2 * Simple NUMA memory policy for the Linux kernel.
4 * Copyright 2003,2004 Andi Kleen, SuSE Labs.
5 * (C) Copyright 2005 Christoph Lameter, Silicon Graphics, Inc.
6 * Subject to the GNU Public License, version 2.
8 * NUMA policy allows the user to give hints in which node(s) memory should
11 * Support four policies per VMA and per process:
13 * The VMA policy has priority over the process policy for a page fault.
15 * interleave Allocate memory interleaved over a set of nodes,
16 * with normal fallback if it fails.
17 * For VMA based allocations this interleaves based on the
18 * offset into the backing object or offset into the mapping
19 * for anonymous memory. For process policy an process counter
22 * bind Only allocate memory on a specific set of nodes,
24 * FIXME: memory is allocated starting with the first node
25 * to the last. It would be better if bind would truly restrict
26 * the allocation to memory nodes instead
28 * preferred Try a specific node first before normal fallback.
29 * As a special case node -1 here means do the allocation
30 * on the local CPU. This is normally identical to default,
31 * but useful to set in a VMA when you have a non default
34 * default Allocate on the local node first, or when on a VMA
35 * use the process policy. This is what Linux always did
36 * in a NUMA aware kernel and still does by, ahem, default.
38 * The process policy is applied for most non interrupt memory allocations
39 * in that process' context. Interrupts ignore the policies and always
40 * try to allocate on the local CPU. The VMA policy is only applied for memory
41 * allocations for a VMA in the VM.
43 * Currently there are a few corner cases in swapping where the policy
44 * is not applied, but the majority should be handled. When process policy
45 * is used it is not remembered over swap outs/swap ins.
47 * Only the highest zone in the zone hierarchy gets policied. Allocations
48 * requesting a lower zone just use default policy. This implies that
49 * on systems with highmem kernel lowmem allocation don't get policied.
50 * Same with GFP_DMA allocations.
52 * For shmfs/tmpfs/hugetlbfs shared memory the policy is shared between
53 * all users and remembered even when nobody has memory mapped.
57 fix mmap readahead to honour policy and enable policy for any page cache
59 statistics for bigpages
60 global policy for page cache? currently it uses process policy. Requires
62 handle mremap for shared memory (currently ignored for the policy)
64 make bind policy root only? It can trigger oom much faster and the
65 kernel is not always grateful with that.
68 #include <linux/mempolicy.h>
70 #include <linux/highmem.h>
71 #include <linux/hugetlb.h>
72 #include <linux/kernel.h>
73 #include <linux/sched.h>
74 #include <linux/nodemask.h>
75 #include <linux/cpuset.h>
76 #include <linux/slab.h>
77 #include <linux/string.h>
78 #include <linux/export.h>
79 #include <linux/nsproxy.h>
80 #include <linux/interrupt.h>
81 #include <linux/init.h>
82 #include <linux/compat.h>
83 #include <linux/swap.h>
84 #include <linux/seq_file.h>
85 #include <linux/proc_fs.h>
86 #include <linux/migrate.h>
87 #include <linux/ksm.h>
88 #include <linux/rmap.h>
89 #include <linux/security.h>
90 #include <linux/syscalls.h>
91 #include <linux/ctype.h>
92 #include <linux/mm_inline.h>
94 #include <asm/tlbflush.h>
95 #include <asm/uaccess.h>
96 #include <linux/random.h>
101 #define MPOL_MF_DISCONTIG_OK (MPOL_MF_INTERNAL << 0) /* Skip checks for continuous vmas */
102 #define MPOL_MF_INVERT (MPOL_MF_INTERNAL << 1) /* Invert check for nodemask */
104 static struct kmem_cache
*policy_cache
;
105 static struct kmem_cache
*sn_cache
;
107 /* Highest zone. An specific allocation for a zone below that is not
109 enum zone_type policy_zone
= 0;
112 * run-time system-wide default policy => local allocation
114 static struct mempolicy default_policy
= {
115 .refcnt
= ATOMIC_INIT(1), /* never free it */
116 .mode
= MPOL_PREFERRED
,
117 .flags
= MPOL_F_LOCAL
,
120 static const struct mempolicy_operations
{
121 int (*create
)(struct mempolicy
*pol
, const nodemask_t
*nodes
);
123 * If read-side task has no lock to protect task->mempolicy, write-side
124 * task will rebind the task->mempolicy by two step. The first step is
125 * setting all the newly nodes, and the second step is cleaning all the
126 * disallowed nodes. In this way, we can avoid finding no node to alloc
128 * If we have a lock to protect task->mempolicy in read-side, we do
132 * MPOL_REBIND_ONCE - do rebind work at once
133 * MPOL_REBIND_STEP1 - set all the newly nodes
134 * MPOL_REBIND_STEP2 - clean all the disallowed nodes
136 void (*rebind
)(struct mempolicy
*pol
, const nodemask_t
*nodes
,
137 enum mpol_rebind_step step
);
138 } mpol_ops
[MPOL_MAX
];
140 /* Check that the nodemask contains at least one populated zone */
141 static int is_valid_nodemask(const nodemask_t
*nodemask
)
145 for_each_node_mask(nd
, *nodemask
) {
148 for (k
= 0; k
<= policy_zone
; k
++) {
149 z
= &NODE_DATA(nd
)->node_zones
[k
];
150 if (z
->present_pages
> 0)
158 static inline int mpol_store_user_nodemask(const struct mempolicy
*pol
)
160 return pol
->flags
& MPOL_MODE_FLAGS
;
163 static void mpol_relative_nodemask(nodemask_t
*ret
, const nodemask_t
*orig
,
164 const nodemask_t
*rel
)
167 nodes_fold(tmp
, *orig
, nodes_weight(*rel
));
168 nodes_onto(*ret
, tmp
, *rel
);
171 static int mpol_new_interleave(struct mempolicy
*pol
, const nodemask_t
*nodes
)
173 if (nodes_empty(*nodes
))
175 pol
->v
.nodes
= *nodes
;
179 static int mpol_new_preferred(struct mempolicy
*pol
, const nodemask_t
*nodes
)
182 pol
->flags
|= MPOL_F_LOCAL
; /* local allocation */
183 else if (nodes_empty(*nodes
))
184 return -EINVAL
; /* no allowed nodes */
186 pol
->v
.preferred_node
= first_node(*nodes
);
190 static int mpol_new_bind(struct mempolicy
*pol
, const nodemask_t
*nodes
)
192 if (!is_valid_nodemask(nodes
))
194 pol
->v
.nodes
= *nodes
;
199 * mpol_set_nodemask is called after mpol_new() to set up the nodemask, if
200 * any, for the new policy. mpol_new() has already validated the nodes
201 * parameter with respect to the policy mode and flags. But, we need to
202 * handle an empty nodemask with MPOL_PREFERRED here.
204 * Must be called holding task's alloc_lock to protect task's mems_allowed
205 * and mempolicy. May also be called holding the mmap_semaphore for write.
207 static int mpol_set_nodemask(struct mempolicy
*pol
,
208 const nodemask_t
*nodes
, struct nodemask_scratch
*nsc
)
212 /* if mode is MPOL_DEFAULT, pol is NULL. This is right. */
215 /* Check N_HIGH_MEMORY */
216 nodes_and(nsc
->mask1
,
217 cpuset_current_mems_allowed
, node_states
[N_HIGH_MEMORY
]);
220 if (pol
->mode
== MPOL_PREFERRED
&& nodes_empty(*nodes
))
221 nodes
= NULL
; /* explicit local allocation */
223 if (pol
->flags
& MPOL_F_RELATIVE_NODES
)
224 mpol_relative_nodemask(&nsc
->mask2
, nodes
,&nsc
->mask1
);
226 nodes_and(nsc
->mask2
, *nodes
, nsc
->mask1
);
228 if (mpol_store_user_nodemask(pol
))
229 pol
->w
.user_nodemask
= *nodes
;
231 pol
->w
.cpuset_mems_allowed
=
232 cpuset_current_mems_allowed
;
236 ret
= mpol_ops
[pol
->mode
].create(pol
, &nsc
->mask2
);
238 ret
= mpol_ops
[pol
->mode
].create(pol
, NULL
);
243 * This function just creates a new policy, does some check and simple
244 * initialization. You must invoke mpol_set_nodemask() to set nodes.
246 static struct mempolicy
*mpol_new(unsigned short mode
, unsigned short flags
,
249 struct mempolicy
*policy
;
251 pr_debug("setting mode %d flags %d nodes[0] %lx\n",
252 mode
, flags
, nodes
? nodes_addr(*nodes
)[0] : -1);
254 if (mode
== MPOL_DEFAULT
) {
255 if (nodes
&& !nodes_empty(*nodes
))
256 return ERR_PTR(-EINVAL
);
257 return NULL
; /* simply delete any existing policy */
262 * MPOL_PREFERRED cannot be used with MPOL_F_STATIC_NODES or
263 * MPOL_F_RELATIVE_NODES if the nodemask is empty (local allocation).
264 * All other modes require a valid pointer to a non-empty nodemask.
