staging: most: cdev: replace function prefix
[linux/fpc-iii.git] / lib / bitmap.c
blobd8f0c094b18eba130571a3e405796040750d9646
1 /*
2 * lib/bitmap.c
3 * Helper functions for bitmap.h.
5 * This source code is licensed under the GNU General Public License,
6 * Version 2. See the file COPYING for more details.
7 */
8 #include <linux/export.h>
9 #include <linux/thread_info.h>
10 #include <linux/ctype.h>
11 #include <linux/errno.h>
12 #include <linux/bitmap.h>
13 #include <linux/bitops.h>
14 #include <linux/bug.h>
15 #include <linux/kernel.h>
16 #include <linux/string.h>
17 #include <linux/uaccess.h>
19 #include <asm/page.h>
21 /**
22 * DOC: bitmap introduction
24 * bitmaps provide an array of bits, implemented using an an
25 * array of unsigned longs. The number of valid bits in a
26 * given bitmap does _not_ need to be an exact multiple of
27 * BITS_PER_LONG.
29 * The possible unused bits in the last, partially used word
30 * of a bitmap are 'don't care'. The implementation makes
31 * no particular effort to keep them zero. It ensures that
32 * their value will not affect the results of any operation.
33 * The bitmap operations that return Boolean (bitmap_empty,
34 * for example) or scalar (bitmap_weight, for example) results
35 * carefully filter out these unused bits from impacting their
36 * results.
38 * These operations actually hold to a slightly stronger rule:
39 * if you don't input any bitmaps to these ops that have some
40 * unused bits set, then they won't output any set unused bits
41 * in output bitmaps.
43 * The byte ordering of bitmaps is more natural on little
44 * endian architectures. See the big-endian headers
45 * include/asm-ppc64/bitops.h and include/asm-s390/bitops.h
46 * for the best explanations of this ordering.
49 int __bitmap_equal(const unsigned long *bitmap1,
50 const unsigned long *bitmap2, unsigned int bits)
52 unsigned int k, lim = bits/BITS_PER_LONG;
53 for (k = 0; k < lim; ++k)
54 if (bitmap1[k] != bitmap2[k])
55 return 0;
57 if (bits % BITS_PER_LONG)
58 if ((bitmap1[k] ^ bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits))
59 return 0;
61 return 1;
63 EXPORT_SYMBOL(__bitmap_equal);
65 void __bitmap_complement(unsigned long *dst, const unsigned long *src, unsigned int bits)
67 unsigned int k, lim = bits/BITS_PER_LONG;
68 for (k = 0; k < lim; ++k)
69 dst[k] = ~src[k];
71 if (bits % BITS_PER_LONG)
72 dst[k] = ~src[k];
74 EXPORT_SYMBOL(__bitmap_complement);
76 /**
77 * __bitmap_shift_right - logical right shift of the bits in a bitmap
78 * @dst : destination bitmap
79 * @src : source bitmap
80 * @shift : shift by this many bits
81 * @nbits : bitmap size, in bits
83 * Shifting right (dividing) means moving bits in the MS -> LS bit
84 * direction. Zeros are fed into the vacated MS positions and the
85 * LS bits shifted off the bottom are lost.
87 void __bitmap_shift_right(unsigned long *dst, const unsigned long *src,
88 unsigned shift, unsigned nbits)
90 unsigned k, lim = BITS_TO_LONGS(nbits);
91 unsigned off = shift/BITS_PER_LONG, rem = shift % BITS_PER_LONG;
92 unsigned long mask = BITMAP_LAST_WORD_MASK(nbits);
93 for (k = 0; off + k < lim; ++k) {
94 unsigned long upper, lower;
97 * If shift is not word aligned, take lower rem bits of
98 * word above and make them the top rem bits of result.
100 if (!rem || off + k + 1 >= lim)
101 upper = 0;
102 else {
103 upper = src[off + k + 1];
104 if (off + k + 1 == lim - 1)
105 upper &= mask;
106 upper <<= (BITS_PER_LONG - rem);
108 lower = src[off + k];
109 if (off + k == lim - 1)
110 lower &= mask;
111 lower >>= rem;
112 dst[k] = lower | upper;
114 if (off)
115 memset(&dst[lim - off], 0, off*sizeof(unsigned long));
117 EXPORT_SYMBOL(__bitmap_shift_right);
121 * __bitmap_shift_left - logical left shift of the bits in a bitmap
122 * @dst : destination bitmap
123 * @src : source bitmap
124 * @shift : shift by this many bits
125 * @nbits : bitmap size, in bits
127 * Shifting left (multiplying) means moving bits in the LS -> MS
128 * direction. Zeros are fed into the vacated LS bit positions
129 * and those MS bits shifted off the top are lost.
132 void __bitmap_shift_left(unsigned long *dst, const unsigned long *src,
133 unsigned int shift, unsigned int nbits)
135 int k;
136 unsigned int lim = BITS_TO_LONGS(nbits);
137 unsigned int off = shift/BITS_PER_LONG, rem = shift % BITS_PER_LONG;
138 for (k = lim - off - 1; k >= 0; --k) {
139 unsigned long upper, lower;
142 * If shift is not word aligned, take upper rem bits of
143 * word below and make them the bottom rem bits of result.
