clocksource: Make clocksource validation work for all clocksources
[linux/fpc-iii.git] / kernel / time / time.c
blob86751c68e08d8cb1e3309d17f254fa0eb982589a
1 /*
2 * linux/kernel/time.c
4 * Copyright (C) 1991, 1992 Linus Torvalds
6 * This file contains the interface functions for the various
7 * time related system calls: time, stime, gettimeofday, settimeofday,
8 * adjtime
9 */
11 * Modification history kernel/time.c
13 * 1993-09-02 Philip Gladstone
14 * Created file with time related functions from sched/core.c and adjtimex()
15 * 1993-10-08 Torsten Duwe
16 * adjtime interface update and CMOS clock write code
17 * 1995-08-13 Torsten Duwe
18 * kernel PLL updated to 1994-12-13 specs (rfc-1589)
19 * 1999-01-16 Ulrich Windl
20 * Introduced error checking for many cases in adjtimex().
21 * Updated NTP code according to technical memorandum Jan '96
22 * "A Kernel Model for Precision Timekeeping" by Dave Mills
23 * Allow time_constant larger than MAXTC(6) for NTP v4 (MAXTC == 10)
24 * (Even though the technical memorandum forbids it)
25 * 2004-07-14 Christoph Lameter
26 * Added getnstimeofday to allow the posix timer functions to return
27 * with nanosecond accuracy
30 #include <linux/export.h>
31 #include <linux/timex.h>
32 #include <linux/capability.h>
33 #include <linux/timekeeper_internal.h>
34 #include <linux/errno.h>
35 #include <linux/syscalls.h>
36 #include <linux/security.h>
37 #include <linux/fs.h>
38 #include <linux/math64.h>
39 #include <linux/ptrace.h>
41 #include <asm/uaccess.h>
42 #include <asm/unistd.h>
44 #include <generated/timeconst.h>
45 #include "timekeeping.h"
48 * The timezone where the local system is located. Used as a default by some
49 * programs who obtain this value by using gettimeofday.
51 struct timezone sys_tz;
53 EXPORT_SYMBOL(sys_tz);
55 #ifdef __ARCH_WANT_SYS_TIME
58 * sys_time() can be implemented in user-level using
59 * sys_gettimeofday(). Is this for backwards compatibility? If so,
60 * why not move it into the appropriate arch directory (for those
61 * architectures that need it).
63 SYSCALL_DEFINE1(time, time_t __user *, tloc)
65 time_t i = get_seconds();
67 if (tloc) {
68 if (put_user(i,tloc))
69 return -EFAULT;
71 force_successful_syscall_return();
72 return i;
76 * sys_stime() can be implemented in user-level using
77 * sys_settimeofday(). Is this for backwards compatibility? If so,
78 * why not move it into the appropriate arch directory (for those
79 * architectures that need it).
82 SYSCALL_DEFINE1(stime, time_t __user *, tptr)
84 struct timespec tv;
85 int err;
87 if (get_user(tv.tv_sec, tptr))
88 return -EFAULT;
90 tv.tv_nsec = 0;
92 err = security_settime(&tv, NULL);
93 if (err)
94 return err;
96 do_settimeofday(&tv);
97 return 0;
100 #endif /* __ARCH_WANT_SYS_TIME */
102 SYSCALL_DEFINE2(gettimeofday, struct timeval __user *, tv,
103 struct timezone __user *, tz)
105 if (likely(tv != NULL)) {
106 struct timeval ktv;
107 do_gettimeofday(&ktv);
108 if (copy_to_user(tv, &ktv, sizeof(ktv)))
109 return -EFAULT;
111 if (unlikely(tz != NULL)) {
112 if (copy_to_user(tz, &sys_tz, sizeof(sys_tz)))
113 return -EFAULT;
115 return 0;
119 * Indicates if there is an offset between the system clock and the hardware
120 * clock/persistent clock/rtc.
122 int persistent_clock_is_local;
125 * Adjust the time obtained from the CMOS to be UTC time instead of
126 * local time.
128 * This is ugly, but preferable to the alternatives. Otherwise we
129 * would either need to write a program to do it in /etc/rc (and risk
130 * confusion if the program gets run more than once; it would also be
131 * hard to make the program warp the clock precisely n hours) or
132 * compile in the timezone information into the kernel. Bad, bad....
134 * - TYT, 1992-01-01
136 * The best thing to do is to keep the CMOS clock in universal time (UTC)
137 * as real UNIX machines always do it. This avoids all headaches about
138 * daylight saving times and warping kernel clocks.