266 if (mode
== MPOL_PREFERRED
) {
267 if (nodes_empty(*nodes
)) {
268 if (((flags
& MPOL_F_STATIC_NODES
) ||
269 (flags
& MPOL_F_RELATIVE_NODES
)))
270 return ERR_PTR(-EINVAL
);
272 } else if (nodes_empty(*nodes
))
273 return ERR_PTR(-EINVAL
);
274 policy
= kmem_cache_alloc(policy_cache
, GFP_KERNEL
);
276 return ERR_PTR(-ENOMEM
);
277 atomic_set(&policy
->refcnt
, 1);
279 policy
->flags
= flags
;
284 /* Slow path of a mpol destructor. */
285 void __mpol_put(struct mempolicy
*p
)
287 if (!atomic_dec_and_test(&p
->refcnt
))
289 kmem_cache_free(policy_cache
, p
);
292 static void mpol_rebind_default(struct mempolicy
*pol
, const nodemask_t
*nodes
,
293 enum mpol_rebind_step step
)
299 * MPOL_REBIND_ONCE - do rebind work at once
300 * MPOL_REBIND_STEP1 - set all the newly nodes
301 * MPOL_REBIND_STEP2 - clean all the disallowed nodes
303 static void mpol_rebind_nodemask(struct mempolicy
*pol
, const nodemask_t
*nodes
,
304 enum mpol_rebind_step step
)
308 if (pol
->flags
& MPOL_F_STATIC_NODES
)
309 nodes_and(tmp
, pol
->w
.user_nodemask
, *nodes
);
310 else if (pol
->flags
& MPOL_F_RELATIVE_NODES
)
311 mpol_relative_nodemask(&tmp
, &pol
->w
.user_nodemask
, nodes
);
314 * if step == 1, we use ->w.cpuset_mems_allowed to cache the
317 if (step
== MPOL_REBIND_ONCE
|| step
== MPOL_REBIND_STEP1
) {
318 nodes_remap(tmp
, pol
->v
.nodes
,
319 pol
->w
.cpuset_mems_allowed
, *nodes
);
320 pol
->w
.cpuset_mems_allowed
= step
? tmp
: *nodes
;
321 } else if (step
== MPOL_REBIND_STEP2
) {
322 tmp
= pol
->w
.cpuset_mems_allowed
;
323 pol
->w
.cpuset_mems_allowed
= *nodes
;
328 if (nodes_empty(tmp
))
331 if (step
== MPOL_REBIND_STEP1
)
332 nodes_or(pol
->v
.nodes
, pol
->v
.nodes
, tmp
);
333 else if (step
== MPOL_REBIND_ONCE
|| step
== MPOL_REBIND_STEP2
)
338 if (!node_isset(current
->il_next
, tmp
)) {
339 current
->il_next
= next_node(current
->il_next
, tmp
);
340 if (current
->il_next
>= MAX_NUMNODES
)
341 current
->il_next
= first_node(tmp
);
342 if (current
->il_next
>= MAX_NUMNODES
)
343 current
->il_next
= numa_node_id();
347 static void mpol_rebind_preferred(struct mempolicy
*pol
,
348 const nodemask_t
*nodes
,
349 enum mpol_rebind_step step
)
353 if (pol
->flags
& MPOL_F_STATIC_NODES
) {
354 int node
= first_node(pol
->w
.user_nodemask
);
356 if (node_isset(node
, *nodes
)) {
357 pol
->v
.preferred_node
= node
;
358 pol
->flags
&= ~MPOL_F_LOCAL
;
360 pol
->flags
|= MPOL_F_LOCAL
;
361 } else if (pol
->flags
& MPOL_F_RELATIVE_NODES
) {
362 mpol_relative_nodemask(&tmp
, &pol
->w
.user_nodemask
, nodes
);
363 pol
->v
.preferred_node
= first_node(tmp
);
364 } else if (!(pol
->flags
& MPOL_F_LOCAL
)) {
365 pol
->v
.preferred_node
= node_remap(pol
->v
.preferred_node
,
366 pol
->w
.cpuset_mems_allowed
,
368 pol
->w
.cpuset_mems_allowed
= *nodes
;
373 * mpol_rebind_policy - Migrate a policy to a different set of nodes
375 * If read-side task has no lock to protect task->mempolicy, write-side
376 * task will rebind the task->mempolicy by two step. The first step is
377 * setting all the newly nodes, and the second step is cleaning all the
378 * disallowed nodes. In this way, we can avoid finding no node to alloc
380 * If we have a lock to protect task->mempolicy in read-side, we do
384 * MPOL_REBIND_ONCE - do rebind work at once
385 * MPOL_REBIND_STEP1 - set all the newly nodes
386 * MPOL_REBIND_STEP2 - clean all the disallowed nodes
388 static void mpol_rebind_policy(struct mempolicy
*pol
, const nodemask_t
*newmask
,
389 enum mpol_rebind_step step
)
393 if (!mpol_store_user_nodemask(pol
) && step
== 0 &&
394 nodes_equal(pol
->w
.cpuset_mems_allowed
, *newmask
))
397 if (step
== MPOL_REBIND_STEP1
&& (pol
->flags
& MPOL_F_REBINDING
))
400 if (step
== MPOL_REBIND_STEP2
&& !(pol
->flags
& MPOL_F_REBINDING
))
403 if (step
== MPOL_REBIND_STEP1
)
404 pol
->flags
|= MPOL_F_REBINDING
;
405 else if (step
== MPOL_REBIND_STEP2
)
406 pol
->flags
&= ~MPOL_F_REBINDING
;
407 else if (step
>= MPOL_REBIND_NSTEP
)
410 mpol_ops
[pol
->mode
].rebind(pol
, newmask
, step
);
414 * Wrapper for mpol_rebind_policy() that just requires task
415 * pointer, and updates task mempolicy.
417 * Called with task's alloc_lock held.
420 void mpol_rebind_task(struct task_struct
*tsk
, const nodemask_t
*new,
421 enum mpol_rebind_step step
)
423 mpol_rebind_policy(tsk
->mempolicy
, new, step
);
427 * Rebind each vma in mm to new nodemask.
429 * Call holding a reference to mm. Takes mm->mmap_sem during call.
432 void mpol_rebind_mm(struct mm_struct
*mm
, nodemask_t
*new)
434 struct vm_area_struct
*vma
;
436 down_write(&mm
->mmap_sem
);
437 for (vma
= mm
->mmap
; vma
; vma
= vma
->vm_next
)
438 mpol_rebind_policy(vma
->vm_policy
, new, MPOL_REBIND_ONCE
);
439 up_write(&mm
->mmap_sem
);
442 static const struct mempolicy_operations mpol_ops
[MPOL_MAX
] = {
444 .rebind
= mpol_rebind_default
,
446 [MPOL_INTERLEAVE
] = {
447 .create
= mpol_new_interleave
,
448 .rebind
= mpol_rebind_nodemask
,
451 .create
= mpol_new_preferred
,
452 .rebind
= mpol_rebind_preferred
,
455 .create
= mpol_new_bind
,
456 .rebind
= mpol_rebind_nodemask
,
460 static void migrate_page_add(struct page
*page
, struct list_head
*pagelist
,
461 unsigned long flags
);
463 /* Scan through pages checking if pages follow certain conditions. */
464 static int check_pte_range(struct vm_area_struct
*vma
, pmd_t
*pmd
,
465 unsigned long addr
, unsigned long end
,
466 const nodemask_t
*nodes
, unsigned long flags
,
473 orig_pte
= pte
= pte_offset_map_lock(vma
->vm_mm
, pmd
, addr
, &ptl
);
478 if (!pte_present(*pte
))
480 page
= vm_normal_page(vma
, addr
, *pte
);
484 * vm_normal_page() filters out zero pages, but there might
485 * still be PageReserved pages to skip, perhaps in a VDSO.
486 * And we cannot move PageKsm pages sensibly or safely yet.
488 if (PageReserved(page
) || PageKsm(page
))
490 nid
= page_to_nid(page
);
491 if (node_isset(nid
, *nodes
) == !!(flags
& MPOL_MF_INVERT
))
494 if (flags
& (MPOL_MF_MOVE
| MPOL_MF_MOVE_ALL
))
495 migrate_page_add(page
, private, flags
);
498 } while (pte
++, addr
+= PAGE_SIZE
, addr
!= end
);
499 pte_unmap_unlock(orig_pte
, ptl
);
503 static inline int check_pmd_range(struct vm_area_struct
*vma
, pud_t
*pud
,
504 unsigned long addr
, unsigned long end
,
505 const nodemask_t
*nodes
, unsigned long flags
,
511 pmd
= pmd_offset(pud
, addr
);
513 next
= pmd_addr_end(addr
, end
);
514 split_huge_page_pmd(vma
->vm_mm
, pmd
);
515 if (pmd_none_or_trans_huge_or_clear_bad(pmd
))
517 if (check_pte_range(vma
, pmd
, addr
, next
, nodes
,
520 } while (pmd
++, addr
= next
, addr
!= end
);
524 static inline int check_pud_range(struct vm_area_struct
*vma
, pgd_t
*pgd
,
525 unsigned long addr
, unsigned long end
,
526 const nodemask_t
*nodes
, unsigned long flags
,
532 pud
= pud_offset(pgd
, addr
);
534 next
= pud_addr_end(addr
, end
);
535 if (pud_none_or_clear_bad(pud
))
537 if (check_pmd_range(vma
, pud
, addr
, next
, nodes
,
540 } while (pud
++, addr
= next
, addr
!= end
);
544 static inline int check_pgd_range(struct vm_area_struct
*vma
,
545 unsigned long addr
, unsigned long end
,
546 const nodemask_t
*nodes
, unsigned long flags
,
552 pgd
= pgd_offset(vma
->vm_mm
, addr
);
554 next
= pgd_addr_end(addr
, end
);
555 if (pgd_none_or_clear_bad(pgd
))
557 if (check_pud_range(vma
, pgd
, addr
, next
, nodes
,
560 } while (pgd
++, addr
= next
, addr
!= end
);
565 * Check if all pages in a range are on a set of nodes.
566 * If pagelist != NULL then isolate pages from the LRU and
567 * put them on the pagelist.