145 if (rem && k > 0)
146 lower = src[k - 1] >> (BITS_PER_LONG - rem);
147 else
148 lower = 0;
149 upper = src[k] << rem;
150 dst[k + off] = lower | upper;
152 if (off)
153 memset(dst, 0, off*sizeof(unsigned long));
155 EXPORT_SYMBOL(__bitmap_shift_left);
157 int __bitmap_and(unsigned long *dst, const unsigned long *bitmap1,
158 const unsigned long *bitmap2, unsigned int bits)
160 unsigned int k;
161 unsigned int lim = bits/BITS_PER_LONG;
162 unsigned long result = 0;
164 for (k = 0; k < lim; k++)
165 result |= (dst[k] = bitmap1[k] & bitmap2[k]);
166 if (bits % BITS_PER_LONG)
167 result |= (dst[k] = bitmap1[k] & bitmap2[k] &
168 BITMAP_LAST_WORD_MASK(bits));
169 return result != 0;
171 EXPORT_SYMBOL(__bitmap_and);
173 void __bitmap_or(unsigned long *dst, const unsigned long *bitmap1,
174 const unsigned long *bitmap2, unsigned int bits)
176 unsigned int k;
177 unsigned int nr = BITS_TO_LONGS(bits);
179 for (k = 0; k < nr; k++)
180 dst[k] = bitmap1[k] | bitmap2[k];
182 EXPORT_SYMBOL(__bitmap_or);
184 void __bitmap_xor(unsigned long *dst, const unsigned long *bitmap1,
185 const unsigned long *bitmap2, unsigned int bits)
187 unsigned int k;
188 unsigned int nr = BITS_TO_LONGS(bits);
190 for (k = 0; k < nr; k++)
191 dst[k] = bitmap1[k] ^ bitmap2[k];
193 EXPORT_SYMBOL(__bitmap_xor);
195 int __bitmap_andnot(unsigned long *dst, const unsigned long *bitmap1,
196 const unsigned long *bitmap2, unsigned int bits)
198 unsigned int k;
199 unsigned int lim = bits/BITS_PER_LONG;
200 unsigned long result = 0;
202 for (k = 0; k < lim; k++)
203 result |= (dst[k] = bitmap1[k] & ~bitmap2[k]);
204 if (bits % BITS_PER_LONG)
205 result |= (dst[k] = bitmap1[k] & ~bitmap2[k] &
206 BITMAP_LAST_WORD_MASK(bits));
207 return result != 0;
209 EXPORT_SYMBOL(__bitmap_andnot);
211 int __bitmap_intersects(const unsigned long *bitmap1,
212 const unsigned long *bitmap2, unsigned int bits)
214 unsigned int k, lim = bits/BITS_PER_LONG;
215 for (k = 0; k < lim; ++k)
216 if (bitmap1[k] & bitmap2[k])
217 return 1;
219 if (bits % BITS_PER_LONG)
220 if ((bitmap1[k] & bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits))
221 return 1;
222 return 0;
224 EXPORT_SYMBOL(__bitmap_intersects);
226 int __bitmap_subset(const unsigned long *bitmap1,
227 const unsigned long *bitmap2, unsigned int bits)
229 unsigned int k, lim = bits/BITS_PER_LONG;
230 for (k = 0; k < lim; ++k)
231 if (bitmap1[k] & ~bitmap2[k])
232 return 0;
234 if (bits % BITS_PER_LONG)
235 if ((bitmap1[k] & ~bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits))
236 return 0;
237 return 1;
239 EXPORT_SYMBOL(__bitmap_subset);
241 int __bitmap_weight(const unsigned long *bitmap, unsigned int bits)
243 unsigned int k, lim = bits/BITS_PER_LONG;
244 int w = 0;
246 for (k = 0; k < lim; k++)
247 w += hweight_long(bitmap[k]);
249 if (bits % BITS_PER_LONG)
250 w += hweight_long(bitmap[k] & BITMAP_LAST_WORD_MASK(bits));
252 return w;
254 EXPORT_SYMBOL(__bitmap_weight);
256 void __bitmap_set(unsigned long *map, unsigned int start, int len)
258 unsigned long *p = map + BIT_WORD(start);
259 const unsigned int size = start + len;
260 int bits_to_set = BITS_PER_LONG - (start % BITS_PER_LONG);
261 unsigned long mask_to_set = BITMAP_FIRST_WORD_MASK(start);
263 while (len - bits_to_set >= 0) {
264 *p |= mask_to_set;
265 len -= bits_to_set;
266 bits_to_set = BITS_PER_LONG;
267 mask_to_set = ~0UL;
268 p++;
270 if (len) {
271 mask_to_set &= BITMAP_LAST_WORD_MASK(size);
272 *p |= mask_to_set;
275 EXPORT_SYMBOL(__bitmap_set);
277 void __bitmap_clear(unsigned long *map, unsigned int start, int len)
279 unsigned long *p = map + BIT_WORD(start);
280 const unsigned int size = start + len;
281 int bits_to_clear = BITS_PER_LONG - (start % BITS_PER_LONG);
282 unsigned long mask_to_clear = BITMAP_FIRST_WORD_MASK(start);
284 while (len - bits_to_clear >= 0) {
285 *p &= ~mask_to_clear;
286 len -= bits_to_clear;
287 bits_to_clear = BITS_PER_LONG;
288 mask_to_clear = ~0UL;
289 p++;
291 if (len) {
292 mask_to_clear &= BITMAP_LAST_WORD_MASK(size);
293 *p &= ~mask_to_clear;
296 EXPORT_SYMBOL(__bitmap_clear);
299 * bitmap_find_next_zero_area_off - find a contiguous aligned zero area
300 * @map: The address to base the search on
301 * @size: The bitmap size in bits
302 * @start: The bitnumber to start searching at
303 * @nr: The number of zeroed bits we're looking for
304 * @align_mask: Alignment mask for zero area
305 * @align_offset: Alignment offset for zero area.
307 * The @align_mask should be one less than a power of 2; the effect is that
308 * the bit offset of all zero areas this function finds plus @align_offset
309 * is multiple of that power of 2.
