irqchip/zevio: Use irq_data_get_chip_type() helper
[linux/fpc-iii.git] / drivers / base / regmap / regmap-irq.c
blob8d16db533527362efa638f67b69673607d069327
1 /*
2 * regmap based irq_chip
4 * Copyright 2011 Wolfson Microelectronics plc
6 * Author: Mark Brown <broonie@opensource.wolfsonmicro.com>
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License version 2 as
10 * published by the Free Software Foundation.
13 #include <linux/device.h>
14 #include <linux/export.h>
15 #include <linux/interrupt.h>
16 #include <linux/irq.h>
17 #include <linux/irqdomain.h>
18 #include <linux/pm_runtime.h>
19 #include <linux/regmap.h>
20 #include <linux/slab.h>
22 #include "internal.h"
24 struct regmap_irq_chip_data {
25 struct mutex lock;
26 struct irq_chip irq_chip;
28 struct regmap *map;
29 const struct regmap_irq_chip *chip;
31 int irq_base;
32 struct irq_domain *domain;
34 int irq;
35 int wake_count;
37 void *status_reg_buf;
38 unsigned int *status_buf;
39 unsigned int *mask_buf;
40 unsigned int *mask_buf_def;
41 unsigned int *wake_buf;
43 unsigned int irq_reg_stride;
46 static inline const
47 struct regmap_irq *irq_to_regmap_irq(struct regmap_irq_chip_data *data,
48 int irq)
50 return &data->chip->irqs[irq];
53 static void regmap_irq_lock(struct irq_data *data)
55 struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
57 mutex_lock(&d->lock);
60 static void regmap_irq_sync_unlock(struct irq_data *data)
62 struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
63 struct regmap *map = d->map;
64 int i, ret;
65 u32 reg;
66 u32 unmask_offset;
68 if (d->chip->runtime_pm) {
69 ret = pm_runtime_get_sync(map->dev);
70 if (ret < 0)
71 dev_err(map->dev, "IRQ sync failed to resume: %d\n",
72 ret);
76 * If there's been a change in the mask write it back to the
77 * hardware. We rely on the use of the regmap core cache to
78 * suppress pointless writes.
80 for (i = 0; i < d->chip->num_regs; i++) {
81 reg = d->chip->mask_base +
82 (i * map->reg_stride * d->irq_reg_stride);
83 if (d->chip->mask_invert) {
84 ret = regmap_update_bits(d->map, reg,
85 d->mask_buf_def[i], ~d->mask_buf[i]);
86 } else if (d->chip->unmask_base) {
87 /* set mask with mask_base register */
88 ret = regmap_update_bits(d->map, reg,
89 d->mask_buf_def[i], ~d->mask_buf[i]);
90 if (ret < 0)
91 dev_err(d->map->dev,
92 "Failed to sync unmasks in %x\n",
93 reg);
94 unmask_offset = d->chip->unmask_base -
95 d->chip->mask_base;
96 /* clear mask with unmask_base register */
97 ret = regmap_update_bits(d->map,
98 reg + unmask_offset,
99 d->mask_buf_def[i],
100 d->mask_buf[i]);
101 } else {
102 ret = regmap_update_bits(d->map, reg,
103 d->mask_buf_def[i], d->mask_buf[i]);
105 if (ret != 0)
106 dev_err(d->map->dev, "Failed to sync masks in %x\n",
107 reg);
109 reg = d->chip->wake_base +
110 (i * map->reg_stride * d->irq_reg_stride);
111 if (d->wake_buf) {
112 if (d->chip->wake_invert)
113 ret = regmap_update_bits(d->map, reg,
114 d->mask_buf_def[i],
115 ~d->wake_buf[i]);
116 else
117 ret = regmap_update_bits(d->map, reg,
118 d->mask_buf_def[i],
119 d->wake_buf[i]);