140 static inline void warp_clock(void)
142 if (sys_tz.tz_minuteswest != 0) {
143 struct timespec adjust;
145 persistent_clock_is_local = 1;
146 adjust.tv_sec = sys_tz.tz_minuteswest * 60;
147 adjust.tv_nsec = 0;
148 timekeeping_inject_offset(&adjust);
153 * In case for some reason the CMOS clock has not already been running
154 * in UTC, but in some local time: The first time we set the timezone,
155 * we will warp the clock so that it is ticking UTC time instead of
156 * local time. Presumably, if someone is setting the timezone then we
157 * are running in an environment where the programs understand about
158 * timezones. This should be done at boot time in the /etc/rc script,
159 * as soon as possible, so that the clock can be set right. Otherwise,
160 * various programs will get confused when the clock gets warped.
163 int do_sys_settimeofday(const struct timespec *tv, const struct timezone *tz)
165 static int firsttime = 1;
166 int error = 0;
168 if (tv && !timespec_valid(tv))
169 return -EINVAL;
171 error = security_settime(tv, tz);
172 if (error)
173 return error;
175 if (tz) {
176 /* Verify we're witin the +-15 hrs range */
177 if (tz->tz_minuteswest > 15*60 || tz->tz_minuteswest < -15*60)
178 return -EINVAL;
180 sys_tz = *tz;
181 update_vsyscall_tz();
182 if (firsttime) {
183 firsttime = 0;
184 if (!tv)
185 warp_clock();
188 if (tv)
189 return do_settimeofday(tv);
190 return 0;
193 SYSCALL_DEFINE2(settimeofday, struct timeval __user *, tv,
194 struct timezone __user *, tz)
196 struct timeval user_tv;
197 struct timespec new_ts;
198 struct timezone new_tz;
200 if (tv) {
201 if (copy_from_user(&user_tv, tv, sizeof(*tv)))
202 return -EFAULT;
204 if (!timeval_valid(&user_tv))
205 return -EINVAL;
207 new_ts.tv_sec = user_tv.tv_sec;
208 new_ts.tv_nsec = user_tv.tv_usec * NSEC_PER_USEC;
210 if (tz) {
211 if (copy_from_user(&new_tz, tz, sizeof(*tz)))
212 return -EFAULT;
215 return do_sys_settimeofday(tv ? &new_ts : NULL, tz ? &new_tz : NULL);
218 SYSCALL_DEFINE1(adjtimex, struct timex __user *, txc_p)
220 struct timex txc; /* Local copy of parameter */
221 int ret;
223 /* Copy the user data space into the kernel copy
224 * structure. But bear in mind that the structures
225 * may change
227 if(copy_from_user(&txc, txc_p, sizeof(struct timex)))
228 return -EFAULT;
229 ret = do_adjtimex(&txc);
230 return copy_to_user(txc_p, &txc, sizeof(struct timex)) ? -EFAULT : ret;
234 * current_fs_time - Return FS time
235 * @sb: Superblock.
237 * Return the current time truncated to the time granularity supported by
238 * the fs.
240 struct timespec current_fs_time(struct super_block *sb)
242 struct timespec now = current_kernel_time();
243 return timespec_trunc(now, sb->s_time_gran);
245 EXPORT_SYMBOL(current_fs_time);
248 * Convert jiffies to milliseconds and back.
250 * Avoid unnecessary multiplications/divisions in the
251 * two most common HZ cases:
253 unsigned int jiffies_to_msecs(const unsigned long j)
255 #if HZ <= MSEC_PER_SEC && !(MSEC_PER_SEC % HZ)
256 return (MSEC_PER_SEC / HZ) * j;
257 #elif HZ > MSEC_PER_SEC && !(HZ % MSEC_PER_SEC)
258 return (j + (HZ / MSEC_PER_SEC) - 1)/(HZ / MSEC_PER_SEC);
259 #else
260 # if BITS_PER_LONG == 32
261 return (HZ_TO_MSEC_MUL32 * j) >> HZ_TO_MSEC_SHR32;
262 # else
263 return (j * HZ_TO_MSEC_NUM) / HZ_TO_MSEC_DEN;
264 # endif
265 #endif
267 EXPORT_SYMBOL(jiffies_to_msecs);
269 unsigned int jiffies_to_usecs(const unsigned long j)
272 * Hz usually doesn't go much further MSEC_PER_SEC.
