2 * Driver for OHCI 1394 controllers
4 * Copyright (C) 2003-2006 Kristian Hoegsberg <krh@bitplanet.net>
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software Foundation,
18 * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
21 #include <linux/bitops.h>
22 #include <linux/bug.h>
23 #include <linux/compiler.h>
24 #include <linux/delay.h>
25 #include <linux/device.h>
26 #include <linux/dma-mapping.h>
27 #include <linux/firewire.h>
28 #include <linux/firewire-constants.h>
29 #include <linux/init.h>
30 #include <linux/interrupt.h>
32 #include <linux/kernel.h>
33 #include <linux/list.h>
35 #include <linux/module.h>
36 #include <linux/moduleparam.h>
37 #include <linux/mutex.h>
38 #include <linux/pci.h>
39 #include <linux/pci_ids.h>
40 #include <linux/slab.h>
41 #include <linux/spinlock.h>
42 #include <linux/string.h>
43 #include <linux/time.h>
44 #include <linux/vmalloc.h>
45 #include <linux/workqueue.h>
47 #include <asm/byteorder.h>
50 #ifdef CONFIG_PPC_PMAC
51 #include <asm/pmac_feature.h>
57 #define ohci_info(ohci, f, args...) dev_info(ohci->card.device, f, ##args)
58 #define ohci_notice(ohci, f, args...) dev_notice(ohci->card.device, f, ##args)
59 #define ohci_err(ohci, f, args...) dev_err(ohci->card.device, f, ##args)
61 #define DESCRIPTOR_OUTPUT_MORE 0
62 #define DESCRIPTOR_OUTPUT_LAST (1 << 12)
63 #define DESCRIPTOR_INPUT_MORE (2 << 12)
64 #define DESCRIPTOR_INPUT_LAST (3 << 12)
65 #define DESCRIPTOR_STATUS (1 << 11)
66 #define DESCRIPTOR_KEY_IMMEDIATE (2 << 8)
67 #define DESCRIPTOR_PING (1 << 7)
68 #define DESCRIPTOR_YY (1 << 6)
69 #define DESCRIPTOR_NO_IRQ (0 << 4)
70 #define DESCRIPTOR_IRQ_ERROR (1 << 4)
71 #define DESCRIPTOR_IRQ_ALWAYS (3 << 4)
72 #define DESCRIPTOR_BRANCH_ALWAYS (3 << 2)
73 #define DESCRIPTOR_WAIT (3 << 0)
75 #define DESCRIPTOR_CMD (0xf << 12)
81 __le32 branch_address
;
83 __le16 transfer_status
;
84 } __attribute__((aligned(16)));
86 #define CONTROL_SET(regs) (regs)
87 #define CONTROL_CLEAR(regs) ((regs) + 4)
88 #define COMMAND_PTR(regs) ((regs) + 12)
89 #define CONTEXT_MATCH(regs) ((regs) + 16)
91 #define AR_BUFFER_SIZE (32*1024)
92 #define AR_BUFFERS_MIN DIV_ROUND_UP(AR_BUFFER_SIZE, PAGE_SIZE)
93 /* we need at least two pages for proper list management */
94 #define AR_BUFFERS (AR_BUFFERS_MIN >= 2 ? AR_BUFFERS_MIN : 2)
96 #define MAX_ASYNC_PAYLOAD 4096
97 #define MAX_AR_PACKET_SIZE (16 + MAX_ASYNC_PAYLOAD + 4)
98 #define AR_WRAPAROUND_PAGES DIV_ROUND_UP(MAX_AR_PACKET_SIZE, PAGE_SIZE)
101 struct fw_ohci
*ohci
;
102 struct page
*pages
[AR_BUFFERS
];
104 struct descriptor
*descriptors
;
105 dma_addr_t descriptors_bus
;
107 unsigned int last_buffer_index
;
109 struct tasklet_struct tasklet
;
114 typedef int (*descriptor_callback_t
)(struct context
*ctx
,
115 struct descriptor
*d
,
116 struct descriptor
*last
);
119 * A buffer that contains a block of DMA-able coherent memory used for
120 * storing a portion of a DMA descriptor program.
122 struct descriptor_buffer
{
123 struct list_head list
;
124 dma_addr_t buffer_bus
;
127 struct descriptor buffer
[0];
131 struct fw_ohci
*ohci
;
133 int total_allocation
;
139 * List of page-sized buffers for storing DMA descriptors.
140 * Head of list contains buffers in use and tail of list contains
143 struct list_head buffer_list
;
146 * Pointer to a buffer inside buffer_list that contains the tail
147 * end of the current DMA program.
149 struct descriptor_buffer
*buffer_tail
;
152 * The descriptor containing the branch address of the first
153 * descriptor that has not yet been filled by the device.
155 struct descriptor
*last
;
158 * The last descriptor block in the DMA program. It contains the branch
159 * address that must be updated upon appending a new descriptor.
161 struct descriptor
*prev
;
164 descriptor_callback_t callback
;
166 struct tasklet_struct tasklet
;
169 #define IT_HEADER_SY(v) ((v) << 0)
170 #define IT_HEADER_TCODE(v) ((v) << 4)
171 #define IT_HEADER_CHANNEL(v) ((v) << 8)
172 #define IT_HEADER_TAG(v) ((v) << 14)
173 #define IT_HEADER_SPEED(v) ((v) << 16)
174 #define IT_HEADER_DATA_LENGTH(v) ((v) << 16)
177 struct fw_iso_context base
;
178 struct context context
;
180 size_t header_length
;
181 unsigned long flushing_completions
;
189 #define CONFIG_ROM_SIZE 1024
194 __iomem
char *registers
;
197 int request_generation
; /* for timestamping incoming requests */
199 unsigned int pri_req_max
;
201 bool bus_time_running
;
203 bool csr_state_setclear_abdicate
;
207 * Spinlock for accessing fw_ohci data. Never call out of
208 * this driver with this lock held.
212 struct mutex phy_reg_mutex
;
215 dma_addr_t misc_buffer_bus
;
217 struct ar_context ar_request_ctx
;
218 struct ar_context ar_response_ctx
;
219 struct context at_request_ctx
;
220 struct context at_response_ctx
;
222 u32 it_context_support
;
223 u32 it_context_mask
; /* unoccupied IT contexts */
224 struct iso_context
*it_context_list
;
225 u64 ir_context_channels
; /* unoccupied channels */
226 u32 ir_context_support
;
227 u32 ir_context_mask
; /* unoccupied IR contexts */
228 struct iso_context
*ir_context_list
;
229 u64 mc_channels
; /* channels in use by the multichannel IR context */
233 dma_addr_t config_rom_bus
;
234 __be32
*next_config_rom
;
235 dma_addr_t next_config_rom_bus
;
239 dma_addr_t self_id_bus
;
240 struct work_struct bus_reset_work
;
242 u32 self_id_buffer
[512];
245 static struct workqueue_struct
*selfid_workqueue
;
247 static inline struct fw_ohci
*fw_ohci(struct fw_card
*card
)
249 return container_of(card
, struct fw_ohci
, card
);
252 #define IT_CONTEXT_CYCLE_MATCH_ENABLE 0x80000000
253 #define IR_CONTEXT_BUFFER_FILL 0x80000000
254 #define IR_CONTEXT_ISOCH_HEADER 0x40000000
255 #define IR_CONTEXT_CYCLE_MATCH_ENABLE 0x20000000
256 #define IR_CONTEXT_MULTI_CHANNEL_MODE 0x10000000
257 #define IR_CONTEXT_DUAL_BUFFER_MODE 0x08000000
259 #define CONTEXT_RUN 0x8000
260 #define CONTEXT_WAKE 0x1000
261 #define CONTEXT_DEAD 0x0800
262 #define CONTEXT_ACTIVE 0x0400
264 #define OHCI1394_MAX_AT_REQ_RETRIES 0xf
265 #define OHCI1394_MAX_AT_RESP_RETRIES 0x2
266 #define OHCI1394_MAX_PHYS_RESP_RETRIES 0x8
268 #define OHCI1394_REGISTER_SIZE 0x800
269 #define OHCI1394_PCI_HCI_Control 0x40
270 #define SELF_ID_BUF_SIZE 0x800
271 #define OHCI_TCODE_PHY_PACKET 0x0e
272 #define OHCI_VERSION_1_1 0x010010
274 static char ohci_driver_name
[] = KBUILD_MODNAME
;
276 #define PCI_VENDOR_ID_PINNACLE_SYSTEMS 0x11bd
277 #define PCI_DEVICE_ID_AGERE_FW643 0x5901
278 #define PCI_DEVICE_ID_CREATIVE_SB1394 0x4001
279 #define PCI_DEVICE_ID_JMICRON_JMB38X_FW 0x2380
280 #define PCI_DEVICE_ID_TI_TSB12LV22 0x8009
281 #define PCI_DEVICE_ID_TI_TSB12LV26 0x8020
282 #define PCI_DEVICE_ID_TI_TSB82AA2 0x8025
283 #define PCI_DEVICE_ID_VIA_VT630X 0x3044
284 #define PCI_REV_ID_VIA_VT6306 0x46
286 #define QUIRK_CYCLE_TIMER 0x1
287 #define QUIRK_RESET_PACKET 0x2
288 #define QUIRK_BE_HEADERS 0x4
289 #define QUIRK_NO_1394A 0x8
290 #define QUIRK_NO_MSI 0x10
291 #define QUIRK_TI_SLLZ059 0x20
292 #define QUIRK_IR_WAKE 0x40
294 /* In case of multiple matches in ohci_quirks[], only the first one is used. */
295 static const struct {
296 unsigned short vendor
, device
, revision
, flags
;
298 {PCI_VENDOR_ID_AL
, PCI_ANY_ID
, PCI_ANY_ID
,
301 {PCI_VENDOR_ID_APPLE
, PCI_DEVICE_ID_APPLE_UNI_N_FW
, PCI_ANY_ID
,
304 {PCI_VENDOR_ID_ATT
, PCI_DEVICE_ID_AGERE_FW643
, 6,
307 {PCI_VENDOR_ID_CREATIVE
, PCI_DEVICE_ID_CREATIVE_SB1394
, PCI_ANY_ID
,
310 {PCI_VENDOR_ID_JMICRON
, PCI_DEVICE_ID_JMICRON_JMB38X_FW
, PCI_ANY_ID
,
313 {PCI_VENDOR_ID_NEC
, PCI_ANY_ID
, PCI_ANY_ID
,
316 {PCI_VENDOR_ID_O2
, PCI_ANY_ID
, PCI_ANY_ID
,
319 {PCI_VENDOR_ID_RICOH
, PCI_ANY_ID
, PCI_ANY_ID
,
320 QUIRK_CYCLE_TIMER
| QUIRK_NO_MSI
},
322 {PCI_VENDOR_ID_TI
, PCI_DEVICE_ID_TI_TSB12LV22
, PCI_ANY_ID
,
323 QUIRK_CYCLE_TIMER
| QUIRK_RESET_PACKET
| QUIRK_NO_1394A
},
325 {PCI_VENDOR_ID_TI
, PCI_DEVICE_ID_TI_TSB12LV26
, PCI_ANY_ID
,
326 QUIRK_RESET_PACKET
| QUIRK_TI_SLLZ059
},
328 {PCI_VENDOR_ID_TI
, PCI_DEVICE_ID_TI_TSB82AA2
, PCI_ANY_ID
,
329 QUIRK_RESET_PACKET
| QUIRK_TI_SLLZ059
},
331 {PCI_VENDOR_ID_TI
, PCI_ANY_ID
, PCI_ANY_ID
,
334 {PCI_VENDOR_ID_VIA
, PCI_DEVICE_ID_VIA_VT630X
, PCI_REV_ID_VIA_VT6306
,
335 QUIRK_CYCLE_TIMER
| QUIRK_IR_WAKE
},
337 {PCI_VENDOR_ID_VIA
, PCI_ANY_ID
, PCI_ANY_ID
,
338 QUIRK_CYCLE_TIMER
| QUIRK_NO_MSI
},
341 /* This overrides anything that was found in ohci_quirks[]. */
342 static int param_quirks
;
343 module_param_named(quirks
, param_quirks
, int, 0644);
344 MODULE_PARM_DESC(quirks
, "Chip quirks (default = 0"
345 ", nonatomic cycle timer = " __stringify(QUIRK_CYCLE_TIMER
)
346 ", reset packet generation = " __stringify(QUIRK_RESET_PACKET
)
347 ", AR/selfID endianness = " __stringify(QUIRK_BE_HEADERS
)
348 ", no 1394a enhancements = " __stringify(QUIRK_NO_1394A
)
349 ", disable MSI = " __stringify(QUIRK_NO_MSI
)
350 ", TI SLLZ059 erratum = " __stringify(QUIRK_TI_SLLZ059
)
351 ", IR wake unreliable = " __stringify(QUIRK_IR_WAKE
)
354 #define OHCI_PARAM_DEBUG_AT_AR 1
355 #define OHCI_PARAM_DEBUG_SELFIDS 2
356 #define OHCI_PARAM_DEBUG_IRQS 4
357 #define OHCI_PARAM_DEBUG_BUSRESETS 8 /* only effective before chip init */
359 static int param_debug
;
360 module_param_named(debug
, param_debug
, int, 0644);
361 MODULE_PARM_DESC(debug
, "Verbose logging (default = 0"
362 ", AT/AR events = " __stringify(OHCI_PARAM_DEBUG_AT_AR
)
363 ", self-IDs = " __stringify(OHCI_PARAM_DEBUG_SELFIDS
)
364 ", IRQs = " __stringify(OHCI_PARAM_DEBUG_IRQS
)
365 ", busReset events = " __stringify(OHCI_PARAM_DEBUG_BUSRESETS
)
366 ", or a combination, or all = -1)");
368 static bool param_remote_dma
;
369 module_param_named(remote_dma
, param_remote_dma
, bool, 0444);
370 MODULE_PARM_DESC(remote_dma
, "Enable unfiltered remote DMA (default = N)");
372 static void log_irqs(struct fw_ohci
*ohci
, u32 evt
)
374 if (likely(!(param_debug
&
375 (OHCI_PARAM_DEBUG_IRQS
| OHCI_PARAM_DEBUG_BUSRESETS
))))
378 if (!(param_debug
& OHCI_PARAM_DEBUG_IRQS
) &&
379 !(evt
& OHCI1394_busReset
))
382 ohci_notice(ohci
, "IRQ %08x%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s\n", evt
,
383 evt
& OHCI1394_selfIDComplete
? " selfID" : "",
384 evt
& OHCI1394_RQPkt
? " AR_req" : "",
385 evt
& OHCI1394_RSPkt
? " AR_resp" : "",
386 evt
& OHCI1394_reqTxComplete
? " AT_req" : "",
387 evt
& OHCI1394_respTxComplete
? " AT_resp" : "",
388 evt
& OHCI1394_isochRx
? " IR" : "",
389 evt
& OHCI1394_isochTx
? " IT" : "",
390 evt
& OHCI1394_postedWriteErr
? " postedWriteErr" : "",
391 evt
& OHCI1394_cycleTooLong
? " cycleTooLong" : "",
392 evt
& OHCI1394_cycle64Seconds
? " cycle64Seconds" : "",
393 evt
& OHCI1394_cycleInconsistent
? " cycleInconsistent" : "",
394 evt
& OHCI1394_regAccessFail
? " regAccessFail" : "",
395 evt
& OHCI1394_unrecoverableError
? " unrecoverableError" : "",
396 evt
& OHCI1394_busReset
? " busReset" : "",
397 evt
& ~(OHCI1394_selfIDComplete
| OHCI1394_RQPkt
|
398 OHCI1394_RSPkt
| OHCI1394_reqTxComplete
|
399 OHCI1394_respTxComplete
| OHCI1394_isochRx
|
400 OHCI1394_isochTx
| OHCI1394_postedWriteErr
|
401 OHCI1394_cycleTooLong
| OHCI1394_cycle64Seconds
|
402 OHCI1394_cycleInconsistent
|
403 OHCI1394_regAccessFail
| OHCI1394_busReset
)
407 static const char *speed
[] = {
408 [0] = "S100", [1] = "S200", [2] = "S400", [3] = "beta",
410 static const char *power
[] = {
411 [0] = "+0W", [1] = "+15W", [2] = "+30W", [3] = "+45W",
412 [4] = "-3W", [5] = " ?W", [6] = "-3..-6W", [7] = "-3..-10W",
414 static const char port
[] = { '.', '-', 'p', 'c', };
416 static char _p(u32
*s
, int shift
)
418 return port
[*s
>> shift
& 3];
421 static void log_selfids(struct fw_ohci
*ohci
, int generation
, int self_id_count
)
425 if (likely(!(param_debug
& OHCI_PARAM_DEBUG_SELFIDS
)))
428 ohci_notice(ohci
, "%d selfIDs, generation %d, local node ID %04x\n",
429 self_id_count
, generation
, ohci
->node_id
);
431 for (s
= ohci
->self_id_buffer
; self_id_count
--; ++s
)
432 if ((*s
& 1 << 23) == 0)
434 "selfID 0: %08x, phy %d [%c%c%c] %s gc=%d %s %s%s%s\n",
435 *s
, *s
>> 24 & 63, _p(s
, 6), _p(s
, 4), _p(s
, 2),
436 speed
[*s
>> 14 & 3], *s
>> 16 & 63,
437 power
[*s
>> 8 & 7], *s
>> 22 & 1 ? "L" : "",
438 *s
>> 11 & 1 ? "c" : "", *s
& 2 ? "i" : "");
441 "selfID n: %08x, phy %d [%c%c%c%c%c%c%c%c]\n",
443 _p(s
, 16), _p(s
, 14), _p(s
, 12), _p(s
, 10),
444 _p(s
, 8), _p(s
, 6), _p(s
, 4), _p(s
, 2));
447 static const char *evts
[] = {
448 [0x00] = "evt_no_status", [0x01] = "-reserved-",
449 [0x02] = "evt_long_packet", [0x03] = "evt_missing_ack",
450 [0x04] = "evt_underrun", [0x05] = "evt_overrun",
451 [0x06] = "evt_descriptor_read", [0x07] = "evt_data_read",
452 [0x08] = "evt_data_write", [0x09] = "evt_bus_reset",
453 [0x0a] = "evt_timeout", [0x0b] = "evt_tcode_err",
454 [0x0c] = "-reserved-", [0x0d] = "-reserved-",
455 [0x0e] = "evt_unknown", [0x0f] = "evt_flushed",
456 [0x10] = "-reserved-", [0x11] = "ack_complete",
457 [0x12] = "ack_pending ", [0x13] = "-reserved-",
458 [0x14] = "ack_busy_X", [0x15] = "ack_busy_A",
459 [0x16] = "ack_busy_B", [0x17] = "-reserved-",
460 [0x18] = "-reserved-", [0x19] = "-reserved-",
461 [0x1a] = "-reserved-", [0x1b] = "ack_tardy",
462 [0x1c] = "-reserved-", [0x1d] = "ack_data_error",
463 [0x1e] = "ack_type_error", [0x1f] = "-reserved-",
464 [0x20] = "pending/cancelled",
466 static const char *tcodes
[] = {
467 [0x0] = "QW req", [0x1] = "BW req",
468 [0x2] = "W resp", [0x3] = "-reserved-",
469 [0x4] = "QR req", [0x5] = "BR req",
470 [0x6] = "QR resp", [0x7] = "BR resp",
471 [0x8] = "cycle start", [0x9] = "Lk req",
472 [0xa] = "async stream packet", [0xb] = "Lk resp",
473 [0xc] = "-reserved-", [0xd] = "-reserved-",
474 [0xe] = "link internal", [0xf] = "-reserved-",
477 static void log_ar_at_event(struct fw_ohci
*ohci
,
478 char dir
, int speed
, u32
*header
, int evt
)
480 int tcode
= header
[0] >> 4 & 0xf;
483 if (likely(!(param_debug
& OHCI_PARAM_DEBUG_AT_AR
)))
486 if (unlikely(evt
>= ARRAY_SIZE(evts
)))
489 if (evt
== OHCI1394_evt_bus_reset
) {
490 ohci_notice(ohci
, "A%c evt_bus_reset, generation %d\n",
491 dir
, (header
[2] >> 16) & 0xff);
496 case 0x0: case 0x6: case 0x8:
497 snprintf(specific
, sizeof(specific
), " = %08x",
498 be32_to_cpu((__force __be32
)header
[3]));
500 case 0x1: case 0x5: case 0x7: case 0x9: case 0xb:
501 snprintf(specific
, sizeof(specific
), " %x,%x",
502 header
[3] >> 16, header
[3] & 0xffff);
510 ohci_notice(ohci
, "A%c %s, %s\n",
511 dir
, evts
[evt
], tcodes
[tcode
]);
514 ohci_notice(ohci
, "A%c %s, PHY %08x %08x\n",
515 dir
, evts
[evt
], header
[1], header
[2]);
517 case 0x0: case 0x1: case 0x4: case 0x5: case 0x9:
519 "A%c spd %x tl %02x, %04x -> %04x, %s, %s, %04x%08x%s\n",
520 dir
, speed
, header
[0] >> 10 & 0x3f,
521 header
[1] >> 16, header
[0] >> 16, evts
[evt
],
522 tcodes
[tcode
], header
[1] & 0xffff, header
[2], specific
);
526 "A%c spd %x tl %02x, %04x -> %04x, %s, %s%s\n",
527 dir
, speed
, header
[0] >> 10 & 0x3f,
528 header
[1] >> 16, header
[0] >> 16, evts
[evt
],
529 tcodes
[tcode
], specific
);
533 static inline void reg_write(const struct fw_ohci
*ohci
, int offset
, u32 data
)
535 writel(data
, ohci
->registers
+ offset
);
538 static inline u32
reg_read(const struct fw_ohci
*ohci
, int offset
)
540 return readl(ohci
->registers
+ offset
);
543 static inline void flush_writes(const struct fw_ohci
*ohci
)
545 /* Do a dummy read to flush writes. */
546 reg_read(ohci
, OHCI1394_Version
);
550 * Beware! read_phy_reg(), write_phy_reg(), update_phy_reg(), and
551 * read_paged_phy_reg() require the caller to hold ohci->phy_reg_mutex.
