irqchip/zevio: Use irq_data_get_chip_type() helper
[linux/fpc-iii.git] / drivers / base / dma-mapping.c
blobd95c5971c2256f20f473d5744b01fc54bbf9acf2
1 /*
2 * drivers/base/dma-mapping.c - arch-independent dma-mapping routines
4 * Copyright (c) 2006 SUSE Linux Products GmbH
5 * Copyright (c) 2006 Tejun Heo <teheo@suse.de>
7 * This file is released under the GPLv2.
8 */
10 #include <linux/dma-mapping.h>
11 #include <linux/export.h>
12 #include <linux/gfp.h>
13 #include <linux/slab.h>
14 #include <linux/vmalloc.h>
15 #include <asm-generic/dma-coherent.h>
18 * Managed DMA API
20 struct dma_devres {
21 size_t size;
22 void *vaddr;
23 dma_addr_t dma_handle;
26 static void dmam_coherent_release(struct device *dev, void *res)
28 struct dma_devres *this = res;
30 dma_free_coherent(dev, this->size, this->vaddr, this->dma_handle);
33 static void dmam_noncoherent_release(struct device *dev, void *res)
35 struct dma_devres *this = res;
37 dma_free_noncoherent(dev, this->size, this->vaddr, this->dma_handle);
40 static int dmam_match(struct device *dev, void *res, void *match_data)
42 struct dma_devres *this = res, *match = match_data;
44 if (this->vaddr == match->vaddr) {
45 WARN_ON(this->size != match->size ||
46 this->dma_handle != match->dma_handle);
47 return 1;
49 return 0;
52 /**
53 * dmam_alloc_coherent - Managed dma_alloc_coherent()
54 * @dev: Device to allocate coherent memory for
55 * @size: Size of allocation
56 * @dma_handle: Out argument for allocated DMA handle
57 * @gfp: Allocation flags
59 * Managed dma_alloc_coherent(). Memory allocated using this function
60 * will be automatically released on driver detach.
62 * RETURNS:
63 * Pointer to allocated memory on success, NULL on failure.
65 void *dmam_alloc_coherent(struct device *dev, size_t size,
66 dma_addr_t *dma_handle, gfp_t gfp)
68 struct dma_devres *dr;
69 void *vaddr;
71 dr = devres_alloc(dmam_coherent_release, sizeof(*dr), gfp);
72 if (!dr)
73 return NULL;
75 vaddr = dma_alloc_coherent(dev, size, dma_handle, gfp);
76 if (!vaddr) {
77 devres_free(dr);
78 return NULL;
81 dr->vaddr = vaddr;
82 dr->dma_handle = *dma_handle;
83 dr->size = size;
85 devres_add(dev, dr);
87 return vaddr;
89 EXPORT_SYMBOL(dmam_alloc_coherent);
91 /**
92 * dmam_free_coherent - Managed dma_free_coherent()
93 * @dev: Device to free coherent memory for
94 * @size: Size of allocation
95 * @vaddr: Virtual address of the memory to free
96 * @dma_handle: DMA handle of the memory to free
98 * Managed dma_free_coherent().
100 void dmam_free_coherent(struct device *dev, size_t size, void *vaddr,
101 dma_addr_t dma_handle)
103 struct dma_devres match_data = { size, vaddr, dma_handle };
105 dma_free_coherent(dev, size, vaddr, dma_handle);
106 WARN_ON(devres_destroy(dev, dmam_coherent_release, dmam_match,
107 &match_data));
109 EXPORT_SYMBOL(dmam_free_coherent);
112 * dmam_alloc_non_coherent - Managed dma_alloc_non_coherent()
113 * @dev: Device to allocate non_coherent memory for
114 * @size: Size of allocation
115 * @dma_handle: Out argument for allocated DMA handle
116 * @gfp: Allocation flags
118 * Managed dma_alloc_non_coherent(). Memory allocated using this
119 * function will be automatically released on driver detach.
121 * RETURNS:
122 * Pointer to allocated memory on success, NULL on failure.
124 void *dmam_alloc_noncoherent(struct device *dev, size_t size,
125 dma_addr_t *dma_handle, gfp_t gfp)
127 struct dma_devres *dr;
128 void *vaddr;
130 dr = devres_alloc(dmam_noncoherent_release, sizeof(*dr), gfp);
131 if (!dr)
132 return NULL;
134 vaddr = dma_alloc_noncoherent(dev, size, dma_handle, gfp);
135 if (!vaddr) {
136 devres_free(dr);
137 return NULL;
140 dr->vaddr = vaddr;
141 dr->dma_handle = *dma_handle;
142 dr->size = size;
144 devres_add(dev, dr);
146 return vaddr;
148 EXPORT_SYMBOL(dmam_alloc_noncoherent);
151 * dmam_free_coherent - Managed dma_free_noncoherent()
152 * @dev: Device to free noncoherent memory for
153 * @size: Size of allocation
154 * @vaddr: Virtual address of the memory to free
155 * @dma_handle: DMA handle of the memory to free
157 * Managed dma_free_noncoherent().