273 * jiffies_to_usecs() and usecs_to_jiffies() depend on that.
275 BUILD_BUG_ON(HZ > USEC_PER_SEC);
277 #if !(USEC_PER_SEC % HZ)
278 return (USEC_PER_SEC / HZ) * j;
279 #else
280 # if BITS_PER_LONG == 32
281 return (HZ_TO_USEC_MUL32 * j) >> HZ_TO_USEC_SHR32;
282 # else
283 return (j * HZ_TO_USEC_NUM) / HZ_TO_USEC_DEN;
284 # endif
285 #endif
287 EXPORT_SYMBOL(jiffies_to_usecs);
290 * timespec_trunc - Truncate timespec to a granularity
291 * @t: Timespec
292 * @gran: Granularity in ns.
294 * Truncate a timespec to a granularity. Always rounds down. gran must
295 * not be 0 nor greater than a second (NSEC_PER_SEC, or 10^9 ns).
297 struct timespec timespec_trunc(struct timespec t, unsigned gran)
299 /* Avoid division in the common cases 1 ns and 1 s. */
300 if (gran == 1) {
301 /* nothing */
302 } else if (gran == NSEC_PER_SEC) {
303 t.tv_nsec = 0;
304 } else if (gran > 1 && gran < NSEC_PER_SEC) {
305 t.tv_nsec -= t.tv_nsec % gran;
306 } else {
307 WARN(1, "illegal file time granularity: %u", gran);
309 return t;
311 EXPORT_SYMBOL(timespec_trunc);
314 * mktime64 - Converts date to seconds.
315 * Converts Gregorian date to seconds since 1970-01-01 00:00:00.
316 * Assumes input in normal date format, i.e. 1980-12-31 23:59:59
317 * => year=1980, mon=12, day=31, hour=23, min=59, sec=59.
319 * [For the Julian calendar (which was used in Russia before 1917,
320 * Britain & colonies before 1752, anywhere else before 1582,
321 * and is still in use by some communities) leave out the
322 * -year/100+year/400 terms, and add 10.]
324 * This algorithm was first published by Gauss (I think).
326 time64_t mktime64(const unsigned int year0, const unsigned int mon0,
327 const unsigned int day, const unsigned int hour,
328 const unsigned int min, const unsigned int sec)
330 unsigned int mon = mon0, year = year0;
332 /* 1..12 -> 11,12,1..10 */
333 if (0 >= (int) (mon -= 2)) {
334 mon += 12; /* Puts Feb last since it has leap day */
335 year -= 1;
338 return ((((time64_t)
339 (year/4 - year/100 + year/400 + 367*mon/12 + day) +
340 year*365 - 719499
341 )*24 + hour /* now have hours */
342 )*60 + min /* now have minutes */
343 )*60 + sec; /* finally seconds */
345 EXPORT_SYMBOL(mktime64);
348 * set_normalized_timespec - set timespec sec and nsec parts and normalize
350 * @ts: pointer to timespec variable to be set
351 * @sec: seconds to set
352 * @nsec: nanoseconds to set
354 * Set seconds and nanoseconds field of a timespec variable and
355 * normalize to the timespec storage format
357 * Note: The tv_nsec part is always in the range of
358 * 0 <= tv_nsec < NSEC_PER_SEC
359 * For negative values only the tv_sec field is negative !
361 void set_normalized_timespec(struct timespec *ts, time_t sec, s64 nsec)
363 while (nsec >= NSEC_PER_SEC) {
365 * The following asm() prevents the compiler from
366 * optimising this loop into a modulo operation. See
367 * also __iter_div_u64_rem() in include/linux/time.h
369 asm("" : "+rm"(nsec));
370 nsec -= NSEC_PER_SEC;
371 ++sec;
373 while (nsec < 0) {
374 asm("" : "+rm"(nsec));
375 nsec += NSEC_PER_SEC;
376 --sec;
378 ts->tv_sec = sec;
379 ts->tv_nsec = nsec;
381 EXPORT_SYMBOL(set_normalized_timespec);
384 * ns_to_timespec - Convert nanoseconds to timespec
385 * @nsec: the nanoseconds value to be converted
387 * Returns the timespec representation of the nsec parameter.