552 * In other words, only use ohci_read_phy_reg() and ohci_update_phy_reg()
553 * directly. Exceptions are intrinsically serialized contexts like pci_probe.
555 static int read_phy_reg(struct fw_ohci
*ohci
, int addr
)
560 reg_write(ohci
, OHCI1394_PhyControl
, OHCI1394_PhyControl_Read(addr
));
561 for (i
= 0; i
< 3 + 100; i
++) {
562 val
= reg_read(ohci
, OHCI1394_PhyControl
);
564 return -ENODEV
; /* Card was ejected. */
566 if (val
& OHCI1394_PhyControl_ReadDone
)
567 return OHCI1394_PhyControl_ReadData(val
);
570 * Try a few times without waiting. Sleeping is necessary
571 * only when the link/PHY interface is busy.
576 ohci_err(ohci
, "failed to read phy reg %d\n", addr
);
582 static int write_phy_reg(const struct fw_ohci
*ohci
, int addr
, u32 val
)
586 reg_write(ohci
, OHCI1394_PhyControl
,
587 OHCI1394_PhyControl_Write(addr
, val
));
588 for (i
= 0; i
< 3 + 100; i
++) {
589 val
= reg_read(ohci
, OHCI1394_PhyControl
);
591 return -ENODEV
; /* Card was ejected. */
593 if (!(val
& OHCI1394_PhyControl_WritePending
))
599 ohci_err(ohci
, "failed to write phy reg %d, val %u\n", addr
, val
);
605 static int update_phy_reg(struct fw_ohci
*ohci
, int addr
,
606 int clear_bits
, int set_bits
)
608 int ret
= read_phy_reg(ohci
, addr
);
613 * The interrupt status bits are cleared by writing a one bit.
614 * Avoid clearing them unless explicitly requested in set_bits.
617 clear_bits
|= PHY_INT_STATUS_BITS
;
619 return write_phy_reg(ohci
, addr
, (ret
& ~clear_bits
) | set_bits
);
622 static int read_paged_phy_reg(struct fw_ohci
*ohci
, int page
, int addr
)
626 ret
= update_phy_reg(ohci
, 7, PHY_PAGE_SELECT
, page
<< 5);
630 return read_phy_reg(ohci
, addr
);
633 static int ohci_read_phy_reg(struct fw_card
*card
, int addr
)
635 struct fw_ohci
*ohci
= fw_ohci(card
);
638 mutex_lock(&ohci
->phy_reg_mutex
);
639 ret
= read_phy_reg(ohci
, addr
);
640 mutex_unlock(&ohci
->phy_reg_mutex
);
645 static int ohci_update_phy_reg(struct fw_card
*card
, int addr
,
646 int clear_bits
, int set_bits
)
648 struct fw_ohci
*ohci
= fw_ohci(card
);
651 mutex_lock(&ohci
->phy_reg_mutex
);
652 ret
= update_phy_reg(ohci
, addr
, clear_bits
, set_bits
);
653 mutex_unlock(&ohci
->phy_reg_mutex
);
658 static inline dma_addr_t
ar_buffer_bus(struct ar_context
*ctx
, unsigned int i
)
660 return page_private(ctx
->pages
[i
]);
663 static void ar_context_link_page(struct ar_context
*ctx
, unsigned int index
)
665 struct descriptor
*d
;
667 d
= &ctx
->descriptors
[index
];
668 d
->branch_address
&= cpu_to_le32(~0xf);
669 d
->res_count
= cpu_to_le16(PAGE_SIZE
);
670 d
->transfer_status
= 0;
672 wmb(); /* finish init of new descriptors before branch_address update */
673 d
= &ctx
->descriptors
[ctx
->last_buffer_index
];
674 d
->branch_address
|= cpu_to_le32(1);
676 ctx
->last_buffer_index
= index
;
678 reg_write(ctx
->ohci
, CONTROL_SET(ctx
->regs
), CONTEXT_WAKE
);
681 static void ar_context_release(struct ar_context
*ctx
)
686 vm_unmap_ram(ctx
->buffer
, AR_BUFFERS
+ AR_WRAPAROUND_PAGES
);
688 for (i
= 0; i
< AR_BUFFERS
; i
++)
690 dma_unmap_page(ctx
->ohci
->card
.device
,
691 ar_buffer_bus(ctx
, i
),
692 PAGE_SIZE
, DMA_FROM_DEVICE
);
693 __free_page(ctx
->pages
[i
]);
697 static void ar_context_abort(struct ar_context
*ctx
, const char *error_msg
)
699 struct fw_ohci
*ohci
= ctx
->ohci
;
701 if (reg_read(ohci
, CONTROL_CLEAR(ctx
->regs
)) & CONTEXT_RUN
) {
702 reg_write(ohci
, CONTROL_CLEAR(ctx
->regs
), CONTEXT_RUN
);
705 ohci_err(ohci
, "AR error: %s; DMA stopped\n", error_msg
);
707 /* FIXME: restart? */
710 static inline unsigned int ar_next_buffer_index(unsigned int index
)
712 return (index
+ 1) % AR_BUFFERS
;
715 static inline unsigned int ar_prev_buffer_index(unsigned int index
)
717 return (index
- 1 + AR_BUFFERS
) % AR_BUFFERS
;
720 static inline unsigned int ar_first_buffer_index(struct ar_context
*ctx
)
722 return ar_next_buffer_index(ctx
->last_buffer_index
);
726 * We search for the buffer that contains the last AR packet DMA data written
729 static unsigned int ar_search_last_active_buffer(struct ar_context
*ctx
,
730 unsigned int *buffer_offset
)
732 unsigned int i
, next_i
, last
= ctx
->last_buffer_index
;
733 __le16 res_count
, next_res_count
;
735 i
= ar_first_buffer_index(ctx
);
736 res_count
= ACCESS_ONCE(ctx
->descriptors
[i
].res_count
);
738 /* A buffer that is not yet completely filled must be the last one. */
739 while (i
!= last
&& res_count
== 0) {
741 /* Peek at the next descriptor. */
742 next_i
= ar_next_buffer_index(i
);
743 rmb(); /* read descriptors in order */
744 next_res_count
= ACCESS_ONCE(
745 ctx
->descriptors
[next_i
].res_count
);
747 * If the next descriptor is still empty, we must stop at this
750 if (next_res_count
== cpu_to_le16(PAGE_SIZE
)) {
752 * The exception is when the DMA data for one packet is
753 * split over three buffers; in this case, the middle
754 * buffer's descriptor might be never updated by the
755 * controller and look still empty, and we have to peek
758 if (MAX_AR_PACKET_SIZE
> PAGE_SIZE
&& i
!= last
) {
759 next_i
= ar_next_buffer_index(next_i
);
761 next_res_count
= ACCESS_ONCE(
762 ctx
->descriptors
[next_i
].res_count
);
763 if (next_res_count
!= cpu_to_le16(PAGE_SIZE
))
764 goto next_buffer_is_active
;
770 next_buffer_is_active
:
772 res_count
= next_res_count
;
775 rmb(); /* read res_count before the DMA data */
777 *buffer_offset
= PAGE_SIZE
- le16_to_cpu(res_count
);
778 if (*buffer_offset
> PAGE_SIZE
) {
780 ar_context_abort(ctx
, "corrupted descriptor");
786 static void ar_sync_buffers_for_cpu(struct ar_context
*ctx
,
787 unsigned int end_buffer_index
,
788 unsigned int end_buffer_offset
)
792 i
= ar_first_buffer_index(ctx
);
793 while (i
!= end_buffer_index
) {
794 dma_sync_single_for_cpu(ctx
->ohci
->card
.device
,
795 ar_buffer_bus(ctx
, i
),
796 PAGE_SIZE
, DMA_FROM_DEVICE
);
797 i
= ar_next_buffer_index(i
);
799 if (end_buffer_offset
> 0)
800 dma_sync_single_for_cpu(ctx
->ohci
->card
.device
,
801 ar_buffer_bus(ctx
, i
),
802 end_buffer_offset
, DMA_FROM_DEVICE
);
805 #if defined(CONFIG_PPC_PMAC) && defined(CONFIG_PPC32)
806 #define cond_le32_to_cpu(v) \
807 (ohci->quirks & QUIRK_BE_HEADERS ? (__force __u32)(v) : le32_to_cpu(v))
809 #define cond_le32_to_cpu(v) le32_to_cpu(v)
812 static __le32
*handle_ar_packet(struct ar_context
*ctx
, __le32
*buffer
)
814 struct fw_ohci
*ohci
= ctx
->ohci
;
816 u32 status
, length
, tcode
;
819 p
.header
[0] = cond_le32_to_cpu(buffer
[0]);
820 p
.header
[1] = cond_le32_to_cpu(buffer
[1]);
821 p
.header
[2] = cond_le32_to_cpu(buffer
[2]);
823 tcode
= (p
.header
[0] >> 4) & 0x0f;
825 case TCODE_WRITE_QUADLET_REQUEST
:
826 case TCODE_READ_QUADLET_RESPONSE
:
827 p
.header
[3] = (__force __u32
) buffer
[3];
828 p
.header_length
= 16;
829 p
.payload_length
= 0;
832 case TCODE_READ_BLOCK_REQUEST
:
833 p
.header
[3] = cond_le32_to_cpu(buffer
[3]);
834 p
.header_length
= 16;
835 p
.payload_length
= 0;
838 case TCODE_WRITE_BLOCK_REQUEST
:
839 case TCODE_READ_BLOCK_RESPONSE
:
840 case TCODE_LOCK_REQUEST
:
841 case TCODE_LOCK_RESPONSE
:
842 p
.header
[3] = cond_le32_to_cpu(buffer
[3]);
843 p
.header_length
= 16;
844 p
.payload_length
= p
.header
[3] >> 16;
845 if (p
.payload_length
> MAX_ASYNC_PAYLOAD
) {
846 ar_context_abort(ctx
, "invalid packet length");
851 case TCODE_WRITE_RESPONSE
:
852 case TCODE_READ_QUADLET_REQUEST
:
853 case OHCI_TCODE_PHY_PACKET
:
854 p
.header_length
= 12;
855 p
.payload_length
= 0;
859 ar_context_abort(ctx
, "invalid tcode");
863 p
.payload
= (void *) buffer
+ p
.header_length
;
865 /* FIXME: What to do about evt_* errors? */
866 length
= (p
.header_length
+ p
.payload_length
+ 3) / 4;
867 status
= cond_le32_to_cpu(buffer
[length
]);
868 evt
= (status
>> 16) & 0x1f;
871 p
.speed
= (status
>> 21) & 0x7;
872 p
.timestamp
= status
& 0xffff;
873 p
.generation
= ohci
->request_generation
;
875 log_ar_at_event(ohci
, 'R', p
.speed
, p
.header
, evt
);
878 * Several controllers, notably from NEC and VIA, forget to
879 * write ack_complete status at PHY packet reception.
881 if (evt
== OHCI1394_evt_no_status
&&
882 (p
.header
[0] & 0xff) == (OHCI1394_phy_tcode
<< 4))
883 p
.ack
= ACK_COMPLETE
;
886 * The OHCI bus reset handler synthesizes a PHY packet with
887 * the new generation number when a bus reset happens (see
888 * section 8.4.2.3). This helps us determine when a request
889 * was received and make sure we send the response in the same
890 * generation. We only need this for requests; for responses
891 * we use the unique tlabel for finding the matching
894 * Alas some chips sometimes emit bus reset packets with a
895 * wrong generation. We set the correct generation for these
896 * at a slightly incorrect time (in bus_reset_work).
898 if (evt
== OHCI1394_evt_bus_reset
) {
899 if (!(ohci
->quirks
& QUIRK_RESET_PACKET
))
900 ohci
->request_generation
= (p
.header
[2] >> 16) & 0xff;
901 } else if (ctx
== &ohci
->ar_request_ctx
) {
902 fw_core_handle_request(&ohci
->card
, &p
);
904 fw_core_handle_response(&ohci
->card
, &p
);
907 return buffer
+ length
+ 1;
910 static void *handle_ar_packets(struct ar_context
*ctx
, void *p
, void *end
)
915 next
= handle_ar_packet(ctx
, p
);
924 static void ar_recycle_buffers(struct ar_context
*ctx
, unsigned int end_buffer
)
928 i
= ar_first_buffer_index(ctx
);
929 while (i
!= end_buffer
) {
930 dma_sync_single_for_device(ctx
->ohci
->card
.device
,
931 ar_buffer_bus(ctx
, i
),
932 PAGE_SIZE
, DMA_FROM_DEVICE
);
933 ar_context_link_page(ctx
, i
);
934 i
= ar_next_buffer_index(i
);
938 static void ar_context_tasklet(unsigned long data
)
940 struct ar_context
*ctx
= (struct ar_context
*)data
;
941 unsigned int end_buffer_index
, end_buffer_offset
;
948 end_buffer_index
= ar_search_last_active_buffer(ctx
,
950 ar_sync_buffers_for_cpu(ctx
, end_buffer_index
, end_buffer_offset
);
951 end
= ctx
->buffer
+ end_buffer_index
* PAGE_SIZE
+ end_buffer_offset
;
953 if (end_buffer_index
< ar_first_buffer_index(ctx
)) {
955 * The filled part of the overall buffer wraps around; handle
956 * all packets up to the buffer end here. If the last packet
957 * wraps around, its tail will be visible after the buffer end
958 * because the buffer start pages are mapped there again.