311 unsigned long bitmap_find_next_zero_area_off(unsigned long *map,
312 unsigned long size,
313 unsigned long start,
314 unsigned int nr,
315 unsigned long align_mask,
316 unsigned long align_offset)
318 unsigned long index, end, i;
319 again:
320 index = find_next_zero_bit(map, size, start);
322 /* Align allocation */
323 index = __ALIGN_MASK(index + align_offset, align_mask) - align_offset;
325 end = index + nr;
326 if (end > size)
327 return end;
328 i = find_next_bit(map, end, index);
329 if (i < end) {
330 start = i + 1;
331 goto again;
333 return index;
335 EXPORT_SYMBOL(bitmap_find_next_zero_area_off);
338 * Bitmap printing & parsing functions: first version by Nadia Yvette Chambers,
339 * second version by Paul Jackson, third by Joe Korty.
342 #define CHUNKSZ 32
343 #define nbits_to_hold_value(val) fls(val)
344 #define BASEDEC 10 /* fancier cpuset lists input in decimal */
347 * __bitmap_parse - convert an ASCII hex string into a bitmap.
348 * @buf: pointer to buffer containing string.
349 * @buflen: buffer size in bytes. If string is smaller than this
350 * then it must be terminated with a \0.
351 * @is_user: location of buffer, 0 indicates kernel space
352 * @maskp: pointer to bitmap array that will contain result.
353 * @nmaskbits: size of bitmap, in bits.
355 * Commas group hex digits into chunks. Each chunk defines exactly 32
356 * bits of the resultant bitmask. No chunk may specify a value larger
357 * than 32 bits (%-EOVERFLOW), and if a chunk specifies a smaller value
358 * then leading 0-bits are prepended. %-EINVAL is returned for illegal
359 * characters and for grouping errors such as "1,,5", ",44", "," and "".
360 * Leading and trailing whitespace accepted, but not embedded whitespace.
362 int __bitmap_parse(const char *buf, unsigned int buflen,
363 int is_user, unsigned long *maskp,
364 int nmaskbits)
366 int c, old_c, totaldigits, ndigits, nchunks, nbits;
367 u32 chunk;
368 const char __user __force *ubuf = (const char __user __force *)buf;
370 bitmap_zero(maskp, nmaskbits);
372 nchunks = nbits = totaldigits = c = 0;
373 do {
374 chunk = 0;
375 ndigits = totaldigits;
377 /* Get the next chunk of the bitmap */
378 while (buflen) {
379 old_c = c;
380 if (is_user) {
381 if (__get_user(c, ubuf++))
382 return -EFAULT;
384 else
385 c = *buf++;
386 buflen--;
387 if (isspace(c))
388 continue;
391 * If the last character was a space and the current
392 * character isn't '\0', we've got embedded whitespace.
393 * This is a no-no, so throw an error.
395 if (totaldigits && c && isspace(old_c))
396 return -EINVAL;
398 /* A '\0' or a ',' signal the end of the chunk */
399 if (c == '\0' || c == ',')
400 break;
402 if (!isxdigit(c))
403 return -EINVAL;
406 * Make sure there are at least 4 free bits in 'chunk'.
407 * If not, this hexdigit will overflow 'chunk', so
408 * throw an error.
410 if (chunk & ~((1UL << (CHUNKSZ - 4)) - 1))
411 return -EOVERFLOW;
413 chunk = (chunk << 4) | hex_to_bin(c);
414 totaldigits++;
416 if (ndigits == totaldigits)
417 return -EINVAL;
418 if (nchunks == 0 && chunk == 0)
419 continue;
421 __bitmap_shift_left(maskp, maskp, CHUNKSZ, nmaskbits);
422 *maskp |= chunk;
423 nchunks++;
424 nbits += (nchunks == 1) ? nbits_to_hold_value(chunk) : CHUNKSZ;
425 if (nbits > nmaskbits)
426 return -EOVERFLOW;
427 } while (buflen && c == ',');
429 return 0;
431 EXPORT_SYMBOL(__bitmap_parse);
434 * bitmap_parse_user - convert an ASCII hex string in a user buffer into a bitmap
436 * @ubuf: pointer to user buffer containing string.
437 * @ulen: buffer size in bytes. If string is smaller than this
438 * then it must be terminated with a \0.
439 * @maskp: pointer to bitmap array that will contain result.
440 * @nmaskbits: size of bitmap, in bits.
442 * Wrapper for __bitmap_parse(), providing it with user buffer.
444 * We cannot have this as an inline function in bitmap.h because it needs
445 * linux/uaccess.h to get the access_ok() declaration and this causes
446 * cyclic dependencies.
448 int bitmap_parse_user(const char __user *ubuf,
449 unsigned int ulen, unsigned long *maskp,
450 int nmaskbits)
452 if (!access_ok(VERIFY_READ, ubuf, ulen))
453 return -EFAULT;
454 return __bitmap_parse((const char __force *)ubuf,
455 ulen, 1, maskp, nmaskbits);
458 EXPORT_SYMBOL(bitmap_parse_user);
461 * bitmap_print_to_pagebuf - convert bitmap to list or hex format ASCII string
462 * @list: indicates whether the bitmap must be list
463 * @buf: page aligned buffer into which string is placed
464 * @maskp: pointer to bitmap to convert
465 * @nmaskbits: size of bitmap, in bits
467 * Output format is a comma-separated list of decimal numbers and
468 * ranges if list is specified or hex digits grouped into comma-separated
469 * sets of 8 digits/set. Returns the number of characters written to buf.
