ext4: allow readdir()'s of large empty directories to be interrupted
[linux/fpc-iii.git] / drivers / crypto / ccp / ccp-crypto-main.c
blobe0380e59c361f3624af6d61caaa7efc47a0986ee
1 /*
2 * AMD Cryptographic Coprocessor (CCP) crypto API support
4 * Copyright (C) 2013 Advanced Micro Devices, Inc.
6 * Author: Tom Lendacky <thomas.lendacky@amd.com>
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License version 2 as
10 * published by the Free Software Foundation.
13 #include <linux/module.h>
14 #include <linux/moduleparam.h>
15 #include <linux/kernel.h>
16 #include <linux/list.h>
17 #include <linux/ccp.h>
18 #include <linux/scatterlist.h>
19 #include <crypto/internal/hash.h>
21 #include "ccp-crypto.h"
23 MODULE_AUTHOR("Tom Lendacky <thomas.lendacky@amd.com>");
24 MODULE_LICENSE("GPL");
25 MODULE_VERSION("1.0.0");
26 MODULE_DESCRIPTION("AMD Cryptographic Coprocessor crypto API support");
28 static unsigned int aes_disable;
29 module_param(aes_disable, uint, 0444);
30 MODULE_PARM_DESC(aes_disable, "Disable use of AES - any non-zero value");
32 static unsigned int sha_disable;
33 module_param(sha_disable, uint, 0444);
34 MODULE_PARM_DESC(sha_disable, "Disable use of SHA - any non-zero value");
36 /* List heads for the supported algorithms */
37 static LIST_HEAD(hash_algs);
38 static LIST_HEAD(cipher_algs);
40 /* For any tfm, requests for that tfm must be returned on the order
41 * received. With multiple queues available, the CCP can process more
42 * than one cmd at a time. Therefore we must maintain a cmd list to insure
43 * the proper ordering of requests on a given tfm.
45 struct ccp_crypto_queue {
46 struct list_head cmds;
47 struct list_head *backlog;
48 unsigned int cmd_count;
51 #define CCP_CRYPTO_MAX_QLEN 100
53 static struct ccp_crypto_queue req_queue;
54 static spinlock_t req_queue_lock;
56 struct ccp_crypto_cmd {
57 struct list_head entry;
59 struct ccp_cmd *cmd;
61 /* Save the crypto_tfm and crypto_async_request addresses
62 * separately to avoid any reference to a possibly invalid
63 * crypto_async_request structure after invoking the request
64 * callback
66 struct crypto_async_request *req;
67 struct crypto_tfm *tfm;
69 /* Used for held command processing to determine state */
70 int ret;
73 struct ccp_crypto_cpu {
74 struct work_struct work;
75 struct completion completion;
76 struct ccp_crypto_cmd *crypto_cmd;
77 int err;
80 static inline bool ccp_crypto_success(int err)
82 if (err && (err != -EINPROGRESS) && (err != -EBUSY))
83 return false;
85 return true;
88 static struct ccp_crypto_cmd *ccp_crypto_cmd_complete(
89 struct ccp_crypto_cmd *crypto_cmd, struct ccp_crypto_cmd **backlog)
91 struct ccp_crypto_cmd *held = NULL, *tmp;
92 unsigned long flags;
94 *backlog = NULL;
96 spin_lock_irqsave(&req_queue_lock, flags);
98 /* Held cmds will be after the current cmd in the queue so start
99 * searching for a cmd with a matching tfm for submission.
101 tmp = crypto_cmd;
102 list_for_each_entry_continue(tmp, &req_queue.cmds, entry) {
103 if (crypto_cmd->tfm != tmp->tfm)
104 continue;
105 held = tmp;
106 break;
109 /* Process the backlog:
110 * Because cmds can be executed from any point in the cmd list
111 * special precautions have to be taken when handling the backlog.