120 if (ret != 0)
121 dev_err(d->map->dev,
122 "Failed to sync wakes in %x: %d\n",
123 reg, ret);
126 if (!d->chip->init_ack_masked)
127 continue;
129 * Ack all the masked interrupts unconditionally,
130 * OR if there is masked interrupt which hasn't been Acked,
131 * it'll be ignored in irq handler, then may introduce irq storm
133 if (d->mask_buf[i] && (d->chip->ack_base || d->chip->use_ack)) {
134 reg = d->chip->ack_base +
135 (i * map->reg_stride * d->irq_reg_stride);
136 /* some chips ack by write 0 */
137 if (d->chip->ack_invert)
138 ret = regmap_write(map, reg, ~d->mask_buf[i]);
139 else
140 ret = regmap_write(map, reg, d->mask_buf[i]);
141 if (ret != 0)
142 dev_err(d->map->dev, "Failed to ack 0x%x: %d\n",
143 reg, ret);
147 if (d->chip->runtime_pm)
148 pm_runtime_put(map->dev);
150 /* If we've changed our wakeup count propagate it to the parent */
151 if (d->wake_count < 0)
152 for (i = d->wake_count; i < 0; i++)
153 irq_set_irq_wake(d->irq, 0);
154 else if (d->wake_count > 0)
155 for (i = 0; i < d->wake_count; i++)
156 irq_set_irq_wake(d->irq, 1);
158 d->wake_count = 0;
160 mutex_unlock(&d->lock);
163 static void regmap_irq_enable(struct irq_data *data)
165 struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
166 struct regmap *map = d->map;
167 const struct regmap_irq *irq_data = irq_to_regmap_irq(d, data->hwirq);
169 d->mask_buf[irq_data->reg_offset / map->reg_stride] &= ~irq_data->mask;
172 static void regmap_irq_disable(struct irq_data *data)
174 struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
175 struct regmap *map = d->map;
176 const struct regmap_irq *irq_data = irq_to_regmap_irq(d, data->hwirq);
178 d->mask_buf[irq_data->reg_offset / map->reg_stride] |= irq_data->mask;
181 static int regmap_irq_set_wake(struct irq_data *data, unsigned int on)
183 struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
184 struct regmap *map = d->map;
185 const struct regmap_irq *irq_data = irq_to_regmap_irq(d, data->hwirq);
187 if (on) {
188 if (d->wake_buf)
189 d->wake_buf[irq_data->reg_offset / map->reg_stride]
190 &= ~irq_data->mask;
191 d->wake_count++;
192 } else {
193 if (d->wake_buf)
194 d->wake_buf[irq_data->reg_offset / map->reg_stride]
195 |= irq_data->mask;
196 d->wake_count--;
199 return 0;
202 static const struct irq_chip regmap_irq_chip = {
203 .irq_bus_lock = regmap_irq_lock,
204 .irq_bus_sync_unlock = regmap_irq_sync_unlock,
205 .irq_disable = regmap_irq_disable,
206 .irq_enable = regmap_irq_enable,
207 .irq_set_wake = regmap_irq_set_wake,
210 static irqreturn_t regmap_irq_thread(int irq, void *d)
212 struct regmap_irq_chip_data *data = d;
213 const struct regmap_irq_chip *chip = data->chip;
214 struct regmap *map = data->map;
215 int ret, i;
216 bool handled = false;
217 u32 reg;
219 if (chip->runtime_pm) {
220 ret = pm_runtime_get_sync(map->dev);
221 if (ret < 0) {
222 dev_err(map->dev, "IRQ thread failed to resume: %d\n",
223 ret);
224 pm_runtime_put(map->dev);
225 return IRQ_NONE;
230 * Read in the statuses, using a single bulk read if possible
231 * in order to reduce the I/O overheads.