960 void *buffer_end
= ctx
->buffer
+ AR_BUFFERS
* PAGE_SIZE
;
961 p
= handle_ar_packets(ctx
, p
, buffer_end
);
964 /* adjust p to point back into the actual buffer */
965 p
-= AR_BUFFERS
* PAGE_SIZE
;
968 p
= handle_ar_packets(ctx
, p
, end
);
971 ar_context_abort(ctx
, "inconsistent descriptor");
976 ar_recycle_buffers(ctx
, end_buffer_index
);
984 static int ar_context_init(struct ar_context
*ctx
, struct fw_ohci
*ohci
,
985 unsigned int descriptors_offset
, u32 regs
)
989 struct page
*pages
[AR_BUFFERS
+ AR_WRAPAROUND_PAGES
];
990 struct descriptor
*d
;
994 tasklet_init(&ctx
->tasklet
, ar_context_tasklet
, (unsigned long)ctx
);
996 for (i
= 0; i
< AR_BUFFERS
; i
++) {
997 ctx
->pages
[i
] = alloc_page(GFP_KERNEL
| GFP_DMA32
);
1000 dma_addr
= dma_map_page(ohci
->card
.device
, ctx
->pages
[i
],
1001 0, PAGE_SIZE
, DMA_FROM_DEVICE
);
1002 if (dma_mapping_error(ohci
->card
.device
, dma_addr
)) {
1003 __free_page(ctx
->pages
[i
]);
1004 ctx
->pages
[i
] = NULL
;
1007 set_page_private(ctx
->pages
[i
], dma_addr
);
1010 for (i
= 0; i
< AR_BUFFERS
; i
++)
1011 pages
[i
] = ctx
->pages
[i
];
1012 for (i
= 0; i
< AR_WRAPAROUND_PAGES
; i
++)
1013 pages
[AR_BUFFERS
+ i
] = ctx
->pages
[i
];
1014 ctx
->buffer
= vm_map_ram(pages
, AR_BUFFERS
+ AR_WRAPAROUND_PAGES
,
1019 ctx
->descriptors
= ohci
->misc_buffer
+ descriptors_offset
;
1020 ctx
->descriptors_bus
= ohci
->misc_buffer_bus
+ descriptors_offset
;
1022 for (i
= 0; i
< AR_BUFFERS
; i
++) {
1023 d
= &ctx
->descriptors
[i
];
1024 d
->req_count
= cpu_to_le16(PAGE_SIZE
);
1025 d
->control
= cpu_to_le16(DESCRIPTOR_INPUT_MORE
|
1027 DESCRIPTOR_BRANCH_ALWAYS
);
1028 d
->data_address
= cpu_to_le32(ar_buffer_bus(ctx
, i
));
1029 d
->branch_address
= cpu_to_le32(ctx
->descriptors_bus
+
1030 ar_next_buffer_index(i
) * sizeof(struct descriptor
));
1036 ar_context_release(ctx
);
1041 static void ar_context_run(struct ar_context
*ctx
)
1045 for (i
= 0; i
< AR_BUFFERS
; i
++)
1046 ar_context_link_page(ctx
, i
);
1048 ctx
->pointer
= ctx
->buffer
;
1050 reg_write(ctx
->ohci
, COMMAND_PTR(ctx
->regs
), ctx
->descriptors_bus
| 1);
1051 reg_write(ctx
->ohci
, CONTROL_SET(ctx
->regs
), CONTEXT_RUN
);
1054 static struct descriptor
*find_branch_descriptor(struct descriptor
*d
, int z
)
1058 branch
= d
->control
& cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS
);
1060 /* figure out which descriptor the branch address goes in */
1061 if (z
== 2 && branch
== cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS
))
1067 static void context_tasklet(unsigned long data
)
1069 struct context
*ctx
= (struct context
*) data
;
1070 struct descriptor
*d
, *last
;
1073 struct descriptor_buffer
*desc
;
1075 desc
= list_entry(ctx
->buffer_list
.next
,
1076 struct descriptor_buffer
, list
);
1078 while (last
->branch_address
!= 0) {
1079 struct descriptor_buffer
*old_desc
= desc
;
1080 address
= le32_to_cpu(last
->branch_address
);
1083 ctx
->current_bus
= address
;
1085 /* If the branch address points to a buffer outside of the
1086 * current buffer, advance to the next buffer. */
1087 if (address
< desc
->buffer_bus
||
1088 address
>= desc
->buffer_bus
+ desc
->used
)
1089 desc
= list_entry(desc
->list
.next
,
1090 struct descriptor_buffer
, list
);
1091 d
= desc
->buffer
+ (address
- desc
->buffer_bus
) / sizeof(*d
);
1092 last
= find_branch_descriptor(d
, z
);
1094 if (!ctx
->callback(ctx
, d
, last
))
1097 if (old_desc
!= desc
) {
1098 /* If we've advanced to the next buffer, move the
1099 * previous buffer to the free list. */
1100 unsigned long flags
;
1102 spin_lock_irqsave(&ctx
->ohci
->lock
, flags
);
1103 list_move_tail(&old_desc
->list
, &ctx
->buffer_list
);
1104 spin_unlock_irqrestore(&ctx
->ohci
->lock
, flags
);
1111 * Allocate a new buffer and add it to the list of free buffers for this
1112 * context. Must be called with ohci->lock held.
1114 static int context_add_buffer(struct context
*ctx
)
1116 struct descriptor_buffer
*desc
;
1117 dma_addr_t
uninitialized_var(bus_addr
);
1121 * 16MB of descriptors should be far more than enough for any DMA
1122 * program. This will catch run-away userspace or DoS attacks.
1124 if (ctx
->total_allocation
>= 16*1024*1024)
1127 desc
= dma_alloc_coherent(ctx
->ohci
->card
.device
, PAGE_SIZE
,
1128 &bus_addr
, GFP_ATOMIC
);
1132 offset
= (void *)&desc
->buffer
- (void *)desc
;
1133 desc
->buffer_size
= PAGE_SIZE
- offset
;
1134 desc
->buffer_bus
= bus_addr
+ offset
;
1137 list_add_tail(&desc
->list
, &ctx
->buffer_list
);
1138 ctx
->total_allocation
+= PAGE_SIZE
;
1143 static int context_init(struct context
*ctx
, struct fw_ohci
*ohci
,
1144 u32 regs
, descriptor_callback_t callback
)
1148 ctx
->total_allocation
= 0;
1150 INIT_LIST_HEAD(&ctx
->buffer_list
);
1151 if (context_add_buffer(ctx
) < 0)
1154 ctx
->buffer_tail
= list_entry(ctx
->buffer_list
.next
,
1155 struct descriptor_buffer
, list
);
1157 tasklet_init(&ctx
->tasklet
, context_tasklet
, (unsigned long)ctx
);
1158 ctx
->callback
= callback
;
1161 * We put a dummy descriptor in the buffer that has a NULL
1162 * branch address and looks like it's been sent. That way we
1163 * have a descriptor to append DMA programs to.
1165 memset(ctx
->buffer_tail
->buffer
, 0, sizeof(*ctx
->buffer_tail
->buffer
));
1166 ctx
->buffer_tail
->buffer
->control
= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST
);
1167 ctx
->buffer_tail
->buffer
->transfer_status
= cpu_to_le16(0x8011);
1168 ctx
->buffer_tail
->used
+= sizeof(*ctx
->buffer_tail
->buffer
);
1169 ctx
->last
= ctx
->buffer_tail
->buffer
;
1170 ctx
->prev
= ctx
->buffer_tail
->buffer
;
1176 static void context_release(struct context
*ctx
)
1178 struct fw_card
*card
= &ctx
->ohci
->card
;
1179 struct descriptor_buffer
*desc
, *tmp
;
1181 list_for_each_entry_safe(desc
, tmp
, &ctx
->buffer_list
, list
)
1182 dma_free_coherent(card
->device
, PAGE_SIZE
, desc
,
1184 ((void *)&desc
->buffer
- (void *)desc
));
1187 /* Must be called with ohci->lock held */
1188 static struct descriptor
*context_get_descriptors(struct context
*ctx
,
1189 int z
, dma_addr_t
*d_bus
)
1191 struct descriptor
*d
= NULL
;
1192 struct descriptor_buffer
*desc
= ctx
->buffer_tail
;
1194 if (z
* sizeof(*d
) > desc
->buffer_size
)
1197 if (z
* sizeof(*d
) > desc
->buffer_size
- desc
->used
) {
1198 /* No room for the descriptor in this buffer, so advance to the
1201 if (desc
->list
.next
== &ctx
->buffer_list
) {
1202 /* If there is no free buffer next in the list,
1204 if (context_add_buffer(ctx
) < 0)
1207 desc
= list_entry(desc
->list
.next
,
1208 struct descriptor_buffer
, list
);
1209 ctx
->buffer_tail
= desc
;
1212 d
= desc
->buffer
+ desc
->used
/ sizeof(*d
);
1213 memset(d
, 0, z
* sizeof(*d
));
1214 *d_bus
= desc
->buffer_bus
+ desc
->used
;
1219 static void context_run(struct context
*ctx
, u32 extra
)
1221 struct fw_ohci
*ohci
= ctx
->ohci
;
1223 reg_write(ohci
, COMMAND_PTR(ctx
->regs
),
1224 le32_to_cpu(ctx
->last
->branch_address
));
1225 reg_write(ohci
, CONTROL_CLEAR(ctx
->regs
), ~0);
1226 reg_write(ohci
, CONTROL_SET(ctx
->regs
), CONTEXT_RUN
| extra
);
1227 ctx
->running
= true;
1231 static void context_append(struct context
*ctx
,
1232 struct descriptor
*d
, int z
, int extra
)
1235 struct descriptor_buffer
*desc
= ctx
->buffer_tail
;
1236 struct descriptor
*d_branch
;
1238 d_bus
= desc
->buffer_bus
+ (d
- desc
->buffer
) * sizeof(*d
);
1240 desc
->used
+= (z
+ extra
) * sizeof(*d
);
1242 wmb(); /* finish init of new descriptors before branch_address update */
1244 d_branch
= find_branch_descriptor(ctx
->prev
, ctx
->prev_z
);
1245 d_branch
->branch_address
= cpu_to_le32(d_bus
| z
);
1248 * VT6306 incorrectly checks only the single descriptor at the
1249 * CommandPtr when the wake bit is written, so if it's a
1250 * multi-descriptor block starting with an INPUT_MORE, put a copy of
1251 * the branch address in the first descriptor.
1253 * Not doing this for transmit contexts since not sure how it interacts
1254 * with skip addresses.
1256 if (unlikely(ctx
->ohci
->quirks
& QUIRK_IR_WAKE
) &&
1257 d_branch
!= ctx
->prev
&&
1258 (ctx
->prev
->control
& cpu_to_le16(DESCRIPTOR_CMD
)) ==
1259 cpu_to_le16(DESCRIPTOR_INPUT_MORE
)) {
1260 ctx
->prev
->branch_address
= cpu_to_le32(d_bus
| z
);
1267 static void context_stop(struct context
*ctx
)
1269 struct fw_ohci
*ohci
= ctx
->ohci
;
1273 reg_write(ohci
, CONTROL_CLEAR(ctx
->regs
), CONTEXT_RUN
);
1274 ctx
->running
= false;
1276 for (i
= 0; i
< 1000; i
++) {
1277 reg
= reg_read(ohci
, CONTROL_SET(ctx
->regs
));
1278 if ((reg
& CONTEXT_ACTIVE
) == 0)
1284 ohci_err(ohci
, "DMA context still active (0x%08x)\n", reg
);
1287 struct driver_data
{
1289 struct fw_packet
*packet
;
1293 * This function apppends a packet to the DMA queue for transmission.
1294 * Must always be called with the ochi->lock held to ensure proper
1295 * generation handling and locking around packet queue manipulation.
1297 static int at_context_queue_packet(struct context
*ctx
,
1298 struct fw_packet
*packet
)
1300 struct fw_ohci
*ohci
= ctx
->ohci
;
1301 dma_addr_t d_bus
, uninitialized_var(payload_bus
);
1302 struct driver_data
*driver_data
;
1303 struct descriptor
*d
, *last
;
1307 d
= context_get_descriptors(ctx
, 4, &d_bus
);
1309 packet
->ack
= RCODE_SEND_ERROR
;
1313 d
[0].control
= cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE
);
1314 d
[0].res_count
= cpu_to_le16(packet
->timestamp
);
1317 * The DMA format for asynchronous link packets is different
1318 * from the IEEE1394 layout, so shift the fields around
1322 tcode
= (packet
->header
[0] >> 4) & 0x0f;
1323 header
= (__le32
*) &d
[1];
1325 case TCODE_WRITE_QUADLET_REQUEST
:
1326 case TCODE_WRITE_BLOCK_REQUEST
:
1327 case TCODE_WRITE_RESPONSE
:
1328 case TCODE_READ_QUADLET_REQUEST
:
1329 case TCODE_READ_BLOCK_REQUEST
:
1330 case TCODE_READ_QUADLET_RESPONSE
:
1331 case TCODE_READ_BLOCK_RESPONSE
:
1332 case TCODE_LOCK_REQUEST
:
1333 case TCODE_LOCK_RESPONSE
:
1334 header
[0] = cpu_to_le32((packet
->header
[0] & 0xffff) |
1335 (packet
->speed
<< 16));
1336 header
[1] = cpu_to_le32((packet
->header
[1] & 0xffff) |
1337 (packet
->header
[0] & 0xffff0000));
1338 header
[2] = cpu_to_le32(packet
->header
[2]);
1340 if (TCODE_IS_BLOCK_PACKET(tcode
))
1341 header
[3] = cpu_to_le32(packet
->header
[3]);
1343 header
[3] = (__force __le32
) packet
->header
[3];
1345 d
[0].req_count
= cpu_to_le16(packet
->header_length
);
1348 case TCODE_LINK_INTERNAL
:
1349 header
[0] = cpu_to_le32((OHCI1394_phy_tcode
<< 4) |
1350 (packet
->speed
<< 16));
1351 header
[1] = cpu_to_le32(packet
->header
[1]);
1352 header
[2] = cpu_to_le32(packet
->header
[2]);
1353 d
[0].req_count
= cpu_to_le16(12);
1355 if (is_ping_packet(&packet
->header
[1]))
1356 d
[0].control
|= cpu_to_le16(DESCRIPTOR_PING
);
1359 case TCODE_STREAM_DATA
:
1360 header
[0] = cpu_to_le32((packet
->header
[0] & 0xffff) |
1361 (packet
->speed
<< 16));
1362 header
[1] = cpu_to_le32(packet
->header
[0] & 0xffff0000);
1363 d
[0].req_count
= cpu_to_le16(8);
1368 packet
->ack
= RCODE_SEND_ERROR
;
1372 BUILD_BUG_ON(sizeof(struct driver_data
) > sizeof(struct descriptor
));
1373 driver_data
= (struct driver_data
*) &d
[3];
1374 driver_data
->packet
= packet
;
1375 packet
->driver_data
= driver_data
;
1377 if (packet
->payload_length
> 0) {
1378 if (packet
->payload_length
> sizeof(driver_data
->inline_data
)) {
1379 payload_bus
= dma_map_single(ohci
->card
.device
,
1381 packet
->payload_length
,
1383 if (dma_mapping_error(ohci
->card
.device
, payload_bus
)) {
1384 packet
->ack
= RCODE_SEND_ERROR
;
1387 packet
->payload_bus
= payload_bus
;
1388 packet
->payload_mapped
= true;
1390 memcpy(driver_data
->inline_data
, packet
->payload
,
1391 packet
->payload_length
);
1392 payload_bus
= d_bus
+ 3 * sizeof(*d
);
1395 d
[2].req_count
= cpu_to_le16(packet
->payload_length
);
1396 d
[2].data_address
= cpu_to_le32(payload_bus
);
1404 last
->control
|= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST
|
1405 DESCRIPTOR_IRQ_ALWAYS
|
1406 DESCRIPTOR_BRANCH_ALWAYS
);
1408 /* FIXME: Document how the locking works. */
1409 if (ohci
->generation
!= packet
->generation
) {
1410 if (packet
->payload_mapped
)
1411 dma_unmap_single(ohci
->card
.device
, payload_bus
,
1412 packet
->payload_length
, DMA_TO_DEVICE
);
1413 packet
->ack
= RCODE_GENERATION
;
1417 context_append(ctx
, d
, z
, 4 - z
);
1420 reg_write(ohci
, CONTROL_SET(ctx
->regs
), CONTEXT_WAKE
);
1422 context_run(ctx
, 0);
1427 static void at_context_flush(struct context
*ctx
)
1429 tasklet_disable(&ctx
->tasklet
);
1431 ctx
->flushing
= true;
1432 context_tasklet((unsigned long)ctx
);
1433 ctx
->flushing
= false;
1435 tasklet_enable(&ctx
->tasklet
);
1438 static int handle_at_packet(struct context
*context
,
1439 struct descriptor
*d
,
1440 struct descriptor
*last
)
1442 struct driver_data
*driver_data
;
1443 struct fw_packet
*packet
;
1444 struct fw_ohci
*ohci
= context
->ohci
;
1447 if (last
->transfer_status
== 0 && !context
->flushing
)
1448 /* This descriptor isn't done yet, stop iteration. */
1451 driver_data
= (struct driver_data
*) &d
[3];
1452 packet
= driver_data
->packet
;
1454 /* This packet was cancelled, just continue. */
1457 if (packet
->payload_mapped
)
1458 dma_unmap_single(ohci
->card
.device
, packet
->payload_bus
,
1459 packet
->payload_length
, DMA_TO_DEVICE
);
1461 evt
= le16_to_cpu(last
->transfer_status
) & 0x1f;
1462 packet
->timestamp
= le16_to_cpu(last
->res_count
);
1464 log_ar_at_event(ohci
, 'T', packet
->speed
, packet
->header
, evt
);
1467 case OHCI1394_evt_timeout
:
1468 /* Async response transmit timed out. */
1469 packet
->ack
= RCODE_CANCELLED
;
1472 case OHCI1394_evt_flushed
:
1474 * The packet was flushed should give same error as
1475 * when we try to use a stale generation count.