389 struct timespec ns_to_timespec(const s64 nsec)
391 struct timespec ts;
392 s32 rem;
394 if (!nsec)
395 return (struct timespec) {0, 0};
397 ts.tv_sec = div_s64_rem(nsec, NSEC_PER_SEC, &rem);
398 if (unlikely(rem < 0)) {
399 ts.tv_sec--;
400 rem += NSEC_PER_SEC;
402 ts.tv_nsec = rem;
404 return ts;
406 EXPORT_SYMBOL(ns_to_timespec);
409 * ns_to_timeval - Convert nanoseconds to timeval
410 * @nsec: the nanoseconds value to be converted
412 * Returns the timeval representation of the nsec parameter.
414 struct timeval ns_to_timeval(const s64 nsec)
416 struct timespec ts = ns_to_timespec(nsec);
417 struct timeval tv;
419 tv.tv_sec = ts.tv_sec;
420 tv.tv_usec = (suseconds_t) ts.tv_nsec / 1000;
422 return tv;
424 EXPORT_SYMBOL(ns_to_timeval);
426 #if BITS_PER_LONG == 32
428 * set_normalized_timespec - set timespec sec and nsec parts and normalize
430 * @ts: pointer to timespec variable to be set
431 * @sec: seconds to set
432 * @nsec: nanoseconds to set
434 * Set seconds and nanoseconds field of a timespec variable and
435 * normalize to the timespec storage format
437 * Note: The tv_nsec part is always in the range of
438 * 0 <= tv_nsec < NSEC_PER_SEC
439 * For negative values only the tv_sec field is negative !
441 void set_normalized_timespec64(struct timespec64 *ts, time64_t sec, s64 nsec)
443 while (nsec >= NSEC_PER_SEC) {
445 * The following asm() prevents the compiler from
446 * optimising this loop into a modulo operation. See
447 * also __iter_div_u64_rem() in include/linux/time.h
449 asm("" : "+rm"(nsec));
450 nsec -= NSEC_PER_SEC;
451 ++sec;
453 while (nsec < 0) {
454 asm("" : "+rm"(nsec));
455 nsec += NSEC_PER_SEC;
456 --sec;
458 ts->tv_sec = sec;
459 ts->tv_nsec = nsec;
461 EXPORT_SYMBOL(set_normalized_timespec64);
464 * ns_to_timespec64 - Convert nanoseconds to timespec64
465 * @nsec: the nanoseconds value to be converted
467 * Returns the timespec64 representation of the nsec parameter.
469 struct timespec64 ns_to_timespec64(const s64 nsec)
471 struct timespec64 ts;
472 s32 rem;
474 if (!nsec)
475 return (struct timespec64) {0, 0};
477 ts.tv_sec = div_s64_rem(nsec, NSEC_PER_SEC, &rem);
478 if (unlikely(rem < 0)) {
479 ts.tv_sec--;
480 rem += NSEC_PER_SEC;
482 ts.tv_nsec = rem;
484 return ts;
486 EXPORT_SYMBOL(ns_to_timespec64);
487 #endif
489 * msecs_to_jiffies: - convert milliseconds to jiffies
490 * @m: time in milliseconds
492 * conversion is done as follows:
494 * - negative values mean 'infinite timeout' (MAX_JIFFY_OFFSET)
496 * - 'too large' values [that would result in larger than
497 * MAX_JIFFY_OFFSET values] mean 'infinite timeout' too.
499 * - all other values are converted to jiffies by either multiplying
500 * the input value by a factor or dividing it with a factor and
501 * handling any 32-bit overflows.
502 * for the details see __msecs_to_jiffies()
504 * msecs_to_jiffies() checks for the passed in value being a constant
505 * via __builtin_constant_p() allowing gcc to eliminate most of the
506 * code, __msecs_to_jiffies() is called if the value passed does not
507 * allow constant folding and the actual conversion must be done at
508 * runtime.
509 * the _msecs_to_jiffies helpers are the HZ dependent conversion
510 * routines found in include/linux/jiffies.h
512 unsigned long __msecs_to_jiffies(const unsigned int m)
515 * Negative value, means infinite timeout:
517 if ((int)m < 0)
518 return MAX_JIFFY_OFFSET;
519 return _msecs_to_jiffies(m);
521 EXPORT_SYMBOL(__msecs_to_jiffies);
523 unsigned long __usecs_to_jiffies(const unsigned int u)
525 if (u > jiffies_to_usecs(MAX_JIFFY_OFFSET))
526 return MAX_JIFFY_OFFSET;
527 return _usecs_to_jiffies(u);
529 EXPORT_SYMBOL(__usecs_to_jiffies);
532 * The TICK_NSEC - 1 rounds up the value to the next resolution. Note
533 * that a remainder subtract here would not do the right thing as the
534 * resolution values don't fall on second boundries. I.e. the line:
535 * nsec -= nsec % TICK_NSEC; is NOT a correct resolution rounding.