569 static struct vm_area_struct
*
570 check_range(struct mm_struct
*mm
, unsigned long start
, unsigned long end
,
571 const nodemask_t
*nodes
, unsigned long flags
, void *private)
574 struct vm_area_struct
*first
, *vma
, *prev
;
577 first
= find_vma(mm
, start
);
579 return ERR_PTR(-EFAULT
);
581 for (vma
= first
; vma
&& vma
->vm_start
< end
; vma
= vma
->vm_next
) {
582 if (!(flags
& MPOL_MF_DISCONTIG_OK
)) {
583 if (!vma
->vm_next
&& vma
->vm_end
< end
)
584 return ERR_PTR(-EFAULT
);
585 if (prev
&& prev
->vm_end
< vma
->vm_start
)
586 return ERR_PTR(-EFAULT
);
588 if (!is_vm_hugetlb_page(vma
) &&
589 ((flags
& MPOL_MF_STRICT
) ||
590 ((flags
& (MPOL_MF_MOVE
| MPOL_MF_MOVE_ALL
)) &&
591 vma_migratable(vma
)))) {
592 unsigned long endvma
= vma
->vm_end
;
596 if (vma
->vm_start
> start
)
597 start
= vma
->vm_start
;
598 err
= check_pgd_range(vma
, start
, endvma
, nodes
,
601 first
= ERR_PTR(err
);
611 * Apply policy to a single VMA
612 * This must be called with the mmap_sem held for writing.
614 static int vma_replace_policy(struct vm_area_struct
*vma
,
615 struct mempolicy
*pol
)
618 struct mempolicy
*old
;
619 struct mempolicy
*new;
621 pr_debug("vma %lx-%lx/%lx vm_ops %p vm_file %p set_policy %p\n",
622 vma
->vm_start
, vma
->vm_end
, vma
->vm_pgoff
,
623 vma
->vm_ops
, vma
->vm_file
,
624 vma
->vm_ops
? vma
->vm_ops
->set_policy
: NULL
);
630 if (vma
->vm_ops
&& vma
->vm_ops
->set_policy
) {
631 err
= vma
->vm_ops
->set_policy(vma
, new);
636 old
= vma
->vm_policy
;
637 vma
->vm_policy
= new; /* protected by mmap_sem */
646 /* Step 2: apply policy to a range and do splits. */
647 static int mbind_range(struct mm_struct
*mm
, unsigned long start
,
648 unsigned long end
, struct mempolicy
*new_pol
)
650 struct vm_area_struct
*next
;
651 struct vm_area_struct
*prev
;
652 struct vm_area_struct
*vma
;
655 unsigned long vmstart
;
658 vma
= find_vma(mm
, start
);
659 if (!vma
|| vma
->vm_start
> start
)
663 if (start
> vma
->vm_start
)
666 for (; vma
&& vma
->vm_start
< end
; prev
= vma
, vma
= next
) {
668 vmstart
= max(start
, vma
->vm_start
);
669 vmend
= min(end
, vma
->vm_end
);
671 if (mpol_equal(vma_policy(vma
), new_pol
))
674 pgoff
= vma
->vm_pgoff
+
675 ((vmstart
- vma
->vm_start
) >> PAGE_SHIFT
);
676 prev
= vma_merge(mm
, prev
, vmstart
, vmend
, vma
->vm_flags
,
677 vma
->anon_vma
, vma
->vm_file
, pgoff
,
684 if (vma
->vm_start
!= vmstart
) {
685 err
= split_vma(vma
->vm_mm
, vma
, vmstart
, 1);
689 if (vma
->vm_end
!= vmend
) {
690 err
= split_vma(vma
->vm_mm
, vma
, vmend
, 0);
694 err
= vma_replace_policy(vma
, new_pol
);
704 * Update task->flags PF_MEMPOLICY bit: set iff non-default
705 * mempolicy. Allows more rapid checking of this (combined perhaps
706 * with other PF_* flag bits) on memory allocation hot code paths.
708 * If called from outside this file, the task 'p' should -only- be
709 * a newly forked child not yet visible on the task list, because
710 * manipulating the task flags of a visible task is not safe.
712 * The above limitation is why this routine has the funny name
713 * mpol_fix_fork_child_flag().
715 * It is also safe to call this with a task pointer of current,
716 * which the static wrapper mpol_set_task_struct_flag() does,
717 * for use within this file.
720 void mpol_fix_fork_child_flag(struct task_struct
*p
)
723 p
->flags
|= PF_MEMPOLICY
;
725 p
->flags
&= ~PF_MEMPOLICY
;
728 static void mpol_set_task_struct_flag(void)
730 mpol_fix_fork_child_flag(current
);
733 /* Set the process memory policy */
734 static long do_set_mempolicy(unsigned short mode
, unsigned short flags
,
737 struct mempolicy
*new, *old
;
738 struct mm_struct
*mm
= current
->mm
;
739 NODEMASK_SCRATCH(scratch
);
745 new = mpol_new(mode
, flags
, nodes
);
751 * prevent changing our mempolicy while show_numa_maps()
753 * Note: do_set_mempolicy() can be called at init time
757 down_write(&mm
->mmap_sem
);
759 ret
= mpol_set_nodemask(new, nodes
, scratch
);
761 task_unlock(current
);
763 up_write(&mm
->mmap_sem
);
767 old
= current
->mempolicy
;
768 current
->mempolicy
= new;
769 mpol_set_task_struct_flag();
770 if (new && new->mode
== MPOL_INTERLEAVE
&&
771 nodes_weight(new->v
.nodes
))
772 current
->il_next
= first_node(new->v
.nodes
);
773 task_unlock(current
);
775 up_write(&mm
->mmap_sem
);
780 NODEMASK_SCRATCH_FREE(scratch
);
785 * Return nodemask for policy for get_mempolicy() query
787 * Called with task's alloc_lock held
789 static void get_policy_nodemask(struct mempolicy
*p
, nodemask_t
*nodes
)
792 if (p
== &default_policy
)
798 case MPOL_INTERLEAVE
:
802 if (!(p
->flags
& MPOL_F_LOCAL
))
803 node_set(p
->v
.preferred_node
, *nodes
);
804 /* else return empty node mask for local allocation */
811 static int lookup_node(struct mm_struct
*mm
, unsigned long addr
)
816 err
= get_user_pages(current
, mm
, addr
& PAGE_MASK
, 1, 0, 0, &p
, NULL
);
818 err
= page_to_nid(p
);
824 /* Retrieve NUMA policy */
825 static long do_get_mempolicy(int *policy
, nodemask_t
*nmask
,
826 unsigned long addr
, unsigned long flags
)
829 struct mm_struct
*mm
= current
->mm
;
830 struct vm_area_struct
*vma
= NULL
;
831 struct mempolicy
*pol
= current
->mempolicy
;
834 ~(unsigned long)(MPOL_F_NODE
|MPOL_F_ADDR
|MPOL_F_MEMS_ALLOWED
))
837 if (flags
& MPOL_F_MEMS_ALLOWED
) {
838 if (flags
& (MPOL_F_NODE
|MPOL_F_ADDR
))
840 *policy
= 0; /* just so it's initialized */
842 *nmask
= cpuset_current_mems_allowed
;
843 task_unlock(current
);
847 if (flags
& MPOL_F_ADDR
) {
849 * Do NOT fall back to task policy if the
850 * vma/shared policy at addr is NULL. We
851 * want to return MPOL_DEFAULT in this case.
853 down_read(&mm
->mmap_sem
);
854 vma
= find_vma_intersection(mm
, addr
, addr
+1);
856 up_read(&mm
->mmap_sem
);
859 if (vma
->vm_ops
&& vma
->vm_ops
->get_policy
)
860 pol
= vma
->vm_ops
->get_policy(vma
, addr
);
862 pol
= vma
->vm_policy
;
867 pol
= &default_policy
; /* indicates default behavior */
869 if (flags
& MPOL_F_NODE
) {
870 if (flags
& MPOL_F_ADDR
) {
871 err
= lookup_node(mm
, addr
);
875 } else if (pol
== current
->mempolicy
&&
876 pol
->mode
== MPOL_INTERLEAVE
) {
877 *policy
= current
->il_next
;
883 *policy
= pol
== &default_policy
? MPOL_DEFAULT
:
886 * Internal mempolicy flags must be masked off before exposing
887 * the policy to userspace.
889 *policy
|= (pol
->flags
& MPOL_MODE_FLAGS
);
893 up_read(¤t
->mm
->mmap_sem
);
899 if (mpol_store_user_nodemask(pol
)) {
900 *nmask
= pol
->w
.user_nodemask
;
903 get_policy_nodemask(pol
, nmask
);
904 task_unlock(current
);
911 up_read(¤t
->mm
->mmap_sem
);
915 #ifdef CONFIG_MIGRATION
919 static void migrate_page_add(struct page
*page
, struct list_head
*pagelist
,
923 * Avoid migrating a page that is shared with others.
925 if ((flags
& MPOL_MF_MOVE_ALL
) || page_mapcount(page
) == 1) {
926 if (!isolate_lru_page(page
)) {
927 list_add_tail(&page
->lru
, pagelist
);
928 inc_zone_page_state(page
, NR_ISOLATED_ANON
+
929 page_is_file_cache(page
));
934 static struct page
*new_node_page(struct page
*page
, unsigned long node
, int **x
)
936 return alloc_pages_exact_node(node
, GFP_HIGHUSER_MOVABLE
, 0);
940 * Migrate pages from one node to a target node.
941 * Returns error or the number of pages not migrated.