471 * It is assumed that @buf is a pointer into a PAGE_SIZE area and that
472 * sufficient storage remains at @buf to accommodate the
473 * bitmap_print_to_pagebuf() output.
475 int bitmap_print_to_pagebuf(bool list, char *buf, const unsigned long *maskp,
476 int nmaskbits)
478 ptrdiff_t len = PTR_ALIGN(buf + PAGE_SIZE - 1, PAGE_SIZE) - buf;
479 int n = 0;
481 if (len > 1)
482 n = list ? scnprintf(buf, len, "%*pbl\n", nmaskbits, maskp) :
483 scnprintf(buf, len, "%*pb\n", nmaskbits, maskp);
484 return n;
486 EXPORT_SYMBOL(bitmap_print_to_pagebuf);
489 * __bitmap_parselist - convert list format ASCII string to bitmap
490 * @buf: read nul-terminated user string from this buffer
491 * @buflen: buffer size in bytes. If string is smaller than this
492 * then it must be terminated with a \0.
493 * @is_user: location of buffer, 0 indicates kernel space
494 * @maskp: write resulting mask here
495 * @nmaskbits: number of bits in mask to be written
497 * Input format is a comma-separated list of decimal numbers and
498 * ranges. Consecutively set bits are shown as two hyphen-separated
499 * decimal numbers, the smallest and largest bit numbers set in
500 * the range.
501 * Optionally each range can be postfixed to denote that only parts of it
502 * should be set. The range will divided to groups of specific size.
503 * From each group will be used only defined amount of bits.
504 * Syntax: range:used_size/group_size
505 * Example: 0-1023:2/256 ==> 0,1,256,257,512,513,768,769
507 * Returns: 0 on success, -errno on invalid input strings. Error values:
509 * - ``-EINVAL``: second number in range smaller than first
510 * - ``-EINVAL``: invalid character in string
511 * - ``-ERANGE``: bit number specified too large for mask
513 static int __bitmap_parselist(const char *buf, unsigned int buflen,
514 int is_user, unsigned long *maskp,
515 int nmaskbits)
517 unsigned int a, b, old_a, old_b;
518 unsigned int group_size, used_size, off;
519 int c, old_c, totaldigits, ndigits;
520 const char __user __force *ubuf = (const char __user __force *)buf;
521 int at_start, in_range, in_partial_range;
523 totaldigits = c = 0;
524 old_a = old_b = 0;
525 group_size = used_size = 0;
526 bitmap_zero(maskp, nmaskbits);
527 do {
528 at_start = 1;
529 in_range = 0;
530 in_partial_range = 0;
531 a = b = 0;
532 ndigits = totaldigits;
534 /* Get the next cpu# or a range of cpu#'s */
535 while (buflen) {
536 old_c = c;
537 if (is_user) {
538 if (__get_user(c, ubuf++))
539 return -EFAULT;
540 } else
541 c = *buf++;
542 buflen--;
543 if (isspace(c))
544 continue;
546 /* A '\0' or a ',' signal the end of a cpu# or range */
547 if (c == '\0' || c == ',')
548 break;
550 * whitespaces between digits are not allowed,
551 * but it's ok if whitespaces are on head or tail.
552 * when old_c is whilespace,
553 * if totaldigits == ndigits, whitespace is on head.
554 * if whitespace is on tail, it should not run here.
555 * as c was ',' or '\0',
556 * the last code line has broken the current loop.
558 if ((totaldigits != ndigits) && isspace(old_c))
559 return -EINVAL;
561 if (c == '/') {
562 used_size = a;
563 at_start = 1;
564 in_range = 0;
565 a = b = 0;
566 continue;
569 if (c == ':') {
570 old_a = a;
571 old_b = b;
572 at_start = 1;
573 in_range = 0;
574 in_partial_range = 1;
575 a = b = 0;
576 continue;
579 if (c == '-') {
580 if (at_start || in_range)
581 return -EINVAL;
582 b = 0;
583 in_range = 1;
584 at_start = 1;
585 continue;
588 if (!isdigit(c))
589 return -EINVAL;
591 b = b * 10 + (c - '0');
592 if (!in_range)
593 a = b;
594 at_start = 0;
595 totaldigits++;
597 if (ndigits == totaldigits)
598 continue;
599 if (in_partial_range) {
600 group_size = a;
601 a = old_a;
602 b = old_b;
603 old_a = old_b = 0;
604 } else {
605 used_size = group_size = b - a + 1;
607 /* if no digit is after '-', it's wrong*/
608 if (at_start && in_range)
609 return -EINVAL;
610 if (!(a <= b) || !(used_size <= group_size))
611 return -EINVAL;
612 if (b >= nmaskbits)
613 return -ERANGE;
614 while (a <= b) {
615 off = min(b - a + 1, used_size);
616 bitmap_set(maskp, a, off);
617 a += group_size;
619 } while (buflen && c == ',');
620 return 0;
623 int bitmap_parselist(const char *bp, unsigned long *maskp, int nmaskbits)
625 char *nl = strchrnul(bp, '\n');
626 int len = nl - bp;
628 return __bitmap_parselist(bp, len, 0, maskp, nmaskbits);
630 EXPORT_SYMBOL(bitmap_parselist);
634 * bitmap_parselist_user()
636 * @ubuf: pointer to user buffer containing string.
637 * @ulen: buffer size in bytes. If string is smaller than this
638 * then it must be terminated with a \0.
639 * @maskp: pointer to bitmap array that will contain result.
640 * @nmaskbits: size of bitmap, in bits.
642 * Wrapper for bitmap_parselist(), providing it with user buffer.
644 * We cannot have this as an inline function in bitmap.h because it needs
645 * linux/uaccess.h to get the access_ok() declaration and this causes
646 * cyclic dependencies.
