit.
5750 if (val
== CPUFREQ_PRECHANGE
&& freq
->old
> freq
->new)
5752 if (val
== CPUFREQ_POSTCHANGE
&& freq
->old
< freq
->new)
5755 smp_call_function_single(freq
->cpu
, tsc_khz_changed
, freq
, 1);
5757 spin_lock(&kvm_lock
);
5758 list_for_each_entry(kvm
, &vm_list
, vm_list
) {
5759 kvm_for_each_vcpu(i
, vcpu
, kvm
) {
5760 if (vcpu
->cpu
!= freq
->cpu
)
5762 kvm_make_request(KVM_REQ_CLOCK_UPDATE
, vcpu
);
5763 if (vcpu
->cpu
!= smp_processor_id())
5767 spin_unlock(&kvm_lock
);
5769 if (freq
->old
< freq
->new && send_ipi
) {
5771 * We upscale the frequency. Must make the guest
5772 * doesn't see old kvmclock values while running with
5773 * the new frequency, otherwise we risk the guest sees
5774 * time go backwards.
5776 * In case we update the frequency for another cpu
5777 * (which might be in guest context) send an interrupt
5778 * to kick the cpu out of guest context. Next time
5779 * guest context is entered kvmclock will be updated,
5780 * so the guest will not see stale values.
5782 smp_call_function_single(freq
->cpu
, tsc_khz_changed
, freq
, 1);
5787 static struct notifier_block kvmclock_cpufreq_notifier_block
= {
5788 .notifier_call
= kvmclock_cpufreq_notifier
5791 static int kvmclock_cpu_online(unsigned int cpu
)
5793 tsc_khz_changed(NULL
);
5797 static void kvm_timer_init(void)
5799 max_tsc_khz
= tsc_khz
;
5801 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC
)) {
5802 #ifdef CONFIG_CPU_FREQ
5803 struct cpufreq_policy policy
;
5806 memset(&policy
, 0, sizeof(policy
));
5808 cpufreq_get_policy(&policy
, cpu
);
5809 if (policy
.cpuinfo
.max_freq
)
5810 max_tsc_khz
= policy
.cpuinfo
.max_freq
;
5813 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block
,
5814 CPUFREQ_TRANSITION_NOTIFIER
);
5816 pr_debug("kvm: max_tsc_khz = %ld\n", max_tsc_khz
);
5818 cpuhp_setup_state(CPUHP_AP_X86_KVM_CLK_ONLINE
, "AP_X86_KVM_CLK_ONLINE",
5819 kvmclock_cpu_online
, kvmclock_cpu_down_prep
);
5822 static DEFINE_PER_CPU(struct kvm_vcpu
*, current_vcpu
);
5824 int kvm_is_in_guest(void)
5826 return __this_cpu_read(current_vcpu
) != NULL
;
5829 static int kvm_is_user_mode(void)
5833 if (__this_cpu_read(current_vcpu
))
5834 user_mode
= kvm_x86_ops
->get_cpl(__this_cpu_read(current_vcpu
));
5836 return user_mode
!= 0;
5839 static unsigned long kvm_get_guest_ip(void)
5841 unsigned long ip
= 0;
5843 if (__this_cpu_read(current_vcpu
))
5844 ip
= kvm_rip_read(__this_cpu_read(current_vcpu
));
5849 static struct perf_guest_info_callbacks kvm_guest_cbs
= {
5850 .is_in_guest
= kvm_is_in_guest
,
5851 .is_user_mode
= kvm_is_user_mode
,
5852 .get_guest_ip
= kvm_get_guest_ip
,
5855 void kvm_before_handle_nmi(struct kvm_vcpu
*vcpu
)
5857 __this_cpu_write(current_vcpu
, vcpu
);
5859 EXPORT_SYMBOL_GPL(kvm_before_handle_nmi
);
5861 void kvm_after_handle_nmi(struct kvm_vcpu
*vcpu
)
5863 __this_cpu_write(current_vcpu
, NULL
);
5865 EXPORT_SYMBOL_GPL(kvm_after_handle_nmi
);
5867 static void kvm_set_mmio_spte_mask(void)
5870 int maxphyaddr
= boot_cpu_data
.x86_phys_bits
;
5873 * Set the reserved bits and the present bit of an paging-structure
5874 * entry to generate page fault with PFER.RSV = 1.
5876 /* Mask the reserved physical address bits. */
5877 mask
= rsvd_bits(maxphyaddr
, 51);
5879 /* Bit 62 is always reserved for 32bit host. */
5880 mask
|= 0x3ull
<< 62;
5882 /* Set the present bit. */
5885 #ifdef CONFIG_X86_64
5887 * If reserved bit is not supported, clear the present bit to disable
5890 if (maxphyaddr
== 52)
5894 kvm_mmu_set_mmio_spte_mask(mask
);
5897 #ifdef CONFIG_X86_64
5898 static void pvclock_gtod_update_fn(struct work_struct
*work
)
5902 struct kvm_vcpu
*vcpu
;
5905 spin_lock(&kvm_lock
);
5906 list_for_each_entry(kvm
, &vm_list
, vm_list
)
5907 kvm_for_each_vcpu(i
, vcpu
, kvm
)
5908 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE
, vcpu
);
5909 atomic_set(&kvm_guest_has_master_clock
, 0);
5910 spin_unlock(&kvm_lock
);
5913 static DECLARE_WORK(pvclock_gtod_work
, pvclock_gtod_update_fn
);
5916 * Notification about pvclock gtod data update.
5918 static int pvclock_gtod_notify(struct notifier_block
*nb
, unsigned long unused
,
5921 struct pvclock_gtod_data
*gtod
= &pvclock_gtod_data
;
5922 struct timekeeper
*tk
= priv
;
5924 update_pvclock_gtod(tk
);
5926 /* disable master clock if host does not trust, or does not
5927 * use, TSC clocksource
5929 if (gtod
->clock
.vclock_mode
!= VCLOCK_TSC
&&
5930 atomic_read(&kvm_guest_has_master_clock
) != 0)
5931 queue_work(system_long_wq
, &pvclock_gtod_work
);
5936 static struct notifier_block pvclock_gtod_notifier
= {
5937 .notifier_call
= pvclock_gtod_notify
,
5941 int kvm_arch_init(void *opaque
)
5944 struct kvm_x86_ops
*ops
= opaque
;
5947 printk(KERN_ERR
"kvm: already loaded the other module\n");
5952 if (!ops
->cpu_has_kvm_support()) {
5953 printk(KERN_ERR
"kvm: no hardware support\n");
5957 if (ops
->disabled_by_bios()) {
5958 printk(KERN_ERR
"kvm: disabled by bios\n");
5964 shared_msrs
= alloc_percpu(struct kvm_shared_msrs
);
5966 printk(KERN_ERR
"kvm: failed to allocate percpu kvm_shared_msrs\n");
5970 r
= kvm_mmu_module_init();
5972 goto out_free_percpu
;
5974 kvm_set_mmio_spte_mask();
5978 kvm_mmu_set_mask_ptes(PT_USER_MASK
, PT_ACCESSED_MASK
,
5979 PT_DIRTY_MASK
, PT64_NX_MASK
, 0,
5983 perf_register_guest_info_callbacks(&kvm_guest_cbs
);
5985 if (boot_cpu_has(X86_FEATURE_XSAVE
))
5986 host_xcr0
= xgetbv(XCR_XFEATURE_ENABLED_MASK
);
5989 #ifdef CONFIG_X86_64
5990 pvclock_gtod_register_notifier(&pvclock_gtod_notifier
);
5996 free_percpu(shared_msrs
);
6001 void kvm_arch_exit(void)
6004 perf_unregister_guest_info_callbacks(&kvm_guest_cbs
);
6006 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC
))
6007 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block
,
6008 CPUFREQ_TRANSITION_NOTIFIER
);
6009 cpuhp_remove_state_nocalls(CPUHP_AP_X86_KVM_CLK_ONLINE
);
6010 #ifdef CONFIG_X86_64
6011 pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier
);
6014 kvm_mmu_module_exit();
6015 free_percpu(shared_msrs
);
6018 int kvm_vcpu_halt(struct kvm_vcpu
*vcpu
)
6020 ++vcpu
->stat
.halt_exits
;
6021 if (lapic_in_kernel(vcpu
)) {
6022 vcpu
->arch
.mp_state
= KVM_MP_STATE_HALTED
;
6025 vcpu
->run
->exit_reason
= KVM_EXIT_HLT
;
6029 EXPORT_SYMBOL_GPL(kvm_vcpu_halt
);
6031 int kvm_emulate_halt(struct kvm_vcpu
*vcpu
)
6033 kvm_x86_ops
->skip_emulated_instruction(vcpu
);
6034 return kvm_vcpu_halt(vcpu
);
6036 EXPORT_SYMBOL_GPL(kvm_emulate_halt
);
6039 * kvm_pv_kick_cpu_op: Kick a vcpu.
6041 * @apicid - apicid of vcpu to be kicked.
6043 static void kvm_pv_kick_cpu_op(struct kvm
*kvm
, unsigned long flags
, int apicid
)
6045 struct kvm_lapic_irq lapic_irq
;
6047 lapic_irq
.shorthand
= 0;
6048 lapic_irq
.dest_mode
= 0;
6049 lapic_irq
.dest_id
= apicid
;
6050 lapic_irq
.msi_redir_hint
= false;
6052 lapic_irq
.delivery_mode
= APIC_DM_REMRD
;
6053 kvm_irq_delivery_to_apic(kvm
, NULL
, &lapic_irq
, NULL
);
6056 void kvm_vcpu_deactivate_apicv(struct kvm_vcpu
*vcpu
)
6058 vcpu
->arch
.apicv_active
= false;
6059 kvm_x86_ops
->refresh_apicv_exec_ctrl(vcpu
);
6062 int kvm_emulate_hypercall(struct kvm_vcpu
*vcpu
)
6064 unsigned long nr
, a0
, a1
, a2
, a3
, ret
;
6065 int op_64_bit
, r
= 1;
6067 kvm_x86_ops
->skip_emulated_instruction(vcpu
);
6069 if (kvm_hv_hypercall_enabled(vcpu
->kvm
))
6070 return kvm_hv_hypercall(vcpu
);
6072 nr
= kvm_register_read(vcpu
, VCPU_REGS_RAX
);
6073 a0
= kvm_register_read(vcpu
, VCPU_REGS_RBX
);
6074 a1
= kvm_register_read(vcpu
, VCPU_REGS_RCX
);
6075 a2
= kvm_register_read(vcpu
, VCPU_REGS_RDX
);
6076 a3
= kvm_register_read(vcpu
, VCPU_REGS_RSI
);
6078 trace_kvm_hypercall(nr
, a0
, a1
, a2
, a3
);
6080 op_64_bit
= is_64_bit_mode(vcpu
);
6089 if (kvm_x86_ops
->get_cpl(vcpu
) != 0) {
6095 case KVM_HC_VAPIC_POLL_IRQ
:
6098 case KVM_HC_KICK_CPU
:
6099 kvm_pv_kick_cpu_op(vcpu
->kvm
, a0
, a1
);
6109 kvm_register_write(vcpu
, VCPU_REGS_RAX
, ret
);
6110 ++vcpu
->stat
.hypercalls
;
6113 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall
);
6115 static int emulator_fix_hypercall(struct x86_emulate_ctxt
*ctxt
)
6117 struct kvm_vcpu
*vcpu
= emul_to_vcpu(ctxt
);
6118 char instruction
[3];
6119 unsigned long rip
= kvm_rip_read(vcpu
);
6121 kvm_x86_ops
->patch_hypercall(vcpu
, instruction
);
6123 return emulator_write_emulated(ctxt
, rip
, instruction
, 3,
6127 static int dm_request_for_irq_injection(struct kvm_vcpu
*vcpu
)
6129 return vcpu
->run
->request_interrupt_window
&&
6130 likely(!pic_in_kernel(vcpu
->kvm
));
6133 static void post_kvm_run_save(struct kvm_vcpu
*vcpu
)
6135 struct kvm_run
*kvm_run
= vcpu
->run
;
6137 kvm_run
->if_flag
= (kvm_get_rflags(vcpu
) & X86_EFLAGS_IF
) != 0;
6138 kvm_run
->flags
= is_smm(vcpu
) ? KVM_RUN_X86_SMM
: 0;
6139 kvm_run
->cr8
= kvm_get_cr8(vcpu
);
6140 kvm_run
->apic_base
= kvm_get_apic_base(vcpu
);
6141 kvm_run
->ready_for_interrupt_injection
=
6142 pic_in_kernel(vcpu
->kvm
) ||
6143 kvm_vcpu_ready_for_interrupt_injection(vcpu
);
6146 static void update_cr8_intercept(struct kvm_vcpu
*vcpu
)
6150 if (!kvm_x86_ops
->update_cr8_intercept
)
6153 if (!lapic_in_kernel(vcpu
))
6156 if (vcpu
->arch
.apicv_active
)
6159 if (!vcpu
->arch
.apic
->vapic_addr
)
6160 max_irr
= kvm_lapic_find_highest_irr(vcpu
);
6167 tpr
= kvm_lapic_get_cr8(vcpu
);
6169 kvm_x86_ops
->update_cr8_intercept(vcpu
, tpr
, max_irr
);
6172 static int inject_pending_event(struct kvm_vcpu
*vcpu
, bool req_int_win
)
6176 /* try to reinject previous events if any */
6177 if (vcpu
->arch
.exception
.pending
) {
6178 trace_kvm_inj_exception(vcpu
->arch
.exception
.nr
,
6179 vcpu
->arch
.exception
.has_error_code
,
6180 vcpu
->arch
.exception
.error_code
);
6182 if (exception_type(vcpu
->arch
.exception
.nr
) == EXCPT_FAULT
)
6183 __kvm_set_rflags(vcpu
, kvm_get_rflags(vcpu
) |
6186 if (vcpu
->arch
.exception
.nr
== DB_VECTOR
&&
6187 (vcpu
->arch
.dr7
& DR7_GD
)) {
6188 vcpu
->arch
.dr7
&= ~DR7_GD
;
6189 kvm_update_dr7(vcpu
);
6192 kvm_x86_ops
->queue_exception(vcpu
, vcpu
->arch
.exception
.nr
,
6193 vcpu
->arch
.exception
.has_error_code
,
6194 vcpu
->arch
.exception
.error_code
,
6195 vcpu
->arch
.exception
.reinject
);
6199 if (vcpu
->arch
.nmi_injected
) {
6200 kvm_x86_ops
->set_nmi(vcpu
);
6204 if (vcpu
->arch
.interrupt
.pending
) {
6205 kvm_x86_ops
->set_irq(vcpu
);
6209 if (is_guest_mode(vcpu
) && kvm_x86_ops
->check_nested_events
) {
6210 r
= kvm_x86_ops
->check_nested_events(vcpu
, req_int_win
);
6215 /* try to inject new event if pending */
6216 if (vcpu
->arch
.smi_pending
&& !is_smm(vcpu
)) {
6217 vcpu
->arch
.smi_pending
= false;
6219 } else if (vcpu
->arch
.nmi_pending
&& kvm_x86_ops
->nmi_allowed(vcpu
)) {
6220 --vcpu
->arch
.nmi_pending
;
6221 vcpu
->arch
.nmi_injected
= true;
6222 kvm_x86_ops
->set_nmi(vcpu
);
6223 } else if (kvm_cpu_has_injectable_intr(vcpu
)) {
6225 * Because interrupts can be injected asynchronously, we are
6226 * calling check_nested_events again here to avoid a race condition.