1477 packet
->ack
= RCODE_GENERATION
;
1480 case OHCI1394_evt_missing_ack
:
1481 if (context
->flushing
)
1482 packet
->ack
= RCODE_GENERATION
;
1485 * Using a valid (current) generation count, but the
1486 * node is not on the bus or not sending acks.
1488 packet
->ack
= RCODE_NO_ACK
;
1492 case ACK_COMPLETE
+ 0x10:
1493 case ACK_PENDING
+ 0x10:
1494 case ACK_BUSY_X
+ 0x10:
1495 case ACK_BUSY_A
+ 0x10:
1496 case ACK_BUSY_B
+ 0x10:
1497 case ACK_DATA_ERROR
+ 0x10:
1498 case ACK_TYPE_ERROR
+ 0x10:
1499 packet
->ack
= evt
- 0x10;
1502 case OHCI1394_evt_no_status
:
1503 if (context
->flushing
) {
1504 packet
->ack
= RCODE_GENERATION
;
1510 packet
->ack
= RCODE_SEND_ERROR
;
1514 packet
->callback(packet
, &ohci
->card
, packet
->ack
);
1519 #define HEADER_GET_DESTINATION(q) (((q) >> 16) & 0xffff)
1520 #define HEADER_GET_TCODE(q) (((q) >> 4) & 0x0f)
1521 #define HEADER_GET_OFFSET_HIGH(q) (((q) >> 0) & 0xffff)
1522 #define HEADER_GET_DATA_LENGTH(q) (((q) >> 16) & 0xffff)
1523 #define HEADER_GET_EXTENDED_TCODE(q) (((q) >> 0) & 0xffff)
1525 static void handle_local_rom(struct fw_ohci
*ohci
,
1526 struct fw_packet
*packet
, u32 csr
)
1528 struct fw_packet response
;
1529 int tcode
, length
, i
;
1531 tcode
= HEADER_GET_TCODE(packet
->header
[0]);
1532 if (TCODE_IS_BLOCK_PACKET(tcode
))
1533 length
= HEADER_GET_DATA_LENGTH(packet
->header
[3]);
1537 i
= csr
- CSR_CONFIG_ROM
;
1538 if (i
+ length
> CONFIG_ROM_SIZE
) {
1539 fw_fill_response(&response
, packet
->header
,
1540 RCODE_ADDRESS_ERROR
, NULL
, 0);
1541 } else if (!TCODE_IS_READ_REQUEST(tcode
)) {
1542 fw_fill_response(&response
, packet
->header
,
1543 RCODE_TYPE_ERROR
, NULL
, 0);
1545 fw_fill_response(&response
, packet
->header
, RCODE_COMPLETE
,
1546 (void *) ohci
->config_rom
+ i
, length
);
1549 fw_core_handle_response(&ohci
->card
, &response
);
1552 static void handle_local_lock(struct fw_ohci
*ohci
,
1553 struct fw_packet
*packet
, u32 csr
)
1555 struct fw_packet response
;
1556 int tcode
, length
, ext_tcode
, sel
, try;
1557 __be32
*payload
, lock_old
;
1558 u32 lock_arg
, lock_data
;
1560 tcode
= HEADER_GET_TCODE(packet
->header
[0]);
1561 length
= HEADER_GET_DATA_LENGTH(packet
->header
[3]);
1562 payload
= packet
->payload
;
1563 ext_tcode
= HEADER_GET_EXTENDED_TCODE(packet
->header
[3]);
1565 if (tcode
== TCODE_LOCK_REQUEST
&&
1566 ext_tcode
== EXTCODE_COMPARE_SWAP
&& length
== 8) {
1567 lock_arg
= be32_to_cpu(payload
[0]);
1568 lock_data
= be32_to_cpu(payload
[1]);
1569 } else if (tcode
== TCODE_READ_QUADLET_REQUEST
) {
1573 fw_fill_response(&response
, packet
->header
,
1574 RCODE_TYPE_ERROR
, NULL
, 0);
1578 sel
= (csr
- CSR_BUS_MANAGER_ID
) / 4;
1579 reg_write(ohci
, OHCI1394_CSRData
, lock_data
);
1580 reg_write(ohci
, OHCI1394_CSRCompareData
, lock_arg
);
1581 reg_write(ohci
, OHCI1394_CSRControl
, sel
);
1583 for (try = 0; try < 20; try++)
1584 if (reg_read(ohci
, OHCI1394_CSRControl
) & 0x80000000) {
1585 lock_old
= cpu_to_be32(reg_read(ohci
,
1587 fw_fill_response(&response
, packet
->header
,
1589 &lock_old
, sizeof(lock_old
));
1593 ohci_err(ohci
, "swap not done (CSR lock timeout)\n");
1594 fw_fill_response(&response
, packet
->header
, RCODE_BUSY
, NULL
, 0);
1597 fw_core_handle_response(&ohci
->card
, &response
);
1600 static void handle_local_request(struct context
*ctx
, struct fw_packet
*packet
)
1604 if (ctx
== &ctx
->ohci
->at_request_ctx
) {
1605 packet
->ack
= ACK_PENDING
;
1606 packet
->callback(packet
, &ctx
->ohci
->card
, packet
->ack
);
1610 ((unsigned long long)
1611 HEADER_GET_OFFSET_HIGH(packet
->header
[1]) << 32) |
1613 csr
= offset
- CSR_REGISTER_BASE
;
1615 /* Handle config rom reads. */
1616 if (csr
>= CSR_CONFIG_ROM
&& csr
< CSR_CONFIG_ROM_END
)
1617 handle_local_rom(ctx
->ohci
, packet
, csr
);
1619 case CSR_BUS_MANAGER_ID
:
1620 case CSR_BANDWIDTH_AVAILABLE
:
1621 case CSR_CHANNELS_AVAILABLE_HI
:
1622 case CSR_CHANNELS_AVAILABLE_LO
:
1623 handle_local_lock(ctx
->ohci
, packet
, csr
);
1626 if (ctx
== &ctx
->ohci
->at_request_ctx
)
1627 fw_core_handle_request(&ctx
->ohci
->card
, packet
);
1629 fw_core_handle_response(&ctx
->ohci
->card
, packet
);
1633 if (ctx
== &ctx
->ohci
->at_response_ctx
) {
1634 packet
->ack
= ACK_COMPLETE
;
1635 packet
->callback(packet
, &ctx
->ohci
->card
, packet
->ack
);
1639 static void at_context_transmit(struct context
*ctx
, struct fw_packet
*packet
)
1641 unsigned long flags
;
1644 spin_lock_irqsave(&ctx
->ohci
->lock
, flags
);
1646 if (HEADER_GET_DESTINATION(packet
->header
[0]) == ctx
->ohci
->node_id
&&
1647 ctx
->ohci
->generation
== packet
->generation
) {
1648 spin_unlock_irqrestore(&ctx
->ohci
->lock
, flags
);
1649 handle_local_request(ctx
, packet
);
1653 ret
= at_context_queue_packet(ctx
, packet
);
1654 spin_unlock_irqrestore(&ctx
->ohci
->lock
, flags
);
1657 packet
->callback(packet
, &ctx
->ohci
->card
, packet
->ack
);
1661 static void detect_dead_context(struct fw_ohci
*ohci
,
1662 const char *name
, unsigned int regs
)
1666 ctl
= reg_read(ohci
, CONTROL_SET(regs
));
1667 if (ctl
& CONTEXT_DEAD
)
1668 ohci_err(ohci
, "DMA context %s has stopped, error code: %s\n",
1669 name
, evts
[ctl
& 0x1f]);
1672 static void handle_dead_contexts(struct fw_ohci
*ohci
)
1677 detect_dead_context(ohci
, "ATReq", OHCI1394_AsReqTrContextBase
);
1678 detect_dead_context(ohci
, "ATRsp", OHCI1394_AsRspTrContextBase
);
1679 detect_dead_context(ohci
, "ARReq", OHCI1394_AsReqRcvContextBase
);
1680 detect_dead_context(ohci
, "ARRsp", OHCI1394_AsRspRcvContextBase
);
1681 for (i
= 0; i
< 32; ++i
) {
1682 if (!(ohci
->it_context_support
& (1 << i
)))
1684 sprintf(name
, "IT%u", i
);
1685 detect_dead_context(ohci
, name
, OHCI1394_IsoXmitContextBase(i
));
1687 for (i
= 0; i
< 32; ++i
) {
1688 if (!(ohci
->ir_context_support
& (1 << i
)))
1690 sprintf(name
, "IR%u", i
);
1691 detect_dead_context(ohci
, name
, OHCI1394_IsoRcvContextBase(i
));
1693 /* TODO: maybe try to flush and restart the dead contexts */
1696 static u32
cycle_timer_ticks(u32 cycle_timer
)
1700 ticks
= cycle_timer
& 0xfff;
1701 ticks
+= 3072 * ((cycle_timer
>> 12) & 0x1fff);
1702 ticks
+= (3072 * 8000) * (cycle_timer
>> 25);
1708 * Some controllers exhibit one or more of the following bugs when updating the
1709 * iso cycle timer register:
1710 * - When the lowest six bits are wrapping around to zero, a read that happens
1711 * at the same time will return garbage in the lowest ten bits.
1712 * - When the cycleOffset field wraps around to zero, the cycleCount field is
1713 * not incremented for about 60 ns.
1714 * - Occasionally, the entire register reads zero.
1716 * To catch these, we read the register three times and ensure that the
1717 * difference between each two consecutive reads is approximately the same, i.e.
1718 * less than twice the other. Furthermore, any negative difference indicates an
1719 * error. (A PCI read should take at least 20 ticks of the 24.576 MHz timer to
1720 * execute, so we have enough precision to compute the ratio of the differences.)
1722 static u32
get_cycle_time(struct fw_ohci
*ohci
)
1729 c2
= reg_read(ohci
, OHCI1394_IsochronousCycleTimer
);
1731 if (ohci
->quirks
& QUIRK_CYCLE_TIMER
) {
1734 c2
= reg_read(ohci
, OHCI1394_IsochronousCycleTimer
);
1738 c2
= reg_read(ohci
, OHCI1394_IsochronousCycleTimer
);
1739 t0
= cycle_timer_ticks(c0
);
1740 t1
= cycle_timer_ticks(c1
);
1741 t2
= cycle_timer_ticks(c2
);
1744 } while ((diff01
<= 0 || diff12
<= 0 ||
1745 diff01
/ diff12
>= 2 || diff12
/ diff01
>= 2)
1753 * This function has to be called at least every 64 seconds. The bus_time
1754 * field stores not only the upper 25 bits of the BUS_TIME register but also
1755 * the most significant bit of the cycle timer in bit 6 so that we can detect
1756 * changes in this bit.
1758 static u32
update_bus_time(struct fw_ohci
*ohci
)
1760 u32 cycle_time_seconds
= get_cycle_time(ohci
) >> 25;
1762 if (unlikely(!ohci
->bus_time_running
)) {
1763 reg_write(ohci
, OHCI1394_IntMaskSet
, OHCI1394_cycle64Seconds
);
1764 ohci
->bus_time
= (lower_32_bits(get_seconds()) & ~0x7f) |
1765 (cycle_time_seconds
& 0x40);
1766 ohci
->bus_time_running
= true;
1769 if ((ohci
->bus_time
& 0x40) != (cycle_time_seconds
& 0x40))
1770 ohci
->bus_time
+= 0x40;
1772 return ohci
->bus_time
| cycle_time_seconds
;
1775 static int get_status_for_port(struct fw_ohci
*ohci
, int port_index
)
1779 mutex_lock(&ohci
->phy_reg_mutex
);
1780 reg
= write_phy_reg(ohci
, 7, port_index
);
1782 reg
= read_phy_reg(ohci
, 8);
1783 mutex_unlock(&ohci
->phy_reg_mutex
);
1787 switch (reg
& 0x0f) {
1789 return 2; /* is child node (connected to parent node) */
1791 return 3; /* is parent node (connected to child node) */
1793 return 1; /* not connected */
1796 static int get_self_id_pos(struct fw_ohci
*ohci
, u32 self_id
,
1802 for (i
= 0; i
< self_id_count
; i
++) {
1803 entry
= ohci
->self_id_buffer
[i
];
1804 if ((self_id
& 0xff000000) == (entry
& 0xff000000))
1806 if ((self_id
& 0xff000000) < (entry
& 0xff000000))
1812 static int initiated_reset(struct fw_ohci
*ohci
)
1817 mutex_lock(&ohci
->phy_reg_mutex
);
1818 reg
= write_phy_reg(ohci
, 7, 0xe0); /* Select page 7 */
1820 reg
= read_phy_reg(ohci
, 8);
1822 reg
= write_phy_reg(ohci
, 8, reg
); /* set PMODE bit */
1824 reg
= read_phy_reg(ohci
, 12); /* read register 12 */
1826 if ((reg
& 0x08) == 0x08) {
1827 /* bit 3 indicates "initiated reset" */
1833 mutex_unlock(&ohci
->phy_reg_mutex
);
1838 * TI TSB82AA2B and TSB12LV26 do not receive the selfID of a locally
1839 * attached TSB41BA3D phy; see http://www.ti.com/litv/pdf/sllz059.
1840 * Construct the selfID from phy register contents.
1842 static int find_and_insert_self_id(struct fw_ohci
*ohci
, int self_id_count
)
1844 int reg
, i
, pos
, status
;
1845 /* link active 1, speed 3, bridge 0, contender 1, more packets 0 */
1846 u32 self_id
= 0x8040c800;
1848 reg
= reg_read(ohci
, OHCI1394_NodeID
);
1849 if (!(reg
& OHCI1394_NodeID_idValid
)) {
1851 "node ID not valid, new bus reset in progress\n");
1854 self_id
|= ((reg
& 0x3f) << 24); /* phy ID */
1856 reg
= ohci_read_phy_reg(&ohci
->card
, 4);
1859 self_id
|= ((reg
& 0x07) << 8); /* power class */
1861 reg
= ohci_read_phy_reg(&ohci
->card
, 1);
1864 self_id
|= ((reg
& 0x3f) << 16); /* gap count */
1866 for (i
= 0; i
< 3; i
++) {
1867 status
= get_status_for_port(ohci
, i
);
1870 self_id
|= ((status
& 0x3) << (6 - (i
* 2)));
1873 self_id
|= initiated_reset(ohci
);
1875 pos
= get_self_id_pos(ohci
, self_id
, self_id_count
);
1877 memmove(&(ohci
->self_id_buffer
[pos
+1]),
1878 &(ohci
->self_id_buffer
[pos
]),
1879 (self_id_count
- pos
) * sizeof(*ohci
->self_id_buffer
));
1880 ohci
->self_id_buffer
[pos
] = self_id
;
1883 return self_id_count
;
1886 static void bus_reset_work(struct work_struct
*work
)
1888 struct fw_ohci
*ohci
=
1889 container_of(work
, struct fw_ohci
, bus_reset_work
);
1890 int self_id_count
, generation
, new_generation
, i
, j
;
1892 void *free_rom
= NULL
;
1893 dma_addr_t free_rom_bus
= 0;
1896 reg
= reg_read(ohci
, OHCI1394_NodeID
);
1897 if (!(reg
& OHCI1394_NodeID_idValid
)) {
1899 "node ID not valid, new bus reset in progress\n");
1902 if ((reg
& OHCI1394_NodeID_nodeNumber
) == 63) {
1903 ohci_notice(ohci
, "malconfigured bus\n");
1906 ohci
->node_id
= reg
& (OHCI1394_NodeID_busNumber
|
1907 OHCI1394_NodeID_nodeNumber
);
1909 is_new_root
= (reg
& OHCI1394_NodeID_root
) != 0;
1910 if (!(ohci
->is_root
&& is_new_root
))
1911 reg_write(ohci
, OHCI1394_LinkControlSet
,
1912 OHCI1394_LinkControl_cycleMaster
);
1913 ohci
->is_root
= is_new_root
;
1915 reg
= reg_read(ohci
, OHCI1394_SelfIDCount
);
1916 if (reg
& OHCI1394_SelfIDCount_selfIDError
) {
1917 ohci_notice(ohci
, "self ID receive error\n");
1921 * The count in the SelfIDCount register is the number of
1922 * bytes in the self ID receive buffer. Since we also receive
1923 * the inverted quadlets and a header quadlet, we shift one
1924 * bit extra to get the actual number of self IDs.