648 int bitmap_parselist_user(const char __user *ubuf,
649 unsigned int ulen, unsigned long *maskp,
650 int nmaskbits)
652 if (!access_ok(VERIFY_READ, ubuf, ulen))
653 return -EFAULT;
654 return __bitmap_parselist((const char __force *)ubuf,
655 ulen, 1, maskp, nmaskbits);
657 EXPORT_SYMBOL(bitmap_parselist_user);
661 * bitmap_pos_to_ord - find ordinal of set bit at given position in bitmap
662 * @buf: pointer to a bitmap
663 * @pos: a bit position in @buf (0 <= @pos < @nbits)
664 * @nbits: number of valid bit positions in @buf
666 * Map the bit at position @pos in @buf (of length @nbits) to the
667 * ordinal of which set bit it is. If it is not set or if @pos
668 * is not a valid bit position, map to -1.
670 * If for example, just bits 4 through 7 are set in @buf, then @pos
671 * values 4 through 7 will get mapped to 0 through 3, respectively,
672 * and other @pos values will get mapped to -1. When @pos value 7
673 * gets mapped to (returns) @ord value 3 in this example, that means
674 * that bit 7 is the 3rd (starting with 0th) set bit in @buf.
676 * The bit positions 0 through @bits are valid positions in @buf.
678 static int bitmap_pos_to_ord(const unsigned long *buf, unsigned int pos, unsigned int nbits)
680 if (pos >= nbits || !test_bit(pos, buf))
681 return -1;
683 return __bitmap_weight(buf, pos);
687 * bitmap_ord_to_pos - find position of n-th set bit in bitmap
688 * @buf: pointer to bitmap
689 * @ord: ordinal bit position (n-th set bit, n >= 0)
690 * @nbits: number of valid bit positions in @buf
692 * Map the ordinal offset of bit @ord in @buf to its position in @buf.
693 * Value of @ord should be in range 0 <= @ord < weight(buf). If @ord
694 * >= weight(buf), returns @nbits.
696 * If for example, just bits 4 through 7 are set in @buf, then @ord
697 * values 0 through 3 will get mapped to 4 through 7, respectively,
698 * and all other @ord values returns @nbits. When @ord value 3
699 * gets mapped to (returns) @pos value 7 in this example, that means
700 * that the 3rd set bit (starting with 0th) is at position 7 in @buf.
702 * The bit positions 0 through @nbits-1 are valid positions in @buf.
704 unsigned int bitmap_ord_to_pos(const unsigned long *buf, unsigned int ord, unsigned int nbits)
706 unsigned int pos;
708 for (pos = find_first_bit(buf, nbits);
709 pos < nbits && ord;
710 pos = find_next_bit(buf, nbits, pos + 1))
711 ord--;
713 return pos;
717 * bitmap_remap - Apply map defined by a pair of bitmaps to another bitmap
718 * @dst: remapped result
719 * @src: subset to be remapped
720 * @old: defines domain of map
721 * @new: defines range of map
722 * @nbits: number of bits in each of these bitmaps
724 * Let @old and @new define a mapping of bit positions, such that
725 * whatever position is held by the n-th set bit in @old is mapped
726 * to the n-th set bit in @new. In the more general case, allowing
727 * for the possibility that the weight 'w' of @new is less than the
728 * weight of @old, map the position of the n-th set bit in @old to
729 * the position of the m-th set bit in @new, where m == n % w.
731 * If either of the @old and @new bitmaps are empty, or if @src and
732 * @dst point to the same location, then this routine copies @src
733 * to @dst.
735 * The positions of unset bits in @old are mapped to themselves
736 * (the identify map).
738 * Apply the above specified mapping to @src, placing the result in
739 * @dst, clearing any bits previously set in @dst.
741 * For example, lets say that @old has bits 4 through 7 set, and
742 * @new has bits 12 through 15 set. This defines the mapping of bit
743 * position 4 to 12, 5 to 13, 6 to 14 and 7 to 15, and of all other
744 * bit positions unchanged. So if say @src comes into this routine
745 * with bits 1, 5 and 7 set, then @dst should leave with bits 1,
746 * 13 and 15 set.
748 void bitmap_remap(unsigned long *dst, const unsigned long *src,
749 const unsigned long *old, const unsigned long *new,
750 unsigned int nbits)
752 unsigned int oldbit, w;
754 if (dst == src) /* following doesn't handle inplace remaps */
755 return;
756 bitmap_zero(dst, nbits);
758 w = bitmap_weight(new, nbits);
759 for_each_set_bit(oldbit, src, nbits) {
760 int n = bitmap_pos_to_ord(old, oldbit, nbits);
762 if (n < 0 || w == 0)
763 set_bit(oldbit, dst); /* identity map */
764 else
765 set_bit(bitmap_ord_to_pos(new, n % w, nbits), dst);
768 EXPORT_SYMBOL(bitmap_remap);
771 * bitmap_bitremap - Apply map defined by a pair of bitmaps to a single bit
772 * @oldbit: bit position to be mapped
773 * @old: defines domain of map
774 * @new: defines range of map
775 * @bits: number of bits in each of these bitmaps
777 * Let @old and @new define a mapping of bit positions, such that
778 * whatever position is held by the n-th set bit in @old is mapped
779 * to the n-th set bit in @new. In the more general case, allowing
780 * for the possibility that the weight 'w' of @new is less than the
781 * weight of @old, map the position of the n-th set bit in @old to
782 * the position of the m-th set bit in @new, where m == n % w.
784 * The positions of unset bits in @old are mapped to themselves
785 * (the identify map).