6227 * See https://lkml.org/lkml/2014/7/2/60 for discussion about this
6228 * proposal and current concerns. Perhaps we should be setting
6229 * KVM_REQ_EVENT only on certain events and not unconditionally?
6231 if (is_guest_mode(vcpu
) && kvm_x86_ops
->check_nested_events
) {
6232 r
= kvm_x86_ops
->check_nested_events(vcpu
, req_int_win
);
6236 if (kvm_x86_ops
->interrupt_allowed(vcpu
)) {
6237 kvm_queue_interrupt(vcpu
, kvm_cpu_get_interrupt(vcpu
),
6239 kvm_x86_ops
->set_irq(vcpu
);
6246 static void process_nmi(struct kvm_vcpu
*vcpu
)
6251 * x86 is limited to one NMI running, and one NMI pending after it.
6252 * If an NMI is already in progress, limit further NMIs to just one.
6253 * Otherwise, allow two (and we'll inject the first one immediately).
6255 if (kvm_x86_ops
->get_nmi_mask(vcpu
) || vcpu
->arch
.nmi_injected
)
6258 vcpu
->arch
.nmi_pending
+= atomic_xchg(&vcpu
->arch
.nmi_queued
, 0);
6259 vcpu
->arch
.nmi_pending
= min(vcpu
->arch
.nmi_pending
, limit
);
6260 kvm_make_request(KVM_REQ_EVENT
, vcpu
);
6263 #define put_smstate(type, buf, offset, val) \
6264 *(type *)((buf) + (offset) - 0x7e00) = val
6266 static u32
enter_smm_get_segment_flags(struct kvm_segment
*seg
)
6269 flags
|= seg
->g
<< 23;
6270 flags
|= seg
->db
<< 22;
6271 flags
|= seg
->l
<< 21;
6272 flags
|= seg
->avl
<< 20;
6273 flags
|= seg
->present
<< 15;
6274 flags
|= seg
->dpl
<< 13;
6275 flags
|= seg
->s
<< 12;
6276 flags
|= seg
->type
<< 8;
6280 static void enter_smm_save_seg_32(struct kvm_vcpu
*vcpu
, char *buf
, int n
)
6282 struct kvm_segment seg
;
6285 kvm_get_segment(vcpu
, &seg
, n
);
6286 put_smstate(u32
, buf
, 0x7fa8 + n
* 4, seg
.selector
);
6289 offset
= 0x7f84 + n
* 12;
6291 offset
= 0x7f2c + (n
- 3) * 12;
6293 put_smstate(u32
, buf
, offset
+ 8, seg
.base
);
6294 put_smstate(u32
, buf
, offset
+ 4, seg
.limit
);
6295 put_smstate(u32
, buf
, offset
, enter_smm_get_segment_flags(&seg
));
6298 #ifdef CONFIG_X86_64
6299 static void enter_smm_save_seg_64(struct kvm_vcpu
*vcpu
, char *buf
, int n
)
6301 struct kvm_segment seg
;
6305 kvm_get_segment(vcpu
, &seg
, n
);
6306 offset
= 0x7e00 + n
* 16;
6308 flags
= enter_smm_get_segment_flags(&seg
) >> 8;
6309 put_smstate(u16
, buf
, offset
, seg
.selector
);
6310 put_smstate(u16
, buf
, offset
+ 2, flags
);
6311 put_smstate(u32
, buf
, offset
+ 4, seg
.limit
);
6312 put_smstate(u64
, buf
, offset
+ 8, seg
.base
);
6316 static void enter_smm_save_state_32(struct kvm_vcpu
*vcpu
, char *buf
)
6319 struct kvm_segment seg
;
6323 put_smstate(u32
, buf
, 0x7ffc, kvm_read_cr0(vcpu
));
6324 put_smstate(u32
, buf
, 0x7ff8, kvm_read_cr3(vcpu
));
6325 put_smstate(u32
, buf
, 0x7ff4, kvm_get_rflags(vcpu
));
6326 put_smstate(u32
, buf
, 0x7ff0, kvm_rip_read(vcpu
));
6328 for (i
= 0; i
< 8; i
++)
6329 put_smstate(u32
, buf
, 0x7fd0 + i
* 4, kvm_register_read(vcpu
, i
));
6331 kvm_get_dr(vcpu
, 6, &val
);
6332 put_smstate(u32
, buf
, 0x7fcc, (u32
)val
);
6333 kvm_get_dr(vcpu
, 7, &val
);
6334 put_smstate(u32
, buf
, 0x7fc8, (u32
)val
);
6336 kvm_get_segment(vcpu
, &seg
, VCPU_SREG_TR
);
6337 put_smstate(u32
, buf
, 0x7fc4, seg
.selector
);
6338 put_smstate(u32
, buf
, 0x7f64, seg
.base
);
6339 put_smstate(u32
, buf
, 0x7f60, seg
.limit
);
6340 put_smstate(u32
, buf
, 0x7f5c, enter_smm_get_segment_flags(&seg
));
6342 kvm_get_segment(vcpu
, &seg
, VCPU_SREG_LDTR
);
6343 put_smstate(u32
, buf
, 0x7fc0, seg
.selector
);
6344 put_smstate(u32
, buf
, 0x7f80, seg
.base
);
6345 put_smstate(u32
, buf
, 0x7f7c, seg
.limit
);
6346 put_smstate(u32
, buf
, 0x7f78, enter_smm_get_segment_flags(&seg
));
6348 kvm_x86_ops
->get_gdt(vcpu
, &dt
);
6349 put_smstate(u32
, buf
, 0x7f74, dt
.address
);
6350 put_smstate(u32
, buf
, 0x7f70, dt
.size
);
6352 kvm_x86_ops
->get_idt(vcpu
, &dt
);
6353 put_smstate(u32
, buf
, 0x7f58, dt
.address
);
6354 put_smstate(u32
, buf
, 0x7f54, dt
.size
);
6356 for (i
= 0; i
< 6; i
++)
6357 enter_smm_save_seg_32(vcpu
, buf
, i
);
6359 put_smstate(u32
, buf
, 0x7f14, kvm_read_cr4(vcpu
));
6362 put_smstate(u32
, buf
, 0x7efc, 0x00020000);
6363 put_smstate(u32
, buf
, 0x7ef8, vcpu
->arch
.smbase
);
6366 static void enter_smm_save_state_64(struct kvm_vcpu
*vcpu
, char *buf
)
6368 #ifdef CONFIG_X86_64
6370 struct kvm_segment seg
;
6374 for (i
= 0; i
< 16; i
++)
6375 put_smstate(u64
, buf
, 0x7ff8 - i
* 8, kvm_register_read(vcpu
, i
));
6377 put_smstate(u64
, buf
, 0x7f78, kvm_rip_read(vcpu
));
6378 put_smstate(u32
, buf
, 0x7f70, kvm_get_rflags(vcpu
));
6380 kvm_get_dr(vcpu
, 6, &val
);
6381 put_smstate(u64
, buf
, 0x7f68, val
);
6382 kvm_get_dr(vcpu
, 7, &val
);
6383 put_smstate(u64
, buf
, 0x7f60, val
);
6385 put_smstate(u64
, buf
, 0x7f58, kvm_read_cr0(vcpu
));
6386 put_smstate(u64
, buf
, 0x7f50, kvm_read_cr3(vcpu
));
6387 put_smstate(u64
, buf
, 0x7f48, kvm_read_cr4(vcpu
));
6389 put_smstate(u32
, buf
, 0x7f00, vcpu
->arch
.smbase
);
6392 put_smstate(u32
, buf
, 0x7efc, 0x00020064);
6394 put_smstate(u64
, buf
, 0x7ed0, vcpu
->arch
.efer
);
6396 kvm_get_segment(vcpu
, &seg
, VCPU_SREG_TR
);
6397 put_smstate(u16
, buf
, 0x7e90, seg
.selector
);
6398 put_smstate(u16
, buf
, 0x7e92, enter_smm_get_segment_flags(&seg
) >> 8);
6399 put_smstate(u32
, buf
, 0x7e94, seg
.limit
);
6400 put_smstate(u64
, buf
, 0x7e98, seg
.base
);
6402 kvm_x86_ops
->get_idt(vcpu
, &dt
);
6403 put_smstate(u32
, buf
, 0x7e84, dt
.size
);
6404 put_smstate(u64
, buf
, 0x7e88, dt
.address
);
6406 kvm_get_segment(vcpu
, &seg
, VCPU_SREG_LDTR
);
6407 put_smstate(u16
, buf
, 0x7e70, seg
.selector
);
6408 put_smstate(u16
, buf
, 0x7e72, enter_smm_get_segment_flags(&seg
) >> 8);
6409 put_smstate(u32
, buf
, 0x7e74, seg
.limit
);
6410 put_smstate(u64
, buf
, 0x7e78, seg
.base
);
6412 kvm_x86_ops
->get_gdt(vcpu
, &dt
);
6413 put_smstate(u32
, buf
, 0x7e64, dt
.size
);
6414 put_smstate(u64
, buf
, 0x7e68, dt
.address
);
6416 for (i
= 0; i
< 6; i
++)
6417 enter_smm_save_seg_64(vcpu
, buf
, i
);
6423 static void enter_smm(struct kvm_vcpu
*vcpu
)
6425 struct kvm_segment cs
, ds
;
6430 trace_kvm_enter_smm(vcpu
->vcpu_id
, vcpu
->arch
.smbase
, true);
6431 vcpu
->arch
.hflags
|= HF_SMM_MASK
;
6432 memset(buf
, 0, 512);
6433 if (guest_cpuid_has_longmode(vcpu
))
6434 enter_smm_save_state_64(vcpu
, buf
);
6436 enter_smm_save_state_32(vcpu
, buf
);
6438 kvm_vcpu_write_guest(vcpu
, vcpu
->arch
.smbase
+ 0xfe00, buf
, sizeof(buf
));
6440 if (kvm_x86_ops
->get_nmi_mask(vcpu
))
6441 vcpu
->arch
.hflags
|= HF_SMM_INSIDE_NMI_MASK
;
6443 kvm_x86_ops
->set_nmi_mask(vcpu
, true);
6445 kvm_set_rflags(vcpu
, X86_EFLAGS_FIXED
);
6446 kvm_rip_write(vcpu
, 0x8000);
6448 cr0
= vcpu
->arch
.cr0
& ~(X86_CR0_PE
| X86_CR0_EM
| X86_CR0_TS
| X86_CR0_PG
);
6449 kvm_x86_ops
->set_cr0(vcpu
, cr0
);
6450 vcpu
->arch
.cr0
= cr0
;
6452 kvm_x86_ops
->set_cr4(vcpu
, 0);
6454 /* Undocumented: IDT limit is set to zero on entry to SMM. */
6455 dt
.address
= dt
.size
= 0;
6456 kvm_x86_ops
->set_idt(vcpu
, &dt
);
6458 __kvm_set_dr(vcpu
, 7, DR7_FIXED_1
);
6460 cs
.selector
= (vcpu
->arch
.smbase
>> 4) & 0xffff;
6461 cs
.base
= vcpu
->arch
.smbase
;
6466 cs
.limit
= ds
.limit
= 0xffffffff;
6467 cs
.type
= ds
.type
= 0x3;
6468 cs
.dpl
= ds
.dpl
= 0;
6473 cs
.avl
= ds
.avl
= 0;
6474 cs
.present
= ds
.present
= 1;
6475 cs
.unusable
= ds
.unusable
= 0;
6476 cs
.padding
= ds
.padding
= 0;
6478 kvm_set_segment(vcpu
, &cs
, VCPU_SREG_CS
);
6479 kvm_set_segment(vcpu
, &ds
, VCPU_SREG_DS
);
6480 kvm_set_segment(vcpu
, &ds
, VCPU_SREG_ES
);
6481 kvm_set_segment(vcpu
, &ds
, VCPU_SREG_FS
);
6482 kvm_set_segment(vcpu
, &ds
, VCPU_SREG_GS
);
6483 kvm_set_segment(vcpu
, &ds
, VCPU_SREG_SS
);
6485 if (guest_cpuid_has_longmode(vcpu
))
6486 kvm_x86_ops
->set_efer(vcpu
, 0);
6488 kvm_update_cpuid(vcpu
);
6489 kvm_mmu_reset_context(vcpu
);
6492 static void process_smi(struct kvm_vcpu
*vcpu
)
6494 vcpu
->arch
.smi_pending
= true;
6495 kvm_make_request(KVM_REQ_EVENT
, vcpu
);
6498 void kvm_make_scan_ioapic_request(struct kvm
*kvm
)
6500 kvm_make_all_cpus_request(kvm
, KVM_REQ_SCAN_IOAPIC
);
6503 static void vcpu_scan_ioapic(struct kvm_vcpu
*vcpu
)
6505 u64 eoi_exit_bitmap
[4];
6507 if (!kvm_apic_hw_enabled(vcpu
->arch
.apic
))
6510 bitmap_zero(vcpu
->arch
.ioapic_handled_vectors
, 256);
6512 if (irqchip_split(vcpu
->kvm
))
6513 kvm_scan_ioapic_routes(vcpu
, vcpu
->arch
.ioapic_handled_vectors
);
6515 if (vcpu
->arch
.apicv_active
)
6516 kvm_x86_ops
->sync_pir_to_irr(vcpu
);
6517 kvm_ioapic_scan_entry(vcpu
, vcpu
->arch
.ioapic_handled_vectors
);
6519 bitmap_or((ulong
*)eoi_exit_bitmap
, vcpu
->arch
.ioapic_handled_vectors
,
6520 vcpu_to_synic(vcpu
)->vec_bitmap
, 256);
6521 kvm_x86_ops
->load_eoi_exitmap(vcpu
, eoi_exit_bitmap
);
6524 static void kvm_vcpu_flush_tlb(struct kvm_vcpu
*vcpu
)
6526 ++vcpu
->stat
.tlb_flush
;
6527 kvm_x86_ops
->tlb_flush(vcpu
);
6530 void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu
*vcpu
)
6532 struct page
*page
= NULL
;
6534 if (!lapic_in_kernel(vcpu
))
6537 if (!kvm_x86_ops
->set_apic_access_page_addr
)
6540 page
= gfn_to_page(vcpu
->kvm
, APIC_DEFAULT_PHYS_BASE
>> PAGE_SHIFT
);
6541 if (is_error_page(page
))
6543 kvm_x86_ops
->set_apic_access_page_addr(vcpu
, page_to_phys(page
));
6546 * Do not pin apic access page in memory, the MMU notifier
6547 * will call us again if it is migrated or swapped out.