113 if (req_queue.backlog != &req_queue.cmds) {
114 /* Skip over this cmd if it is the next backlog cmd */
115 if (req_queue.backlog == &crypto_cmd->entry)
116 req_queue.backlog = crypto_cmd->entry.next;
118 *backlog = container_of(req_queue.backlog,
119 struct ccp_crypto_cmd, entry);
120 req_queue.backlog = req_queue.backlog->next;
122 /* Skip over this cmd if it is now the next backlog cmd */
123 if (req_queue.backlog == &crypto_cmd->entry)
124 req_queue.backlog = crypto_cmd->entry.next;
127 /* Remove the cmd entry from the list of cmds */
128 req_queue.cmd_count--;
129 list_del(&crypto_cmd->entry);
131 spin_unlock_irqrestore(&req_queue_lock, flags);
133 return held;
136 static void ccp_crypto_complete(void *data, int err)
138 struct ccp_crypto_cmd *crypto_cmd = data;
139 struct ccp_crypto_cmd *held, *next, *backlog;
140 struct crypto_async_request *req = crypto_cmd->req;
141 struct ccp_ctx *ctx = crypto_tfm_ctx(req->tfm);
142 int ret;
144 if (err == -EINPROGRESS) {
145 /* Only propagate the -EINPROGRESS if necessary */
146 if (crypto_cmd->ret == -EBUSY) {
147 crypto_cmd->ret = -EINPROGRESS;
148 req->complete(req, -EINPROGRESS);
151 return;
154 /* Operation has completed - update the queue before invoking
155 * the completion callbacks and retrieve the next cmd (cmd with
156 * a matching tfm) that can be submitted to the CCP.
158 held = ccp_crypto_cmd_complete(crypto_cmd, &backlog);
159 if (backlog) {
160 backlog->ret = -EINPROGRESS;
161 backlog->req->complete(backlog->req, -EINPROGRESS);
164 /* Transition the state from -EBUSY to -EINPROGRESS first */
165 if (crypto_cmd->ret == -EBUSY)
166 req->complete(req, -EINPROGRESS);
168 /* Completion callbacks */
169 ret = err;
170 if (ctx->complete)
171 ret = ctx->complete(req, ret);
172 req->complete(req, ret);
174 /* Submit the next cmd */
175 while (held) {
176 /* Since we have already queued the cmd, we must indicate that
177 * we can backlog so as not to "lose" this request.
179 held->cmd->flags |= CCP_CMD_MAY_BACKLOG;
180 ret = ccp_enqueue_cmd(held->cmd);
181 if (ccp_crypto_success(ret))
182 break;
184 /* Error occurred, report it and get the next entry */
185 ctx = crypto_tfm_ctx(held->req->tfm);
186 if (ctx->complete)
187 ret = ctx->complete(held->req, ret);
188 held->req->complete(held->req, ret);
190 next = ccp_crypto_cmd_complete(held, &backlog);
191 if (backlog) {
192 backlog->ret = -EINPROGRESS;
193 backlog->req->complete(backlog->req, -EINPROGRESS);
196 kfree(held);
197 held = next;
200 kfree(crypto_cmd);
203 static int ccp_crypto_enqueue_cmd(struct ccp_crypto_cmd *crypto_cmd)
205 struct ccp_crypto_cmd *active = NULL, *tmp;
206 unsigned long flags;
207 bool free_cmd = true;
208 int ret;
210 spin_lock_irqsave(&req_queue_lock, flags);
212 /* Check if the cmd can/should be queued */
213 if (req_queue.cmd_count >= CCP_CRYPTO_MAX_QLEN) {
214 ret = -EBUSY;
215 if (!(crypto_cmd->cmd->flags & CCP_CMD_MAY_BACKLOG))
216 goto e_lock;
219 /* Look for an entry with the same tfm. If there is a cmd
220 * with the same tfm in the list then the current cmd cannot
221 * be submitted to the CCP yet.