536 * Note that due to the small error in the multiplier here, this
537 * rounding is incorrect for sufficiently large values of tv_nsec, but
538 * well formed timespecs should have tv_nsec < NSEC_PER_SEC, so we're
539 * OK.
541 * Rather, we just shift the bits off the right.
543 * The >> (NSEC_JIFFIE_SC - SEC_JIFFIE_SC) converts the scaled nsec
544 * value to a scaled second value.
546 static unsigned long
547 __timespec64_to_jiffies(u64 sec, long nsec)
549 nsec = nsec + TICK_NSEC - 1;
551 if (sec >= MAX_SEC_IN_JIFFIES){
552 sec = MAX_SEC_IN_JIFFIES;
553 nsec = 0;
555 return ((sec * SEC_CONVERSION) +
556 (((u64)nsec * NSEC_CONVERSION) >>
557 (NSEC_JIFFIE_SC - SEC_JIFFIE_SC))) >> SEC_JIFFIE_SC;
561 static unsigned long
562 __timespec_to_jiffies(unsigned long sec, long nsec)
564 return __timespec64_to_jiffies((u64)sec, nsec);
567 unsigned long
568 timespec64_to_jiffies(const struct timespec64 *value)
570 return __timespec64_to_jiffies(value->tv_sec, value->tv_nsec);
572 EXPORT_SYMBOL(timespec64_to_jiffies);
574 void
575 jiffies_to_timespec64(const unsigned long jiffies, struct timespec64 *value)
578 * Convert jiffies to nanoseconds and separate with
579 * one divide.
581 u32 rem;
582 value->tv_sec = div_u64_rem((u64)jiffies * TICK_NSEC,
583 NSEC_PER_SEC, &rem);
584 value->tv_nsec = rem;
586 EXPORT_SYMBOL(jiffies_to_timespec64);
589 * We could use a similar algorithm to timespec_to_jiffies (with a
590 * different multiplier for usec instead of nsec). But this has a
591 * problem with rounding: we can't exactly add TICK_NSEC - 1 to the
592 * usec value, since it's not necessarily integral.
594 * We could instead round in the intermediate scaled representation
595 * (i.e. in units of 1/2^(large scale) jiffies) but that's also
596 * perilous: the scaling introduces a small positive error, which
597 * combined with a division-rounding-upward (i.e. adding 2^(scale) - 1
598 * units to the intermediate before shifting) leads to accidental
599 * overflow and overestimates.
601 * At the cost of one additional multiplication by a constant, just
602 * use the timespec implementation.
604 unsigned long
605 timeval_to_jiffies(const struct timeval *value)
607 return __timespec_to_jiffies(value->tv_sec,
608 value->tv_usec * NSEC_PER_USEC);
610 EXPORT_SYMBOL(timeval_to_jiffies);
612 void jiffies_to_timeval(const unsigned long jiffies, struct timeval *value)
615 * Convert jiffies to nanoseconds and separate with
616 * one divide.
618 u32 rem;
620 value->tv_sec = div_u64_rem((u64)jiffies * TICK_NSEC,
621 NSEC_PER_SEC, &rem);
622 value->tv_usec = rem / NSEC_PER_USEC;
624 EXPORT_SYMBOL(jiffies_to_timeval);
627 * Convert jiffies/jiffies_64 to clock_t and back.
629 clock_t jiffies_to_clock_t(unsigned long x)
631 #if (TICK_NSEC % (NSEC_PER_SEC / USER_HZ)) == 0
632 # if HZ < USER_HZ
633 return x * (USER_HZ / HZ);
634 # else
635 return x / (HZ / USER_HZ);
636 # endif
637 #else
638 return div_u64((u64)x * TICK_NSEC, NSEC_PER_SEC / USER_HZ);
639 #endif
641 EXPORT_SYMBOL(jiffies_to_clock_t);
643 unsigned long clock_t_to_jiffies(unsigned long x)
645 #if (HZ % USER_HZ)==0
646 if (x >= ~0UL / (HZ / USER_HZ))
647 return ~0UL;
648 return x * (HZ / USER_HZ);
649 #else
650 /* Don't worry about loss of precision here .. */
651 if (x >= ~0UL / HZ * USER_HZ)
652 return ~0UL;
654 /* .. but do try to contain it here */
655 return div_u64((u64)x * HZ, USER_HZ);
656 #endif
658 EXPORT_SYMBOL(clock_t_to_jiffies);
660 u64 jiffies_64_to_clock_t(u64 x)
662 #if (TICK_NSEC % (NSEC_PER_SEC / USER_HZ)) == 0
663 # if HZ < USER_HZ
664 x = div_u64(x * USER_HZ, HZ);
665 # elif HZ > USER_HZ
666 x = div_u64(x, HZ / USER_HZ);
667 # else
668 /* Nothing to do */
669 # endif
670 #else
672 * There are better ways that don't overflow early,
673 * but even this doesn't overflow in hundreds of years
674 * in 64 bits, so..