6551 EXPORT_SYMBOL_GPL(kvm_vcpu_reload_apic_access_page
);
6553 void kvm_arch_mmu_notifier_invalidate_page(struct kvm
*kvm
,
6554 unsigned long address
)
6557 * The physical address of apic access page is stored in the VMCS.
6558 * Update it when it becomes invalid.
6560 if (address
== gfn_to_hva(kvm
, APIC_DEFAULT_PHYS_BASE
>> PAGE_SHIFT
))
6561 kvm_make_all_cpus_request(kvm
, KVM_REQ_APIC_PAGE_RELOAD
);
6565 * Returns 1 to let vcpu_run() continue the guest execution loop without
6566 * exiting to the userspace. Otherwise, the value will be returned to the
6569 static int vcpu_enter_guest(struct kvm_vcpu
*vcpu
)
6573 dm_request_for_irq_injection(vcpu
) &&
6574 kvm_cpu_accept_dm_intr(vcpu
);
6576 bool req_immediate_exit
= false;
6578 if (vcpu
->requests
) {
6579 if (kvm_check_request(KVM_REQ_MMU_RELOAD
, vcpu
))
6580 kvm_mmu_unload(vcpu
);
6581 if (kvm_check_request(KVM_REQ_MIGRATE_TIMER
, vcpu
))
6582 __kvm_migrate_timers(vcpu
);
6583 if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE
, vcpu
))
6584 kvm_gen_update_masterclock(vcpu
->kvm
);
6585 if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE
, vcpu
))
6586 kvm_gen_kvmclock_update(vcpu
);
6587 if (kvm_check_request(KVM_REQ_CLOCK_UPDATE
, vcpu
)) {
6588 r
= kvm_guest_time_update(vcpu
);
6592 if (kvm_check_request(KVM_REQ_MMU_SYNC
, vcpu
))
6593 kvm_mmu_sync_roots(vcpu
);
6594 if (kvm_check_request(KVM_REQ_TLB_FLUSH
, vcpu
))
6595 kvm_vcpu_flush_tlb(vcpu
);
6596 if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS
, vcpu
)) {
6597 vcpu
->run
->exit_reason
= KVM_EXIT_TPR_ACCESS
;
6601 if (kvm_check_request(KVM_REQ_TRIPLE_FAULT
, vcpu
)) {
6602 vcpu
->run
->exit_reason
= KVM_EXIT_SHUTDOWN
;
6606 if (kvm_check_request(KVM_REQ_DEACTIVATE_FPU
, vcpu
)) {
6607 vcpu
->fpu_active
= 0;
6608 kvm_x86_ops
->fpu_deactivate(vcpu
);
6610 if (kvm_check_request(KVM_REQ_APF_HALT
, vcpu
)) {
6611 /* Page is swapped out. Do synthetic halt */
6612 vcpu
->arch
.apf
.halted
= true;
6616 if (kvm_check_request(KVM_REQ_STEAL_UPDATE
, vcpu
))
6617 record_steal_time(vcpu
);
6618 if (kvm_check_request(KVM_REQ_SMI
, vcpu
))
6620 if (kvm_check_request(KVM_REQ_NMI
, vcpu
))
6622 if (kvm_check_request(KVM_REQ_PMU
, vcpu
))
6623 kvm_pmu_handle_event(vcpu
);
6624 if (kvm_check_request(KVM_REQ_PMI
, vcpu
))
6625 kvm_pmu_deliver_pmi(vcpu
);
6626 if (kvm_check_request(KVM_REQ_IOAPIC_EOI_EXIT
, vcpu
)) {
6627 BUG_ON(vcpu
->arch
.pending_ioapic_eoi
> 255);
6628 if (test_bit(vcpu
->arch
.pending_ioapic_eoi
,
6629 vcpu
->arch
.ioapic_handled_vectors
)) {
6630 vcpu
->run
->exit_reason
= KVM_EXIT_IOAPIC_EOI
;
6631 vcpu
->run
->eoi
.vector
=
6632 vcpu
->arch
.pending_ioapic_eoi
;
6637 if (kvm_check_request(KVM_REQ_SCAN_IOAPIC
, vcpu
))
6638 vcpu_scan_ioapic(vcpu
);
6639 if (kvm_check_request(KVM_REQ_APIC_PAGE_RELOAD
, vcpu
))
6640 kvm_vcpu_reload_apic_access_page(vcpu
);
6641 if (kvm_check_request(KVM_REQ_HV_CRASH
, vcpu
)) {
6642 vcpu
->run
->exit_reason
= KVM_EXIT_SYSTEM_EVENT
;
6643 vcpu
->run
->system_event
.type
= KVM_SYSTEM_EVENT_CRASH
;
6647 if (kvm_check_request(KVM_REQ_HV_RESET
, vcpu
)) {
6648 vcpu
->run
->exit_reason
= KVM_EXIT_SYSTEM_EVENT
;
6649 vcpu
->run
->system_event
.type
= KVM_SYSTEM_EVENT_RESET
;
6653 if (kvm_check_request(KVM_REQ_HV_EXIT
, vcpu
)) {
6654 vcpu
->run
->exit_reason
= KVM_EXIT_HYPERV
;
6655 vcpu
->run
->hyperv
= vcpu
->arch
.hyperv
.exit
;
6661 * KVM_REQ_HV_STIMER has to be processed after
6662 * KVM_REQ_CLOCK_UPDATE, because Hyper-V SynIC timers
6663 * depend on the guest clock being up-to-date
6665 if (kvm_check_request(KVM_REQ_HV_STIMER
, vcpu
))
6666 kvm_hv_process_stimers(vcpu
);
6670 * KVM_REQ_EVENT is not set when posted interrupts are set by
6671 * VT-d hardware, so we have to update RVI unconditionally.
6673 if (kvm_lapic_enabled(vcpu
)) {
6675 * Update architecture specific hints for APIC
6676 * virtual interrupt delivery.
6678 if (vcpu
->arch
.apicv_active
)
6679 kvm_x86_ops
->hwapic_irr_update(vcpu
,
6680 kvm_lapic_find_highest_irr(vcpu
));
6683 if (kvm_check_request(KVM_REQ_EVENT
, vcpu
) || req_int_win
) {
6684 kvm_apic_accept_events(vcpu
);
6685 if (vcpu
->arch
.mp_state
== KVM_MP_STATE_INIT_RECEIVED
) {
6690 if (inject_pending_event(vcpu
, req_int_win
) != 0)
6691 req_immediate_exit
= true;
6693 /* Enable NMI/IRQ window open exits if needed.
6695 * SMIs have two cases: 1) they can be nested, and
6696 * then there is nothing to do here because RSM will
6697 * cause a vmexit anyway; 2) or the SMI can be pending
6698 * because inject_pending_event has completed the
6699 * injection of an IRQ or NMI from the previous vmexit,
6700 * and then we request an immediate exit to inject the SMI.
6702 if (vcpu
->arch
.smi_pending
&& !is_smm(vcpu
))
6703 req_immediate_exit
= true;
6704 if (vcpu
->arch
.nmi_pending
)
6705 kvm_x86_ops
->enable_nmi_window(vcpu
);
6706 if (kvm_cpu_has_injectable_intr(vcpu
) || req_int_win
)
6707 kvm_x86_ops
->enable_irq_window(vcpu
);
6710 if (kvm_lapic_enabled(vcpu
)) {
6711 update_cr8_intercept(vcpu
);
6712 kvm_lapic_sync_to_vapic(vcpu
);
6716 r
= kvm_mmu_reload(vcpu
);
6718 goto cancel_injection
;
6723 kvm_x86_ops
->prepare_guest_switch(vcpu
);
6724 if (vcpu
->fpu_active
)
6725 kvm_load_guest_fpu(vcpu
);
6726 vcpu
->mode
= IN_GUEST_MODE
;
6728 srcu_read_unlock(&vcpu
->kvm
->srcu
, vcpu
->srcu_idx
);
6731 * We should set ->mode before check ->requests,
6732 * Please see the comment in kvm_make_all_cpus_request.
6733 * This also orders the write to mode from any reads
6734 * to the page tables done while the VCPU is running.
6735 * Please see the comment in kvm_flush_remote_tlbs.
6737 smp_mb__after_srcu_read_unlock();
6739 local_irq_disable();
6741 if (vcpu
->mode
== EXITING_GUEST_MODE
|| vcpu
->requests
6742 || need_resched() || signal_pending(current
)) {
6743 vcpu
->mode
= OUTSIDE_GUEST_MODE
;
6747 vcpu
->srcu_idx
= srcu_read_lock(&vcpu
->kvm
->srcu
);
6749 goto cancel_injection
;
6752 kvm_load_guest_xcr0(vcpu
);
6754 if (req_immediate_exit
) {
6755 kvm_make_request(KVM_REQ_EVENT
, vcpu
);
6756 smp_send_reschedule(vcpu
->cpu
);
6759 trace_kvm_entry(vcpu
->vcpu_id
);
6760 wait_lapic_expire(vcpu
);
6761 guest_enter_irqoff();
6763 if (unlikely(vcpu
->arch
.switch_db_regs
)) {
6765 set_debugreg(vcpu
->arch
.eff_db
[0], 0);
6766 set_debugreg(vcpu
->arch
.eff_db
[1], 1);
6767 set_debugreg(vcpu
->arch
.eff_db
[2], 2);
6768 set_debugreg(vcpu
->arch
.eff_db
[3], 3);
6769 set_debugreg(vcpu
->arch
.dr6
, 6);
6770 vcpu
->arch
.switch_db_regs
&= ~KVM_DEBUGREG_RELOAD
;
6773 kvm_x86_ops
->run(vcpu
);
6776 * Do this here before restoring debug registers on the host. And
6777 * since we do this before handling the vmexit, a DR access vmexit
6778 * can (a) read the correct value of the debug registers, (b) set
6779 * KVM_DEBUGREG_WONT_EXIT again.
6781 if (unlikely(vcpu
->arch
.switch_db_regs
& KVM_DEBUGREG_WONT_EXIT
)) {
6782 WARN_ON(vcpu
->guest_debug
& KVM_GUESTDBG_USE_HW_BP
);
6783 kvm_x86_ops
->sync_dirty_debug_regs(vcpu
);
6784 kvm_update_dr0123(vcpu
);
6785 kvm_update_dr6(vcpu
);
6786 kvm_update_dr7(vcpu
);
6787 vcpu
->arch
.switch_db_regs
&= ~KVM_DEBUGREG_RELOAD
;
6791 * If the guest has used debug registers, at least dr7
6792 * will be disabled while returning to the host.
6793 * If we don't have active breakpoints in the host, we don't
6794 * care about the messed up debug address registers. But if
6795 * we have some of them active, restore the old state.