943 static int migrate_to_node(struct mm_struct
*mm
, int source
, int dest
,
949 struct vm_area_struct
*vma
;
952 node_set(source
, nmask
);
954 vma
= check_range(mm
, mm
->mmap
->vm_start
, mm
->task_size
, &nmask
,
955 flags
| MPOL_MF_DISCONTIG_OK
, &pagelist
);
959 if (!list_empty(&pagelist
)) {
960 err
= migrate_pages(&pagelist
, new_node_page
, dest
,
961 false, MIGRATE_SYNC
);
963 putback_lru_pages(&pagelist
);
970 * Move pages between the two nodesets so as to preserve the physical
971 * layout as much as possible.
973 * Returns the number of page that could not be moved.
975 int do_migrate_pages(struct mm_struct
*mm
,
976 const nodemask_t
*from_nodes
, const nodemask_t
*to_nodes
, int flags
)
982 err
= migrate_prep();
986 down_read(&mm
->mmap_sem
);
988 err
= migrate_vmas(mm
, from_nodes
, to_nodes
, flags
);
993 * Find a 'source' bit set in 'tmp' whose corresponding 'dest'
994 * bit in 'to' is not also set in 'tmp'. Clear the found 'source'
995 * bit in 'tmp', and return that <source, dest> pair for migration.
996 * The pair of nodemasks 'to' and 'from' define the map.
998 * If no pair of bits is found that way, fallback to picking some
999 * pair of 'source' and 'dest' bits that are not the same. If the
1000 * 'source' and 'dest' bits are the same, this represents a node
1001 * that will be migrating to itself, so no pages need move.
1003 * If no bits are left in 'tmp', or if all remaining bits left
1004 * in 'tmp' correspond to the same bit in 'to', return false
1005 * (nothing left to migrate).
1007 * This lets us pick a pair of nodes to migrate between, such that
1008 * if possible the dest node is not already occupied by some other
1009 * source node, minimizing the risk of overloading the memory on a
1010 * node that would happen if we migrated incoming memory to a node
1011 * before migrating outgoing memory source that same node.
1013 * A single scan of tmp is sufficient. As we go, we remember the
1014 * most recent <s, d> pair that moved (s != d). If we find a pair
1015 * that not only moved, but what's better, moved to an empty slot
1016 * (d is not set in tmp), then we break out then, with that pair.
1017 * Otherwise when we finish scanning from_tmp, we at least have the
1018 * most recent <s, d> pair that moved. If we get all the way through
1019 * the scan of tmp without finding any node that moved, much less
1020 * moved to an empty node, then there is nothing left worth migrating.
1024 while (!nodes_empty(tmp
)) {
1029 for_each_node_mask(s
, tmp
) {
1030 d
= node_remap(s
, *from_nodes
, *to_nodes
);
1034 source
= s
; /* Node moved. Memorize */
1037 /* dest not in remaining from nodes? */
1038 if (!node_isset(dest
, tmp
))
1044 node_clear(source
, tmp
);
1045 err
= migrate_to_node(mm
, source
, dest
, flags
);
1052 up_read(&mm
->mmap_sem
);
1060 * Allocate a new page for page migration based on vma policy.
1061 * Start assuming that page is mapped by vma pointed to by @private.
1062 * Search forward from there, if not. N.B., this assumes that the
1063 * list of pages handed to migrate_pages()--which is how we get here--
1064 * is in virtual address order.
1066 static struct page
*new_vma_page(struct page
*page
, unsigned long private, int **x
)
1068 struct vm_area_struct
*vma
= (struct vm_area_struct
*)private;
1069 unsigned long uninitialized_var(address
);
1072 address
= page_address_in_vma(page
, vma
);
1073 if (address
!= -EFAULT
)
1079 * if !vma, alloc_page_vma() will use task or system default policy
1081 return alloc_page_vma(GFP_HIGHUSER_MOVABLE
, vma
, address
);
1085 static void migrate_page_add(struct page
*page
, struct list_head
*pagelist
,
1086 unsigned long flags
)
1090 int do_migrate_pages(struct mm_struct
*mm
,
1091 const nodemask_t
*from_nodes
, const nodemask_t
*to_nodes
, int flags
)
1096 static struct page
*new_vma_page(struct page
*page
, unsigned long private, int **x
)
1102 static long do_mbind(unsigned long start
, unsigned long len
,
1103 unsigned short mode
, unsigned short mode_flags
,
1104 nodemask_t
*nmask
, unsigned long flags
)
1106 struct vm_area_struct
*vma
;
1107 struct mm_struct
*mm
= current
->mm
;
1108 struct mempolicy
*new;
1111 LIST_HEAD(pagelist
);
1113 if (flags
& ~(unsigned long)(MPOL_MF_STRICT
|
1114 MPOL_MF_MOVE
| MPOL_MF_MOVE_ALL
))
1116 if ((flags
& MPOL_MF_MOVE_ALL
) && !capable(CAP_SYS_NICE
))
1119 if (start
& ~PAGE_MASK
)
1122 if (mode
== MPOL_DEFAULT
)
1123 flags
&= ~MPOL_MF_STRICT
;
1125 len
= (len
+ PAGE_SIZE
- 1) & PAGE_MASK
;
1133 new = mpol_new(mode
, mode_flags
, nmask
);
1135 return PTR_ERR(new);
1138 * If we are using the default policy then operation
1139 * on discontinuous address spaces is okay after all
1142 flags
|= MPOL_MF_DISCONTIG_OK
;
1144 pr_debug("mbind %lx-%lx mode:%d flags:%d nodes:%lx\n",
1145 start
, start
+ len
, mode
, mode_flags
,
1146 nmask
? nodes_addr(*nmask
)[0] : -1);
1148 if (flags
& (MPOL_MF_MOVE
| MPOL_MF_MOVE_ALL
)) {
1150 err
= migrate_prep();
1155 NODEMASK_SCRATCH(scratch
);
1157 down_write(&mm
->mmap_sem
);
1159 err
= mpol_set_nodemask(new, nmask
, scratch
);
1160 task_unlock(current
);
1162 up_write(&mm
->mmap_sem
);
1165 NODEMASK_SCRATCH_FREE(scratch
);
1170 vma
= check_range(mm
, start
, end
, nmask
,
1171 flags
| MPOL_MF_INVERT
, &pagelist
);
1177 err
= mbind_range(mm
, start
, end
, new);
1179 if (!list_empty(&pagelist
)) {
1180 nr_failed
= migrate_pages(&pagelist
, new_vma_page
,
1184 putback_lru_pages(&pagelist
);
1187 if (!err
&& nr_failed
&& (flags
& MPOL_MF_STRICT
))
1190 putback_lru_pages(&pagelist
);
1192 up_write(&mm
->mmap_sem
);
1199 * User space interface with variable sized bitmaps for nodelists.
1202 /* Copy a node mask from user space. */
1203 static int get_nodes(nodemask_t
*nodes
, const unsigned long __user
*nmask
,
1204 unsigned long maxnode
)
1207 unsigned long nlongs
;
1208 unsigned long endmask
;
1211 nodes_clear(*nodes
);
1212 if (maxnode
== 0 || !nmask
)
1214 if (maxnode
> PAGE_SIZE
*BITS_PER_BYTE
)
1217 nlongs
= BITS_TO_LONGS(maxnode
);
1218 if ((maxnode
% BITS_PER_LONG
) == 0)
1221 endmask
= (1UL << (maxnode
% BITS_PER_LONG
)) - 1;
1223 /* When the user specified more nodes than supported just check
1224 if the non supported part is all zero. */
1225 if (nlongs
> BITS_TO_LONGS(MAX_NUMNODES
)) {
1226 if (nlongs
> PAGE_SIZE
/sizeof(long))
1228 for (k
= BITS_TO_LONGS(MAX_NUMNODES
); k
< nlongs
; k
++) {
1230 if (get_user(t
, nmask
+ k
))
1232 if (k
== nlongs
- 1) {
1238 nlongs
= BITS_TO_LONGS(MAX_NUMNODES
);
1242 if (copy_from_user(nodes_addr(*nodes
), nmask
, nlongs
*sizeof(unsigned long)))
1244 nodes_addr(*nodes
)[nlongs
-1] &= endmask
;
1248 /* Copy a kernel node mask to user space */
1249 static int copy_nodes_to_user(unsigned long __user
*mask
, unsigned long maxnode
,
1252 unsigned long copy
= ALIGN(maxnode
-1, 64) / 8;
1253 const int nbytes
= BITS_TO_LONGS(MAX_NUMNODES
) * sizeof(long);
1255 if (copy
> nbytes
) {
1256 if (copy
> PAGE_SIZE
)
1258 if (clear_user((char __user
*)mask
+ nbytes
, copy
- nbytes
))
1262 return copy_to_user(mask
, nodes_addr(*nodes
), copy
) ? -EFAULT
: 0;
1265 SYSCALL_DEFINE6(mbind
, unsigned long, start
, unsigned long, len
,
1266 unsigned long, mode
, unsigned long __user
*, nmask
,
1267 unsigned long, maxnode
, unsigned, flags
)
1271 unsigned short mode_flags
;
1273 mode_flags
= mode
& MPOL_MODE_FLAGS
;
1274 mode
&= ~MPOL_MODE_FLAGS
;
1275 if (mode
>= MPOL_MAX
)
1277 if ((mode_flags
& MPOL_F_STATIC_NODES
) &&
1278 (mode_flags
& MPOL_F_RELATIVE_NODES
))
1280 err
= get_nodes(&nodes
, nmask
, maxnode
);
1283 return do_mbind(start
, len
, mode
, mode_flags
, &nodes
, flags
);
1286 /* Set the process memory policy */
1287 SYSCALL_DEFINE3(set_mempolicy
, int, mode
, unsigned long __user
*, nmask
,
1288 unsigned long, maxnode
)
1292 unsigned short flags
;
1294 flags
= mode
& MPOL_MODE_FLAGS
;
1295 mode
&= ~MPOL_MODE_FLAGS
;
1296 if ((unsigned int)mode
>= MPOL_MAX
)
1298 if ((flags
& MPOL_F_STATIC_NODES
) && (flags
& MPOL_F_RELATIVE_NODES
))
1300 err
= get_nodes(&nodes
, nmask
, maxnode
);
1303 return do_set_mempolicy(mode
, flags
, &nodes
);
1306 SYSCALL_DEFINE4(migrate_pages
, pid_t
, pid
, unsigned long, maxnode
,
1307 const unsigned long __user
*, old_nodes
,
1308 const unsigned long __user
*, new_nodes
)
1310 const struct cred
*cred
= current_cred(), *tcred
;
1311 struct mm_struct
*mm
= NULL
;
1312 struct task_struct
*task
;
1313 nodemask_t task_nodes
;
1317 NODEMASK_SCRATCH(scratch
);
1322 old
= &scratch
->mask1
;
1323 new = &scratch
->mask2
;
1325 err
= get_nodes(old
, old_nodes
, maxnode
);
1329 err
= get_nodes(new, new_nodes
, maxnode
);
1333 /* Find the mm_struct */
1335 task
= pid
? find_task_by_vpid(pid
) : current
;
1341 get_task_struct(task
);
1346 * Check if this process has the right to modify the specified
1347 * process. The right exists if the process has administrative
1348 * capabilities, superuser privileges or the same
1349 * userid as the target process.