159 void dmam_free_noncoherent(struct device *dev, size_t size, void *vaddr,
160 dma_addr_t dma_handle)
162 struct dma_devres match_data = { size, vaddr, dma_handle };
164 dma_free_noncoherent(dev, size, vaddr, dma_handle);
165 WARN_ON(!devres_destroy(dev, dmam_noncoherent_release, dmam_match,
166 &match_data));
168 EXPORT_SYMBOL(dmam_free_noncoherent);
170 #ifdef ARCH_HAS_DMA_DECLARE_COHERENT_MEMORY
172 static void dmam_coherent_decl_release(struct device *dev, void *res)
174 dma_release_declared_memory(dev);
178 * dmam_declare_coherent_memory - Managed dma_declare_coherent_memory()
179 * @dev: Device to declare coherent memory for
180 * @phys_addr: Physical address of coherent memory to be declared
181 * @device_addr: Device address of coherent memory to be declared
182 * @size: Size of coherent memory to be declared
183 * @flags: Flags
185 * Managed dma_declare_coherent_memory().
187 * RETURNS:
188 * 0 on success, -errno on failure.
190 int dmam_declare_coherent_memory(struct device *dev, phys_addr_t phys_addr,
191 dma_addr_t device_addr, size_t size, int flags)
193 void *res;
194 int rc;
196 res = devres_alloc(dmam_coherent_decl_release, 0, GFP_KERNEL);
197 if (!res)
198 return -ENOMEM;
200 rc = dma_declare_coherent_memory(dev, phys_addr, device_addr, size,
201 flags);
202 if (rc == 0)
203 devres_add(dev, res);
204 else
205 devres_free(res);
207 return rc;
209 EXPORT_SYMBOL(dmam_declare_coherent_memory);
212 * dmam_release_declared_memory - Managed dma_release_declared_memory().
213 * @dev: Device to release declared coherent memory for
215 * Managed dmam_release_declared_memory().
217 void dmam_release_declared_memory(struct device *dev)
219 WARN_ON(devres_destroy(dev, dmam_coherent_decl_release, NULL, NULL));
221 EXPORT_SYMBOL(dmam_release_declared_memory);
223 #endif
226 * Create scatter-list for the already allocated DMA buffer.
228 int dma_common_get_sgtable(struct device *dev, struct sg_table *sgt,
229 void *cpu_addr, dma_addr_t handle, size_t size)
231 struct page *page = virt_to_page(cpu_addr);
232 int ret;
234 ret = sg_alloc_table(sgt, 1, GFP_KERNEL);
235 if (unlikely(ret))
236 return ret;
238 sg_set_page(sgt->sgl, page, PAGE_ALIGN(size), 0);
239 return 0;
241 EXPORT_SYMBOL(dma_common_get_sgtable);
244 * Create userspace mapping for the DMA-coherent memory.
246 int dma_common_mmap(struct device *dev, struct vm_area_struct *vma,
247 void *cpu_addr, dma_addr_t dma_addr, size_t size)
249 int ret = -ENXIO;
250 #ifdef CONFIG_MMU
251 unsigned long user_count = (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
252 unsigned long count = PAGE_ALIGN(size) >> PAGE_SHIFT;
253 unsigned long pfn = page_to_pfn(virt_to_page(cpu_addr));
254 unsigned long off = vma->vm_pgoff;
256 vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
258 if (dma_mmap_from_coherent(dev, vma, cpu_addr, size, &ret))
259 return ret;
261 if (off < count && user_count <= (count - off)) {
262 ret = remap_pfn_range(vma, vma->vm_start,
263 pfn + off,
264 user_count << PAGE_SHIFT,
265 vma->vm_page_prot);
267 #endif /* CONFIG_MMU */
269 return ret;
271 EXPORT_SYMBOL(dma_common_mmap);
273 #ifdef CONFIG_MMU
275 * remaps an array of PAGE_SIZE pages into another vm_area
276 * Cannot be used in non-sleeping contexts
278 void *dma_common_pages_remap(struct page **pages, size_t size,
279 unsigned long vm_flags, pgprot_t prot,
280 const void *caller)
282 struct vm_struct *area;
284 area = get_vm_area_caller(size, vm_flags, caller);
285 if (!area)
286 return NULL;
288 area->pages = pages;
290 if (map_vm_area(area, prot, pages)) {
291 vunmap(area->addr);
292 return NULL;
295 return area->addr;
299 * remaps an allocated contiguous region into another vm_area.
300 * Cannot be used in non-sleeping contexts
303 void *dma_common_contiguous_remap(struct page *page, size_t size,
304 unsigned long vm_flags,
305 pgprot_t prot, const void *caller)
307 int i;
308 struct page **pages;
309 void *ptr;
310 unsigned long pfn;
312 pages = kmalloc(sizeof(struct page *) << get_order(size), GFP_KERNEL);
313 if (!pages)
314 return NULL;
316 for (i = 0, pfn = page_to_pfn(page); i < (size >> PAGE_SHIFT); i++)
317 pages[i] = pfn_to_page(pfn + i);
319 ptr = dma_common_pages_remap(pages, size, vm_flags, prot, caller);
321 kfree(pages);
323 return ptr;
327 * unmaps a range previously mapped by dma_common_*_remap
329 void dma_common_free_remap(void *cpu_addr, size_t size, unsigned long vm_flags)
331 struct vm_struct *area = find_vm_area(cpu_addr);
333 if (!area || (area->flags & vm_flags) != vm_flags) {
334 WARN(1, "trying to free invalid coherent area: %p\n", cpu_addr);
335 return;
338 unmap_kernel_range((unsigned long)cpu_addr, size);
339 vunmap(cpu_addr);
341 #endif