6797 if (hw_breakpoint_active())
6798 hw_breakpoint_restore();
6800 vcpu
->arch
.last_guest_tsc
= kvm_read_l1_tsc(vcpu
, rdtsc());
6802 vcpu
->mode
= OUTSIDE_GUEST_MODE
;
6805 kvm_put_guest_xcr0(vcpu
);
6807 kvm_x86_ops
->handle_external_intr(vcpu
);
6811 guest_exit_irqoff();
6816 vcpu
->srcu_idx
= srcu_read_lock(&vcpu
->kvm
->srcu
);
6819 * Profile KVM exit RIPs:
6821 if (unlikely(prof_on
== KVM_PROFILING
)) {
6822 unsigned long rip
= kvm_rip_read(vcpu
);
6823 profile_hit(KVM_PROFILING
, (void *)rip
);
6826 if (unlikely(vcpu
->arch
.tsc_always_catchup
))
6827 kvm_make_request(KVM_REQ_CLOCK_UPDATE
, vcpu
);
6829 if (vcpu
->arch
.apic_attention
)
6830 kvm_lapic_sync_from_vapic(vcpu
);
6832 r
= kvm_x86_ops
->handle_exit(vcpu
);
6836 kvm_x86_ops
->cancel_injection(vcpu
);
6837 if (unlikely(vcpu
->arch
.apic_attention
))
6838 kvm_lapic_sync_from_vapic(vcpu
);
6843 static inline int vcpu_block(struct kvm
*kvm
, struct kvm_vcpu
*vcpu
)
6845 if (!kvm_arch_vcpu_runnable(vcpu
) &&
6846 (!kvm_x86_ops
->pre_block
|| kvm_x86_ops
->pre_block(vcpu
) == 0)) {
6847 srcu_read_unlock(&kvm
->srcu
, vcpu
->srcu_idx
);
6848 kvm_vcpu_block(vcpu
);
6849 vcpu
->srcu_idx
= srcu_read_lock(&kvm
->srcu
);
6851 if (kvm_x86_ops
->post_block
)
6852 kvm_x86_ops
->post_block(vcpu
);
6854 if (!kvm_check_request(KVM_REQ_UNHALT
, vcpu
))
6858 kvm_apic_accept_events(vcpu
);
6859 switch(vcpu
->arch
.mp_state
) {
6860 case KVM_MP_STATE_HALTED
:
6861 vcpu
->arch
.pv
.pv_unhalted
= false;
6862 vcpu
->arch
.mp_state
=
6863 KVM_MP_STATE_RUNNABLE
;
6864 case KVM_MP_STATE_RUNNABLE
:
6865 vcpu
->arch
.apf
.halted
= false;
6867 case KVM_MP_STATE_INIT_RECEIVED
:
6876 static inline bool kvm_vcpu_running(struct kvm_vcpu
*vcpu
)
6878 return (vcpu
->arch
.mp_state
== KVM_MP_STATE_RUNNABLE
&&
6879 !vcpu
->arch
.apf
.halted
);
6882 static int vcpu_run(struct kvm_vcpu
*vcpu
)
6885 struct kvm
*kvm
= vcpu
->kvm
;
6887 vcpu
->srcu_idx
= srcu_read_lock(&kvm
->srcu
);
6890 if (kvm_vcpu_running(vcpu
)) {
6891 r
= vcpu_enter_guest(vcpu
);
6893 r
= vcpu_block(kvm
, vcpu
);
6899 clear_bit(KVM_REQ_PENDING_TIMER
, &vcpu
->requests
);
6900 if (kvm_cpu_has_pending_timer(vcpu
))
6901 kvm_inject_pending_timer_irqs(vcpu
);
6903 if (dm_request_for_irq_injection(vcpu
) &&
6904 kvm_vcpu_ready_for_interrupt_injection(vcpu
)) {
6906 vcpu
->run
->exit_reason
= KVM_EXIT_IRQ_WINDOW_OPEN
;
6907 ++vcpu
->stat
.request_irq_exits
;
6911 kvm_check_async_pf_completion(vcpu
);
6913 if (signal_pending(current
)) {
6915 vcpu
->run
->exit_reason
= KVM_EXIT_INTR
;
6916 ++vcpu
->stat
.signal_exits
;
6919 if (need_resched()) {
6920 srcu_read_unlock(&kvm
->srcu
, vcpu
->srcu_idx
);
6922 vcpu
->srcu_idx
= srcu_read_lock(&kvm
->srcu
);
6926 srcu_read_unlock(&kvm
->srcu
, vcpu
->srcu_idx
);
6931 static inline int complete_emulated_io(struct kvm_vcpu
*vcpu
)
6934 vcpu
->srcu_idx
= srcu_read_lock(&vcpu
->kvm
->srcu
);
6935 r
= emulate_instruction(vcpu
, EMULTYPE_NO_DECODE
);
6936 srcu_read_unlock(&vcpu
->kvm
->srcu
, vcpu
->srcu_idx
);
6937 if (r
!= EMULATE_DONE
)
6942 static int complete_emulated_pio(struct kvm_vcpu
*vcpu
)
6944 BUG_ON(!vcpu
->arch
.pio
.count
);
6946 return complete_emulated_io(vcpu
);
6950 * Implements the following, as a state machine:
6954 * for each mmio piece in the fragment
6962 * for each mmio piece in the fragment
6967 static int complete_emulated_mmio(struct kvm_vcpu
*vcpu
)
6969 struct kvm_run
*run
= vcpu
->run
;
6970 struct kvm_mmio_fragment
*frag
;
6973 BUG_ON(!vcpu
->mmio_needed
);
6975 /* Complete previous fragment */
6976 frag
= &vcpu
->mmio_fragments
[vcpu
->mmio_cur_fragment
];
6977 len
= min(8u, frag
->len
);
6978 if (!vcpu
->mmio_is_write
)
6979 memcpy(frag
->data
, run
->mmio
.data
, len
);
6981 if (frag
->len
<= 8) {
6982 /* Switch to the next fragment. */
6984 vcpu
->mmio_cur_fragment
++;
6986 /* Go forward to the next mmio piece. */
6992 if (vcpu
->mmio_cur_fragment
>= vcpu
->mmio_nr_fragments
) {
6993 vcpu
->mmio_needed
= 0;
6995 /* FIXME: return into emulator if single-stepping. */
6996 if (vcpu
->mmio_is_write
)
6998 vcpu
->mmio_read_completed
= 1;
6999 return complete_emulated_io(vcpu
);
7002 run
->exit_reason
= KVM_EXIT_MMIO
;
7003 run
->mmio
.phys_addr
= frag
->gpa
;
7004 if (vcpu
->mmio_is_write
)
7005 memcpy(run
->mmio
.data
, frag
->data
, min(8u, frag
->len
));
7006 run
->mmio
.len
= min(8u, frag
->len
);
7007 run
->mmio
.is_write
= vcpu
->mmio_is_write
;
7008 vcpu
->arch
.complete_userspace_io
= complete_emulated_mmio
;
7013 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu
*vcpu
, struct kvm_run
*kvm_run
)
7015 struct fpu
*fpu
= ¤t
->thread
.fpu
;
7019 fpu__activate_curr(fpu
);
7021 if (vcpu
->sigset_active
)
7022 sigprocmask(SIG_SETMASK
, &vcpu
->sigset
, &sigsaved
);
7024 if (unlikely(vcpu
->arch
.mp_state
== KVM_MP_STATE_UNINITIALIZED
)) {
7025 kvm_vcpu_block(vcpu
);
7026 kvm_apic_accept_events(vcpu
);
7027 clear_bit(KVM_REQ_UNHALT
, &vcpu
->requests
);
7032 /* re-sync apic's tpr */
7033 if (!lapic_in_kernel(vcpu
)) {
7034 if (kvm_set_cr8(vcpu
, kvm_run
->cr8
) != 0) {
7040 if (unlikely(vcpu
->arch
.complete_userspace_io
)) {
7041 int (*cui
)(struct kvm_vcpu
*) = vcpu
->arch
.complete_userspace_io
;
7042 vcpu
->arch
.complete_userspace_io
= NULL
;
7047 WARN_ON(vcpu
->arch
.pio
.count
|| vcpu
->mmio_needed
);
7052 post_kvm_run_save(vcpu
);
7053 if (vcpu
->sigset_active
)
7054 sigprocmask(SIG_SETMASK
, &sigsaved
, NULL
);
7059 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu
*vcpu
, struct kvm_regs
*regs
)
7061 if (vcpu
->arch
.emulate_regs_need_sync_to_vcpu
) {
7063 * We are here if userspace calls get_regs() in the middle of
7064 * instruction emulation. Registers state needs to be copied
7065 * back from emulation context to vcpu. Userspace shouldn't do
7066 * that usually, but some bad designed PV devices (vmware
7067 * backdoor interface) need this to work
7069 emulator_writeback_register_cache(&vcpu
->arch
.emulate_ctxt
);
7070 vcpu
->arch
.emulate_regs_need_sync_to_vcpu
= false;
7072 regs
->rax
= kvm_register_read(vcpu
, VCPU_REGS_RAX
);
7073 regs
->rbx
= kvm_register_read(vcpu
, VCPU_REGS_RBX
);
7074 regs
->rcx
= kvm_register_read(vcpu
, VCPU_REGS_RCX
);
7075 regs
->rdx
= kvm_register_read(vcpu
, VCPU_REGS_RDX
);
7076 regs
->rsi
= kvm_register_read(vcpu
, VCPU_REGS_RSI
);
7077 regs
->rdi
= kvm_register_read(vcpu
, VCPU_REGS_RDI
);
7078 regs
->rsp
= kvm_register_read(vcpu
, VCPU_REGS_RSP
);
7079 regs
->rbp
= kvm_register_read(vcpu
, VCPU_REGS_RBP
);
7080 #ifdef CONFIG_X86_64
7081 regs
->r8
= kvm_register_read(vcpu
, VCPU_REGS_R8
);
7082 regs
->r9
= kvm_register_read(vcpu
, VCPU_REGS_R9
);
7083 regs
->r10
= kvm_register_read(vcpu
, VCPU_REGS_R10
);
7084 regs
->r11
= kvm_register_read(vcpu
, VCPU_REGS_R11
);
7085 regs
->r12
= kvm_register_read(vcpu
, VCPU_REGS_R12
);
7086 regs
->r13
= kvm_register_read(vcpu
, VCPU_REGS_R13
);
7087 regs
->r14
= kvm_register_read(vcpu
, VCPU_REGS_R14
);
7088 regs
->r15
= kvm_register_read(vcpu
, VCPU_REGS_R15
);
7091 regs
->rip
= kvm_rip_read(vcpu
);
7092 regs
->rflags
= kvm_get_rflags(vcpu
);
7097 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu
*vcpu
, struct kvm_regs
*regs
)
7099 vcpu
->arch
.emulate_regs_need_sync_from_vcpu
= true;
7100 vcpu
->arch
.emulate_regs_need_sync_to_vcpu
= false;
7102 kvm_register_write(vcpu
, VCPU_REGS_RAX
, regs
->rax
);
7103 kvm_register_write(vcpu
, VCPU_REGS_RBX
, regs
->rbx
);
7104 kvm_register_write(vcpu
, VCPU_REGS_RCX
, regs
->rcx
);
7105 kvm_register_write(vcpu
, VCPU_REGS_RDX
, regs
->rdx
);
7106 kvm_register_write(vcpu
, VCPU_REGS_RSI
, regs
->rsi
);
7107 kvm_register_write(vcpu
, VCPU_REGS_RDI
, regs
->rdi
);
7108 kvm_register_write(vcpu
, VCPU_REGS_RSP
, regs
->rsp
);
7109 kvm_register_write(vcpu
, VCPU_REGS_RBP
, regs
->rbp
);
7110 #ifdef CONFIG_X86_64
7111 kvm_register_write(vcpu
, VCPU_REGS_R8
, regs
->r8
);
7112 kvm_register_write(vcpu
, VCPU_REGS_R9
, regs
->r9
);
7113 kvm_register_write(vcpu
, VCPU_REGS_R10
, regs
->r10
);
7114 kvm_register_write(vcpu
, VCPU_REGS_R11
, regs
->r11
);
7115 kvm_register_write(vcpu
, VCPU_REGS_R12
, regs
->r12
);
7116 kvm_register_write(vcpu
, VCPU_REGS_R13
, regs
->r13
);
7117 kvm_register_write(vcpu
, VCPU_REGS_R14
, regs
->r14
);
7118 kvm_register_write(vcpu
, VCPU_REGS_R15
, regs
->r15
);
7121 kvm_rip_write(vcpu
, regs
->rip
);
7122 kvm_set_rflags(vcpu
, regs
->rflags
);
7124 vcpu
->arch
.exception
.pending
= false;
7126 kvm_make_request(KVM_REQ_EVENT
, vcpu
);
7131 void kvm_get_cs_db_l_bits(struct kvm_vcpu
*vcpu
, int *db
, int *l
)
7133 struct kvm_segment cs
;
7135 kvm_get_segment(vcpu
, &cs
, VCPU_SREG_CS
);
7139 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits
);
7141 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu
*vcpu
,
7142 struct kvm_sregs
*sregs
)
7146 kvm_get_segment(vcpu
, &sregs
->cs
, VCPU_SREG_CS
);
7147 kvm_get_segment(vcpu
, &sregs
->ds
, VCPU_SREG_DS