1351 tcred
= __task_cred(task
);
1352 if (cred
->euid
!= tcred
->suid
&& cred
->euid
!= tcred
->uid
&&
1353 cred
->uid
!= tcred
->suid
&& cred
->uid
!= tcred
->uid
&&
1354 !capable(CAP_SYS_NICE
)) {
1361 task_nodes
= cpuset_mems_allowed(task
);
1362 /* Is the user allowed to access the target nodes? */
1363 if (!nodes_subset(*new, task_nodes
) && !capable(CAP_SYS_NICE
)) {
1368 if (!nodes_subset(*new, node_states
[N_HIGH_MEMORY
])) {
1373 err
= security_task_movememory(task
);
1377 mm
= get_task_mm(task
);
1378 put_task_struct(task
);
1385 err
= do_migrate_pages(mm
, old
, new,
1386 capable(CAP_SYS_NICE
) ? MPOL_MF_MOVE_ALL
: MPOL_MF_MOVE
);
1390 NODEMASK_SCRATCH_FREE(scratch
);
1395 put_task_struct(task
);
1401 /* Retrieve NUMA policy */
1402 SYSCALL_DEFINE5(get_mempolicy
, int __user
*, policy
,
1403 unsigned long __user
*, nmask
, unsigned long, maxnode
,
1404 unsigned long, addr
, unsigned long, flags
)
1407 int uninitialized_var(pval
);
1410 if (nmask
!= NULL
&& maxnode
< MAX_NUMNODES
)
1413 err
= do_get_mempolicy(&pval
, &nodes
, addr
, flags
);
1418 if (policy
&& put_user(pval
, policy
))
1422 err
= copy_nodes_to_user(nmask
, maxnode
, &nodes
);
1427 #ifdef CONFIG_COMPAT
1429 asmlinkage
long compat_sys_get_mempolicy(int __user
*policy
,
1430 compat_ulong_t __user
*nmask
,
1431 compat_ulong_t maxnode
,
1432 compat_ulong_t addr
, compat_ulong_t flags
)
1435 unsigned long __user
*nm
= NULL
;
1436 unsigned long nr_bits
, alloc_size
;
1437 DECLARE_BITMAP(bm
, MAX_NUMNODES
);
1439 nr_bits
= min_t(unsigned long, maxnode
-1, MAX_NUMNODES
);
1440 alloc_size
= ALIGN(nr_bits
, BITS_PER_LONG
) / 8;
1443 nm
= compat_alloc_user_space(alloc_size
);
1445 err
= sys_get_mempolicy(policy
, nm
, nr_bits
+1, addr
, flags
);
1447 if (!err
&& nmask
) {
1448 unsigned long copy_size
;
1449 copy_size
= min_t(unsigned long, sizeof(bm
), alloc_size
);
1450 err
= copy_from_user(bm
, nm
, copy_size
);
1451 /* ensure entire bitmap is zeroed */
1452 err
|= clear_user(nmask
, ALIGN(maxnode
-1, 8) / 8);
1453 err
|= compat_put_bitmap(nmask
, bm
, nr_bits
);
1459 asmlinkage
long compat_sys_set_mempolicy(int mode
, compat_ulong_t __user
*nmask
,
1460 compat_ulong_t maxnode
)
1463 unsigned long __user
*nm
= NULL
;
1464 unsigned long nr_bits
, alloc_size
;
1465 DECLARE_BITMAP(bm
, MAX_NUMNODES
);
1467 nr_bits
= min_t(unsigned long, maxnode
-1, MAX_NUMNODES
);
1468 alloc_size
= ALIGN(nr_bits
, BITS_PER_LONG
) / 8;
1471 err
= compat_get_bitmap(bm
, nmask
, nr_bits
);
1472 nm
= compat_alloc_user_space(alloc_size
);
1473 err
|= copy_to_user(nm
, bm
, alloc_size
);
1479 return sys_set_mempolicy(mode
, nm
, nr_bits
+1);
1482 asmlinkage
long compat_sys_mbind(compat_ulong_t start
, compat_ulong_t len
,
1483 compat_ulong_t mode
, compat_ulong_t __user
*nmask
,
1484 compat_ulong_t maxnode
, compat_ulong_t flags
)
1487 unsigned long __user
*nm
= NULL
;
1488 unsigned long nr_bits
, alloc_size
;
1491 nr_bits
= min_t(unsigned long, maxnode
-1, MAX_NUMNODES
);
1492 alloc_size
= ALIGN(nr_bits
, BITS_PER_LONG
) / 8;
1495 err
= compat_get_bitmap(nodes_addr(bm
), nmask
, nr_bits
);
1496 nm
= compat_alloc_user_space(alloc_size
);
1497 err
|= copy_to_user(nm
, nodes_addr(bm
), alloc_size
);
1503 return sys_mbind(start
, len
, mode
, nm
, nr_bits
+1, flags
);
1509 * get_vma_policy(@task, @vma, @addr)
1510 * @task - task for fallback if vma policy == default
1511 * @vma - virtual memory area whose policy is sought
1512 * @addr - address in @vma for shared policy lookup
1514 * Returns effective policy for a VMA at specified address.
1515 * Falls back to @task or system default policy, as necessary.
1516 * Current or other task's task mempolicy and non-shared vma policies
1517 * are protected by the task's mmap_sem, which must be held for read by
1519 * Shared policies [those marked as MPOL_F_SHARED] require an extra reference
1520 * count--added by the get_policy() vm_op, as appropriate--to protect against
1521 * freeing by another task. It is the caller's responsibility to free the
1522 * extra reference for shared policies.
1524 struct mempolicy
*get_vma_policy(struct task_struct
*task
,
1525 struct vm_area_struct
*vma
, unsigned long addr
)
1527 struct mempolicy
*pol
= task
->mempolicy
;
1530 if (vma
->vm_ops
&& vma
->vm_ops
->get_policy
) {
1531 struct mempolicy
*vpol
= vma
->vm_ops
->get_policy(vma
,
1535 } else if (vma
->vm_policy
) {
1536 pol
= vma
->vm_policy
;
1539 * shmem_alloc_page() passes MPOL_F_SHARED policy with
1540 * a pseudo vma whose vma->vm_ops=NULL. Take a reference
1541 * count on these policies which will be dropped by
1542 * mpol_cond_put() later
1544 if (mpol_needs_cond_ref(pol
))
1549 pol
= &default_policy
;
1554 * Return a nodemask representing a mempolicy for filtering nodes for
1557 static nodemask_t
*policy_nodemask(gfp_t gfp
, struct mempolicy
*policy
)
1559 /* Lower zones don't get a nodemask applied for MPOL_BIND */
1560 if (unlikely(policy
->mode
== MPOL_BIND
) &&
1561 gfp_zone(gfp
) >= policy_zone
&&
1562 cpuset_nodemask_valid_mems_allowed(&policy
->v
.nodes
))
1563 return &policy
->v
.nodes
;
1568 /* Return a zonelist indicated by gfp for node representing a mempolicy */
1569 static struct zonelist
*policy_zonelist(gfp_t gfp
, struct mempolicy
*policy
,
1572 switch (policy
->mode
) {
1573 case MPOL_PREFERRED
:
1574 if (!(policy
->flags
& MPOL_F_LOCAL
))
1575 nd
= policy
->v
.preferred_node
;
1579 * Normally, MPOL_BIND allocations are node-local within the
1580 * allowed nodemask. However, if __GFP_THISNODE is set and the
1581 * current node isn't part of the mask, we use the zonelist for
1582 * the first node in the mask instead.