233 if (!map->use_single_read && map->reg_stride == 1 &&
234 data->irq_reg_stride == 1) {
235 u8 *buf8 = data->status_reg_buf;
236 u16 *buf16 = data->status_reg_buf;
237 u32 *buf32 = data->status_reg_buf;
239 BUG_ON(!data->status_reg_buf);
241 ret = regmap_bulk_read(map, chip->status_base,
242 data->status_reg_buf,
243 chip->num_regs);
244 if (ret != 0) {
245 dev_err(map->dev, "Failed to read IRQ status: %d\n",
246 ret);
247 return IRQ_NONE;
250 for (i = 0; i < data->chip->num_regs; i++) {
251 switch (map->format.val_bytes) {
252 case 1:
253 data->status_buf[i] = buf8[i];
254 break;
255 case 2:
256 data->status_buf[i] = buf16[i];
257 break;
258 case 4:
259 data->status_buf[i] = buf32[i];
260 break;
261 default:
262 BUG();
263 return IRQ_NONE;
267 } else {
268 for (i = 0; i < data->chip->num_regs; i++) {
269 ret = regmap_read(map, chip->status_base +
270 (i * map->reg_stride
271 * data->irq_reg_stride),
272 &data->status_buf[i]);
274 if (ret != 0) {
275 dev_err(map->dev,
276 "Failed to read IRQ status: %d\n",
277 ret);
278 if (chip->runtime_pm)
279 pm_runtime_put(map->dev);
280 return IRQ_NONE;
286 * Ignore masked IRQs and ack if we need to; we ack early so
287 * there is no race between handling and acknowleding the
288 * interrupt. We assume that typically few of the interrupts
289 * will fire simultaneously so don't worry about overhead from
290 * doing a write per register.
292 for (i = 0; i < data->chip->num_regs; i++) {
293 data->status_buf[i] &= ~data->mask_buf[i];
295 if (data->status_buf[i] && (chip->ack_base || chip->use_ack)) {
296 reg = chip->ack_base +
297 (i * map->reg_stride * data->irq_reg_stride);
298 ret = regmap_write(map, reg, data->status_buf[i]);
299 if (ret != 0)
300 dev_err(map->dev, "Failed to ack 0x%x: %d\n",
301 reg, ret);
305 for (i = 0; i < chip->num_irqs; i++) {
306 if (data->status_buf[chip->irqs[i].reg_offset /
307 map->reg_stride] & chip->irqs[i].mask) {
308 handle_nested_irq(irq_find_mapping(data->domain, i));
309 handled = true;
313 if (chip->runtime_pm)
314 pm_runtime_put(map->dev);
316 if (handled)
317 return IRQ_HANDLED;
318 else
319 return IRQ_NONE;
322 static int regmap_irq_map(struct irq_domain *h, unsigned int virq,
323 irq_hw_number_t hw)
325 struct regmap_irq_chip_data *data = h->host_data;
327 irq_set_chip_data(virq, data);
328 irq_set_chip(virq, &data->irq_chip);
329 irq_set_nested_thread(virq, 1);
330 irq_set_noprobe(virq);
332 return 0;
335 static const struct irq_domain_ops regmap_domain_ops = {
336 .map = regmap_irq_map,
337 .xlate = irq_domain_xlate_twocell,
341 * regmap_add_irq_chip(): Use standard regmap IRQ controller handling
343 * map: The regmap for the device.
344 * irq: The IRQ the device uses to signal interrupts
345 * irq_flags: The IRQF_ flags to use for the primary interrupt.
346 * chip: Configuration for the interrupt controller.
347 * data: Runtime data structure for the controller, allocated on success
349 * Returns 0 on success or an errno on failure.
351 * In order for this to be efficient the chip really should use a
352 * register cache. The chip driver is responsible for restoring the
353 * register values used by the IRQ controller over suspend and resume.