);
7148 kvm_get_segment(vcpu
, &sregs
->es
, VCPU_SREG_ES
);
7149 kvm_get_segment(vcpu
, &sregs
->fs
, VCPU_SREG_FS
);
7150 kvm_get_segment(vcpu
, &sregs
->gs
, VCPU_SREG_GS
);
7151 kvm_get_segment(vcpu
, &sregs
->ss
, VCPU_SREG_SS
);
7153 kvm_get_segment(vcpu
, &sregs
->tr
, VCPU_SREG_TR
);
7154 kvm_get_segment(vcpu
, &sregs
->ldt
, VCPU_SREG_LDTR
);
7156 kvm_x86_ops
->get_idt(vcpu
, &dt
);
7157 sregs
->idt
.limit
= dt
.size
;
7158 sregs
->idt
.base
= dt
.address
;
7159 kvm_x86_ops
->get_gdt(vcpu
, &dt
);
7160 sregs
->gdt
.limit
= dt
.size
;
7161 sregs
->gdt
.base
= dt
.address
;
7163 sregs
->cr0
= kvm_read_cr0(vcpu
);
7164 sregs
->cr2
= vcpu
->arch
.cr2
;
7165 sregs
->cr3
= kvm_read_cr3(vcpu
);
7166 sregs
->cr4
= kvm_read_cr4(vcpu
);
7167 sregs
->cr8
= kvm_get_cr8(vcpu
);
7168 sregs
->efer
= vcpu
->arch
.efer
;
7169 sregs
->apic_base
= kvm_get_apic_base(vcpu
);
7171 memset(sregs
->interrupt_bitmap
, 0, sizeof sregs
->interrupt_bitmap
);
7173 if (vcpu
->arch
.interrupt
.pending
&& !vcpu
->arch
.interrupt
.soft
)
7174 set_bit(vcpu
->arch
.interrupt
.nr
,
7175 (unsigned long *)sregs
->interrupt_bitmap
);
7180 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu
*vcpu
,
7181 struct kvm_mp_state
*mp_state
)
7183 kvm_apic_accept_events(vcpu
);
7184 if (vcpu
->arch
.mp_state
== KVM_MP_STATE_HALTED
&&
7185 vcpu
->arch
.pv
.pv_unhalted
)
7186 mp_state
->mp_state
= KVM_MP_STATE_RUNNABLE
;
7188 mp_state
->mp_state
= vcpu
->arch
.mp_state
;
7193 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu
*vcpu
,
7194 struct kvm_mp_state
*mp_state
)
7196 if (!lapic_in_kernel(vcpu
) &&
7197 mp_state
->mp_state
!= KVM_MP_STATE_RUNNABLE
)
7200 /* INITs are latched while in SMM */
7201 if ((is_smm(vcpu
) || vcpu
->arch
.smi_pending
) &&
7202 (mp_state
->mp_state
== KVM_MP_STATE_SIPI_RECEIVED
||
7203 mp_state
->mp_state
== KVM_MP_STATE_INIT_RECEIVED
))
7206 if (mp_state
->mp_state
== KVM_MP_STATE_SIPI_RECEIVED
) {
7207 vcpu
->arch
.mp_state
= KVM_MP_STATE_INIT_RECEIVED
;
7208 set_bit(KVM_APIC_SIPI
, &vcpu
->arch
.apic
->pending_events
);
7210 vcpu
->arch
.mp_state
= mp_state
->mp_state
;
7211 kvm_make_request(KVM_REQ_EVENT
, vcpu
);
7215 int kvm_task_switch(struct kvm_vcpu
*vcpu
, u16 tss_selector
, int idt_index
,
7216 int reason
, bool has_error_code
, u32 error_code
)
7218 struct x86_emulate_ctxt
*ctxt
= &vcpu
->arch
.emulate_ctxt
;
7221 init_emulate_ctxt(vcpu
);
7223 ret
= emulator_task_switch(ctxt
, tss_selector
, idt_index
, reason
,
7224 has_error_code
, error_code
);
7227 return EMULATE_FAIL
;
7229 kvm_rip_write(vcpu
, ctxt
->eip
);
7230 kvm_set_rflags(vcpu
, ctxt
->eflags
);
7231 kvm_make_request(KVM_REQ_EVENT
, vcpu
);
7232 return EMULATE_DONE
;
7234 EXPORT_SYMBOL_GPL(kvm_task_switch
);
7236 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu
*vcpu
,
7237 struct kvm_sregs
*sregs
)
7239 struct msr_data apic_base_msr
;
7240 int mmu_reset_needed
= 0;
7241 int pending_vec
, max_bits
, idx
;
7244 if (!guest_cpuid_has_xsave(vcpu
) && (sregs
->cr4
& X86_CR4_OSXSAVE
))
7247 dt
.size
= sregs
->idt
.limit
;
7248 dt
.address
= sregs
->idt
.base
;
7249 kvm_x86_ops
->set_idt(vcpu
, &dt
);
7250 dt
.size
= sregs
->gdt
.limit
;
7251 dt
.address
= sregs
->gdt
.base
;
7252 kvm_x86_ops
->set_gdt(vcpu
, &dt
);
7254 vcpu
->arch
.cr2
= sregs
->cr2
;
7255 mmu_reset_needed
|= kvm_read_cr3(vcpu
) != sregs
->cr3
;
7256 vcpu
->arch
.cr3
= sregs
->cr3
;
7257 __set_bit(VCPU_EXREG_CR3
, (ulong
*)&vcpu
->arch
.regs_avail
);
7259 kvm_set_cr8(vcpu
, sregs
->cr8
);
7261 mmu_reset_needed
|= vcpu
->arch
.efer
!= sregs
->efer
;
7262 kvm_x86_ops
->set_efer(vcpu
, sregs
->efer
);
7263 apic_base_msr
.data
= sregs
->apic_base
;
7264 apic_base_msr
.host_initiated
= true;
7265 kvm_set_apic_base(vcpu
, &apic_base_msr
);
7267 mmu_reset_needed
|= kvm_read_cr0(vcpu
) != sregs
->cr0
;
7268 kvm_x86_ops
->set_cr0(vcpu
, sregs
->cr0
);
7269 vcpu
->arch
.cr0
= sregs
->cr0
;
7271 mmu_reset_needed
|= kvm_read_cr4(vcpu
) != sregs
->cr4
;
7272 kvm_x86_ops
->set_cr4(vcpu
, sregs
->cr4
);
7273 if (sregs
->cr4
& (X86_CR4_OSXSAVE
| X86_CR4_PKE
))
7274 kvm_update_cpuid(vcpu
);
7276 idx
= srcu_read_lock(&vcpu
->kvm
->srcu
);
7277 if (!is_long_mode(vcpu
) && is_pae(vcpu
)) {
7278 load_pdptrs(vcpu
, vcpu
->arch
.walk_mmu
, kvm_read_cr3(vcpu
));
7279 mmu_reset_needed
= 1;
7281 srcu_read_unlock(&vcpu
->kvm
->srcu
, idx
);
7283 if (mmu_reset_needed
)
7284 kvm_mmu_reset_context(vcpu
);
7286 max_bits
= KVM_NR_INTERRUPTS
;
7287 pending_vec
= find_first_bit(
7288 (const unsigned long *)sregs
->interrupt_bitmap
, max_bits
);
7289 if (pending_vec
< max_bits
) {
7290 kvm_queue_interrupt(vcpu
, pending_vec
, false);
7291 pr_debug("Set back pending irq %d\n", pending_vec
);
7294 kvm_set_segment(vcpu
, &sregs
->cs
, VCPU_SREG_CS
);
7295 kvm_set_segment(vcpu
, &sregs
->ds
, VCPU_SREG_DS
);
7296 kvm_set_segment(vcpu
, &sregs
->es
, VCPU_SREG_ES
);
7297 kvm_set_segment(vcpu
, &sregs
->fs
, VCPU_SREG_FS
);
7298 kvm_set_segment(vcpu
, &sregs
->gs
, VCPU_SREG_GS
);
7299 kvm_set_segment(vcpu
, &sregs
->ss
, VCPU_SREG_SS
);
7301 kvm_set_segment(vcpu
, &sregs
->tr
, VCPU_SREG_TR
);
7302 kvm_set_segment(vcpu
, &sregs
->ldt
, VCPU_SREG_LDTR
);
7304 update_cr8_intercept(vcpu
);
7306 /* Older userspace won't unhalt the vcpu on reset. */
7307 if (kvm_vcpu_is_bsp(vcpu
) && kvm_rip_read(vcpu
) == 0xfff0 &&
7308 sregs
->cs
.selector
== 0xf000 && sregs
->cs
.base
== 0xffff0000 &&
7310 vcpu
->arch
.mp_state
= KVM_MP_STATE_RUNNABLE
;
7312 kvm_make_request(KVM_REQ_EVENT
, vcpu
);
7317 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu
*vcpu
,
7318 struct kvm_guest_debug
*dbg
)
7320 unsigned long rflags
;
7323 if (dbg
->control
& (KVM_GUESTDBG_INJECT_DB
| KVM_GUESTDBG_INJECT_BP
)) {
7325 if (vcpu
->arch
.exception
.pending
)
7327 if (dbg
->control
& KVM_GUESTDBG_INJECT_DB
)
7328 kvm_queue_exception(vcpu
, DB_VECTOR
);
7330 kvm_queue_exception(vcpu
, BP_VECTOR
);
7334 * Read rflags as long as potentially injected trace flags are still
7337 rflags
= kvm_get_rflags(vcpu
);
7339 vcpu
->guest_debug
= dbg
->control
;
7340 if (!(vcpu
->guest_debug
& KVM_GUESTDBG_ENABLE
))
7341 vcpu
->guest_debug
= 0;
7343 if (vcpu
->guest_debug
& KVM_GUESTDBG_USE_HW_BP
) {
7344 for (i
= 0; i
< KVM_NR_DB_REGS
; ++i
)
7345 vcpu
->arch
.eff_db
[i
] = dbg
->arch
.debugreg
[i
];
7346 vcpu
->arch
.guest_debug_dr7
= dbg
->arch
.debugreg
[7];
7348 for (i
= 0; i
< KVM_NR_DB_REGS
; i
++)
7349 vcpu
->arch
.eff_db
[i
] = vcpu
->arch
.db
[i
];
7351 kvm_update_dr7(vcpu
);
7353 if (vcpu
->guest_debug
& KVM_GUESTDBG_SINGLESTEP
)
7354 vcpu
->arch
.singlestep_rip
= kvm_rip_read(vcpu
) +
7355 get_segment_base(vcpu
, VCPU_SREG_CS
);
7358 * Trigger an rflags update that will inject or remove the trace
7361 kvm_set_rflags(vcpu
, rflags
);
7363 kvm_x86_ops
->update_bp_intercept(vcpu
);
7373 * Translate a guest virtual address to a guest physical address.
7375 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu
*vcpu
,
7376 struct kvm_translation
*tr
)
7378 unsigned long vaddr
= tr
->linear_address
;
7382 idx
= srcu_read_lock(&vcpu
->kvm
->srcu
);
7383 gpa
= kvm_mmu_gva_to_gpa_system(vcpu
, vaddr
, NULL
);
7384 srcu_read_unlock(&vcpu
->kvm
->srcu
, idx
);
7385 tr
->physical_address
= gpa
;
7386 tr
->valid
= gpa
!= UNMAPPED_GVA
;
7393 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu
*vcpu
, struct kvm_fpu
*fpu
)
7395 struct fxregs_state
*fxsave
=
7396 &vcpu
->arch
.guest_fpu
.state
.fxsave
;
7398 memcpy(fpu
->fpr
, fxsave
->st_space
, 128);
7399 fpu
->fcw
= fxsave
->cwd
;
7400 fpu
->fsw
= fxsave
->swd
;
7401 fpu
->ftwx
= fxsave
->twd
;
7402 fpu
->last_opcode
= fxsave
->fop
;
7403 fpu
->last_ip
= fxsave
->rip
;
7404 fpu
->last_dp
= fxsave
->rdp
;
7405 memcpy(fpu
->xmm
, fxsave
->xmm_space
, sizeof fxsave
->xmm_space
);
7410 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu
*vcpu
, struct kvm_fpu
*fpu
)
7412 struct fxregs_state
*fxsave
=
7413 &vcpu
->arch
.guest_fpu
.state
.fxsave
;
7415 memcpy(fxsave
->st_space
, fpu
->fpr
, 128);
7416 fxsave
->cwd
= fpu
->fcw
;
7417 fxsave
->swd
= fpu
->fsw
;
7418 fxsave
->twd
= fpu
->ftwx
;
7419 fxsave
->fop
= fpu
->last_opcode
;
7420 fxsave
->rip
= fpu
->last_ip
;
7421 fxsave
->rdp
= fpu
->last_dp
;
7422 memcpy(fxsave
->xmm_space
, fpu
->xmm
, sizeof fxsave
->xmm_space
);
7427 static void fx_init(struct kvm_vcpu
*vcpu
)
7429 fpstate_init(&vcpu
->arch
.guest_fpu
.state
);
7430 if (boot_cpu_has(X86_FEATURE_XSAVES
))
7431 vcpu
->arch
.guest_fpu
.state
.xsave
.header
.xcomp_bv
=
7432 host_xcr0
| XSTATE_COMPACTION_ENABLED
;
7435 * Ensure guest xcr0 is valid for loading
7437 vcpu
->arch
.xcr0
= XFEATURE_MASK_FP
;
7439 vcpu
->arch
.cr0
|= X86_CR0_ET
;
7442 void kvm_load_guest_fpu(struct kvm_vcpu
*vcpu
)
7444 if (vcpu
->guest_fpu_loaded
)
7448 * Restore all possible states in the guest,
7449 * and assume host would use all available bits.
7450 * Guest xcr0 would be loaded later.