676 x = div_u64(x * TICK_NSEC, (NSEC_PER_SEC / USER_HZ));
677 #endif
678 return x;
680 EXPORT_SYMBOL(jiffies_64_to_clock_t);
682 u64 nsec_to_clock_t(u64 x)
684 #if (NSEC_PER_SEC % USER_HZ) == 0
685 return div_u64(x, NSEC_PER_SEC / USER_HZ);
686 #elif (USER_HZ % 512) == 0
687 return div_u64(x * USER_HZ / 512, NSEC_PER_SEC / 512);
688 #else
690 * max relative error 5.7e-8 (1.8s per year) for USER_HZ <= 1024,
691 * overflow after 64.99 years.
692 * exact for HZ=60, 72, 90, 120, 144, 180, 300, 600, 900, ...
694 return div_u64(x * 9, (9ull * NSEC_PER_SEC + (USER_HZ / 2)) / USER_HZ);
695 #endif
699 * nsecs_to_jiffies64 - Convert nsecs in u64 to jiffies64
701 * @n: nsecs in u64
703 * Unlike {m,u}secs_to_jiffies, type of input is not unsigned int but u64.
704 * And this doesn't return MAX_JIFFY_OFFSET since this function is designed
705 * for scheduler, not for use in device drivers to calculate timeout value.
707 * note:
708 * NSEC_PER_SEC = 10^9 = (5^9 * 2^9) = (1953125 * 512)
709 * ULLONG_MAX ns = 18446744073.709551615 secs = about 584 years
711 u64 nsecs_to_jiffies64(u64 n)
713 #if (NSEC_PER_SEC % HZ) == 0
714 /* Common case, HZ = 100, 128, 200, 250, 256, 500, 512, 1000 etc. */
715 return div_u64(n, NSEC_PER_SEC / HZ);
716 #elif (HZ % 512) == 0
717 /* overflow after 292 years if HZ = 1024 */
718 return div_u64(n * HZ / 512, NSEC_PER_SEC / 512);
719 #else
721 * Generic case - optimized for cases where HZ is a multiple of 3.
722 * overflow after 64.99 years, exact for HZ = 60, 72, 90, 120 etc.
724 return div_u64(n * 9, (9ull * NSEC_PER_SEC + HZ / 2) / HZ);
725 #endif
727 EXPORT_SYMBOL(nsecs_to_jiffies64);
730 * nsecs_to_jiffies - Convert nsecs in u64 to jiffies
732 * @n: nsecs in u64
734 * Unlike {m,u}secs_to_jiffies, type of input is not unsigned int but u64.
735 * And this doesn't return MAX_JIFFY_OFFSET since this function is designed
736 * for scheduler, not for use in device drivers to calculate timeout value.
738 * note:
739 * NSEC_PER_SEC = 10^9 = (5^9 * 2^9) = (1953125 * 512)
740 * ULLONG_MAX ns = 18446744073.709551615 secs = about 584 years
742 unsigned long nsecs_to_jiffies(u64 n)
744 return (unsigned long)nsecs_to_jiffies64(n);
746 EXPORT_SYMBOL_GPL(nsecs_to_jiffies);
749 * Add two timespec values and do a safety check for overflow.
750 * It's assumed that both values are valid (>= 0)
752 struct timespec timespec_add_safe(const struct timespec lhs,
753 const struct timespec rhs)
755 struct timespec res;
757 set_normalized_timespec(&res, lhs.tv_sec + rhs.tv_sec,
758 lhs.tv_nsec + rhs.tv_nsec);
760 if (res.tv_sec < lhs.tv_sec || res.tv_sec < rhs.tv_sec)
761 res.tv_sec = TIME_T_MAX;
763 return res;