1584 if (unlikely(gfp
& __GFP_THISNODE
) &&
1585 unlikely(!node_isset(nd
, policy
->v
.nodes
)))
1586 nd
= first_node(policy
->v
.nodes
);
1591 return node_zonelist(nd
, gfp
);
1594 /* Do dynamic interleaving for a process */
1595 static unsigned interleave_nodes(struct mempolicy
*policy
)
1598 struct task_struct
*me
= current
;
1601 next
= next_node(nid
, policy
->v
.nodes
);
1602 if (next
>= MAX_NUMNODES
)
1603 next
= first_node(policy
->v
.nodes
);
1604 if (next
< MAX_NUMNODES
)
1610 * Depending on the memory policy provide a node from which to allocate the
1612 * @policy must be protected by freeing by the caller. If @policy is
1613 * the current task's mempolicy, this protection is implicit, as only the
1614 * task can change it's policy. The system default policy requires no
1617 unsigned slab_node(struct mempolicy
*policy
)
1619 if (!policy
|| policy
->flags
& MPOL_F_LOCAL
)
1620 return numa_node_id();
1622 switch (policy
->mode
) {
1623 case MPOL_PREFERRED
:
1625 * handled MPOL_F_LOCAL above
1627 return policy
->v
.preferred_node
;
1629 case MPOL_INTERLEAVE
:
1630 return interleave_nodes(policy
);
1634 * Follow bind policy behavior and start allocation at the
1637 struct zonelist
*zonelist
;
1639 enum zone_type highest_zoneidx
= gfp_zone(GFP_KERNEL
);
1640 zonelist
= &NODE_DATA(numa_node_id())->node_zonelists
[0];
1641 (void)first_zones_zonelist(zonelist
, highest_zoneidx
,
1644 return zone
? zone
->node
: numa_node_id();
1652 /* Do static interleaving for a VMA with known offset. */
1653 static unsigned offset_il_node(struct mempolicy
*pol
,
1654 struct vm_area_struct
*vma
, unsigned long off
)
1656 unsigned nnodes
= nodes_weight(pol
->v
.nodes
);
1662 return numa_node_id();
1663 target
= (unsigned int)off
% nnodes
;
1666 nid
= next_node(nid
, pol
->v
.nodes
);
1668 } while (c
<= target
);
1672 /* Determine a node number for interleave */
1673 static inline unsigned interleave_nid(struct mempolicy
*pol
,
1674 struct vm_area_struct
*vma
, unsigned long addr
, int shift
)
1680 * for small pages, there is no difference between
1681 * shift and PAGE_SHIFT, so the bit-shift is safe.
1682 * for huge pages, since vm_pgoff is in units of small
1683 * pages, we need to shift off the always 0 bits to get
1686 BUG_ON(shift
< PAGE_SHIFT
);
1687 off
= vma
->vm_pgoff
>> (shift
- PAGE_SHIFT
);
1688 off
+= (addr
- vma
->vm_start
) >> shift
;
1689 return offset_il_node(pol
, vma
, off
);
1691 return interleave_nodes(pol
);
1695 * Return the bit number of a random bit set in the nodemask.
1696 * (returns -1 if nodemask is empty)
1698 int node_random(const nodemask_t
*maskp
)
1702 w
= nodes_weight(*maskp
);
1704 bit
= bitmap_ord_to_pos(maskp
->bits
,
1705 get_random_int() % w
, MAX_NUMNODES
);
1709 #ifdef CONFIG_HUGETLBFS
1711 * huge_zonelist(@vma, @addr, @gfp_flags, @mpol)
1712 * @vma = virtual memory area whose policy is sought
1713 * @addr = address in @vma for shared policy lookup and interleave policy
1714 * @gfp_flags = for requested zone
1715 * @mpol = pointer to mempolicy pointer for reference counted mempolicy
1716 * @nodemask = pointer to nodemask pointer for MPOL_BIND nodemask
1718 * Returns a zonelist suitable for a huge page allocation and a pointer
1719 * to the struct mempolicy for conditional unref after allocation.
1720 * If the effective policy is 'BIND, returns a pointer to the mempolicy's
1721 * @nodemask for filtering the zonelist.
1723 * Must be protected by get_mems_allowed()
1725 struct zonelist
*huge_zonelist(struct vm_area_struct
*vma
, unsigned long addr
,
1726 gfp_t gfp_flags
, struct mempolicy
**mpol
,
1727 nodemask_t
**nodemask
)
1729 struct zonelist
*zl
;
1731 *mpol
= get_vma_policy(current
, vma
, addr
);
1732 *nodemask
= NULL
; /* assume !MPOL_BIND */
1734 if (unlikely((*mpol
)->mode
== MPOL_INTERLEAVE
)) {
1735 zl
= node_zonelist(interleave_nid(*mpol
, vma
, addr
,
1736 huge_page_shift(hstate_vma(vma
))), gfp_flags
);
1738 zl
= policy_zonelist(gfp_flags
, *mpol
, numa_node_id());
1739 if ((*mpol
)->mode
== MPOL_BIND
)
1740 *nodemask
= &(*mpol
)->v
.nodes
;
1746 * init_nodemask_of_mempolicy
1748 * If the current task's mempolicy is "default" [NULL], return 'false'
1749 * to indicate default policy. Otherwise, extract the policy nodemask
1750 * for 'bind' or 'interleave' policy into the argument nodemask, or
1751 * initialize the argument nodemask to contain the single node for
1752 * 'preferred' or 'local' policy and return 'true' to indicate presence
1753 * of non-default mempolicy.
1755 * We don't bother with reference counting the mempolicy [mpol_get/put]
1756 * because the current task is examining it's own mempolicy and a task's
1757 * mempolicy is only ever changed by the task itself.
1759 * N.B., it is the caller's responsibility to free a returned nodemask.
1761 bool init_nodemask_of_mempolicy(nodemask_t
*mask
)
1763 struct mempolicy
*mempolicy
;
1766 if (!(mask
&& current
->mempolicy
))
1770 mempolicy
= current
->mempolicy
;
1771 switch (mempolicy
->mode
) {
1772 case MPOL_PREFERRED
:
1773 if (mempolicy
->flags
& MPOL_F_LOCAL
)
1774 nid
= numa_node_id();
1776 nid
= mempolicy
->v
.preferred_node
;
1777 init_nodemask_of_node(mask
, nid
);
1782 case MPOL_INTERLEAVE
:
1783 *mask
= mempolicy
->v
.nodes
;
1789 task_unlock(current
);
1796 * mempolicy_nodemask_intersects
1798 * If tsk's mempolicy is "default" [NULL], return 'true' to indicate default
1799 * policy. Otherwise, check for intersection between mask and the policy
1800 * nodemask for 'bind' or 'interleave' policy. For 'perferred' or 'local'
1801 * policy, always return true since it may allocate elsewhere on fallback.
1803 * Takes task_lock(tsk) to prevent freeing of its mempolicy.
1805 bool mempolicy_nodemask_intersects(struct task_struct
*tsk
,
1806 const nodemask_t
*mask
)
1808 struct mempolicy
*mempolicy
;
1814 mempolicy
= tsk
->mempolicy
;
1818 switch (mempolicy
->mode
) {
1819 case MPOL_PREFERRED
:
1821 * MPOL_PREFERRED and MPOL_F_LOCAL are only preferred nodes to
1822 * allocate from, they may fallback to other nodes when oom.
1823 * Thus, it's possible for tsk to have allocated memory from
1828 case MPOL_INTERLEAVE
:
1829 ret
= nodes_intersects(mempolicy
->v
.nodes
, *mask
);
1839 /* Allocate a page in interleaved policy.
1840 Own path because it needs to do special accounting. */
1841 static struct page
*alloc_page_interleave(gfp_t gfp
, unsigned order
,
1844 struct zonelist
*zl
;
1847 zl
= node_zonelist(nid
, gfp
);
1848 page
= __alloc_pages(gfp
, order
, zl
);
1849 if (page
&& page_zone(page
) == zonelist_zone(&zl
->_zonerefs
[0]))
1850 inc_zone_page_state(page
, NUMA_INTERLEAVE_HIT
);
1855 * alloc_pages_vma - Allocate a page for a VMA.
1858 * %GFP_USER user allocation.
1859 * %GFP_KERNEL kernel allocations,
1860 * %GFP_HIGHMEM highmem/user allocations,
1861 * %GFP_FS allocation should not call back into a file system.
1862 * %GFP_ATOMIC don't sleep.
1864 * @order:Order of the GFP allocation.
1865 * @vma: Pointer to VMA or NULL if not available.
1866 * @addr: Virtual Address of the allocation. Must be inside the VMA.
1868 * This function allocates a page from the kernel page pool and applies
1869 * a NUMA policy associated with the VMA or the current process.
1870 * When VMA is not NULL caller must hold down_read on the mmap_sem of the
1871 * mm_struct of the VMA to prevent it from going away. Should be used for
1872 * all allocations for pages that will be mapped into
1873 * user space. Returns NULL when no page can be allocated.
1875 * Should be called with the mm_sem of the vma hold.
1878 alloc_pages_vma(gfp_t gfp
, int order
, struct vm_area_struct
*vma
,
1879 unsigned long addr
, int node
)
1881 struct mempolicy
*pol
;
1882 struct zonelist
*zl
;
1884 unsigned int cpuset_mems_cookie
;
1887 pol
= get_vma_policy(current
, vma
, addr
);
1888 cpuset_mems_cookie
= get_mems_allowed();
1890 if (unlikely(pol
->mode
== MPOL_INTERLEAVE
)) {
1893 nid
= interleave_nid(pol
, vma
, addr
, PAGE_SHIFT
+ order
);
1895 page
= alloc_page_interleave(gfp
, order
, nid
);
1896 if (unlikely(!put_mems_allowed(cpuset_mems_cookie
) && !page
))
1901 zl
= policy_zonelist(gfp
, pol
, node
);
1902 if (unlikely(mpol_needs_cond_ref(pol
))) {
1904 * slow path: ref counted shared policy
1906 struct page
*page
= __alloc_pages_nodemask(gfp
, order
,
1907 zl
, policy_nodemask(gfp
, pol
));
1909 if (unlikely(!put_mems_allowed(cpuset_mems_cookie
) && !page
))
1914 * fast path: default or task policy
1916 page
= __alloc_pages_nodemask(gfp
, order
, zl
,
1917 policy_nodemask(gfp
, pol
));
1918 if (unlikely(!put_mems_allowed(cpuset_mems_cookie
) && !page
))
1924 * alloc_pages_current - Allocate pages.