787 * Apply the above specified mapping to bit position @oldbit, returning
788 * the new bit position.
790 * For example, lets say that @old has bits 4 through 7 set, and
791 * @new has bits 12 through 15 set. This defines the mapping of bit
792 * position 4 to 12, 5 to 13, 6 to 14 and 7 to 15, and of all other
793 * bit positions unchanged. So if say @oldbit is 5, then this routine
794 * returns 13.
796 int bitmap_bitremap(int oldbit, const unsigned long *old,
797 const unsigned long *new, int bits)
799 int w = bitmap_weight(new, bits);
800 int n = bitmap_pos_to_ord(old, oldbit, bits);
801 if (n < 0 || w == 0)
802 return oldbit;
803 else
804 return bitmap_ord_to_pos(new, n % w, bits);
806 EXPORT_SYMBOL(bitmap_bitremap);
809 * bitmap_onto - translate one bitmap relative to another
810 * @dst: resulting translated bitmap
811 * @orig: original untranslated bitmap
812 * @relmap: bitmap relative to which translated
813 * @bits: number of bits in each of these bitmaps
815 * Set the n-th bit of @dst iff there exists some m such that the
816 * n-th bit of @relmap is set, the m-th bit of @orig is set, and
817 * the n-th bit of @relmap is also the m-th _set_ bit of @relmap.
818 * (If you understood the previous sentence the first time your
819 * read it, you're overqualified for your current job.)
821 * In other words, @orig is mapped onto (surjectively) @dst,
822 * using the map { <n, m> | the n-th bit of @relmap is the
823 * m-th set bit of @relmap }.
825 * Any set bits in @orig above bit number W, where W is the
826 * weight of (number of set bits in) @relmap are mapped nowhere.
827 * In particular, if for all bits m set in @orig, m >= W, then
828 * @dst will end up empty. In situations where the possibility
829 * of such an empty result is not desired, one way to avoid it is
830 * to use the bitmap_fold() operator, below, to first fold the
831 * @orig bitmap over itself so that all its set bits x are in the
832 * range 0 <= x < W. The bitmap_fold() operator does this by
833 * setting the bit (m % W) in @dst, for each bit (m) set in @orig.
835 * Example [1] for bitmap_onto():
836 * Let's say @relmap has bits 30-39 set, and @orig has bits
837 * 1, 3, 5, 7, 9 and 11 set. Then on return from this routine,
838 * @dst will have bits 31, 33, 35, 37 and 39 set.
840 * When bit 0 is set in @orig, it means turn on the bit in
841 * @dst corresponding to whatever is the first bit (if any)
842 * that is turned on in @relmap. Since bit 0 was off in the
843 * above example, we leave off that bit (bit 30) in @dst.
845 * When bit 1 is set in @orig (as in the above example), it
846 * means turn on the bit in @dst corresponding to whatever
847 * is the second bit that is turned on in @relmap. The second
848 * bit in @relmap that was turned on in the above example was
849 * bit 31, so we turned on bit 31 in @dst.
851 * Similarly, we turned on bits 33, 35, 37 and 39 in @dst,
852 * because they were the 4th, 6th, 8th and 10th set bits
853 * set in @relmap, and the 4th, 6th, 8th and 10th bits of
854 * @orig (i.e. bits 3, 5, 7 and 9) were also set.
856 * When bit 11 is set in @orig, it means turn on the bit in
857 * @dst corresponding to whatever is the twelfth bit that is
858 * turned on in @relmap. In the above example, there were
859 * only ten bits turned on in @relmap (30..39), so that bit
860 * 11 was set in @orig had no affect on @dst.
862 * Example [2] for bitmap_fold() + bitmap_onto():
863 * Let's say @relmap has these ten bits set::
865 * 40 41 42 43 45 48 53 61 74 95
867 * (for the curious, that's 40 plus the first ten terms of the
868 * Fibonacci sequence.)
870 * Further lets say we use the following code, invoking
871 * bitmap_fold() then bitmap_onto, as suggested above to
872 * avoid the possibility of an empty @dst result::
874 * unsigned long *tmp; // a temporary bitmap's bits
876 * bitmap_fold(tmp, orig, bitmap_weight(relmap, bits), bits);
877 * bitmap_onto(dst, tmp, relmap, bits);
879 * Then this table shows what various values of @dst would be, for
880 * various @orig's. I list the zero-based positions of each set bit.
881 * The tmp column shows the intermediate result, as computed by
882 * using bitmap_fold() to fold the @orig bitmap modulo ten
883 * (the weight of @relmap):
885 * =============== ============== =================
886 * @orig tmp @dst
887 * 0 0 40
888 * 1 1 41
889 * 9 9 95
890 * 10 0 40 [#f1]_
891 * 1 3 5 7 1 3 5 7 41 43 48 61
892 * 0 1 2 3 4 0 1 2 3 4 40 41 42 43 45
893 * 0 9 18 27 0 9 8 7 40 61 74 95
894 * 0 10 20 30 0 40
895 * 0 11 22 33 0 1 2 3 40 41 42 43
896 * 0 12 24 36 0 2 4 6 40 42 45 53
897 * 78 102 211 1 2 8 41 42 74 [#f1]_
898 * =============== ============== =================
900 * .. [#f1]
902 * For these marked lines, if we hadn't first done bitmap_fold()
903 * into tmp, then the @dst result would have been empty.
905 * If either of @orig or @relmap is empty (no set bits), then @dst
906 * will be returned empty.
908 * If (as explained above) the only set bits in @orig are in positions
909 * m where m >= W, (where W is the weight of @relmap) then @dst will
910 * once again be returned empty.
912 * All bits in @dst not set by the above rule are cleared.