7452 vcpu
->guest_fpu_loaded
= 1;
7453 __kernel_fpu_begin();
7454 __copy_kernel_to_fpregs(&vcpu
->arch
.guest_fpu
.state
);
7458 void kvm_put_guest_fpu(struct kvm_vcpu
*vcpu
)
7460 if (!vcpu
->guest_fpu_loaded
) {
7461 vcpu
->fpu_counter
= 0;
7465 vcpu
->guest_fpu_loaded
= 0;
7466 copy_fpregs_to_fpstate(&vcpu
->arch
.guest_fpu
);
7468 ++vcpu
->stat
.fpu_reload
;
7470 * If using eager FPU mode, or if the guest is a frequent user
7471 * of the FPU, just leave the FPU active for next time.
7472 * Every 255 times fpu_counter rolls over to 0; a guest that uses
7473 * the FPU in bursts will revert to loading it on demand.
7475 if (!use_eager_fpu()) {
7476 if (++vcpu
->fpu_counter
< 5)
7477 kvm_make_request(KVM_REQ_DEACTIVATE_FPU
, vcpu
);
7482 void kvm_arch_vcpu_free(struct kvm_vcpu
*vcpu
)
7484 void *wbinvd_dirty_mask
= vcpu
->arch
.wbinvd_dirty_mask
;
7486 kvmclock_reset(vcpu
);
7488 kvm_x86_ops
->vcpu_free(vcpu
);
7489 free_cpumask_var(wbinvd_dirty_mask
);
7492 struct kvm_vcpu
*kvm_arch_vcpu_create(struct kvm
*kvm
,
7495 struct kvm_vcpu
*vcpu
;
7497 if (check_tsc_unstable() && atomic_read(&kvm
->online_vcpus
) != 0)
7498 printk_once(KERN_WARNING
7499 "kvm: SMP vm created on host with unstable TSC; "
7500 "guest TSC will not be reliable\n");
7502 vcpu
= kvm_x86_ops
->vcpu_create(kvm
, id
);
7507 int kvm_arch_vcpu_setup(struct kvm_vcpu
*vcpu
)
7511 kvm_vcpu_mtrr_init(vcpu
);
7512 r
= vcpu_load(vcpu
);
7515 kvm_vcpu_reset(vcpu
, false);
7516 kvm_mmu_setup(vcpu
);
7521 void kvm_arch_vcpu_postcreate(struct kvm_vcpu
*vcpu
)
7523 struct msr_data msr
;
7524 struct kvm
*kvm
= vcpu
->kvm
;
7526 if (vcpu_load(vcpu
))
7529 msr
.index
= MSR_IA32_TSC
;
7530 msr
.host_initiated
= true;
7531 kvm_write_tsc(vcpu
, &msr
);
7534 if (!kvmclock_periodic_sync
)
7537 schedule_delayed_work(&kvm
->arch
.kvmclock_sync_work
,
7538 KVMCLOCK_SYNC_PERIOD
);
7541 void kvm_arch_vcpu_destroy(struct kvm_vcpu
*vcpu
)
7544 vcpu
->arch
.apf
.msr_val
= 0;
7546 r
= vcpu_load(vcpu
);
7548 kvm_mmu_unload(vcpu
);
7551 kvm_x86_ops
->vcpu_free(vcpu
);
7554 void kvm_vcpu_reset(struct kvm_vcpu
*vcpu
, bool init_event
)
7556 vcpu
->arch
.hflags
= 0;
7558 vcpu
->arch
.smi_pending
= 0;
7559 atomic_set(&vcpu
->arch
.nmi_queued
, 0);
7560 vcpu
->arch
.nmi_pending
= 0;
7561 vcpu
->arch
.nmi_injected
= false;
7562 kvm_clear_interrupt_queue(vcpu
);
7563 kvm_clear_exception_queue(vcpu
);
7565 memset(vcpu
->arch
.db
, 0, sizeof(vcpu
->arch
.db
));
7566 kvm_update_dr0123(vcpu
);
7567 vcpu
->arch
.dr6
= DR6_INIT
;
7568 kvm_update_dr6(vcpu
);
7569 vcpu
->arch
.dr7
= DR7_FIXED_1
;
7570 kvm_update_dr7(vcpu
);
7574 kvm_make_request(KVM_REQ_EVENT
, vcpu
);
7575 vcpu
->arch
.apf
.msr_val
= 0;
7576 vcpu
->arch
.st
.msr_val
= 0;
7578 kvmclock_reset(vcpu
);
7580 kvm_clear_async_pf_completion_queue(vcpu
);
7581 kvm_async_pf_hash_reset(vcpu
);
7582 vcpu
->arch
.apf
.halted
= false;
7585 kvm_pmu_reset(vcpu
);
7586 vcpu
->arch
.smbase
= 0x30000;
7589 memset(vcpu
->arch
.regs
, 0, sizeof(vcpu
->arch
.regs
));
7590 vcpu
->arch
.regs_avail
= ~0;
7591 vcpu
->arch
.regs_dirty
= ~0;
7593 kvm_x86_ops
->vcpu_reset(vcpu
, init_event
);
7596 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu
*vcpu
, u8 vector
)
7598 struct kvm_segment cs
;
7600 kvm_get_segment(vcpu
, &cs
, VCPU_SREG_CS
);
7601 cs
.selector
= vector
<< 8;
7602 cs
.base
= vector
<< 12;
7603 kvm_set_segment(vcpu
, &cs
, VCPU_SREG_CS
);
7604 kvm_rip_write(vcpu
, 0);
7607 int kvm_arch_hardware_enable(void)
7610 struct kvm_vcpu
*vcpu
;
7615 bool stable
, backwards_tsc
= false;
7617 kvm_shared_msr_cpu_online();
7618 ret
= kvm_x86_ops
->hardware_enable();
7622 local_tsc
= rdtsc();
7623 stable
= !check_tsc_unstable();
7624 list_for_each_entry(kvm
, &vm_list
, vm_list
) {
7625 kvm_for_each_vcpu(i
, vcpu
, kvm
) {
7626 if (!stable
&& vcpu
->cpu
== smp_processor_id())
7627 kvm_make_request(KVM_REQ_CLOCK_UPDATE
, vcpu
);
7628 if (stable
&& vcpu
->arch
.last_host_tsc
> local_tsc
) {
7629 backwards_tsc
= true;
7630 if (vcpu
->arch
.last_host_tsc
> max_tsc
)
7631 max_tsc
= vcpu
->arch
.last_host_tsc
;
7637 * Sometimes, even reliable TSCs go backwards. This happens on
7638 * platforms that reset TSC during suspend or hibernate actions, but
7639 * maintain synchronization. We must compensate. Fortunately, we can
7640 * detect that condition here, which happens early in CPU bringup,
7641 * before any KVM threads can be running. Unfortunately, we can't
7642 * bring the TSCs fully up to date with real time, as we aren't yet far
7643 * enough into CPU bringup that we know how much real time has actually
7644 * elapsed; our helper function, ktime_get_boot_ns() will be using boot
7645 * variables that haven't been updated yet.
7647 * So we simply find the maximum observed TSC above, then record the
7648 * adjustment to TSC in each VCPU. When the VCPU later gets loaded,
7649 * the adjustment will be applied. Note that we accumulate
7650 * adjustments, in case multiple suspend cycles happen before some VCPU
7651 * gets a chance to run again. In the event that no KVM threads get a
7652 * chance to run, we will miss the entire elapsed period, as we'll have
7653 * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may
7654 * loose cycle time. This isn't too big a deal, since the loss will be
7655 * uniform across all VCPUs (not to mention the scenario is extremely
7656 * unlikely). It is possible that a second hibernate recovery happens
7657 * much faster than a first, causing the observed TSC here to be
7658 * smaller; this would require additional padding adjustment, which is
7659 * why we set last_host_tsc to the local tsc observed here.
7661 * N.B. - this code below runs only on platforms with reliable TSC,
7662 * as that is the only way backwards_tsc is set above. Also note
7663 * that this runs for ALL vcpus, which is not a bug; all VCPUs should
7664 * have the same delta_cyc adjustment applied if backwards_tsc
7665 * is detected. Note further, this adjustment is only done once,
7666 * as we reset last_host_tsc on all VCPUs to stop this from being
7667 * called multiple times (one for each physical CPU bringup).
7669 * Platforms with unreliable TSCs don't have to deal with this, they
7670 * will be compensated by the logic in vcpu_load, which sets the TSC to
7671 * catchup mode. This will catchup all VCPUs to real time, but cannot
7672 * guarantee that they stay in perfect synchronization.
7674 if (backwards_tsc
) {
7675 u64 delta_cyc
= max_tsc
- local_tsc
;
7676 backwards_tsc_observed
= true;
7677 list_for_each_entry(kvm
, &vm_list
, vm_list
) {
7678 kvm_for_each_vcpu(i
, vcpu
, kvm
) {
7679 vcpu
->arch
.tsc_offset_adjustment
+= delta_cyc
;
7680 vcpu
->arch
.last_host_tsc
= local_tsc
;
7681 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE
, vcpu
);
7685 * We have to disable TSC offset matching.. if you were
7686 * booting a VM while issuing an S4 host suspend....
7687 * you may have some problem. Solving this issue is
7688 * left as an exercise to the reader.
7690 kvm
->arch
.last_tsc_nsec
= 0;
7691 kvm
->arch
.last_tsc_write
= 0;
7698 void kvm_arch_hardware_disable(void)
7700 kvm_x86_ops
->hardware_disable();
7701 drop_user_return_notifiers();
7704 int kvm_arch_hardware_setup(void)
7708 r
= kvm_x86_ops
->hardware_setup();
7712 if (kvm_has_tsc_control
) {
7714 * Make sure the user can only configure tsc_khz values that
7715 * fit into a signed integer.
7716 * A min value is not calculated needed because it will always
7717 * be 1 on all machines.
7719 u64 max
= min(0x7fffffffULL
,
7720 __scale_tsc(kvm_max_tsc_scaling_ratio
, tsc_khz
));
7721 kvm_max_guest_tsc_khz
= max
;
7723 kvm_default_tsc_scaling_ratio
= 1ULL << kvm_tsc_scaling_ratio_frac_bits
;
7726 kvm_init_msr_list();
7730 void kvm_arch_hardware_unsetup(void)
7732 kvm_x86_ops
->hardware_unsetup();
7735 void kvm_arch_check_processor_compat(void *rtn
)
7737 kvm_x86_ops
->check_processor_compatibility(rtn
);
7740 bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu
*vcpu
)
7742 return vcpu
->kvm
->arch
.bsp_vcpu_id
== vcpu
->vcpu_id
;
7744 EXPORT_SYMBOL_GPL(kvm_vcpu_is_reset_bsp
);
7746 bool kvm_vcpu_is_bsp(struct kvm_vcpu
*vcpu
)
7748 return (vcpu
->arch
.apic_base
& MSR_IA32_APICBASE_BSP
) != 0;
7751 struct static_key kvm_no_apic_vcpu __read_mostly
;
7752 EXPORT_SYMBOL_GPL(kvm_no_apic_vcpu
);
7754 int kvm_arch_vcpu_init(struct kvm_vcpu
*vcpu
)
7760 BUG_ON(vcpu
->kvm
== NULL
);
7763 vcpu
->arch
.apicv_active
= kvm_x86_ops
->get_enable_apicv();
7764 vcpu
->arch
.pv
.pv_unhalted
= false;
7765 vcpu
->arch
.emulate_ctxt
.ops
= &emulate_ops
;
7766 if (!irqchip_in_kernel(kvm
) || kvm_vcpu_is_reset_bsp(vcpu
))
7767 vcpu
->arch
.mp_state
= KVM_MP_STATE_RUNNABLE
;
7769 vcpu
->arch
.mp_state
= KVM_MP_STATE_UNINITIALIZED
;
7771 page
= alloc_page(GFP_KERNEL
| __GFP_ZERO
);
7776 vcpu
->arch
.pio_data
= page_address(page
);
7778 kvm_set_tsc_khz(vcpu
, max_tsc_khz
);
7780 r
= kvm_mmu_create(vcpu
);
7782 goto fail_free_pio_data
;
7784 if (irqchip_in_kernel(kvm
)) {
7785 r
= kvm_create_lapic(vcpu
);
7787 goto fail_mmu_destroy
;
7789 static_key_slow_inc(&kvm_no_apic_vcpu
);
7791 vcpu
->arch
.mce_banks
= kzalloc(KVM_MAX_MCE_BANKS
* sizeof(u64
) * 4,
7793 if (!vcpu
->arch
.mce_banks
) {
7795 goto fail_free_lapic
;
7797 vcpu
->arch
.mcg_cap
= KVM_MAX_MCE_BANKS
;
7799 if (!zalloc_cpumask_var(&vcpu
->arch
.wbinvd_dirty_mask
, GFP_KERNEL
)) {
7801 goto fail_free_mce_banks
;
7806 vcpu
->arch
.ia32_tsc_adjust_msr
= 0x0;
7807 vcpu
->arch
.pv_time_enabled
= false;
7809 vcpu
->arch
.guest_supported_xcr0
= 0;
7810 vcpu
->arch
.guest_xstate_size
= XSAVE_HDR_SIZE
+ XSAVE_HDR_OFFSET
;
7812 vcpu
->arch
.maxphyaddr
= cpuid_query_maxphyaddr(vcpu
);
7814 vcpu
->arch
.pat
= MSR_IA32_CR_PAT_DEFAULT
;
7816 kvm_async_pf_hash_reset(vcpu
);
7819 vcpu
->arch
.pending_external_vector
= -1;
7821 kvm_hv_vcpu_init(vcpu
);
7825 fail_free_mce_banks
:
7826 kfree(vcpu
->arch
.mce_banks
);
7828 kvm_free_lapic(vcpu
);
7830 kvm_mmu_destroy(vcpu
);
7832 free_page((unsigned long)vcpu
->arch
.pio_data
);
7837 void kvm_arch_vcpu_uninit(struct kvm_vcpu
*vcpu
)
7841 kvm_hv_vcpu_uninit(vcpu
);
7842 kvm_pmu_destroy(vcpu
);
7843 kfree(vcpu
->arch
.mce_banks
);
7844 kvm_free_lapic(vcpu
);
7845 idx
= srcu_read_lock(&vcpu
->kvm
->srcu
);
7846 kvm_mmu_destroy(vcpu
);
7847 srcu_read_unlock(&vcpu
->kvm
->srcu
, idx
);
7848 free_page((unsigned long)vcpu
->arch
.pio_data
);
7849 if (!lapic_in_kernel(vcpu
))
7850 static_key_slow_dec(&kvm_no_apic_vcpu
);
7853 void kvm_arch_sched_in(struct kvm_vcpu
*vcpu
, int cpu
)
7855 kvm_x86_ops
->sched_in(vcpu
, cpu
);
7858 int kvm_arch_init_vm(struct kvm
*kvm
, unsigned long type
)
7863 INIT_HLIST_HEAD(&kvm
->arch
.mask_notifier_list
);
7864 INIT_LIST_HEAD(&kvm
->arch
.active_mmu_pages
);
7865 INIT_LIST_HEAD(&kvm
->arch
.zapped_obsolete_pages
);
7866 INIT_LIST_HEAD(&kvm
->arch
.assigned_dev_head
);
7867 atomic_set(&kvm
->arch
.noncoherent_dma_count
, 0);
7869 /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
7870 set_bit(KVM_USERSPACE_IRQ_SOURCE_ID
, &kvm
->arch
.irq_sources_bitmap
);
7871 /* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */
7872 set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID
,
7873 &kvm
->arch
.irq_sources_bitmap
);
7875 raw_spin_lock_init(&kvm
->arch
.tsc_write_lock
);
7876 mutex_init(&kvm
->arch
.apic_map_lock
);
7877 spin_lock_init(&kvm
->arch
.pvclock_gtod_sync_lock
);
7879 kvm
->arch
.kvmclock_offset
= -ktime_get_boot_ns();
7880 pvclock_update_vm_gtod_copy(kvm
);
7882 INIT_DELAYED_WORK(&kvm
->arch
.kvmclock_update_work
, kvmclock_update_fn
);
7883 INIT_DELAYED_WORK(&kvm
->arch
.kvmclock_sync_work
, kvmclock_sync_fn
);
7885 kvm_page_track_init(kvm
);
7886 kvm_mmu_init_vm(kvm
);
7888 if (kvm_x86_ops
->vm_init
)
7889 return kvm_x86_ops
->vm_init(kvm
);
7894 static void kvm_unload_vcpu_mmu(struct kvm_vcpu
*vcpu
)
7897 r
= vcpu_load(vcpu
);
7899 kvm_mmu_unload(vcpu
);
7903 static void kvm_free_vcpus(struct kvm
*kvm
)
7906 struct kvm_vcpu
*vcpu
;
7909 * Unpin any mmu pages first.