355 int regmap_add_irq_chip(struct regmap *map, int irq, int irq_flags,
356 int irq_base, const struct regmap_irq_chip *chip,
357 struct regmap_irq_chip_data **data)
359 struct regmap_irq_chip_data *d;
360 int i;
361 int ret = -ENOMEM;
362 u32 reg;
363 u32 unmask_offset;
365 if (chip->num_regs <= 0)
366 return -EINVAL;
368 for (i = 0; i < chip->num_irqs; i++) {
369 if (chip->irqs[i].reg_offset % map->reg_stride)
370 return -EINVAL;
371 if (chip->irqs[i].reg_offset / map->reg_stride >=
372 chip->num_regs)
373 return -EINVAL;
376 if (irq_base) {
377 irq_base = irq_alloc_descs(irq_base, 0, chip->num_irqs, 0);
378 if (irq_base < 0) {
379 dev_warn(map->dev, "Failed to allocate IRQs: %d\n",
380 irq_base);
381 return irq_base;
385 d = kzalloc(sizeof(*d), GFP_KERNEL);
386 if (!d)
387 return -ENOMEM;
389 d->status_buf = kzalloc(sizeof(unsigned int) * chip->num_regs,
390 GFP_KERNEL);
391 if (!d->status_buf)
392 goto err_alloc;
394 d->mask_buf = kzalloc(sizeof(unsigned int) * chip->num_regs,
395 GFP_KERNEL);
396 if (!d->mask_buf)
397 goto err_alloc;
399 d->mask_buf_def = kzalloc(sizeof(unsigned int) * chip->num_regs,
400 GFP_KERNEL);
401 if (!d->mask_buf_def)
402 goto err_alloc;
404 if (chip->wake_base) {
405 d->wake_buf = kzalloc(sizeof(unsigned int) * chip->num_regs,
406 GFP_KERNEL);
407 if (!d->wake_buf)
408 goto err_alloc;
411 d->irq_chip = regmap_irq_chip;
412 d->irq_chip.name = chip->name;
413 d->irq = irq;
414 d->map = map;
415 d->chip = chip;
416 d->irq_base = irq_base;
418 if (chip->irq_reg_stride)
419 d->irq_reg_stride = chip->irq_reg_stride;
420 else
421 d->irq_reg_stride = 1;
423 if (!map->use_single_read && map->reg_stride == 1 &&
424 d->irq_reg_stride == 1) {
425 d->status_reg_buf = kmalloc(map->format.val_bytes *
426 chip->num_regs, GFP_KERNEL);
427 if (!d->status_reg_buf)
428 goto err_alloc;
431 mutex_init(&d->lock);
433 for (i = 0; i < chip->num_irqs; i++)
434 d->mask_buf_def[chip->irqs[i].reg_offset / map->reg_stride]
435 |= chip->irqs[i].mask;
437 /* Mask all the interrupts by default */
438 for (i = 0; i < chip->num_regs; i++) {
439 d->mask_buf[i] = d->mask_buf_def[i];
440 reg = chip->mask_base +
441 (i * map->reg_stride * d->irq_reg_stride);
442 if (chip->mask_invert)
443 ret = regmap_update_bits(map, reg,
444 d->mask_buf[i], ~d->mask_buf[i]);
445 else if (d->chip->unmask_base) {
446 unmask_offset = d->chip->unmask_base -
447 d->chip->mask_base;
448 ret = regmap_update_bits(d->map,
449 reg + unmask_offset,
450 d->mask_buf[i],
451 d->mask_buf[i]);
452 } else
453 ret = regmap_update_bits(map, reg,
454 d->mask_buf[i], d->mask_buf[i]);
455 if (ret != 0) {
456 dev_err(map->dev, "Failed to set masks in 0x%x: %d\n",
457 reg, ret);
458 goto err_alloc;
461 if (!chip->init_ack_masked)
462 continue;
464 /* Ack masked but set interrupts */
465 reg = chip->status_base +
466 (i * map->reg_stride * d->irq_reg_stride);
467 ret = regmap_read(map, reg, &d->status_buf[i]);
468 if (ret != 0) {
469 dev_err(map->dev, "Failed to read IRQ status: %d\n",
470 ret);
471 goto err_alloc;
474 if (d->status_buf[i] && (chip->ack_base || chip->use_ack)) {
475 reg = chip->ack_base +
476 (i * map->reg_stride * d->irq_reg_stride);
477 if (chip->ack_invert)
478 ret = regmap_write(map, reg,
479 ~(d->status_buf[i] & d->mask_buf[i]));
480 else
481 ret = regmap_write(map, reg,
482 d->status_buf[i] & d->mask_buf[i]);
483 if (ret != 0) {
484 dev_err(map->dev, "Failed to ack 0x%x: %d\n",