914 void bitmap_onto(unsigned long *dst, const unsigned long *orig,
915 const unsigned long *relmap, unsigned int bits)
917 unsigned int n, m; /* same meaning as in above comment */
919 if (dst == orig) /* following doesn't handle inplace mappings */
920 return;
921 bitmap_zero(dst, bits);
924 * The following code is a more efficient, but less
925 * obvious, equivalent to the loop:
926 * for (m = 0; m < bitmap_weight(relmap, bits); m++) {
927 * n = bitmap_ord_to_pos(orig, m, bits);
928 * if (test_bit(m, orig))
929 * set_bit(n, dst);
933 m = 0;
934 for_each_set_bit(n, relmap, bits) {
935 /* m == bitmap_pos_to_ord(relmap, n, bits) */
936 if (test_bit(m, orig))
937 set_bit(n, dst);
938 m++;
941 EXPORT_SYMBOL(bitmap_onto);
944 * bitmap_fold - fold larger bitmap into smaller, modulo specified size
945 * @dst: resulting smaller bitmap
946 * @orig: original larger bitmap
947 * @sz: specified size
948 * @nbits: number of bits in each of these bitmaps
950 * For each bit oldbit in @orig, set bit oldbit mod @sz in @dst.
951 * Clear all other bits in @dst. See further the comment and
952 * Example [2] for bitmap_onto() for why and how to use this.
954 void bitmap_fold(unsigned long *dst, const unsigned long *orig,
955 unsigned int sz, unsigned int nbits)
957 unsigned int oldbit;
959 if (dst == orig) /* following doesn't handle inplace mappings */
960 return;
961 bitmap_zero(dst, nbits);
963 for_each_set_bit(oldbit, orig, nbits)
964 set_bit(oldbit % sz, dst);
966 EXPORT_SYMBOL(bitmap_fold);
969 * Common code for bitmap_*_region() routines.
970 * bitmap: array of unsigned longs corresponding to the bitmap
971 * pos: the beginning of the region
972 * order: region size (log base 2 of number of bits)
973 * reg_op: operation(s) to perform on that region of bitmap
975 * Can set, verify and/or release a region of bits in a bitmap,
976 * depending on which combination of REG_OP_* flag bits is set.
978 * A region of a bitmap is a sequence of bits in the bitmap, of
979 * some size '1 << order' (a power of two), aligned to that same
980 * '1 << order' power of two.
982 * Returns 1 if REG_OP_ISFREE succeeds (region is all zero bits).
983 * Returns 0 in all other cases and reg_ops.
986 enum {
987 REG_OP_ISFREE, /* true if region is all zero bits */
988 REG_OP_ALLOC, /* set all bits in region */
989 REG_OP_RELEASE, /* clear all bits in region */
992 static int __reg_op(unsigned long *bitmap, unsigned int pos, int order, int reg_op)
994 int nbits_reg; /* number of bits in region */
995 int index; /* index first long of region in bitmap */
996 int offset; /* bit offset region in bitmap[index] */
997 int nlongs_reg; /* num longs spanned by region in bitmap */
998 int nbitsinlong; /* num bits of region in each spanned long */
999 unsigned long mask; /* bitmask for one long of region */
1000 int i; /* scans bitmap by longs */
1001 int ret = 0; /* return value */
1004 * Either nlongs_reg == 1 (for small orders that fit in one long)
1005 * or (offset == 0 && mask == ~0UL) (for larger multiword orders.)
1007 nbits_reg = 1 << order;
1008 index = pos / BITS_PER_LONG;
1009 offset = pos - (index * BITS_PER_LONG);
1010 nlongs_reg = BITS_TO_LONGS(nbits_reg);
1011 nbitsinlong = min(nbits_reg, BITS_PER_LONG);
1014 * Can't do "mask = (1UL << nbitsinlong) - 1", as that
1015 * overflows if nbitsinlong == BITS_PER_LONG.
1017 mask = (1UL << (nbitsinlong - 1));
1018 mask += mask - 1;
1019 mask <<= offset;
1021 switch (reg_op) {
1022 case REG_OP_ISFREE:
1023 for (i = 0; i < nlongs_reg; i++) {
1024 if (bitmap[index + i] & mask)
1025 goto done;
1027 ret = 1; /* all bits in region free (zero) */
1028 break;
1030 case REG_OP_ALLOC:
1031 for (i = 0; i < nlongs_reg; i++)
1032 bitmap[index + i] |= mask;
1033 break;
1035 case REG_OP_RELEASE:
1036 for (i = 0; i < nlongs_reg; i++)
1037 bitmap[index + i] &= ~mask;
1038 break;
1040 done:
1041 return ret;
1045 * bitmap_find_free_region - find a contiguous aligned mem region
1046 * @bitmap: array of unsigned longs corresponding to the bitmap
1047 * @bits: number of bits in the bitmap
1048 * @order: region size (log base 2 of number of bits) to find
1050 * Find a region of free (zero) bits in a @bitmap of @bits bits and
1051 * allocate them (set them to one). Only consider regions of length
1052 * a power (@order) of two, aligned to that power of two, which
1053 * makes the search algorithm much faster.
1055 * Return the bit offset in bitmap of the allocated region,
1056 * or -errno on failure.