1927 * %GFP_USER user allocation,
1928 * %GFP_KERNEL kernel allocation,
1929 * %GFP_HIGHMEM highmem allocation,
1930 * %GFP_FS don't call back into a file system.
1931 * %GFP_ATOMIC don't sleep.
1932 * @order: Power of two of allocation size in pages. 0 is a single page.
1934 * Allocate a page from the kernel page pool. When not in
1935 * interrupt context and apply the current process NUMA policy.
1936 * Returns NULL when no page can be allocated.
1938 * Don't call cpuset_update_task_memory_state() unless
1939 * 1) it's ok to take cpuset_sem (can WAIT), and
1940 * 2) allocating for current task (not interrupt).
1942 struct page
*alloc_pages_current(gfp_t gfp
, unsigned order
)
1944 struct mempolicy
*pol
= current
->mempolicy
;
1946 unsigned int cpuset_mems_cookie
;
1948 if (!pol
|| in_interrupt() || (gfp
& __GFP_THISNODE
))
1949 pol
= &default_policy
;
1952 cpuset_mems_cookie
= get_mems_allowed();
1955 * No reference counting needed for current->mempolicy
1956 * nor system default_policy
1958 if (pol
->mode
== MPOL_INTERLEAVE
)
1959 page
= alloc_page_interleave(gfp
, order
, interleave_nodes(pol
));
1961 page
= __alloc_pages_nodemask(gfp
, order
,
1962 policy_zonelist(gfp
, pol
, numa_node_id()),
1963 policy_nodemask(gfp
, pol
));
1965 if (unlikely(!put_mems_allowed(cpuset_mems_cookie
) && !page
))
1970 EXPORT_SYMBOL(alloc_pages_current
);
1973 * If mpol_dup() sees current->cpuset == cpuset_being_rebound, then it
1974 * rebinds the mempolicy its copying by calling mpol_rebind_policy()
1975 * with the mems_allowed returned by cpuset_mems_allowed(). This
1976 * keeps mempolicies cpuset relative after its cpuset moves. See
1977 * further kernel/cpuset.c update_nodemask().
1979 * current's mempolicy may be rebinded by the other task(the task that changes
1980 * cpuset's mems), so we needn't do rebind work for current task.
1983 /* Slow path of a mempolicy duplicate */
1984 struct mempolicy
*__mpol_dup(struct mempolicy
*old
)
1986 struct mempolicy
*new = kmem_cache_alloc(policy_cache
, GFP_KERNEL
);
1989 return ERR_PTR(-ENOMEM
);
1991 /* task's mempolicy is protected by alloc_lock */
1992 if (old
== current
->mempolicy
) {
1995 task_unlock(current
);
2000 if (current_cpuset_is_being_rebound()) {
2001 nodemask_t mems
= cpuset_mems_allowed(current
);
2002 if (new->flags
& MPOL_F_REBINDING
)
2003 mpol_rebind_policy(new, &mems
, MPOL_REBIND_STEP2
);
2005 mpol_rebind_policy(new, &mems
, MPOL_REBIND_ONCE
);
2008 atomic_set(&new->refcnt
, 1);
2013 * If *frompol needs [has] an extra ref, copy *frompol to *tompol ,
2014 * eliminate the * MPOL_F_* flags that require conditional ref and
2015 * [NOTE!!!] drop the extra ref. Not safe to reference *frompol directly
2016 * after return. Use the returned value.
2018 * Allows use of a mempolicy for, e.g., multiple allocations with a single
2019 * policy lookup, even if the policy needs/has extra ref on lookup.
2020 * shmem_readahead needs this.
2022 struct mempolicy
*__mpol_cond_copy(struct mempolicy
*tompol
,
2023 struct mempolicy
*frompol
)
2025 if (!mpol_needs_cond_ref(frompol
))
2029 tompol
->flags
&= ~MPOL_F_SHARED
; /* copy doesn't need unref */
2030 __mpol_put(frompol
);
2034 /* Slow path of a mempolicy comparison */
2035 bool __mpol_equal(struct mempolicy
*a
, struct mempolicy
*b
)
2039 if (a
->mode
!= b
->mode
)
2041 if (a
->flags
!= b
->flags
)
2043 if (mpol_store_user_nodemask(a
))
2044 if (!nodes_equal(a
->w
.user_nodemask
, b
->w
.user_nodemask
))
2050 case MPOL_INTERLEAVE
:
2051 return !!nodes_equal(a
->v
.nodes
, b
->v
.nodes
);
2052 case MPOL_PREFERRED
:
2053 return a
->v
.preferred_node
== b
->v
.preferred_node
;
2061 * Shared memory backing store policy support.
2063 * Remember policies even when nobody has shared memory mapped.
2064 * The policies are kept in Red-Black tree linked from the inode.
2065 * They are protected by the sp->lock spinlock, which should be held
2066 * for any accesses to the tree.
2069 /* lookup first element intersecting start-end */
2070 /* Caller holds sp->mutex */
2071 static struct sp_node
*
2072 sp_lookup(struct shared_policy
*sp
, unsigned long start
, unsigned long end
)
2074 struct rb_node
*n
= sp
->root
.rb_node
;
2077 struct sp_node
*p
= rb_entry(n
, struct sp_node
, nd
);
2079 if (start
>= p
->end
)
2081 else if (end
<= p
->start
)
2089 struct sp_node
*w
= NULL
;
2090 struct rb_node
*prev
= rb_prev(n
);
2093 w
= rb_entry(prev
, struct sp_node
, nd
);
2094 if (w
->end
<= start
)
2098 return rb_entry(n
, struct sp_node
, nd
);
2101 /* Insert a new shared policy into the list. */
2102 /* Caller holds sp->lock */
2103 static void sp_insert(struct shared_policy
*sp
, struct sp_node
*new)
2105 struct rb_node
**p
= &sp
->root
.rb_node
;
2106 struct rb_node
*parent
= NULL
;
2111 nd
= rb_entry(parent
, struct sp_node
, nd
);
2112 if (new->start
< nd
->start
)
2114 else if (new->end
> nd
->end
)
2115 p
= &(*p
)->rb_right
;
2119 rb_link_node(&new->nd
, parent
, p
);
2120 rb_insert_color(&new->nd
, &sp
->root
);
2121 pr_debug("inserting %lx-%lx: %d\n", new->start
, new->end
,
2122 new->policy
? new->policy
->mode
: 0);
2125 /* Find shared policy intersecting idx */
2127 mpol_shared_policy_lookup(struct shared_policy
*sp
, unsigned long idx
)
2129 struct mempolicy
*pol
= NULL
;
2132 if (!sp
->root
.rb_node
)
2134 mutex_lock(&sp
->mutex
);
2135 sn
= sp_lookup(sp
, idx
, idx
+1);
2137 mpol_get(sn
->policy
);
2140 mutex_unlock(&sp
->mutex
);
2144 static void sp_free(struct sp_node
*n
)
2146 mpol_put(n
->policy
);
2147 kmem_cache_free(sn_cache
, n
);
2150 static void sp_delete(struct shared_policy
*sp
, struct sp_node
*n
)
2152 pr_debug("deleting %lx-l%lx\n", n
->start
, n
->end
);
2153 rb_erase(&n
->nd
, &sp
->root
);
2157 static struct sp_node
*sp_alloc(unsigned long start
, unsigned long end
,
2158 struct mempolicy
*pol
)
2161 struct mempolicy
*newpol
;
2163 n
= kmem_cache_alloc(sn_cache
, GFP_KERNEL
);
2167 newpol
= mpol_dup(pol
);
2168 if (IS_ERR(newpol
)) {
2169 kmem_cache_free(sn_cache
, n
);
2172 newpol
->flags
|= MPOL_F_SHARED
;
2181 /* Replace a policy range. */
2182 static int shared_policy_replace(struct shared_policy
*sp
, unsigned long start
,
2183 unsigned long end
, struct sp_node
*new)
2188 mutex_lock(&sp
->mutex
);
2189 n
= sp_lookup(sp
, start
, end
);
2190 /* Take care of old policies in the same range. */
2191 while (n
&& n
->start
< end
) {
2192 struct rb_node
*next
= rb_next(&n
->nd
);
2193 if (n
->start
>= start
) {
2199 /* Old policy spanning whole new range. */
2201 struct sp_node
*new2
;
2202 new2
= sp_alloc(end
, n
->end
, n
->policy
);
2208 sp_insert(sp
, new2
);
2215 n
= rb_entry(next
, struct sp_node
, nd
);
2220 mutex_unlock(&sp
->mutex
);
2225 * mpol_shared_policy_init - initialize shared policy for inode
2226 * @sp: pointer to inode shared policy
2227 * @mpol: struct mempolicy to install
2229 * Install non-NULL @mpol in inode's shared policy rb-tree.
2230 * On entry, the current task has a reference on a non-NULL @mpol.
2231 * This must be released on exit.
2232 * This is called at get_inode() calls and we can use GFP_KERNEL.