7911 kvm_for_each_vcpu(i
, vcpu
, kvm
) {
7912 kvm_clear_async_pf_completion_queue(vcpu
);
7913 kvm_unload_vcpu_mmu(vcpu
);
7915 kvm_for_each_vcpu(i
, vcpu
, kvm
)
7916 kvm_arch_vcpu_free(vcpu
);
7918 mutex_lock(&kvm
->lock
);
7919 for (i
= 0; i
< atomic_read(&kvm
->online_vcpus
); i
++)
7920 kvm
->vcpus
[i
] = NULL
;
7922 atomic_set(&kvm
->online_vcpus
, 0);
7923 mutex_unlock(&kvm
->lock
);
7926 void kvm_arch_sync_events(struct kvm
*kvm
)
7928 cancel_delayed_work_sync(&kvm
->arch
.kvmclock_sync_work
);
7929 cancel_delayed_work_sync(&kvm
->arch
.kvmclock_update_work
);
7930 kvm_free_all_assigned_devices(kvm
);
7934 int __x86_set_memory_region(struct kvm
*kvm
, int id
, gpa_t gpa
, u32 size
)
7938 struct kvm_memslots
*slots
= kvm_memslots(kvm
);
7939 struct kvm_memory_slot
*slot
, old
;
7941 /* Called with kvm->slots_lock held. */
7942 if (WARN_ON(id
>= KVM_MEM_SLOTS_NUM
))
7945 slot
= id_to_memslot(slots
, id
);
7951 * MAP_SHARED to prevent internal slot pages from being moved
7954 hva
= vm_mmap(NULL
, 0, size
, PROT_READ
| PROT_WRITE
,
7955 MAP_SHARED
| MAP_ANONYMOUS
, 0);
7956 if (IS_ERR((void *)hva
))
7957 return PTR_ERR((void *)hva
);
7966 for (i
= 0; i
< KVM_ADDRESS_SPACE_NUM
; i
++) {
7967 struct kvm_userspace_memory_region m
;
7969 m
.slot
= id
| (i
<< 16);
7971 m
.guest_phys_addr
= gpa
;
7972 m
.userspace_addr
= hva
;
7973 m
.memory_size
= size
;
7974 r
= __kvm_set_memory_region(kvm
, &m
);
7980 r
= vm_munmap(old
.userspace_addr
, old
.npages
* PAGE_SIZE
);
7986 EXPORT_SYMBOL_GPL(__x86_set_memory_region
);
7988 int x86_set_memory_region(struct kvm
*kvm
, int id
, gpa_t gpa
, u32 size
)
7992 mutex_lock(&kvm
->slots_lock
);
7993 r
= __x86_set_memory_region(kvm
, id
, gpa
, size
);
7994 mutex_unlock(&kvm
->slots_lock
);
7998 EXPORT_SYMBOL_GPL(x86_set_memory_region
);
8000 void kvm_arch_destroy_vm(struct kvm
*kvm
)
8002 if (current
->mm
== kvm
->mm
) {
8004 * Free memory regions allocated on behalf of userspace,
8005 * unless the the memory map has changed due to process exit
8008 x86_set_memory_region(kvm
, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT
, 0, 0);
8009 x86_set_memory_region(kvm
, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT
, 0, 0);
8010 x86_set_memory_region(kvm
, TSS_PRIVATE_MEMSLOT
, 0, 0);
8012 if (kvm_x86_ops
->vm_destroy
)
8013 kvm_x86_ops
->vm_destroy(kvm
);
8014 kvm_iommu_unmap_guest(kvm
);
8015 kfree(kvm
->arch
.vpic
);
8016 kfree(kvm
->arch
.vioapic
);
8017 kvm_free_vcpus(kvm
);
8018 kvfree(rcu_dereference_check(kvm
->arch
.apic_map
, 1));
8019 kvm_mmu_uninit_vm(kvm
);
8020 kvm_page_track_cleanup(kvm
);
8023 void kvm_arch_free_memslot(struct kvm
*kvm
, struct kvm_memory_slot
*free
,
8024 struct kvm_memory_slot
*dont
)
8028 for (i
= 0; i
< KVM_NR_PAGE_SIZES
; ++i
) {
8029 if (!dont
|| free
->arch
.rmap
[i
] != dont
->arch
.rmap
[i
]) {
8030 kvfree(free
->arch
.rmap
[i
]);
8031 free
->arch
.rmap
[i
] = NULL
;
8036 if (!dont
|| free
->arch
.lpage_info
[i
- 1] !=
8037 dont
->arch
.lpage_info
[i
- 1]) {
8038 kvfree(free
->arch
.lpage_info
[i
- 1]);
8039 free
->arch
.lpage_info
[i
- 1] = NULL
;
8043 kvm_page_track_free_memslot(free
, dont
);
8046 int kvm_arch_create_memslot(struct kvm
*kvm
, struct kvm_memory_slot
*slot
,
8047 unsigned long npages
)
8051 for (i
= 0; i
< KVM_NR_PAGE_SIZES
; ++i
) {
8052 struct kvm_lpage_info
*linfo
;
8057 lpages
= gfn_to_index(slot
->base_gfn
+ npages
- 1,
8058 slot
->base_gfn
, level
) + 1;
8060 slot
->arch
.rmap
[i
] =
8061 kvm_kvzalloc(lpages
* sizeof(*slot
->arch
.rmap
[i
]));
8062 if (!slot
->arch
.rmap
[i
])
8067 linfo
= kvm_kvzalloc(lpages
* sizeof(*linfo
));
8071 slot
->arch
.lpage_info
[i
- 1] = linfo
;
8073 if (slot
->base_gfn
& (KVM_PAGES_PER_HPAGE(level
) - 1))
8074 linfo
[0].disallow_lpage
= 1;
8075 if ((slot
->base_gfn
+ npages
) & (KVM_PAGES_PER_HPAGE(level
) - 1))
8076 linfo
[lpages
- 1].disallow_lpage
= 1;
8077 ugfn
= slot
->userspace_addr
>> PAGE_SHIFT
;
8079 * If the gfn and userspace address are not aligned wrt each
8080 * other, or if explicitly asked to, disable large page
8081 * support for this slot
8083 if ((slot
->base_gfn
^ ugfn
) & (KVM_PAGES_PER_HPAGE(level
) - 1) ||
8084 !kvm_largepages_enabled()) {
8087 for (j
= 0; j
< lpages
; ++j
)
8088 linfo
[j
].disallow_lpage
= 1;
8092 if (kvm_page_track_create_memslot(slot
, npages
))
8098 for (i
= 0; i
< KVM_NR_PAGE_SIZES
; ++i
) {
8099 kvfree(slot
->arch
.rmap
[i
]);
8100 slot
->arch
.rmap
[i
] = NULL
;
8104 kvfree(slot
->arch
.lpage_info
[i
- 1]);
8105 slot
->arch
.lpage_info
[i
- 1] = NULL
;
8110 void kvm_arch_memslots_updated(struct kvm
*kvm
, struct kvm_memslots
*slots
)
8113 * memslots->generation has been incremented.
8114 * mmio generation may have reached its maximum value.
8116 kvm_mmu_invalidate_mmio_sptes(kvm
, slots
);
8119 int kvm_arch_prepare_memory_region(struct kvm
*kvm
,
8120 struct kvm_memory_slot
*memslot
,
8121 const struct kvm_userspace_memory_region
*mem
,
8122 enum kvm_mr_change change
)
8127 static void kvm_mmu_slot_apply_flags(struct kvm
*kvm
,
8128 struct kvm_memory_slot
*new)
8130 /* Still write protect RO slot */
8131 if (new->flags
& KVM_MEM_READONLY
) {
8132 kvm_mmu_slot_remove_write_access(kvm
, new);
8137 * Call kvm_x86_ops dirty logging hooks when they are valid.
8139 * kvm_x86_ops->slot_disable_log_dirty is called when:
8141 * - KVM_MR_CREATE with dirty logging is disabled
8142 * - KVM_MR_FLAGS_ONLY with dirty logging is disabled in new flag
8144 * The reason is, in case of PML, we need to set D-bit for any slots
8145 * with dirty logging disabled in order to eliminate unnecessary GPA
8146 * logging in PML buffer (and potential PML buffer full VMEXT). This
8147 * guarantees leaving PML enabled during guest's lifetime won't have
8148 * any additonal overhead from PML when guest is running with dirty
8149 * logging disabled for memory slots.
8151 * kvm_x86_ops->slot_enable_log_dirty is called when switching new slot
8152 * to dirty logging mode.
8154 * If kvm_x86_ops dirty logging hooks are invalid, use write protect.
8156 * In case of write protect:
8158 * Write protect all pages for dirty logging.
8160 * All the sptes including the large sptes which point to this
8161 * slot are set to readonly. We can not create any new large
8162 * spte on this slot until the end of the logging.
8164 * See the comments in fast_page_fault().
8166 if (new->flags
& KVM_MEM_LOG_DIRTY_PAGES
) {
8167 if (kvm_x86_ops
->slot_enable_log_dirty
)
8168 kvm_x86_ops
->slot_enable_log_dirty(kvm
, new);
8170 kvm_mmu_slot_remove_write_access(kvm
, new);
8172 if (kvm_x86_ops
->slot_disable_log_dirty
)
8173 kvm_x86_ops
->slot_disable_log_dirty(kvm
, new);
8177 void kvm_arch_commit_memory_region(struct kvm
*kvm
,
8178 const struct kvm_userspace_memory_region
*mem
,
8179 const struct kvm_memory_slot
*old
,
8180 const struct kvm_memory_slot
*new,
8181 enum kvm_mr_change change
)
8183 int nr_mmu_pages
= 0;
8185 if (!kvm
->arch
.n_requested_mmu_pages
)
8186 nr_mmu_pages
= kvm_mmu_calculate_mmu_pages(kvm
);
8189 kvm_mmu_change_mmu_pages(kvm
, nr_mmu_pages
);
8192 * Dirty logging tracks sptes in 4k granularity, meaning that large
8193 * sptes have to be split. If live migration is successful, the guest
8194 * in the source machine will be destroyed and large sptes will be
8195 * created in the destination. However, if the guest continues to run
8196 * in the source machine (for example if live migration fails), small
8197 * sptes will remain around and cause bad performance.
8199 * Scan sptes if dirty logging has been stopped, dropping those
8200 * which can be collapsed into a single large-page spte. Later
8201 * page faults will create the large-page sptes.
8203 if ((change
!= KVM_MR_DELETE
) &&
8204 (old
->flags
& KVM_MEM_LOG_DIRTY_PAGES
) &&
8205 !(new->flags
& KVM_MEM_LOG_DIRTY_PAGES
))
8206 kvm_mmu_zap_collapsible_sptes(kvm
, new);
8209 * Set up write protection and/or dirty logging for the new slot.