1058 int bitmap_find_free_region(unsigned long *bitmap, unsigned int bits, int order)
1060 unsigned int pos, end; /* scans bitmap by regions of size order */
1062 for (pos = 0 ; (end = pos + (1U << order)) <= bits; pos = end) {
1063 if (!__reg_op(bitmap, pos, order, REG_OP_ISFREE))
1064 continue;
1065 __reg_op(bitmap, pos, order, REG_OP_ALLOC);
1066 return pos;
1068 return -ENOMEM;
1070 EXPORT_SYMBOL(bitmap_find_free_region);
1073 * bitmap_release_region - release allocated bitmap region
1074 * @bitmap: array of unsigned longs corresponding to the bitmap
1075 * @pos: beginning of bit region to release
1076 * @order: region size (log base 2 of number of bits) to release
1078 * This is the complement to __bitmap_find_free_region() and releases
1079 * the found region (by clearing it in the bitmap).
1081 * No return value.
1083 void bitmap_release_region(unsigned long *bitmap, unsigned int pos, int order)
1085 __reg_op(bitmap, pos, order, REG_OP_RELEASE);
1087 EXPORT_SYMBOL(bitmap_release_region);
1090 * bitmap_allocate_region - allocate bitmap region
1091 * @bitmap: array of unsigned longs corresponding to the bitmap
1092 * @pos: beginning of bit region to allocate
1093 * @order: region size (log base 2 of number of bits) to allocate
1095 * Allocate (set bits in) a specified region of a bitmap.
1097 * Return 0 on success, or %-EBUSY if specified region wasn't
1098 * free (not all bits were zero).
1100 int bitmap_allocate_region(unsigned long *bitmap, unsigned int pos, int order)
1102 if (!__reg_op(bitmap, pos, order, REG_OP_ISFREE))
1103 return -EBUSY;
1104 return __reg_op(bitmap, pos, order, REG_OP_ALLOC);
1106 EXPORT_SYMBOL(bitmap_allocate_region);
1109 * bitmap_from_u32array - copy the contents of a u32 array of bits to bitmap
1110 * @bitmap: array of unsigned longs, the destination bitmap, non NULL
1111 * @nbits: number of bits in @bitmap
1112 * @buf: array of u32 (in host byte order), the source bitmap, non NULL
1113 * @nwords: number of u32 words in @buf
1115 * copy min(nbits, 32*nwords) bits from @buf to @bitmap, remaining
1116 * bits between nword and nbits in @bitmap (if any) are cleared. In
1117 * last word of @bitmap, the bits beyond nbits (if any) are kept
1118 * unchanged.
1120 * Return the number of bits effectively copied.
1122 unsigned int
1123 bitmap_from_u32array(unsigned long *bitmap, unsigned int nbits,
1124 const u32 *buf, unsigned int nwords)
1126 unsigned int dst_idx, src_idx;
1128 for (src_idx = dst_idx = 0; dst_idx < BITS_TO_LONGS(nbits); ++dst_idx) {
1129 unsigned long part = 0;
1131 if (src_idx < nwords)
1132 part = buf[src_idx++];
1134 #if BITS_PER_LONG == 64
1135 if (src_idx < nwords)
1136 part |= ((unsigned long) buf[src_idx++]) << 32;
1137 #endif
1139 if (dst_idx < nbits/BITS_PER_LONG)
1140 bitmap[dst_idx] = part;
1141 else {
1142 unsigned long mask = BITMAP_LAST_WORD_MASK(nbits);
1144 bitmap[dst_idx] = (bitmap[dst_idx] & ~mask)
1145 | (part & mask);
1149 return min_t(unsigned int, nbits, 32*nwords);
1151 EXPORT_SYMBOL(bitmap_from_u32array);
1154 * bitmap_to_u32array - copy the contents of bitmap to a u32 array of bits
1155 * @buf: array of u32 (in host byte order), the dest bitmap, non NULL
1156 * @nwords: number of u32 words in @buf
1157 * @bitmap: array of unsigned longs, the source bitmap, non NULL
1158 * @nbits: number of bits in @bitmap
1160 * copy min(nbits, 32*nwords) bits from @bitmap to @buf. Remaining
1161 * bits after nbits in @buf (if any) are cleared.
1163 * Return the number of bits effectively copied.
1165 unsigned int
1166 bitmap_to_u32array(u32 *buf, unsigned int nwords,
1167 const unsigned long *bitmap, unsigned int nbits)
1169 unsigned int dst_idx = 0, src_idx = 0;
1171 while (dst_idx < nwords) {
1172 unsigned long part = 0;
1174 if (src_idx < BITS_TO_LONGS(nbits)) {
1175 part = bitmap[src_idx];
1176 if (src_idx >= nbits/BITS_PER_LONG)
1177 part &= BITMAP_LAST_WORD_MASK(nbits);
1178 src_idx++;
1181 buf[dst_idx++] = part & 0xffffffffUL;
1183 #if BITS_PER_LONG == 64
1184 if (dst_idx < nwords) {
1185 part >>= 32;
1186 buf[dst_idx++] = part & 0xffffffffUL;
1188 #endif
1191 return min_t(unsigned int, nbits, 32*nwords);
1193 EXPORT_SYMBOL(bitmap_to_u32array);
1196 * bitmap_copy_le - copy a bitmap, putting the bits into little-endian order.
1197 * @dst: destination buffer
1198 * @src: bitmap to copy
1199 * @nbits: number of bits in the bitmap
1201 * Require nbits % BITS_PER_LONG == 0.
1203 #ifdef __BIG_ENDIAN
1204 void bitmap_copy_le(unsigned long *dst, const unsigned long *src, unsigned int nbits)
1206 unsigned int i;
1208 for (i = 0; i < nbits/BITS_PER_LONG; i++) {
1209 if (BITS_PER_LONG == 64)
1210 dst[i] = cpu_to_le64(src[i]);
1211 else
1212 dst[i] = cpu_to_le32(src[i]);
1215 EXPORT_SYMBOL(bitmap_copy_le);
1216 #endif