485 reg, ret);
486 goto err_alloc;
491 /* Wake is disabled by default */
492 if (d->wake_buf) {
493 for (i = 0; i < chip->num_regs; i++) {
494 d->wake_buf[i] = d->mask_buf_def[i];
495 reg = chip->wake_base +
496 (i * map->reg_stride * d->irq_reg_stride);
498 if (chip->wake_invert)
499 ret = regmap_update_bits(map, reg,
500 d->mask_buf_def[i],
502 else
503 ret = regmap_update_bits(map, reg,
504 d->mask_buf_def[i],
505 d->wake_buf[i]);
506 if (ret != 0) {
507 dev_err(map->dev, "Failed to set masks in 0x%x: %d\n",
508 reg, ret);
509 goto err_alloc;
514 if (irq_base)
515 d->domain = irq_domain_add_legacy(map->dev->of_node,
516 chip->num_irqs, irq_base, 0,
517 &regmap_domain_ops, d);
518 else
519 d->domain = irq_domain_add_linear(map->dev->of_node,
520 chip->num_irqs,
521 &regmap_domain_ops, d);
522 if (!d->domain) {
523 dev_err(map->dev, "Failed to create IRQ domain\n");
524 ret = -ENOMEM;
525 goto err_alloc;
528 ret = request_threaded_irq(irq, NULL, regmap_irq_thread,
529 irq_flags | IRQF_ONESHOT,
530 chip->name, d);
531 if (ret != 0) {
532 dev_err(map->dev, "Failed to request IRQ %d for %s: %d\n",
533 irq, chip->name, ret);
534 goto err_domain;
537 *data = d;
539 return 0;
541 err_domain:
542 /* Should really dispose of the domain but... */
543 err_alloc:
544 kfree(d->wake_buf);
545 kfree(d->mask_buf_def);
546 kfree(d->mask_buf);
547 kfree(d->status_buf);
548 kfree(d->status_reg_buf);
549 kfree(d);
550 return ret;
552 EXPORT_SYMBOL_GPL(regmap_add_irq_chip);
555 * regmap_del_irq_chip(): Stop interrupt handling for a regmap IRQ chip
557 * @irq: Primary IRQ for the device
558 * @d: regmap_irq_chip_data allocated by regmap_add_irq_chip()
560 void regmap_del_irq_chip(int irq, struct regmap_irq_chip_data *d)
562 if (!d)
563 return;
565 free_irq(irq, d);
566 irq_domain_remove(d->domain);
567 kfree(d->wake_buf);
568 kfree(d->mask_buf_def);
569 kfree(d->mask_buf);
570 kfree(d->status_reg_buf);
571 kfree(d->status_buf);
572 kfree(d);
574 EXPORT_SYMBOL_GPL(regmap_del_irq_chip);
577 * regmap_irq_chip_get_base(): Retrieve interrupt base for a regmap IRQ chip
579 * Useful for drivers to request their own IRQs.
581 * @data: regmap_irq controller to operate on.
583 int regmap_irq_chip_get_base(struct regmap_irq_chip_data *data)
585 WARN_ON(!data->irq_base);
586 return data->irq_base;
588 EXPORT_SYMBOL_GPL(regmap_irq_chip_get_base);
591 * regmap_irq_get_virq(): Map an interrupt on a chip to a virtual IRQ
593 * Useful for drivers to request their own IRQs.
595 * @data: regmap_irq controller to operate on.
596 * @irq: index of the interrupt requested in the chip IRQs
598 int regmap_irq_get_virq(struct regmap_irq_chip_data *data, int irq)
600 /* Handle holes in the IRQ list */
601 if (!data->chip->irqs[irq].mask)
602 return -EINVAL;
604 return irq_create_mapping(data->domain, irq);
606 EXPORT_SYMBOL_GPL(regmap_irq_get_virq);
609 * regmap_irq_get_domain(): Retrieve the irq_domain for the chip
611 * Useful for drivers to request their own IRQs and for integration
612 * with subsystems. For ease of integration NULL is accepted as a
613 * domain, allowing devices to just call this even if no domain is
614 * allocated.
616 * @data: regmap_irq controller to operate on.
618 struct irq_domain *regmap_irq_get_domain(struct regmap_irq_chip_data *data)
620 if (data)
621 return data->domain;
622 else
623 return NULL;
625 EXPORT_SYMBOL_GPL(regmap_irq_get_domain);