1926 self_id_count
= (reg
>> 3) & 0xff;
1928 if (self_id_count
> 252) {
1929 ohci_notice(ohci
, "bad selfIDSize (%08x)\n", reg
);
1933 generation
= (cond_le32_to_cpu(ohci
->self_id
[0]) >> 16) & 0xff;
1936 for (i
= 1, j
= 0; j
< self_id_count
; i
+= 2, j
++) {
1937 u32 id
= cond_le32_to_cpu(ohci
->self_id
[i
]);
1938 u32 id2
= cond_le32_to_cpu(ohci
->self_id
[i
+ 1]);
1942 * If the invalid data looks like a cycle start packet,
1943 * it's likely to be the result of the cycle master
1944 * having a wrong gap count. In this case, the self IDs
1945 * so far are valid and should be processed so that the
1946 * bus manager can then correct the gap count.
1948 if (id
== 0xffff008f) {
1949 ohci_notice(ohci
, "ignoring spurious self IDs\n");
1954 ohci_notice(ohci
, "bad self ID %d/%d (%08x != ~%08x)\n",
1955 j
, self_id_count
, id
, id2
);
1958 ohci
->self_id_buffer
[j
] = id
;
1961 if (ohci
->quirks
& QUIRK_TI_SLLZ059
) {
1962 self_id_count
= find_and_insert_self_id(ohci
, self_id_count
);
1963 if (self_id_count
< 0) {
1965 "could not construct local self ID\n");
1970 if (self_id_count
== 0) {
1971 ohci_notice(ohci
, "no self IDs\n");
1977 * Check the consistency of the self IDs we just read. The
1978 * problem we face is that a new bus reset can start while we
1979 * read out the self IDs from the DMA buffer. If this happens,
1980 * the DMA buffer will be overwritten with new self IDs and we
1981 * will read out inconsistent data. The OHCI specification
1982 * (section 11.2) recommends a technique similar to
1983 * linux/seqlock.h, where we remember the generation of the
1984 * self IDs in the buffer before reading them out and compare
1985 * it to the current generation after reading them out. If
1986 * the two generations match we know we have a consistent set
1990 new_generation
= (reg_read(ohci
, OHCI1394_SelfIDCount
) >> 16) & 0xff;
1991 if (new_generation
!= generation
) {
1992 ohci_notice(ohci
, "new bus reset, discarding self ids\n");
1996 /* FIXME: Document how the locking works. */
1997 spin_lock_irq(&ohci
->lock
);
1999 ohci
->generation
= -1; /* prevent AT packet queueing */
2000 context_stop(&ohci
->at_request_ctx
);
2001 context_stop(&ohci
->at_response_ctx
);
2003 spin_unlock_irq(&ohci
->lock
);
2006 * Per OHCI 1.2 draft, clause 7.2.3.3, hardware may leave unsent
2007 * packets in the AT queues and software needs to drain them.
2008 * Some OHCI 1.1 controllers (JMicron) apparently require this too.
2010 at_context_flush(&ohci
->at_request_ctx
);
2011 at_context_flush(&ohci
->at_response_ctx
);
2013 spin_lock_irq(&ohci
->lock
);
2015 ohci
->generation
= generation
;
2016 reg_write(ohci
, OHCI1394_IntEventClear
, OHCI1394_busReset
);
2018 if (ohci
->quirks
& QUIRK_RESET_PACKET
)
2019 ohci
->request_generation
= generation
;
2022 * This next bit is unrelated to the AT context stuff but we
2023 * have to do it under the spinlock also. If a new config rom
2024 * was set up before this reset, the old one is now no longer
2025 * in use and we can free it. Update the config rom pointers
2026 * to point to the current config rom and clear the
2027 * next_config_rom pointer so a new update can take place.
2030 if (ohci
->next_config_rom
!= NULL
) {
2031 if (ohci
->next_config_rom
!= ohci
->config_rom
) {
2032 free_rom
= ohci
->config_rom
;
2033 free_rom_bus
= ohci
->config_rom_bus
;
2035 ohci
->config_rom
= ohci
->next_config_rom
;
2036 ohci
->config_rom_bus
= ohci
->next_config_rom_bus
;
2037 ohci
->next_config_rom
= NULL
;
2040 * Restore config_rom image and manually update
2041 * config_rom registers. Writing the header quadlet
2042 * will indicate that the config rom is ready, so we
2045 reg_write(ohci
, OHCI1394_BusOptions
,
2046 be32_to_cpu(ohci
->config_rom
[2]));
2047 ohci
->config_rom
[0] = ohci
->next_header
;
2048 reg_write(ohci
, OHCI1394_ConfigROMhdr
,
2049 be32_to_cpu(ohci
->next_header
));
2052 if (param_remote_dma
) {
2053 reg_write(ohci
, OHCI1394_PhyReqFilterHiSet
, ~0);
2054 reg_write(ohci
, OHCI1394_PhyReqFilterLoSet
, ~0);
2057 spin_unlock_irq(&ohci
->lock
);
2060 dma_free_coherent(ohci
->card
.device
, CONFIG_ROM_SIZE
,
2061 free_rom
, free_rom_bus
);
2063 log_selfids(ohci
, generation
, self_id_count
);
2065 fw_core_handle_bus_reset(&ohci
->card
, ohci
->node_id
, generation
,
2066 self_id_count
, ohci
->self_id_buffer
,
2067 ohci
->csr_state_setclear_abdicate
);
2068 ohci
->csr_state_setclear_abdicate
= false;
2071 static irqreturn_t
irq_handler(int irq
, void *data
)
2073 struct fw_ohci
*ohci
= data
;
2074 u32 event
, iso_event
;
2077 event
= reg_read(ohci
, OHCI1394_IntEventClear
);
2079 if (!event
|| !~event
)
2083 * busReset and postedWriteErr must not be cleared yet
2084 * (OHCI 1.1 clauses 7.2.3.2 and 13.2.8.1)
2086 reg_write(ohci
, OHCI1394_IntEventClear
,
2087 event
& ~(OHCI1394_busReset
| OHCI1394_postedWriteErr
));
2088 log_irqs(ohci
, event
);
2090 if (event
& OHCI1394_selfIDComplete
)
2091 queue_work(selfid_workqueue
, &ohci
->bus_reset_work
);
2093 if (event
& OHCI1394_RQPkt
)
2094 tasklet_schedule(&ohci
->ar_request_ctx
.tasklet
);
2096 if (event
& OHCI1394_RSPkt
)
2097 tasklet_schedule(&ohci
->ar_response_ctx
.tasklet
);
2099 if (event
& OHCI1394_reqTxComplete
)
2100 tasklet_schedule(&ohci
->at_request_ctx
.tasklet
);
2102 if (event
& OHCI1394_respTxComplete
)
2103 tasklet_schedule(&ohci
->at_response_ctx
.tasklet
);
2105 if (event
& OHCI1394_isochRx
) {
2106 iso_event
= reg_read(ohci
, OHCI1394_IsoRecvIntEventClear
);
2107 reg_write(ohci
, OHCI1394_IsoRecvIntEventClear
, iso_event
);
2110 i
= ffs(iso_event
) - 1;
2112 &ohci
->ir_context_list
[i
].context
.tasklet
);
2113 iso_event
&= ~(1 << i
);
2117 if (event
& OHCI1394_isochTx
) {
2118 iso_event
= reg_read(ohci
, OHCI1394_IsoXmitIntEventClear
);
2119 reg_write(ohci
, OHCI1394_IsoXmitIntEventClear
, iso_event
);
2122 i
= ffs(iso_event
) - 1;
2124 &ohci
->it_context_list
[i
].context
.tasklet
);
2125 iso_event
&= ~(1 << i
);
2129 if (unlikely(event
& OHCI1394_regAccessFail
))
2130 ohci_err(ohci
, "register access failure\n");
2132 if (unlikely(event
& OHCI1394_postedWriteErr
)) {
2133 reg_read(ohci
, OHCI1394_PostedWriteAddressHi
);
2134 reg_read(ohci
, OHCI1394_PostedWriteAddressLo
);
2135 reg_write(ohci
, OHCI1394_IntEventClear
,
2136 OHCI1394_postedWriteErr
);
2137 if (printk_ratelimit())
2138 ohci_err(ohci
, "PCI posted write error\n");
2141 if (unlikely(event
& OHCI1394_cycleTooLong
)) {
2142 if (printk_ratelimit())
2143 ohci_notice(ohci
, "isochronous cycle too long\n");
2144 reg_write(ohci
, OHCI1394_LinkControlSet
,
2145 OHCI1394_LinkControl_cycleMaster
);
2148 if (unlikely(event
& OHCI1394_cycleInconsistent
)) {
2150 * We need to clear this event bit in order to make
2151 * cycleMatch isochronous I/O work. In theory we should
2152 * stop active cycleMatch iso contexts now and restart
2153 * them at least two cycles later. (FIXME?)
2155 if (printk_ratelimit())
2156 ohci_notice(ohci
, "isochronous cycle inconsistent\n");
2159 if (unlikely(event
& OHCI1394_unrecoverableError
))
2160 handle_dead_contexts(ohci
);
2162 if (event
& OHCI1394_cycle64Seconds
) {
2163 spin_lock(&ohci
->lock
);
2164 update_bus_time(ohci
);
2165 spin_unlock(&ohci
->lock
);
2172 static int software_reset(struct fw_ohci
*ohci
)
2177 reg_write(ohci
, OHCI1394_HCControlSet
, OHCI1394_HCControl_softReset
);
2178 for (i
= 0; i
< 500; i
++) {
2179 val
= reg_read(ohci
, OHCI1394_HCControlSet
);
2181 return -ENODEV
; /* Card was ejected. */
2183 if (!(val
& OHCI1394_HCControl_softReset
))
2192 static void copy_config_rom(__be32
*dest
, const __be32
*src
, size_t length
)
2194 size_t size
= length
* 4;
2196 memcpy(dest
, src
, size
);
2197 if (size
< CONFIG_ROM_SIZE
)
2198 memset(&dest
[length
], 0, CONFIG_ROM_SIZE
- size
);
2201 static int configure_1394a_enhancements(struct fw_ohci
*ohci
)
2204 int ret
, clear
, set
, offset
;
2206 /* Check if the driver should configure link and PHY. */
2207 if (!(reg_read(ohci
, OHCI1394_HCControlSet
) &
2208 OHCI1394_HCControl_programPhyEnable
))
2211 /* Paranoia: check whether the PHY supports 1394a, too. */
2212 enable_1394a
= false;
2213 ret
= read_phy_reg(ohci
, 2);
2216 if ((ret
& PHY_EXTENDED_REGISTERS
) == PHY_EXTENDED_REGISTERS
) {
2217 ret
= read_paged_phy_reg(ohci
, 1, 8);
2221 enable_1394a
= true;
2224 if (ohci
->quirks
& QUIRK_NO_1394A
)
2225 enable_1394a
= false;
2227 /* Configure PHY and link consistently. */
2230 set
= PHY_ENABLE_ACCEL
| PHY_ENABLE_MULTI
;
2232 clear
= PHY_ENABLE_ACCEL
| PHY_ENABLE_MULTI
;
2235 ret
= update_phy_reg(ohci
, 5, clear
, set
);
2240 offset
= OHCI1394_HCControlSet
;
2242 offset
= OHCI1394_HCControlClear
;
2243 reg_write(ohci
, offset
, OHCI1394_HCControl_aPhyEnhanceEnable
);
2245 /* Clean up: configuration has been taken care of. */
2246 reg_write(ohci
, OHCI1394_HCControlClear
,
2247 OHCI1394_HCControl_programPhyEnable
);
2252 static int probe_tsb41ba3d(struct fw_ohci
*ohci
)
2254 /* TI vendor ID = 0x080028, TSB41BA3D product ID = 0x833005 (sic) */
2255 static const u8 id
[] = { 0x08, 0x00, 0x28, 0x83, 0x30, 0x05, };
2258 reg
= read_phy_reg(ohci
, 2);
2261 if ((reg
& PHY_EXTENDED_REGISTERS
) != PHY_EXTENDED_REGISTERS
)
2264 for (i
= ARRAY_SIZE(id
) - 1; i
>= 0; i
--) {
2265 reg
= read_paged_phy_reg(ohci
, 1, i
+ 10);
2274 static int ohci_enable(struct fw_card
*card
,
2275 const __be32
*config_rom
, size_t length
)
2277 struct fw_ohci
*ohci
= fw_ohci(card
);
2278 u32 lps
, version
, irqs
;
2281 if (software_reset(ohci
)) {
2282 ohci_err(ohci
, "failed to reset ohci card\n");
2287 * Now enable LPS, which we need in order to start accessing
2288 * most of the registers. In fact, on some cards (ALI M5251),
2289 * accessing registers in the SClk domain without LPS enabled
2290 * will lock up the machine. Wait 50msec to make sure we have
2291 * full link enabled. However, with some cards (well, at least
2292 * a JMicron PCIe card), we have to try again sometimes.
2294 * TI TSB82AA2 + TSB81BA3(A) cards signal LPS enabled early but
2295 * cannot actually use the phy at that time. These need tens of
2296 * millisecods pause between LPS write and first phy access too.
2299 reg_write(ohci
, OHCI1394_HCControlSet
,
2300 OHCI1394_HCControl_LPS
|
2301 OHCI1394_HCControl_postedWriteEnable
);
2304 for (lps
= 0, i
= 0; !lps
&& i
< 3; i
++) {
2306 lps
= reg_read(ohci
, OHCI1394_HCControlSet
) &
2307 OHCI1394_HCControl_LPS
;
2311 ohci_err(ohci
, "failed to set Link Power Status\n");
2315 if (ohci
->quirks
& QUIRK_TI_SLLZ059
) {
2316 ret
= probe_tsb41ba3d(ohci
);
2320 ohci_notice(ohci
, "local TSB41BA3D phy\n");
2322 ohci
->quirks
&= ~QUIRK_TI_SLLZ059
;
2325 reg_write(ohci
, OHCI1394_HCControlClear
,
2326 OHCI1394_HCControl_noByteSwapData
);
2328 reg_write(ohci
, OHCI1394_SelfIDBuffer
, ohci
->self_id_bus
);
2329 reg_write(ohci
, OHCI1394_LinkControlSet
,
2330 OHCI1394_LinkControl_cycleTimerEnable
|
2331 OHCI1394_LinkControl_cycleMaster
);
2333 reg_write(ohci
, OHCI1394_ATRetries
,
2334 OHCI1394_MAX_AT_REQ_RETRIES
|
2335 (OHCI1394_MAX_AT_RESP_RETRIES
<< 4) |
2336 (OHCI1394_MAX_PHYS_RESP_RETRIES
<< 8) |
2339 ohci
->bus_time_running
= false;
2341 for (i
= 0; i
< 32; i
++)
2342 if (ohci
->ir_context_support
& (1 << i
))
2343 reg_write(ohci
, OHCI1394_IsoRcvContextControlClear(i
),
2344 IR_CONTEXT_MULTI_CHANNEL_MODE
);
2346 version
= reg_read(ohci
, OHCI1394_Version
) & 0x00ff00ff;
2347 if (version
>= OHCI_VERSION_1_1
) {
2348 reg_write(ohci
, OHCI1394_InitialChannelsAvailableHi
,
2350 card
->broadcast_channel_auto_allocated
= true;
2353 /* Get implemented bits of the priority arbitration request counter. */
2354 reg_write(ohci
, OHCI1394_FairnessControl
, 0x3f);
2355 ohci
->pri_req_max
= reg_read(ohci
, OHCI1394_FairnessControl
) & 0x3f;
2356 reg_write(ohci
, OHCI1394_FairnessControl
, 0);
2357 card
->priority_budget_implemented
= ohci
->pri_req_max
!= 0;
2359 reg_write(ohci
, OHCI1394_PhyUpperBound
, FW_MAX_PHYSICAL_RANGE
>> 16);
2360 reg_write(ohci
, OHCI1394_IntEventClear
, ~0);
2361 reg_write(ohci
, OHCI1394_IntMaskClear
, ~0);
2363 ret
= configure_1394a_enhancements(ohci
);
2367 /* Activate link_on bit and contender bit in our self ID packets.*/
2368 ret
= ohci_update_phy_reg(card
, 4, 0, PHY_LINK_ACTIVE
| PHY_CONTENDER
);
2373 * When the link is not yet enabled, the atomic config rom
2374 * update mechanism described below in ohci_set_config_rom()
2375 * is not active. We have to update ConfigRomHeader and
2376 * BusOptions manually, and the write to ConfigROMmap takes
2377 * effect immediately. We tie this to the enabling of the
2378 * link, so we have a valid config rom before enabling - the
2379 * OHCI requires that ConfigROMhdr and BusOptions have valid
2380 * values before enabling.
2382 * However, when the ConfigROMmap is written, some controllers
2383 * always read back quadlets 0 and 2 from the config rom to
2384 * the ConfigRomHeader and BusOptions registers on bus reset.
2385 * They shouldn't do that in this initial case where the link
2386 * isn't enabled. This means we have to use the same
2387 * workaround here, setting the bus header to 0 and then write
2388 * the right values in the bus reset tasklet.
2392 ohci
->next_config_rom
=
2393 dma_alloc_coherent(ohci
->card
.device
, CONFIG_ROM_SIZE
,
2394 &ohci
->next_config_rom_bus
,
2396 if (ohci
->next_config_rom
== NULL
)
2399 copy_config_rom(ohci
->next_config_rom
, config_rom
, length
);
2402 * In the suspend case, config_rom is NULL, which
2403 * means that we just reuse the old config rom.