223 list_for_each_entry(tmp, &req_queue.cmds, entry) {
224 if (crypto_cmd->tfm != tmp->tfm)
225 continue;
226 active = tmp;
227 break;
230 ret = -EINPROGRESS;
231 if (!active) {
232 ret = ccp_enqueue_cmd(crypto_cmd->cmd);
233 if (!ccp_crypto_success(ret))
234 goto e_lock; /* Error, don't queue it */
235 if ((ret == -EBUSY) &&
236 !(crypto_cmd->cmd->flags & CCP_CMD_MAY_BACKLOG))
237 goto e_lock; /* Not backlogging, don't queue it */
240 if (req_queue.cmd_count >= CCP_CRYPTO_MAX_QLEN) {
241 ret = -EBUSY;
242 if (req_queue.backlog == &req_queue.cmds)
243 req_queue.backlog = &crypto_cmd->entry;
245 crypto_cmd->ret = ret;
247 req_queue.cmd_count++;
248 list_add_tail(&crypto_cmd->entry, &req_queue.cmds);
250 free_cmd = false;
252 e_lock:
253 spin_unlock_irqrestore(&req_queue_lock, flags);
255 if (free_cmd)
256 kfree(crypto_cmd);
258 return ret;
262 * ccp_crypto_enqueue_request - queue an crypto async request for processing
263 * by the CCP
265 * @req: crypto_async_request struct to be processed
266 * @cmd: ccp_cmd struct to be sent to the CCP
268 int ccp_crypto_enqueue_request(struct crypto_async_request *req,
269 struct ccp_cmd *cmd)
271 struct ccp_crypto_cmd *crypto_cmd;
272 gfp_t gfp;
274 gfp = req->flags & CRYPTO_TFM_REQ_MAY_SLEEP ? GFP_KERNEL : GFP_ATOMIC;
276 crypto_cmd = kzalloc(sizeof(*crypto_cmd), gfp);
277 if (!crypto_cmd)
278 return -ENOMEM;
280 /* The tfm pointer must be saved and not referenced from the
281 * crypto_async_request (req) pointer because it is used after
282 * completion callback for the request and the req pointer
283 * might not be valid anymore.
285 crypto_cmd->cmd = cmd;
286 crypto_cmd->req = req;
287 crypto_cmd->tfm = req->tfm;
289 cmd->callback = ccp_crypto_complete;
290 cmd->data = crypto_cmd;
292 if (req->flags & CRYPTO_TFM_REQ_MAY_BACKLOG)
293 cmd->flags |= CCP_CMD_MAY_BACKLOG;
294 else
295 cmd->flags &= ~CCP_CMD_MAY_BACKLOG;
297 return ccp_crypto_enqueue_cmd(crypto_cmd);
300 struct scatterlist *ccp_crypto_sg_table_add(struct sg_table *table,
301 struct scatterlist *sg_add)
303 struct scatterlist *sg, *sg_last = NULL;
305 for (sg = table->sgl; sg; sg = sg_next(sg))
306 if (!sg_page(sg))
307 break;
308 if (WARN_ON(!sg))
309 return NULL;
311 for (; sg && sg_add; sg = sg_next(sg), sg_add = sg_next(sg_add)) {
312 sg_set_page(sg, sg_page(sg_add), sg_add->length,
313 sg_add->offset);
314 sg_last = sg;
316 if (WARN_ON(sg_add))
317 return NULL;
319 return sg_last;
322 static int ccp_register_algs(void)
324 int ret;
326 if (!aes_disable) {
327 ret = ccp_register_aes_algs(&cipher_algs);
328 if (ret)
329 return ret;
331 ret = ccp_register_aes_cmac_algs(&hash_algs);
332 if (ret)
333 return ret;
335 ret = ccp_register_aes_xts_algs(&cipher_algs);
336 if (ret)
337 return ret;
340 if (!sha_disable) {
341 ret = ccp_register_sha_algs(&hash_algs);
342 if (ret)
343 return ret;
346 return 0;
349 static void ccp_unregister_algs(void)
351 struct ccp_crypto_ahash_alg *ahash_alg, *ahash_tmp;
352 struct ccp_crypto_ablkcipher_alg *ablk_alg, *ablk_tmp;
354 list_for_each_entry_safe(ahash_alg, ahash_tmp, &hash_algs, entry) {
355 crypto_unregister_ahash(&ahash_alg->alg);
356 list_del(&ahash_alg->entry);
357 kfree(ahash_alg);
360 list_for_each_entry_safe(ablk_alg, ablk_tmp, &cipher_algs, entry) {
361 crypto_unregister_alg(&ablk_alg->alg);
362 list_del(&ablk_alg->entry);
363 kfree(ablk_alg);
367 static int ccp_crypto_init(void)
369 int ret;
371 ret = ccp_present();
372 if (ret)
373 return ret;
375 spin_lock_init(&req_queue_lock);
376 INIT_LIST_HEAD(&req_queue.cmds);
377 req_queue.backlog = &req_queue.cmds;
378 req_queue.cmd_count = 0;
380 ret = ccp_register_algs();
381 if (ret)
382 ccp_unregister_algs();
384 return ret;
387 static void ccp_crypto_exit(void)
389 ccp_unregister_algs();
392 module_init(ccp_crypto_init);
393 module_exit(ccp_crypto_exit);