8211 * For KVM_MR_DELETE and KVM_MR_MOVE, the shadow pages of old slot have
8212 * been zapped so no dirty logging staff is needed for old slot. For
8213 * KVM_MR_FLAGS_ONLY, the old slot is essentially the same one as the
8214 * new and it's also covered when dealing with the new slot.
8216 * FIXME: const-ify all uses of struct kvm_memory_slot.
8218 if (change
!= KVM_MR_DELETE
)
8219 kvm_mmu_slot_apply_flags(kvm
, (struct kvm_memory_slot
*) new);
8222 void kvm_arch_flush_shadow_all(struct kvm
*kvm
)
8224 kvm_mmu_invalidate_zap_all_pages(kvm
);
8227 void kvm_arch_flush_shadow_memslot(struct kvm
*kvm
,
8228 struct kvm_memory_slot
*slot
)
8230 kvm_mmu_invalidate_zap_all_pages(kvm
);
8233 static inline bool kvm_vcpu_has_events(struct kvm_vcpu
*vcpu
)
8235 if (!list_empty_careful(&vcpu
->async_pf
.done
))
8238 if (kvm_apic_has_events(vcpu
))
8241 if (vcpu
->arch
.pv
.pv_unhalted
)
8244 if (atomic_read(&vcpu
->arch
.nmi_queued
))
8247 if (test_bit(KVM_REQ_SMI
, &vcpu
->requests
))
8250 if (kvm_arch_interrupt_allowed(vcpu
) &&
8251 kvm_cpu_has_interrupt(vcpu
))
8254 if (kvm_hv_has_stimer_pending(vcpu
))
8260 int kvm_arch_vcpu_runnable(struct kvm_vcpu
*vcpu
)
8262 if (is_guest_mode(vcpu
) && kvm_x86_ops
->check_nested_events
)
8263 kvm_x86_ops
->check_nested_events(vcpu
, false);
8265 return kvm_vcpu_running(vcpu
) || kvm_vcpu_has_events(vcpu
);
8268 int kvm_arch_vcpu_should_kick(struct kvm_vcpu
*vcpu
)
8270 return kvm_vcpu_exiting_guest_mode(vcpu
) == IN_GUEST_MODE
;
8273 int kvm_arch_interrupt_allowed(struct kvm_vcpu
*vcpu
)
8275 return kvm_x86_ops
->interrupt_allowed(vcpu
);
8278 unsigned long kvm_get_linear_rip(struct kvm_vcpu
*vcpu
)
8280 if (is_64_bit_mode(vcpu
))
8281 return kvm_rip_read(vcpu
);
8282 return (u32
)(get_segment_base(vcpu
, VCPU_SREG_CS
) +
8283 kvm_rip_read(vcpu
));
8285 EXPORT_SYMBOL_GPL(kvm_get_linear_rip
);
8287 bool kvm_is_linear_rip(struct kvm_vcpu
*vcpu
, unsigned long linear_rip
)
8289 return kvm_get_linear_rip(vcpu
) == linear_rip
;
8291 EXPORT_SYMBOL_GPL(kvm_is_linear_rip
);
8293 unsigned long kvm_get_rflags(struct kvm_vcpu
*vcpu
)
8295 unsigned long rflags
;
8297 rflags
= kvm_x86_ops
->get_rflags(vcpu
);
8298 if (vcpu
->guest_debug
& KVM_GUESTDBG_SINGLESTEP
)
8299 rflags
&= ~X86_EFLAGS_TF
;
8302 EXPORT_SYMBOL_GPL(kvm_get_rflags
);
8304 static void __kvm_set_rflags(struct kvm_vcpu
*vcpu
, unsigned long rflags
)
8306 if (vcpu
->guest_debug
& KVM_GUESTDBG_SINGLESTEP
&&
8307 kvm_is_linear_rip(vcpu
, vcpu
->arch
.singlestep_rip
))
8308 rflags
|= X86_EFLAGS_TF
;
8309 kvm_x86_ops
->set_rflags(vcpu
, rflags
);
8312 void kvm_set_rflags(struct kvm_vcpu
*vcpu
, unsigned long rflags
)
8314 __kvm_set_rflags(vcpu
, rflags
);
8315 kvm_make_request(KVM_REQ_EVENT
, vcpu
);
8317 EXPORT_SYMBOL_GPL(kvm_set_rflags
);
8319 void kvm_arch_async_page_ready(struct kvm_vcpu
*vcpu
, struct kvm_async_pf
*work
)
8323 if ((vcpu
->arch
.mmu
.direct_map
!= work
->arch
.direct_map
) ||
8327 r
= kvm_mmu_reload(vcpu
);
8331 if (!vcpu
->arch
.mmu
.direct_map
&&
8332 work
->arch
.cr3
!= vcpu
->arch
.mmu
.get_cr3(vcpu
))
8335 vcpu
->arch
.mmu
.page_fault(vcpu
, work
->gva
, 0, true);
8338 static inline u32
kvm_async_pf_hash_fn(gfn_t gfn
)
8340 return hash_32(gfn
& 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU
));
8343 static inline u32
kvm_async_pf_next_probe(u32 key
)
8345 return (key
+ 1) & (roundup_pow_of_two(ASYNC_PF_PER_VCPU
) - 1);
8348 static void kvm_add_async_pf_gfn(struct kvm_vcpu
*vcpu
, gfn_t gfn
)
8350 u32 key
= kvm_async_pf_hash_fn(gfn
);
8352 while (vcpu
->arch
.apf
.gfns
[key
] != ~0)
8353 key
= kvm_async_pf_next_probe(key
);
8355 vcpu
->arch
.apf
.gfns
[key
] = gfn
;
8358 static u32
kvm_async_pf_gfn_slot(struct kvm_vcpu
*vcpu
, gfn_t gfn
)
8361 u32 key
= kvm_async_pf_hash_fn(gfn
);
8363 for (i
= 0; i
< roundup_pow_of_two(ASYNC_PF_PER_VCPU
) &&
8364 (vcpu
->arch
.apf
.gfns
[key
] != gfn
&&
8365 vcpu
->arch
.apf
.gfns
[key
] != ~0); i
++)
8366 key
= kvm_async_pf_next_probe(key
);
8371 bool kvm_find_async_pf_gfn(struct kvm_vcpu
*vcpu
, gfn_t gfn
)
8373 return vcpu
->arch
.apf
.gfns
[kvm_async_pf_gfn_slot(vcpu
, gfn
)] == gfn
;
8376 static void kvm_del_async_pf_gfn(struct kvm_vcpu
*vcpu
, gfn_t gfn
)
8380 i
= j
= kvm_async_pf_gfn_slot(vcpu
, gfn
);
8382 vcpu
->arch
.apf
.gfns
[i
] = ~0;
8384 j
= kvm_async_pf_next_probe(j
);
8385 if (vcpu
->arch
.apf
.gfns
[j
] == ~0)
8387 k
= kvm_async_pf_hash_fn(vcpu
->arch
.apf
.gfns
[j
]);
8389 * k lies cyclically in ]i,j]
8391 * |....j i.k.| or |.k..j i...|
8393 } while ((i
<= j
) ? (i
< k
&& k
<= j
) : (i
< k
|| k
<= j
));
8394 vcpu
->arch
.apf
.gfns
[i
] = vcpu
->arch
.apf
.gfns
[j
];
8399 static int apf_put_user(struct kvm_vcpu
*vcpu
, u32 val
)
8402 return kvm_write_guest_cached(vcpu
->kvm
, &vcpu
->arch
.apf
.data
, &val
,
8406 void kvm_arch_async_page_not_present(struct kvm_vcpu
*vcpu
,
8407 struct kvm_async_pf
*work
)
8409 struct x86_exception fault
;
8411 trace_kvm_async_pf_not_present(work
->arch
.token
, work
->gva
);
8412 kvm_add_async_pf_gfn(vcpu
, work
->arch
.gfn
);
8414 if (!(vcpu
->arch
.apf
.msr_val
& KVM_ASYNC_PF_ENABLED
) ||
8415 (vcpu
->arch
.apf
.send_user_only
&&
8416 kvm_x86_ops
->get_cpl(vcpu
) == 0))
8417 kvm_make_request(KVM_REQ_APF_HALT
, vcpu
);
8418 else if (!apf_put_user(vcpu
, KVM_PV_REASON_PAGE_NOT_PRESENT
)) {
8419 fault
.vector
= PF_VECTOR
;
8420 fault
.error_code_valid
= true;
8421 fault
.error_code
= 0;
8422 fault
.nested_page_fault
= false;
8423 fault
.address
= work
->arch
.token
;
8424 kvm_inject_page_fault(vcpu
, &fault
);
8428 void kvm_arch_async_page_present(struct kvm_vcpu
*vcpu
,
8429 struct kvm_async_pf
*work
)
8431 struct x86_exception fault
;
8433 trace_kvm_async_pf_ready(work
->arch
.token
, work
->gva
);
8434 if (work
->wakeup_all
)
8435 work
->arch
.token
= ~0; /* broadcast wakeup */
8437 kvm_del_async_pf_gfn(vcpu
, work
->arch
.gfn
);
8439 if ((vcpu
->arch
.apf
.msr_val
& KVM_ASYNC_PF_ENABLED
) &&
8440 !apf_put_user(vcpu
, KVM_PV_REASON_PAGE_READY
)) {
8441 fault
.vector
= PF_VECTOR
;
8442 fault
.error_code_valid
= true;
8443 fault
.error_code
= 0;
8444 fault
.nested_page_fault
= false;
8445 fault
.address
= work
->arch
.token
;
8446 kvm_inject_page_fault(vcpu
, &fault
);
8448 vcpu
->arch
.apf
.halted
= false;
8449 vcpu
->arch
.mp_state
= KVM_MP_STATE_RUNNABLE
;
8452 bool kvm_arch_can_inject_async_page_present(struct kvm_vcpu
*vcpu
)
8454 if (!(vcpu
->arch
.apf
.msr_val
& KVM_ASYNC_PF_ENABLED
))
8457 return kvm_can_do_async_pf(vcpu
);
8460 void kvm_arch_start_assignment(struct kvm
*kvm
)
8462 atomic_inc(&kvm
->arch
.assigned_device_count
);
8464 EXPORT_SYMBOL_GPL(kvm_arch_start_assignment
);
8466 void kvm_arch_end_assignment(struct kvm
*kvm
)
8468 atomic_dec(&kvm
->arch
.assigned_device_count
);
8470 EXPORT_SYMBOL_GPL(kvm_arch_end_assignment
);
8472 bool kvm_arch_has_assigned_device(struct kvm
*kvm
)
8474 return atomic_read(&kvm
->arch
.assigned_device_count
);
8476 EXPORT_SYMBOL_GPL(kvm_arch_has_assigned_device
);
8478 void kvm_arch_register_noncoherent_dma(struct kvm
*kvm
)
8480 atomic_inc(&kvm
->arch
.noncoherent_dma_count
);
8482 EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma
);
8484 void kvm_arch_unregister_noncoherent_dma(struct kvm
*kvm
)
8486 atomic_dec(&kvm
->arch
.noncoherent_dma_count
);
8488 EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma
);
8490 bool kvm_arch_has_noncoherent_dma(struct kvm
*kvm
)
8492 return atomic_read(&kvm
->arch
.noncoherent_dma_count
);
8494 EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma
);
8496 bool kvm_arch_has_irq_bypass(void)
8498 return kvm_x86_ops
->update_pi_irte
!= NULL
;
8501 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer
*cons
,
8502 struct irq_bypass_producer
*prod
)
8504 struct kvm_kernel_irqfd
*irqfd
=
8505 container_of(cons
, struct kvm_kernel_irqfd
, consumer
);
8507 irqfd
->producer
= prod
;
8509 return kvm_x86_ops
->update_pi_irte(irqfd
->kvm
,
8510 prod
->irq
, irqfd
->gsi
, 1);
8513 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer
*cons
,
8514 struct irq_bypass_producer
*prod
)
8517 struct kvm_kernel_irqfd
*irqfd
=
8518 container_of(cons
, struct kvm_kernel_irqfd
, consumer
);
8520 WARN_ON(irqfd
->producer
!= prod
);
8521 irqfd
->producer
= NULL
;
8524 * When producer of consumer is unregistered, we change back to
8525 * remapped mode, so we can re-use the current implementation
8526 * when the irq is masked/disabled or the consumer side (KVM
8527 * int this case doesn't want to receive the interrupts.
8529 ret
= kvm_x86_ops
->update_pi_irte(irqfd
->kvm
, prod
->irq
, irqfd
->gsi
, 0);
8531 printk(KERN_INFO
"irq bypass consumer (token %p) unregistration"
8532 " fails: %d\n", irqfd
->consumer
.token
, ret
);
8535 int kvm_arch_update_irqfd_routing(struct kvm
*kvm
, unsigned int host_irq
,
8536 uint32_t guest_irq
, bool set
)
8538 if (!kvm_x86_ops
->update_pi_irte
)
8541 return kvm_x86_ops
->update_pi_irte(kvm
, host_irq
, guest_irq
, set
);
8544 bool kvm_vector_hashing_enabled(void)
8546 return vector_hashing
;
8548 EXPORT_SYMBOL_GPL(kvm_vector_hashing_enabled
);
8550 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit
);
8551 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_fast_mmio
);
8552 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq
);
8553 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault
);
8554 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr
);
8555 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr
);
8556 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun
);
8557 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit
);
8558 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject
);
8559 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit
);
8560 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga
);
8561 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit
);
8562 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts
);
8563 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset
);
8564 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ple_window
);
8565 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pml_full
);
8566 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pi_irte_update
);
8567 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_unaccelerated_access
);
8568 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_incomplete_ipi
);