2405 ohci
->next_config_rom
= ohci
->config_rom
;
2406 ohci
->next_config_rom_bus
= ohci
->config_rom_bus
;
2409 ohci
->next_header
= ohci
->next_config_rom
[0];
2410 ohci
->next_config_rom
[0] = 0;
2411 reg_write(ohci
, OHCI1394_ConfigROMhdr
, 0);
2412 reg_write(ohci
, OHCI1394_BusOptions
,
2413 be32_to_cpu(ohci
->next_config_rom
[2]));
2414 reg_write(ohci
, OHCI1394_ConfigROMmap
, ohci
->next_config_rom_bus
);
2416 reg_write(ohci
, OHCI1394_AsReqFilterHiSet
, 0x80000000);
2418 irqs
= OHCI1394_reqTxComplete
| OHCI1394_respTxComplete
|
2419 OHCI1394_RQPkt
| OHCI1394_RSPkt
|
2420 OHCI1394_isochTx
| OHCI1394_isochRx
|
2421 OHCI1394_postedWriteErr
|
2422 OHCI1394_selfIDComplete
|
2423 OHCI1394_regAccessFail
|
2424 OHCI1394_cycleInconsistent
|
2425 OHCI1394_unrecoverableError
|
2426 OHCI1394_cycleTooLong
|
2427 OHCI1394_masterIntEnable
;
2428 if (param_debug
& OHCI_PARAM_DEBUG_BUSRESETS
)
2429 irqs
|= OHCI1394_busReset
;
2430 reg_write(ohci
, OHCI1394_IntMaskSet
, irqs
);
2432 reg_write(ohci
, OHCI1394_HCControlSet
,
2433 OHCI1394_HCControl_linkEnable
|
2434 OHCI1394_HCControl_BIBimageValid
);
2436 reg_write(ohci
, OHCI1394_LinkControlSet
,
2437 OHCI1394_LinkControl_rcvSelfID
|
2438 OHCI1394_LinkControl_rcvPhyPkt
);
2440 ar_context_run(&ohci
->ar_request_ctx
);
2441 ar_context_run(&ohci
->ar_response_ctx
);
2445 /* We are ready to go, reset bus to finish initialization. */
2446 fw_schedule_bus_reset(&ohci
->card
, false, true);
2451 static int ohci_set_config_rom(struct fw_card
*card
,
2452 const __be32
*config_rom
, size_t length
)
2454 struct fw_ohci
*ohci
;
2455 __be32
*next_config_rom
;
2456 dma_addr_t
uninitialized_var(next_config_rom_bus
);
2458 ohci
= fw_ohci(card
);
2461 * When the OHCI controller is enabled, the config rom update
2462 * mechanism is a bit tricky, but easy enough to use. See
2463 * section 5.5.6 in the OHCI specification.
2465 * The OHCI controller caches the new config rom address in a
2466 * shadow register (ConfigROMmapNext) and needs a bus reset
2467 * for the changes to take place. When the bus reset is
2468 * detected, the controller loads the new values for the
2469 * ConfigRomHeader and BusOptions registers from the specified
2470 * config rom and loads ConfigROMmap from the ConfigROMmapNext
2471 * shadow register. All automatically and atomically.
2473 * Now, there's a twist to this story. The automatic load of
2474 * ConfigRomHeader and BusOptions doesn't honor the
2475 * noByteSwapData bit, so with a be32 config rom, the
2476 * controller will load be32 values in to these registers
2477 * during the atomic update, even on litte endian
2478 * architectures. The workaround we use is to put a 0 in the
2479 * header quadlet; 0 is endian agnostic and means that the
2480 * config rom isn't ready yet. In the bus reset tasklet we
2481 * then set up the real values for the two registers.
2483 * We use ohci->lock to avoid racing with the code that sets
2484 * ohci->next_config_rom to NULL (see bus_reset_work).
2488 dma_alloc_coherent(ohci
->card
.device
, CONFIG_ROM_SIZE
,
2489 &next_config_rom_bus
, GFP_KERNEL
);
2490 if (next_config_rom
== NULL
)
2493 spin_lock_irq(&ohci
->lock
);
2496 * If there is not an already pending config_rom update,
2497 * push our new allocation into the ohci->next_config_rom
2498 * and then mark the local variable as null so that we
2499 * won't deallocate the new buffer.
2501 * OTOH, if there is a pending config_rom update, just
2502 * use that buffer with the new config_rom data, and
2503 * let this routine free the unused DMA allocation.
2506 if (ohci
->next_config_rom
== NULL
) {
2507 ohci
->next_config_rom
= next_config_rom
;
2508 ohci
->next_config_rom_bus
= next_config_rom_bus
;
2509 next_config_rom
= NULL
;
2512 copy_config_rom(ohci
->next_config_rom
, config_rom
, length
);
2514 ohci
->next_header
= config_rom
[0];
2515 ohci
->next_config_rom
[0] = 0;
2517 reg_write(ohci
, OHCI1394_ConfigROMmap
, ohci
->next_config_rom_bus
);
2519 spin_unlock_irq(&ohci
->lock
);
2521 /* If we didn't use the DMA allocation, delete it. */
2522 if (next_config_rom
!= NULL
)
2523 dma_free_coherent(ohci
->card
.device
, CONFIG_ROM_SIZE
,
2524 next_config_rom
, next_config_rom_bus
);
2527 * Now initiate a bus reset to have the changes take
2528 * effect. We clean up the old config rom memory and DMA
2529 * mappings in the bus reset tasklet, since the OHCI
2530 * controller could need to access it before the bus reset
2534 fw_schedule_bus_reset(&ohci
->card
, true, true);
2539 static void ohci_send_request(struct fw_card
*card
, struct fw_packet
*packet
)
2541 struct fw_ohci
*ohci
= fw_ohci(card
);
2543 at_context_transmit(&ohci
->at_request_ctx
, packet
);
2546 static void ohci_send_response(struct fw_card
*card
, struct fw_packet
*packet
)
2548 struct fw_ohci
*ohci
= fw_ohci(card
);
2550 at_context_transmit(&ohci
->at_response_ctx
, packet
);
2553 static int ohci_cancel_packet(struct fw_card
*card
, struct fw_packet
*packet
)
2555 struct fw_ohci
*ohci
= fw_ohci(card
);
2556 struct context
*ctx
= &ohci
->at_request_ctx
;
2557 struct driver_data
*driver_data
= packet
->driver_data
;
2560 tasklet_disable(&ctx
->tasklet
);
2562 if (packet
->ack
!= 0)
2565 if (packet
->payload_mapped
)
2566 dma_unmap_single(ohci
->card
.device
, packet
->payload_bus
,
2567 packet
->payload_length
, DMA_TO_DEVICE
);
2569 log_ar_at_event(ohci
, 'T', packet
->speed
, packet
->header
, 0x20);
2570 driver_data
->packet
= NULL
;
2571 packet
->ack
= RCODE_CANCELLED
;
2572 packet
->callback(packet
, &ohci
->card
, packet
->ack
);
2575 tasklet_enable(&ctx
->tasklet
);
2580 static int ohci_enable_phys_dma(struct fw_card
*card
,
2581 int node_id
, int generation
)
2583 struct fw_ohci
*ohci
= fw_ohci(card
);
2584 unsigned long flags
;
2587 if (param_remote_dma
)
2591 * FIXME: Make sure this bitmask is cleared when we clear the busReset
2592 * interrupt bit. Clear physReqResourceAllBuses on bus reset.
2595 spin_lock_irqsave(&ohci
->lock
, flags
);
2597 if (ohci
->generation
!= generation
) {
2603 * Note, if the node ID contains a non-local bus ID, physical DMA is
2604 * enabled for _all_ nodes on remote buses.
2607 n
= (node_id
& 0xffc0) == LOCAL_BUS
? node_id
& 0x3f : 63;
2609 reg_write(ohci
, OHCI1394_PhyReqFilterLoSet
, 1 << n
);
2611 reg_write(ohci
, OHCI1394_PhyReqFilterHiSet
, 1 << (n
- 32));
2615 spin_unlock_irqrestore(&ohci
->lock
, flags
);
2620 static u32
ohci_read_csr(struct fw_card
*card
, int csr_offset
)
2622 struct fw_ohci
*ohci
= fw_ohci(card
);
2623 unsigned long flags
;
2626 switch (csr_offset
) {
2627 case CSR_STATE_CLEAR
:
2629 if (ohci
->is_root
&&
2630 (reg_read(ohci
, OHCI1394_LinkControlSet
) &
2631 OHCI1394_LinkControl_cycleMaster
))
2632 value
= CSR_STATE_BIT_CMSTR
;
2635 if (ohci
->csr_state_setclear_abdicate
)
2636 value
|= CSR_STATE_BIT_ABDICATE
;
2641 return reg_read(ohci
, OHCI1394_NodeID
) << 16;
2643 case CSR_CYCLE_TIME
:
2644 return get_cycle_time(ohci
);
2648 * We might be called just after the cycle timer has wrapped
2649 * around but just before the cycle64Seconds handler, so we
2650 * better check here, too, if the bus time needs to be updated.
2652 spin_lock_irqsave(&ohci
->lock
, flags
);
2653 value
= update_bus_time(ohci
);
2654 spin_unlock_irqrestore(&ohci
->lock
, flags
);
2657 case CSR_BUSY_TIMEOUT
:
2658 value
= reg_read(ohci
, OHCI1394_ATRetries
);
2659 return (value
>> 4) & 0x0ffff00f;
2661 case CSR_PRIORITY_BUDGET
:
2662 return (reg_read(ohci
, OHCI1394_FairnessControl
) & 0x3f) |
2663 (ohci
->pri_req_max
<< 8);
2671 static void ohci_write_csr(struct fw_card
*card
, int csr_offset
, u32 value
)
2673 struct fw_ohci
*ohci
= fw_ohci(card
);
2674 unsigned long flags
;
2676 switch (csr_offset
) {
2677 case CSR_STATE_CLEAR
:
2678 if ((value
& CSR_STATE_BIT_CMSTR
) && ohci
->is_root
) {
2679 reg_write(ohci
, OHCI1394_LinkControlClear
,
2680 OHCI1394_LinkControl_cycleMaster
);
2683 if (value
& CSR_STATE_BIT_ABDICATE
)
2684 ohci
->csr_state_setclear_abdicate
= false;
2688 if ((value
& CSR_STATE_BIT_CMSTR
) && ohci
->is_root
) {
2689 reg_write(ohci
, OHCI1394_LinkControlSet
,
2690 OHCI1394_LinkControl_cycleMaster
);
2693 if (value
& CSR_STATE_BIT_ABDICATE
)
2694 ohci
->csr_state_setclear_abdicate
= true;
2698 reg_write(ohci
, OHCI1394_NodeID
, value
>> 16);
2702 case CSR_CYCLE_TIME
:
2703 reg_write(ohci
, OHCI1394_IsochronousCycleTimer
, value
);
2704 reg_write(ohci
, OHCI1394_IntEventSet
,
2705 OHCI1394_cycleInconsistent
);
2710 spin_lock_irqsave(&ohci
->lock
, flags
);
2711 ohci
->bus_time
= (update_bus_time(ohci
) & 0x40) |
2713 spin_unlock_irqrestore(&ohci
->lock
, flags
);
2716 case CSR_BUSY_TIMEOUT
:
2717 value
= (value
& 0xf) | ((value
& 0xf) << 4) |
2718 ((value
& 0xf) << 8) | ((value
& 0x0ffff000) << 4);
2719 reg_write(ohci
, OHCI1394_ATRetries
, value
);
2723 case CSR_PRIORITY_BUDGET
:
2724 reg_write(ohci
, OHCI1394_FairnessControl
, value
& 0x3f);
2734 static void flush_iso_completions(struct iso_context
*ctx
)
2736 ctx
->base
.callback
.sc(&ctx
->base
, ctx
->last_timestamp
,
2737 ctx
->header_length
, ctx
->header
,
2738 ctx
->base
.callback_data
);
2739 ctx
->header_length
= 0;
2742 static void copy_iso_headers(struct iso_context
*ctx
, const u32
*dma_hdr
)
2746 if (ctx
->header_length
+ ctx
->base
.header_size
> PAGE_SIZE
) {
2747 if (ctx
->base
.drop_overflow_headers
)
2749 flush_iso_completions(ctx
);
2752 ctx_hdr
= ctx
->header
+ ctx
->header_length
;
2753 ctx
->last_timestamp
= (u16
)le32_to_cpu((__force __le32
)dma_hdr
[0]);
2756 * The two iso header quadlets are byteswapped to little
2757 * endian by the controller, but we want to present them
2758 * as big endian for consistency with the bus endianness.
2760 if (ctx
->base
.header_size
> 0)
2761 ctx_hdr
[0] = swab32(dma_hdr
[1]); /* iso packet header */
2762 if (ctx
->base
.header_size
> 4)
2763 ctx_hdr
[1] = swab32(dma_hdr
[0]); /* timestamp */
2764 if (ctx
->base
.header_size
> 8)
2765 memcpy(&ctx_hdr
[2], &dma_hdr
[2], ctx
->base
.header_size
- 8);
2766 ctx
->header_length
+= ctx
->base
.header_size
;
2769 static int handle_ir_packet_per_buffer(struct context
*context
,
2770 struct descriptor
*d
,
2771 struct descriptor
*last
)
2773 struct iso_context
*ctx
=
2774 container_of(context
, struct iso_context
, context
);
2775 struct descriptor
*pd
;
2778 for (pd
= d
; pd
<= last
; pd
++)
2779 if (pd
->transfer_status
)
2782 /* Descriptor(s) not done yet, stop iteration */
2785 while (!(d
->control
& cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS
))) {
2787 buffer_dma
= le32_to_cpu(d
->data_address
);
2788 dma_sync_single_range_for_cpu(context
->ohci
->card
.device
,
2789 buffer_dma
& PAGE_MASK
,
2790 buffer_dma
& ~PAGE_MASK
,
2791 le16_to_cpu(d
->req_count
),
2795 copy_iso_headers(ctx
, (u32
*) (last
+ 1));
2797 if (last
->control
& cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS
))
2798 flush_iso_completions(ctx
);
2803 /* d == last because each descriptor block is only a single descriptor. */
2804 static int handle_ir_buffer_fill(struct context
*context
,
2805 struct descriptor
*d
,
2806 struct descriptor
*last
)
2808 struct iso_context
*ctx
=
2809 container_of(context
, struct iso_context
, context
);
2810 unsigned int req_count
, res_count
, completed
;
2813 req_count
= le16_to_cpu(last
->req_count
);
2814 res_count
= le16_to_cpu(ACCESS_ONCE(last
->res_count
));
2815 completed
= req_count
- res_count
;
2816 buffer_dma
= le32_to_cpu(last
->data_address
);
2818 if (completed
> 0) {
2819 ctx
->mc_buffer_bus
= buffer_dma
;
2820 ctx
->mc_completed
= completed
;
2824 /* Descriptor(s) not done yet, stop iteration */
2827 dma_sync_single_range_for_cpu(context
->ohci
->card
.device
,
2828 buffer_dma
& PAGE_MASK
,
2829 buffer_dma
& ~PAGE_MASK
,
2830 completed
, DMA_FROM_DEVICE
);
2832 if (last
->control
& cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS
)) {
2833 ctx
->base
.callback
.mc(&ctx
->base
,
2834 buffer_dma
+ completed
,
2835 ctx
->base
.callback_data
);
2836 ctx
->mc_completed
= 0;
2842 static void flush_ir_buffer_fill(struct iso_context
*ctx
)
2844 dma_sync_single_range_for_cpu(ctx
->context
.ohci
->card
.device
,
2845 ctx
->mc_buffer_bus
& PAGE_MASK
,
2846 ctx
->mc_buffer_bus
& ~PAGE_MASK
,
2847 ctx
->mc_completed
, DMA_FROM_DEVICE
);
2849 ctx
->base
.callback
.mc(&ctx
->base
,
2850 ctx
->mc_buffer_bus