2234 void mpol_shared_policy_init(struct shared_policy
*sp
, struct mempolicy
*mpol
)
2238 sp
->root
= RB_ROOT
; /* empty tree == default mempolicy */
2239 mutex_init(&sp
->mutex
);
2242 struct vm_area_struct pvma
;
2243 struct mempolicy
*new;
2244 NODEMASK_SCRATCH(scratch
);
2248 /* contextualize the tmpfs mount point mempolicy */
2249 new = mpol_new(mpol
->mode
, mpol
->flags
, &mpol
->w
.user_nodemask
);
2251 goto free_scratch
; /* no valid nodemask intersection */
2254 ret
= mpol_set_nodemask(new, &mpol
->w
.user_nodemask
, scratch
);
2255 task_unlock(current
);
2259 /* Create pseudo-vma that contains just the policy */
2260 memset(&pvma
, 0, sizeof(struct vm_area_struct
));
2261 pvma
.vm_end
= TASK_SIZE
; /* policy covers entire file */
2262 mpol_set_shared_policy(sp
, &pvma
, new); /* adds ref */
2265 mpol_put(new); /* drop initial ref */
2267 NODEMASK_SCRATCH_FREE(scratch
);
2269 mpol_put(mpol
); /* drop our incoming ref on sb mpol */
2273 int mpol_set_shared_policy(struct shared_policy
*info
,
2274 struct vm_area_struct
*vma
, struct mempolicy
*npol
)
2277 struct sp_node
*new = NULL
;
2278 unsigned long sz
= vma_pages(vma
);
2280 pr_debug("set_shared_policy %lx sz %lu %d %d %lx\n",
2282 sz
, npol
? npol
->mode
: -1,
2283 npol
? npol
->flags
: -1,
2284 npol
? nodes_addr(npol
->v
.nodes
)[0] : -1);
2287 new = sp_alloc(vma
->vm_pgoff
, vma
->vm_pgoff
+ sz
, npol
);
2291 err
= shared_policy_replace(info
, vma
->vm_pgoff
, vma
->vm_pgoff
+sz
, new);
2297 /* Free a backing policy store on inode delete. */
2298 void mpol_free_shared_policy(struct shared_policy
*p
)
2301 struct rb_node
*next
;
2303 if (!p
->root
.rb_node
)
2305 mutex_lock(&p
->mutex
);
2306 next
= rb_first(&p
->root
);
2308 n
= rb_entry(next
, struct sp_node
, nd
);
2309 next
= rb_next(&n
->nd
);
2312 mutex_unlock(&p
->mutex
);
2315 /* assumes fs == KERNEL_DS */
2316 void __init
numa_policy_init(void)
2318 nodemask_t interleave_nodes
;
2319 unsigned long largest
= 0;
2320 int nid
, prefer
= 0;
2322 policy_cache
= kmem_cache_create("numa_policy",
2323 sizeof(struct mempolicy
),
2324 0, SLAB_PANIC
, NULL
);
2326 sn_cache
= kmem_cache_create("shared_policy_node",
2327 sizeof(struct sp_node
),
2328 0, SLAB_PANIC
, NULL
);
2331 * Set interleaving policy for system init. Interleaving is only
2332 * enabled across suitably sized nodes (default is >= 16MB), or
2333 * fall back to the largest node if they're all smaller.
2335 nodes_clear(interleave_nodes
);
2336 for_each_node_state(nid
, N_HIGH_MEMORY
) {
2337 unsigned long total_pages
= node_present_pages(nid
);
2339 /* Preserve the largest node */
2340 if (largest
< total_pages
) {
2341 largest
= total_pages
;
2345 /* Interleave this node? */
2346 if ((total_pages
<< PAGE_SHIFT
) >= (16 << 20))
2347 node_set(nid
, interleave_nodes
);
2350 /* All too small, use the largest */
2351 if (unlikely(nodes_empty(interleave_nodes
)))
2352 node_set(prefer
, interleave_nodes
);
2354 if (do_set_mempolicy(MPOL_INTERLEAVE
, 0, &interleave_nodes
))
2355 printk("numa_policy_init: interleaving failed\n");
2358 /* Reset policy of current process to default */
2359 void numa_default_policy(void)
2361 do_set_mempolicy(MPOL_DEFAULT
, 0, NULL
);
2365 * Parse and format mempolicy from/to strings
2369 * "local" is pseudo-policy: MPOL_PREFERRED with MPOL_F_LOCAL flag
2370 * Used only for mpol_parse_str() and mpol_to_str()
2372 #define MPOL_LOCAL MPOL_MAX
2373 static const char * const policy_modes
[] =
2375 [MPOL_DEFAULT
] = "default",
2376 [MPOL_PREFERRED
] = "prefer",
2377 [MPOL_BIND
] = "bind",
2378 [MPOL_INTERLEAVE
] = "interleave",
2379 [MPOL_LOCAL
] = "local"
2385 * mpol_parse_str - parse string to mempolicy
2386 * @str: string containing mempolicy to parse
2387 * @mpol: pointer to struct mempolicy pointer, returned on success.
2388 * @no_context: flag whether to "contextualize" the mempolicy
2391 * <mode>[=<flags>][:<nodelist>]
2393 * if @no_context is true, save the input nodemask in w.user_nodemask in
2394 * the returned mempolicy. This will be used to "clone" the mempolicy in
2395 * a specific context [cpuset] at a later time. Used to parse tmpfs mpol
2396 * mount option. Note that if 'static' or 'relative' mode flags were
2397 * specified, the input nodemask will already have been saved. Saving
2398 * it again is redundant, but safe.
2400 * On success, returns 0, else 1
2402 int mpol_parse_str(char *str
, struct mempolicy
**mpol
, int no_context
)
2404 struct mempolicy
*new = NULL
;
2405 unsigned short mode
;
2406 unsigned short uninitialized_var(mode_flags
);
2408 char *nodelist
= strchr(str
, ':');
2409 char *flags
= strchr(str
, '=');
2413 /* NUL-terminate mode or flags string */
2415 if (nodelist_parse(nodelist
, nodes
))
2417 if (!nodes_subset(nodes
, node_states
[N_HIGH_MEMORY
]))
2423 *flags
++ = '\0'; /* terminate mode string */
2425 for (mode
= 0; mode
<= MPOL_LOCAL
; mode
++) {
2426 if (!strcmp(str
, policy_modes
[mode
])) {
2430 if (mode
> MPOL_LOCAL
)
2434 case MPOL_PREFERRED
:
2436 * Insist on a nodelist of one node only
2439 char *rest
= nodelist
;
2440 while (isdigit(*rest
))
2446 case MPOL_INTERLEAVE
:
2448 * Default to online nodes with memory if no nodelist
2451 nodes
= node_states
[N_HIGH_MEMORY
];
2455 * Don't allow a nodelist; mpol_new() checks flags
2459 mode
= MPOL_PREFERRED
;
2463 * Insist on a empty nodelist
2470 * Insist on a nodelist
2479 * Currently, we only support two mutually exclusive
2482 if (!strcmp(flags
, "static"))
2483 mode_flags
|= MPOL_F_STATIC_NODES
;
2484 else if (!strcmp(flags
, "relative"))
2485 mode_flags
|= MPOL_F_RELATIVE_NODES
;
2490 new = mpol_new(mode
, mode_flags
, &nodes
);
2495 /* save for contextualization */
2496 new->w
.user_nodemask
= nodes
;
2499 NODEMASK_SCRATCH(scratch
);
2502 ret
= mpol_set_nodemask(new, &nodes
, scratch
);
2503 task_unlock(current
);
2506 NODEMASK_SCRATCH_FREE(scratch
);
2515 /* Restore string for error message */
2524 #endif /* CONFIG_TMPFS */
2527 * mpol_to_str - format a mempolicy structure for printing
2528 * @buffer: to contain formatted mempolicy string
2529 * @maxlen: length of @buffer
2530 * @pol: pointer to mempolicy to be formatted
2531 * @no_context: "context free" mempolicy - use nodemask in w.user_nodemask
2533 * Convert a mempolicy into a string.
2534 * Returns the number of characters in buffer (if positive)
2535 * or an error (negative)
2537 int mpol_to_str(char *buffer
, int maxlen
, struct mempolicy
*pol
, int no_context
)
2542 unsigned short mode
;
2543 unsigned short flags
= pol
? pol
->flags
: 0;
2546 * Sanity check: room for longest mode, flag and some nodes
2548 VM_BUG_ON(maxlen
< strlen("interleave") + strlen("relative") + 16);
2550 if (!pol
|| pol
== &default_policy
)
2551 mode
= MPOL_DEFAULT
;
2560 case MPOL_PREFERRED
:
2562 if (flags
& MPOL_F_LOCAL
)
2563 mode
= MPOL_LOCAL
; /* pseudo-policy */
2565 node_set(pol
->v
.preferred_node
, nodes
);
2570 case MPOL_INTERLEAVE
:
2572 nodes
= pol
->w
.user_nodemask
;
2574 nodes
= pol
->v
.nodes
;
2581 l
= strlen(policy_modes
[mode
]);
2582 if (buffer
+ maxlen
< p
+ l
+ 1)
2585 strcpy(p
, policy_modes
[mode
]);
2588 if (flags
& MPOL_MODE_FLAGS
) {
2589 if (buffer
+ maxlen
< p
+ 2)
2594 * Currently, the only defined flags are mutually exclusive
2596 if (flags
& MPOL_F_STATIC_NODES
)
2597 p
+= snprintf(p
, buffer
+ maxlen
- p
, "static");
2598 else if (flags
& MPOL_F_RELATIVE_NODES
)
2599 p
+= snprintf(p
, buffer
+ maxlen
- p
, "relative");
2602 if (!nodes_empty(nodes
)) {
2603 if (buffer
+ maxlen
< p
+ 2)
2606 p
+= nodelist_scnprintf(p
, buffer
+ maxlen
- p
, nodes
);