+ ctx
->mc_completed
,
2851 ctx
->base
.callback_data
);
2852 ctx
->mc_completed
= 0;
2855 static inline void sync_it_packet_for_cpu(struct context
*context
,
2856 struct descriptor
*pd
)
2861 /* only packets beginning with OUTPUT_MORE* have data buffers */
2862 if (pd
->control
& cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS
))
2865 /* skip over the OUTPUT_MORE_IMMEDIATE descriptor */
2869 * If the packet has a header, the first OUTPUT_MORE/LAST descriptor's
2870 * data buffer is in the context program's coherent page and must not
2873 if ((le32_to_cpu(pd
->data_address
) & PAGE_MASK
) ==
2874 (context
->current_bus
& PAGE_MASK
)) {
2875 if (pd
->control
& cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS
))
2881 buffer_dma
= le32_to_cpu(pd
->data_address
);
2882 dma_sync_single_range_for_cpu(context
->ohci
->card
.device
,
2883 buffer_dma
& PAGE_MASK
,
2884 buffer_dma
& ~PAGE_MASK
,
2885 le16_to_cpu(pd
->req_count
),
2887 control
= pd
->control
;
2889 } while (!(control
& cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS
)));
2892 static int handle_it_packet(struct context
*context
,
2893 struct descriptor
*d
,
2894 struct descriptor
*last
)
2896 struct iso_context
*ctx
=
2897 container_of(context
, struct iso_context
, context
);
2898 struct descriptor
*pd
;
2901 for (pd
= d
; pd
<= last
; pd
++)
2902 if (pd
->transfer_status
)
2905 /* Descriptor(s) not done yet, stop iteration */
2908 sync_it_packet_for_cpu(context
, d
);
2910 if (ctx
->header_length
+ 4 > PAGE_SIZE
) {
2911 if (ctx
->base
.drop_overflow_headers
)
2913 flush_iso_completions(ctx
);
2916 ctx_hdr
= ctx
->header
+ ctx
->header_length
;
2917 ctx
->last_timestamp
= le16_to_cpu(last
->res_count
);
2918 /* Present this value as big-endian to match the receive code */
2919 *ctx_hdr
= cpu_to_be32((le16_to_cpu(pd
->transfer_status
) << 16) |
2920 le16_to_cpu(pd
->res_count
));
2921 ctx
->header_length
+= 4;
2923 if (last
->control
& cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS
))
2924 flush_iso_completions(ctx
);
2929 static void set_multichannel_mask(struct fw_ohci
*ohci
, u64 channels
)
2931 u32 hi
= channels
>> 32, lo
= channels
;
2933 reg_write(ohci
, OHCI1394_IRMultiChanMaskHiClear
, ~hi
);
2934 reg_write(ohci
, OHCI1394_IRMultiChanMaskLoClear
, ~lo
);
2935 reg_write(ohci
, OHCI1394_IRMultiChanMaskHiSet
, hi
);
2936 reg_write(ohci
, OHCI1394_IRMultiChanMaskLoSet
, lo
);
2938 ohci
->mc_channels
= channels
;
2941 static struct fw_iso_context
*ohci_allocate_iso_context(struct fw_card
*card
,
2942 int type
, int channel
, size_t header_size
)
2944 struct fw_ohci
*ohci
= fw_ohci(card
);
2945 struct iso_context
*uninitialized_var(ctx
);
2946 descriptor_callback_t
uninitialized_var(callback
);
2947 u64
*uninitialized_var(channels
);
2948 u32
*uninitialized_var(mask
), uninitialized_var(regs
);
2949 int index
, ret
= -EBUSY
;
2951 spin_lock_irq(&ohci
->lock
);
2954 case FW_ISO_CONTEXT_TRANSMIT
:
2955 mask
= &ohci
->it_context_mask
;
2956 callback
= handle_it_packet
;
2957 index
= ffs(*mask
) - 1;
2959 *mask
&= ~(1 << index
);
2960 regs
= OHCI1394_IsoXmitContextBase(index
);
2961 ctx
= &ohci
->it_context_list
[index
];
2965 case FW_ISO_CONTEXT_RECEIVE
:
2966 channels
= &ohci
->ir_context_channels
;
2967 mask
= &ohci
->ir_context_mask
;
2968 callback
= handle_ir_packet_per_buffer
;
2969 index
= *channels
& 1ULL << channel
? ffs(*mask
) - 1 : -1;
2971 *channels
&= ~(1ULL << channel
);
2972 *mask
&= ~(1 << index
);
2973 regs
= OHCI1394_IsoRcvContextBase(index
);
2974 ctx
= &ohci
->ir_context_list
[index
];
2978 case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL
:
2979 mask
= &ohci
->ir_context_mask
;
2980 callback
= handle_ir_buffer_fill
;
2981 index
= !ohci
->mc_allocated
? ffs(*mask
) - 1 : -1;
2983 ohci
->mc_allocated
= true;
2984 *mask
&= ~(1 << index
);
2985 regs
= OHCI1394_IsoRcvContextBase(index
);
2986 ctx
= &ohci
->ir_context_list
[index
];
2995 spin_unlock_irq(&ohci
->lock
);
2998 return ERR_PTR(ret
);
3000 memset(ctx
, 0, sizeof(*ctx
));
3001 ctx
->header_length
= 0;
3002 ctx
->header
= (void *) __get_free_page(GFP_KERNEL
);
3003 if (ctx
->header
== NULL
) {
3007 ret
= context_init(&ctx
->context
, ohci
, regs
, callback
);
3009 goto out_with_header
;
3011 if (type
== FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL
) {
3012 set_multichannel_mask(ohci
, 0);
3013 ctx
->mc_completed
= 0;
3019 free_page((unsigned long)ctx
->header
);
3021 spin_lock_irq(&ohci
->lock
);
3024 case FW_ISO_CONTEXT_RECEIVE
:
3025 *channels
|= 1ULL << channel
;
3028 case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL
:
3029 ohci
->mc_allocated
= false;
3032 *mask
|= 1 << index
;
3034 spin_unlock_irq(&ohci
->lock
);
3036 return ERR_PTR(ret
);
3039 static int ohci_start_iso(struct fw_iso_context
*base
,
3040 s32 cycle
, u32 sync
, u32 tags
)
3042 struct iso_context
*ctx
= container_of(base
, struct iso_context
, base
);
3043 struct fw_ohci
*ohci
= ctx
->context
.ohci
;
3044 u32 control
= IR_CONTEXT_ISOCH_HEADER
, match
;
3047 /* the controller cannot start without any queued packets */
3048 if (ctx
->context
.last
->branch_address
== 0)
3051 switch (ctx
->base
.type
) {
3052 case FW_ISO_CONTEXT_TRANSMIT
:
3053 index
= ctx
- ohci
->it_context_list
;
3056 match
= IT_CONTEXT_CYCLE_MATCH_ENABLE
|
3057 (cycle
& 0x7fff) << 16;
3059 reg_write(ohci
, OHCI1394_IsoXmitIntEventClear
, 1 << index
);
3060 reg_write(ohci
, OHCI1394_IsoXmitIntMaskSet
, 1 << index
);
3061 context_run(&ctx
->context
, match
);
3064 case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL
:
3065 control
|= IR_CONTEXT_BUFFER_FILL
|IR_CONTEXT_MULTI_CHANNEL_MODE
;
3067 case FW_ISO_CONTEXT_RECEIVE
:
3068 index
= ctx
- ohci
->ir_context_list
;
3069 match
= (tags
<< 28) | (sync
<< 8) | ctx
->base
.channel
;
3071 match
|= (cycle
& 0x07fff) << 12;
3072 control
|= IR_CONTEXT_CYCLE_MATCH_ENABLE
;
3075 reg_write(ohci
, OHCI1394_IsoRecvIntEventClear
, 1 << index
);
3076 reg_write(ohci
, OHCI1394_IsoRecvIntMaskSet
, 1 << index
);
3077 reg_write(ohci
, CONTEXT_MATCH(ctx
->context
.regs
), match
);
3078 context_run(&ctx
->context
, control
);
3089 static int ohci_stop_iso(struct fw_iso_context
*base
)
3091 struct fw_ohci
*ohci
= fw_ohci(base
->card
);
3092 struct iso_context
*ctx
= container_of(base
, struct iso_context
, base
);
3095 switch (ctx
->base
.type
) {
3096 case FW_ISO_CONTEXT_TRANSMIT
:
3097 index
= ctx
- ohci
->it_context_list
;
3098 reg_write(ohci
, OHCI1394_IsoXmitIntMaskClear
, 1 << index
);
3101 case FW_ISO_CONTEXT_RECEIVE
:
3102 case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL
:
3103 index
= ctx
- ohci
->ir_context_list
;
3104 reg_write(ohci
, OHCI1394_IsoRecvIntMaskClear
, 1 << index
);
3108 context_stop(&ctx
->context
);
3109 tasklet_kill(&ctx
->context
.tasklet
);
3114 static void ohci_free_iso_context(struct fw_iso_context
*base
)
3116 struct fw_ohci
*ohci
= fw_ohci(base
->card
);
3117 struct iso_context
*ctx
= container_of(base
, struct iso_context
, base
);
3118 unsigned long flags
;
3121 ohci_stop_iso(base
);
3122 context_release(&ctx
->context
);
3123 free_page((unsigned long)ctx
->header
);
3125 spin_lock_irqsave(&ohci
->lock
, flags
);
3127 switch (base
->type
) {
3128 case FW_ISO_CONTEXT_TRANSMIT
:
3129 index
= ctx
- ohci
->it_context_list
;
3130 ohci
->it_context_mask
|= 1 << index
;
3133 case FW_ISO_CONTEXT_RECEIVE
:
3134 index
= ctx
- ohci
->ir_context_list
;
3135 ohci
->ir_context_mask
|= 1 << index
;
3136 ohci
->ir_context_channels
|= 1ULL << base
->channel
;
3139 case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL
:
3140 index
= ctx
- ohci
->ir_context_list
;
3141 ohci
->ir_context_mask
|= 1 << index
;
3142 ohci
->ir_context_channels
|= ohci
->mc_channels
;
3143 ohci
->mc_channels
= 0;
3144 ohci
->mc_allocated
= false;
3148 spin_unlock_irqrestore(&ohci
->lock
, flags
);
3151 static int ohci_set_iso_channels(struct fw_iso_context
*base
, u64
*channels
)
3153 struct fw_ohci
*ohci
= fw_ohci(base
->card
);
3154 unsigned long flags
;
3157 switch (base
->type
) {
3158 case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL
:
3160 spin_lock_irqsave(&ohci
->lock
, flags
);
3162 /* Don't allow multichannel to grab other contexts' channels. */
3163 if (~ohci
->ir_context_channels
& ~ohci
->mc_channels
& *channels
) {
3164 *channels
= ohci
->ir_context_channels
;
3167 set_multichannel_mask(ohci
, *channels
);
3171 spin_unlock_irqrestore(&ohci
->lock
, flags
);
3182 static void ohci_resume_iso_dma(struct fw_ohci
*ohci
)
3185 struct iso_context
*ctx
;
3187 for (i
= 0 ; i
< ohci
->n_ir
; i
++) {
3188 ctx
= &ohci
->ir_context_list
[i
];
3189 if (ctx
->context
.running
)
3190 ohci_start_iso(&ctx
->base
, 0, ctx
->sync
, ctx
->tags
);
3193 for (i
= 0 ; i
< ohci
->n_it
; i
++) {
3194 ctx
= &ohci
->it_context_list
[i
];
3195 if (ctx
->context
.running
)
3196 ohci_start_iso(&ctx
->base
, 0, ctx
->sync
, ctx
->tags
);
3201 static int queue_iso_transmit(struct iso_context
*ctx
,
3202 struct fw_iso_packet
*packet
,
3203 struct fw_iso_buffer
*buffer
,
3204 unsigned long payload
)
3206 struct descriptor
*d
, *last
, *pd
;
3207 struct fw_iso_packet
*p
;
3209 dma_addr_t d_bus
, page_bus
;
3210 u32 z
, header_z
, payload_z
, irq
;
3211 u32 payload_index
, payload_end_index
, next_page_index
;
3212 int page
, end_page
, i
, length
, offset
;
3215 payload_index
= payload
;
3221 if (p
->header_length
> 0)
3224 /* Determine the first page the payload isn't contained in. */
3225 end_page
= PAGE_ALIGN(payload_index
+ p
->payload_length
) >> PAGE_SHIFT
;
3226 if (p
->payload_length
> 0)
3227 payload_z
= end_page
- (payload_index
>> PAGE_SHIFT
);
3233 /* Get header size in number of descriptors. */
3234 header_z
= DIV_ROUND_UP(p
->header_length
, sizeof(*d
));
3236 d
= context_get_descriptors(&ctx
->context
, z
+ header_z
, &d_bus
);
3241 d
[0].control
= cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE
);
3242 d
[0].req_count
= cpu_to_le16(8);
3244 * Link the skip address to this descriptor itself. This causes
3245 * a context to skip a cycle whenever lost cycles or FIFO
3246 * overruns occur, without dropping the data. The application
3247 * should then decide whether this is an error condition or not.
3248 * FIXME: Make the context's cycle-lost behaviour configurable?
3250 d
[0].branch_address
= cpu_to_le32(d_bus
| z
);
3252 header
= (__le32
*) &d
[1];
3253 header
[0] = cpu_to_le32(IT_HEADER_SY(p
->sy
) |
3254 IT_HEADER_TAG(p
->tag
) |
3255 IT_HEADER_TCODE(TCODE_STREAM_DATA
) |
3256 IT_HEADER_CHANNEL(ctx
->base
.channel
) |
3257 IT_HEADER_SPEED(ctx
->base
.speed
));
3259 cpu_to_le32(IT_HEADER_DATA_LENGTH(p
->header_length
+
3260 p
->payload_length
));
3263 if (p
->header_length
> 0) {
3264 d
[2].req_count
= cpu_to_le16(p
->header_length
);
3265 d
[2].data_address
= cpu_to_le32(d_bus
+ z
* sizeof(*d
));
3266 memcpy(&d
[z
], p
->header
, p
->header_length
);
3269 pd
= d
+ z
- payload_z
;
3270 payload_end_index
= payload_index
+ p
->payload_length
;
3271 for (i
= 0; i
< payload_z
; i
++) {
3272 page
= payload_index
>> PAGE_SHIFT
;
3273 offset
= payload_index
& ~PAGE_MASK
;
3274 next_page_index
= (page
+ 1) << PAGE_SHIFT
;
3276 min(next_page_index
, payload_end_index
) - payload_index
;
3277 pd
[i
].req_count
= cpu_to_le16(length
);
3279 page_bus
= page_private(buffer
->pages
[page
]);
3280 pd
[i
].data_address
= cpu_to_le32(page_bus
+ offset
);
3282 dma_sync_single_range_for_device(ctx
->context
.ohci
->card
.device
,
3283 page_bus
, offset
, length
,
3286 payload_index
+= length
;
3290 irq
= DESCRIPTOR_IRQ_ALWAYS
;
3292 irq
= DESCRIPTOR_NO_IRQ
;
3294 last
= z
== 2 ? d
: d
+ z
- 1;
3295 last
->control
|= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST
|
3297 DESCRIPTOR_BRANCH_ALWAYS
|
3300 context_append(&ctx
->context
, d
, z
, header_z
);
3305 static int queue_iso_packet_per_buffer(struct iso_context
*ctx
,
3306 struct fw_iso_packet
*packet
,
3307 struct fw_iso_buffer
*buffer
,
3308 unsigned long payload
)
3310 struct device
*device
= ctx
->context
.ohci
->card
.device
;
3311 struct descriptor
*d
, *pd
;
3312 dma_addr_t d_bus
, page_bus
;
3313 u32 z
, header_z
, rest
;
3315 int page
, offset
, packet_count
, header_size
, payload_per_buffer
;
3318 * The OHCI controller puts the isochronous header and trailer in the
3319 * buffer, so we need at least 8 bytes.
3321 packet_count
= packet
->header_length
/ ctx
->base
.header_size
;
3322 header_size
= max(ctx
->base
.header_size
, (size_t)8);
3324 /* Get header size in number of descriptors. */
3325 header_z
= DIV_ROUND_UP(header_size
, sizeof(*d
));
3326 page
= payload
>> PAGE_SHIFT
;
3327 offset
= payload
& ~PAGE_MASK
;
3328 payload_per_buffer
= packet
->payload_length
/ packet_count
;
3330 for (i
= 0; i
< packet_count
; i
++) {
3331 /* d points to the header descriptor */
3332 z
= DIV_ROUND_UP(payload_per_buffer
+ offset
, PAGE_SIZE
) + 1;
3333 d
= context_get_descriptors(&ctx
->context
,
3334 z
+ header_z
, &d_bus
);
3338 d
->control
= cpu_to_le16(DESCRIPTOR_STATUS
|
3339 DESCRIPTOR_INPUT_MORE
);
3340 if (packet
->skip
&& i
== 0)
3341 d
->control
|= cpu_to_le16(DESCRIPTOR_WAIT
);
3342 d
->req_count
= cpu_to_le16(header_size
);
3343 d
->res_count
= d
->req_count
;
3344 d
->transfer_status
= 0;
3345 d
->data_address
= cpu_to_le32(d_bus
+ (z
* sizeof(*d
)));
3347 rest
= payload_per_buffer
;
3349 for (j
= 1; j
< z
; j
++) {
3351 pd
->control
= cpu_to_le16(DESCRIPTOR_STATUS
|
3352 DESCRIPTOR_INPUT_MORE
);
3354 if (offset
+ rest
< PAGE_SIZE
)
3357 length
= PAGE_SIZE
- offset
;
3358 pd
->req_count
= cpu_to_le16(length
);
3359 pd
->res_count
= pd
->req_count
;
3360 pd
->transfer_status
= 0;
3362 page_bus
= page_private(buffer
->pages
[page
]);
3363 pd
->data_address
= cpu_to_le32(page_bus
+ offset
);
3365 dma_sync_single_range_for_device(device
, page_bus
,
3369 offset
= (offset
+ length
) & ~PAGE_MASK
;
3374 pd
->control
= cpu_to_le16(DESCRIPTOR_STATUS
|
3375 DESCRIPTOR_INPUT_LAST
|
3376 DESCRIPTOR_BRANCH_ALWAYS
);
3377 if (packet
->interrupt
&& i
== packet_count
- 1)
3378 pd
->control
|= cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS
);
3380 context_append(&ctx
->context
, d
, z
, header_z
);
3386 static int queue_iso_buffer_fill(struct iso_context
*ctx
,
3387 struct fw_iso_packet
*packet
,
3388 struct fw_iso_buffer
*buffer
,
3389 unsigned long payload
)
3391 struct descriptor
*d
;
3392 dma_addr_t d_bus
, page_bus
;
3393 int page
, offset
, rest
, z
, i
, length
;
3395 page
= payload
>> PAGE_SHIFT
;
3396 offset
= payload
& ~PAGE_MASK
;
3397 rest
= packet
->payload_length
;
3399 /* We need one descriptor for each page in the buffer. */
3400 z
= DIV_ROUND_UP(offset
+ rest
, PAGE_SIZE
);
3402 if (WARN_ON(offset
& 3 || rest
& 3 || page
+ z
> buffer
->page_count
))
3405 for (i
= 0; i
< z
; i
++) {
3406 d
= context_get_descriptors(&ctx
->context
, 1, &d_bus
);
3410 d
->control
= cpu_to_le16(DESCRIPTOR_INPUT_MORE
|
3411 DESCRIPTOR_BRANCH_ALWAYS
);
3412 if (packet
->skip
&& i
== 0)
3413 d
->control
|= cpu_to_le16(DESCRIPTOR_WAIT
);
3414 if (packet
->interrupt
&& i
== z
- 1)
3415 d
->control
|= cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS
);
3417 if (offset
+ rest
< PAGE_SIZE
)
3420 length
= PAGE_SIZE
- offset
;
3421 d
->req_count
= cpu_to_le16(length
);
3422 d
->res_count
= d
->req_count
;
3423 d
->transfer_status
= 0;
3425 page_bus
= page_private(buffer
->pages
[page
]);
3426 d
->data_address
= cpu_to_le32(page_bus
+ offset
);
3428 dma_sync_single_range_for_device(ctx
->context
.ohci
->card
.device
,
3429 page_bus
, offset
, length
,
3436 context_append(&ctx
->context
, d
, 1, 0);
3442 static int ohci_queue_iso(struct fw_iso_context
*base
,
3443 struct fw_iso_packet
*packet
,
3444 struct fw_iso_buffer
*buffer
,
3445 unsigned long payload
)
3447 struct iso_context
*ctx
= container_of(base
, struct iso_context
, base
);
3448 unsigned long flags
;
3451 spin_lock_irqsave(&ctx
->context
.ohci
->lock
, flags
);
3452 switch (base
->type
) {
3453 case FW_ISO_CONTEXT_TRANSMIT
:
3454 ret
= queue_iso_transmit(ctx
, packet
, buffer
, payload
);
3456 case FW_ISO_CONTEXT_RECEIVE
:
3457 ret
= queue_iso_packet_per_buffer(ctx
, packet
, buffer
, payload
);
3459 case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL
:
3460 ret
= queue_iso_buffer_fill(ctx
, packet
, buffer
, payload
);
3463 spin_unlock_irqrestore(&ctx
->context
.ohci
->lock
, flags
);
3468 static void ohci_flush_queue_iso(struct fw_iso_context
*base
)
3470 struct context
*ctx
=
3471 &container_of(base
, struct iso_context
, base
)->context
;
3473 reg_write(ctx
->ohci
, CONTROL_SET(ctx
->regs
), CONTEXT_WAKE
);
3476 static int ohci_flush_iso_completions(struct fw_iso_context
*base
)
3478 struct iso_context
*ctx
= container_of(base
, struct iso_context
, base
);
3481 tasklet_disable(&ctx
->context
.tasklet
);
3483 if (!test_and_set_bit_lock(0, &ctx
->flushing_completions
)) {
3484 context_tasklet((unsigned long)&ctx
->context
);
3486 switch (base
->type
) {
3487 case FW_ISO_CONTEXT_TRANSMIT
:
3488 case FW_ISO_CONTEXT_RECEIVE
:
3489 if (ctx
->header_length
!= 0)
3490 flush_iso_completions(ctx
);
3492 case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL
:
3493 if (ctx
->mc_completed
!= 0)
3494 flush_ir_buffer_fill(ctx
);
3500 clear_bit_unlock(0, &ctx
->flushing_completions
);
3501 smp_mb__after_clear_bit();
3504 tasklet_enable(&ctx
->context
.tasklet
);
3509 static const struct fw_card_driver ohci_driver
= {
3510 .enable
= ohci_enable
,
3511 .read_phy_reg
= ohci_read_phy_reg
,
3512 .update_phy_reg
= ohci_update_phy_reg
,
3513 .set_config_rom
= ohci_set_config_rom
,
3514 .send_request
= ohci_send_request
,
3515 .send_response
= ohci_send_response
,
3516 .cancel_packet
= ohci_cancel_packet
,
3517 .enable_phys_dma
= ohci_enable_phys_dma
,
3518 .read_csr
= ohci_read_csr
,
3519 .write_csr
= ohci_write_csr
,
3521 .allocate_iso_context
= ohci_allocate_iso_context
,
3522 .free_iso_context
= ohci_free_iso_context
,
3523 .set_iso_channels
= ohci_set_iso_channels
,
3524 .queue_iso
= ohci_queue_iso
,
3525 .flush_queue_iso
= ohci_flush_queue_iso
,
3526 .flush_iso_completions
= ohci_flush_iso_completions
,
3527 .start_iso
= ohci_start_iso
,
3528 .stop_iso
= ohci_stop_iso
,
3531 #ifdef CONFIG_PPC_PMAC
3532 static void pmac_ohci_on(struct pci_dev
*dev
)
3534 if (machine_is(powermac
)) {
3535 struct device_node
*ofn
= pci_device_to_OF_node(dev
);
3538 pmac_call_feature(PMAC_FTR_1394_CABLE_POWER
, ofn
, 0, 1);
3539 pmac_call_feature(PMAC_FTR_1394_ENABLE
, ofn
, 0, 1);
3544 static void pmac_ohci_off(struct pci_dev
*dev
)
3546 if (machine_is(powermac
)) {
3547 struct device_node
*ofn
= pci_device_to_OF_node(dev
);
3550 pmac_call_feature(PMAC_FTR_1394_ENABLE
, ofn
, 0, 0);
3551 pmac_call_feature(PMAC_FTR_1394_CABLE_POWER
, ofn
, 0, 0);
3556 static inline void pmac_ohci_on(struct pci_dev
*dev
) {}
3557 static inline void pmac_ohci_off(struct pci_dev
*dev
) {}
3558 #endif /* CONFIG_PPC_PMAC */
3560 static int pci_probe(struct pci_dev
*dev
,
3561 const struct pci_device_id
*ent
)
3563 struct fw_ohci
*ohci
;
3564 u32 bus_options
, max_receive
, link_speed
, version
;
3569 if (dev
->vendor
== PCI_VENDOR_ID_PINNACLE_SYSTEMS
) {
3570 dev_err(&dev
->dev
, "Pinnacle MovieBoard is not yet supported\n");
3574 ohci
= kzalloc(sizeof(*ohci
), GFP_KERNEL
);
3580 fw_card_initialize(&ohci
->card
, &ohci_driver
, &dev
->dev
);
3584 err
= pci_enable_device(dev
);
3586 dev_err(&dev
->dev
, "failed to enable OHCI hardware\n");
3590 pci_set_master(dev
);
3591 pci_write_config_dword(dev
, OHCI1394_PCI_HCI_Control
, 0);
3592 pci_set_drvdata(dev
, ohci
);
3594 spin_lock_init(&ohci
->lock
);
3595 mutex_init(&ohci
->phy_reg_mutex
);
3597 INIT_WORK(&ohci
->bus_reset_work
, bus_reset_work
);
3599 if (!(pci_resource_flags(dev
, 0) & IORESOURCE_MEM
) ||
3600 pci_resource_len(dev
, 0) < OHCI1394_REGISTER_SIZE
) {
3601 ohci_err(ohci
, "invalid MMIO resource\n");
3606 err
= pci_request_region(dev
, 0, ohci_driver_name
);
3608 ohci_err(ohci
, "MMIO resource unavailable\n");
3612 ohci
->registers
= pci_iomap(dev
, 0, OHCI1394_REGISTER_SIZE
);
3613 if (ohci
->registers
== NULL
) {
3614 ohci_err(ohci
, "failed to remap registers\n");
3619 for (i
= 0; i
< ARRAY_SIZE(ohci_quirks
); i
++)
3620 if ((ohci_quirks
[i
].vendor
== dev
->vendor
) &&
3621 (ohci_quirks
[i
].device
== (unsigned short)PCI_ANY_ID
||
3622 ohci_quirks
[i
].device
== dev
->device
) &&
3623 (ohci_quirks
[i
].revision
== (unsigned short)PCI_ANY_ID
||
3624 ohci_quirks
[i
].revision
>= dev
->revision
)) {
3625 ohci
->quirks
= ohci_quirks
[i
].flags
;
3629 ohci
->quirks
= param_quirks
;
3632 * Because dma_alloc_coherent() allocates at least one page,
3633 * we save space by using a common buffer for the AR request/
3634 * response descriptors and the self IDs buffer.
3636 BUILD_BUG_ON(AR_BUFFERS
* sizeof(struct descriptor
) > PAGE_SIZE
/4);
3637 BUILD_BUG_ON(SELF_ID_BUF_SIZE
> PAGE_SIZE
/2);
3638 ohci
->misc_buffer
= dma_alloc_coherent(ohci
->card
.device
,
3640 &ohci
->misc_buffer_bus
,
3642 if (!ohci
->misc_buffer
) {
3647 err
= ar_context_init(&ohci
->ar_request_ctx
, ohci
, 0,
3648 OHCI1394_AsReqRcvContextControlSet
);
3652 err
= ar_context_init(&ohci
->ar_response_ctx
, ohci
, PAGE_SIZE
/4,
3653 OHCI1394_AsRspRcvContextControlSet
);
3655 goto fail_arreq_ctx
;
3657 err
= context_init(&ohci
->at_request_ctx
, ohci
,
3658 OHCI1394_AsReqTrContextControlSet
, handle_at_packet
);
3660 goto fail_arrsp_ctx
;
3662 err
= context_init(&ohci
->at_response_ctx
, ohci
,
3663 OHCI1394_AsRspTrContextControlSet
, handle_at_packet
);
3665 goto fail_atreq_ctx
;
3667 reg_write(ohci
, OHCI1394_IsoRecvIntMaskSet
, ~0);
3668 ohci
->ir_context_channels
= ~0ULL;
3669 ohci
->ir_context_support
= reg_read(ohci
, OHCI1394_IsoRecvIntMaskSet
);
3670 reg_write(ohci
, OHCI1394_IsoRecvIntMaskClear
, ~0);
3671 ohci
->ir_context_mask
= ohci
->ir_context_support
;
3672 ohci
->n_ir
= hweight32(ohci
->ir_context_mask
);
3673 size
= sizeof(struct iso_context
) * ohci
->n_ir
;
3674 ohci
->ir_context_list
= kzalloc(size
, GFP_KERNEL
);
3676 reg_write(ohci
, OHCI1394_IsoXmitIntMaskSet
, ~0);
3677 ohci
->it_context_support
= reg_read(ohci
, OHCI1394_IsoXmitIntMaskSet
);
3678 reg_write(ohci
, OHCI1394_IsoXmitIntMaskClear
, ~0);
3679 ohci
->it_context_mask
= ohci
->it_context_support
;
3680 ohci
->n_it
= hweight32(ohci
->it_context_mask
);
3681 size
= sizeof(struct iso_context
) * ohci
->n_it
;
3682 ohci
->it_context_list
= kzalloc(size
, GFP_KERNEL
);
3684 if (ohci
->it_context_list
== NULL
|| ohci
->ir_context_list
== NULL
) {
3689 ohci
->self_id
= ohci
->misc_buffer
+ PAGE_SIZE
/2;
3690 ohci
->self_id_bus
= ohci
->misc_buffer_bus
+ PAGE_SIZE
/2;
3692 bus_options
= reg_read(ohci
, OHCI1394_BusOptions
);
3693 max_receive
= (bus_options
>> 12) & 0xf;
3694 link_speed
= bus_options
& 0x7;
3695 guid
= ((u64
) reg_read(ohci
, OHCI1394_GUIDHi
) << 32) |
3696 reg_read(ohci
, OHCI1394_GUIDLo
);
3698 if (!(ohci
->quirks
& QUIRK_NO_MSI
))
3699 pci_enable_msi(dev
);
3700 if (request_irq(dev
->irq
, irq_handler
,
3701 pci_dev_msi_enabled(dev
) ? 0 : IRQF_SHARED
,
3702 ohci_driver_name
, ohci
)) {
3703 ohci_err(ohci
, "failed to allocate interrupt %d\n", dev
->irq
);
3708 err
= fw_card_add(&ohci
->card
, max_receive
, link_speed
, guid
);
3712 version
= reg_read(ohci
, OHCI1394_Version
) & 0x00ff00ff;
3714 "added OHCI v%x.%x device as card %d, "
3715 "%d IR + %d IT contexts, quirks 0x%x%s\n",
3716 version
>> 16, version
& 0xff, ohci
->card
.index
,
3717 ohci
->n_ir
, ohci
->n_it
, ohci
->quirks
,
3718 reg_read(ohci
, OHCI1394_PhyUpperBound
) ?
3724 free_irq(dev
->irq
, ohci
);
3726 pci_disable_msi(dev
);
3728 kfree(ohci
->ir_context_list
);
3729 kfree(ohci
->it_context_list
);
3730 context_release(&ohci
->at_response_ctx
);
3732 context_release(&ohci
->at_request_ctx
);
3734 ar_context_release(&ohci
->ar_response_ctx
);
3736 ar_context_release(&ohci
->ar_request_ctx
);
3738 dma_free_coherent(ohci
->card
.device
, PAGE_SIZE
,
3739 ohci
->misc_buffer
, ohci
->misc_buffer_bus
);
3741 pci_iounmap(dev
, ohci
->registers
);
3743 pci_release_region(dev
, 0);
3745 pci_disable_device(dev
);
3753 static void pci_remove(struct pci_dev
*dev
)
3755 struct fw_ohci
*ohci
= pci_get_drvdata(dev
);
3758 * If the removal is happening from the suspend state, LPS won't be
3759 * enabled and host registers (eg., IntMaskClear) won't be accessible.
3761 if (reg_read(ohci
, OHCI1394_HCControlSet
) & OHCI1394_HCControl_LPS
) {
3762 reg_write(ohci
, OHCI1394_IntMaskClear
, ~0);
3765 cancel_work_sync(&ohci
->bus_reset_work
);
3766 fw_core_remove_card(&ohci
->card
);
3769 * FIXME: Fail all pending packets here, now that the upper
3770 * layers can't queue any more.
3773 software_reset(ohci
);
3774 free_irq(dev
->irq
, ohci
);
3776 if (ohci
->next_config_rom
&& ohci
->next_config_rom
!= ohci
->config_rom
)
3777 dma_free_coherent(ohci
->card
.device
, CONFIG_ROM_SIZE
,
3778 ohci
->next_config_rom
, ohci
->next_config_rom_bus
);
3779 if (ohci
->config_rom
)
3780 dma_free_coherent(ohci
->card
.device
, CONFIG_ROM_SIZE
,
3781 ohci
->config_rom
, ohci
->config_rom_bus
);
3782 ar_context_release(&ohci
->ar_request_ctx
);
3783 ar_context_release(&ohci
->ar_response_ctx
);
3784 dma_free_coherent(ohci
->card
.device
, PAGE_SIZE
,
3785 ohci
->misc_buffer
, ohci
->misc_buffer_bus
);
3786 context_release(&ohci
->at_request_ctx
);
3787 context_release(&ohci
->at_response_ctx
);
3788 kfree(ohci
->it_context_list
);
3789 kfree(ohci
->ir_context_list
);
3790 pci_disable_msi(dev
);
3791 pci_iounmap(dev
, ohci
->registers
);
3792 pci_release_region(dev
, 0);
3793 pci_disable_device(dev
);
3797 dev_notice(&dev
->dev
, "removed fw-ohci device\n");
3801 static int pci_suspend(struct pci_dev
*dev
, pm_message_t state
)
3803 struct fw_ohci
*ohci
= pci_get_drvdata(dev
);
3806 software_reset(ohci
);
3807 err
= pci_save_state(dev
);
3809 ohci_err(ohci
, "pci_save_state failed\n");
3812 err
= pci_set_power_state(dev
, pci_choose_state(dev
, state
));
3814 ohci_err(ohci
, "pci_set_power_state failed with %d\n", err
);
3820 static int pci_resume(struct pci_dev
*dev
)
3822 struct fw_ohci
*ohci
= pci_get_drvdata(dev
);
3826 pci_set_power_state(dev
, PCI_D0
);
3827 pci_restore_state(dev
);
3828 err
= pci_enable_device(dev
);
3830 ohci_err(ohci
, "pci_enable_device failed\n");
3834 /* Some systems don't setup GUID register on resume from ram */
3835 if (!reg_read(ohci
, OHCI1394_GUIDLo
) &&
3836 !reg_read(ohci
, OHCI1394_GUIDHi
)) {
3837 reg_write(ohci
, OHCI1394_GUIDLo
, (u32
)ohci
->card
.guid
);
3838 reg_write(ohci
, OHCI1394_GUIDHi
, (u32
)(ohci
->card
.guid
>> 32));
3841 err
= ohci_enable(&ohci
->card
, NULL
, 0);
3845 ohci_resume_iso_dma(ohci
);
3851 static const struct pci_device_id pci_table
[] = {
3852 { PCI_DEVICE_CLASS(PCI_CLASS_SERIAL_FIREWIRE_OHCI
, ~0) },
3856 MODULE_DEVICE_TABLE(pci
, pci_table
);
3858 static struct pci_driver fw_ohci_pci_driver
= {
3859 .name
= ohci_driver_name
,
3860 .id_table
= pci_table
,
3862 .remove
= pci_remove
,
3864 .resume
= pci_resume
,
3865 .suspend
= pci_suspend
,
3869 static int __init
fw_ohci_init(void)
3871 selfid_workqueue
= alloc_workqueue(KBUILD_MODNAME
, WQ_MEM_RECLAIM
, 0);
3872 if (!selfid_workqueue
)
3875 return pci_register_driver(&fw_ohci_pci_driver
);
3878 static void __exit
fw_ohci_cleanup(void)
3880 pci_unregister_driver(&fw_ohci_pci_driver
);
3881 destroy_workqueue(selfid_workqueue
);
3884 module_init(fw_ohci_init
);
3885 module_exit(fw_ohci_cleanup
);
3887 MODULE_AUTHOR("Kristian Hoegsberg <krh@bitplanet.net>");
3888 MODULE_DESCRIPTION("Driver for PCI OHCI IEEE1394 controllers");
3889 MODULE_LICENSE("GPL");
3891 /* Provide a module alias so root-on-sbp2 initrds don't break. */
3892 MODULE_ALIAS("ohci1394");