irqchip/zevio: Use irq_data_get_chip_type() helper
[linux/fpc-iii.git] / drivers / char / mem.c
blob6b1721f978c2945f4af716636c8373fe8807dca0
1 /*
2 * linux/drivers/char/mem.c
4 * Copyright (C) 1991, 1992 Linus Torvalds
6 * Added devfs support.
7 * Jan-11-1998, C. Scott Ananian <cananian@alumni.princeton.edu>
8 * Shared /dev/zero mmapping support, Feb 2000, Kanoj Sarcar <kanoj@sgi.com>
9 */
11 #include <linux/mm.h>
12 #include <linux/miscdevice.h>
13 #include <linux/slab.h>
14 #include <linux/vmalloc.h>
15 #include <linux/mman.h>
16 #include <linux/random.h>
17 #include <linux/init.h>
18 #include <linux/raw.h>
19 #include <linux/tty.h>
20 #include <linux/capability.h>
21 #include <linux/ptrace.h>
22 #include <linux/device.h>
23 #include <linux/highmem.h>
24 #include <linux/backing-dev.h>
25 #include <linux/splice.h>
26 #include <linux/pfn.h>
27 #include <linux/export.h>
28 #include <linux/io.h>
29 #include <linux/uio.h>
31 #include <linux/uaccess.h>
33 #ifdef CONFIG_IA64
34 # include <linux/efi.h>
35 #endif
37 #define DEVPORT_MINOR 4
39 static inline unsigned long size_inside_page(unsigned long start,
40 unsigned long size)
42 unsigned long sz;
44 sz = PAGE_SIZE - (start & (PAGE_SIZE - 1));
46 return min(sz, size);
49 #ifndef ARCH_HAS_VALID_PHYS_ADDR_RANGE
50 static inline int valid_phys_addr_range(phys_addr_t addr, size_t count)
52 return addr + count <= __pa(high_memory);
55 static inline int valid_mmap_phys_addr_range(unsigned long pfn, size_t size)
57 return 1;
59 #endif
61 #ifdef CONFIG_STRICT_DEVMEM
62 static inline int range_is_allowed(unsigned long pfn, unsigned long size)
64 u64 from = ((u64)pfn) << PAGE_SHIFT;
65 u64 to = from + size;
66 u64 cursor = from;
68 while (cursor < to) {
69 if (!devmem_is_allowed(pfn)) {
70 printk(KERN_INFO
71 "Program %s tried to access /dev/mem between %Lx->%Lx.\n",
72 current->comm, from, to);
73 return 0;
75 cursor += PAGE_SIZE;
76 pfn++;
78 return 1;
80 #else
81 static inline int range_is_allowed(unsigned long pfn, unsigned long size)
83 return 1;
85 #endif
87 #ifndef unxlate_dev_mem_ptr
88 #define unxlate_dev_mem_ptr unxlate_dev_mem_ptr
89 void __weak unxlate_dev_mem_ptr(phys_addr_t phys, void *addr)
92 #endif
95 * This funcion reads the *physical* memory. The f_pos points directly to the
96 * memory location.
98 static ssize_t read_mem(struct file *file, char __user *buf,
99 size_t count, loff_t *ppos)
101 phys_addr_t p = *ppos;
102 ssize_t read, sz;
103 void *ptr;
105 if (p != *ppos)
106 return 0;
108 if (!valid_phys_addr_range(p, count))
109 return -EFAULT;
110 read = 0;
111 #ifdef __ARCH_HAS_NO_PAGE_ZERO_MAPPED
112 /* we don't have page 0 mapped on sparc and m68k.. */
113 if (p < PAGE_SIZE) {
114 sz = size_inside_page(p, count);
115 if (sz > 0) {
116 if (clear_user(buf, sz))
117 return -EFAULT;
118 buf += sz;
119 p += sz;
120 count -= sz;
121 read += sz;
124 #endif
126 while (count > 0) {
127 unsigned long remaining;
129 sz = size_inside_page(p, count);
131 if (!range_is_allowed(p >> PAGE_SHIFT, count))
132 return -EPERM;
135 * On ia64 if a page has been mapped somewhere as uncached, then
136 * it must also be accessed uncached by the kernel or data
137 * corruption may occur.
139 ptr = xlate_dev_mem_ptr(p);
140 if (!ptr)
141 return -EFAULT;
143 remaining = copy_to_user(buf, ptr, sz);
144 unxlate_dev_mem_ptr(p, ptr);
145 if (remaining)
146 return -EFAULT;
148 buf += sz;
149 p += sz;
150 count -= sz;
151 read += sz;
154 *ppos += read;
155 return read;
158 static ssize_t write_mem(struct file *file, const char __user *buf,
159 size_t count, loff_t *ppos)
161 phys_addr_t p = *ppos;
162 ssize_t written, sz;
163 unsigned long copied;
164 void *ptr;
166 if (p != *ppos)
167 return -EFBIG;
169 if (!valid_phys_addr_range(p, count))
170 return -EFAULT;
172 written = 0;
174 #ifdef __ARCH_HAS_NO_PAGE_ZERO_MAPPED
175 /* we don't have page 0 mapped on sparc and m68k.. */
176 if (p < PAGE_SIZE) {
177 sz = size_inside_page(p, count);
178 /* Hmm. Do something? */
179 buf += sz;
180 p += sz;
181 count -= sz;
182 written += sz;
184 #endif
186 while (count > 0) {
187 sz = size_inside_page(p, count);
189 if (!range_is_allowed(p >> PAGE_SHIFT, sz))
190 return -EPERM;
193 * On ia64 if a page has been mapped somewhere as uncached, then
194 * it must also be accessed uncached by the kernel or data
195 * corruption may occur.
197 ptr = xlate_dev_mem_ptr(p);
198 if (!ptr) {
199 if (written)
200 break;
201 return -EFAULT;
204 copied = copy_from_user(ptr, buf, sz);
205 unxlate_dev_mem_ptr(p, ptr);
206 if (copied) {
207 written += sz - copied;
208 if (written)
209 break;
210 return -EFAULT;
213 buf += sz;
214 p += sz;
215 count -= sz;
216 written += sz;
219 *ppos += written;
220 return written;
223 int __weak phys_mem_access_prot_allowed(struct file *file,
224 unsigned long pfn, unsigned long size, pgprot_t *vma_prot)
226 return 1;
229 #ifndef __HAVE_PHYS_MEM_ACCESS_PROT
232 * Architectures vary in how they handle caching for addresses
233 * outside of main memory.
236 #ifdef pgprot_noncached
237 static int uncached_access(struct file *file, phys_addr_t addr)
239 #if defined(CONFIG_IA64)
241 * On ia64, we ignore O_DSYNC because we cannot tolerate memory
242 * attribute aliases.
244 return !(efi_mem_attributes(addr) & EFI_MEMORY_WB);
245 #elif defined(CONFIG_MIPS)
247 extern int __uncached_access(struct file *file,
248 unsigned long addr);
250 return __uncached_access(file, addr);
252 #else
254 * Accessing memory above the top the kernel knows about or through a
255 * file pointer
256 * that was marked O_DSYNC will be done non-cached.
258 if (file->f_flags & O_DSYNC)
259 return 1;
260 return addr >= __pa(high_memory);
261 #endif
263 #endif
265 static pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn,
266 unsigned long size, pgprot_t vma_prot)
268 #ifdef pgprot_noncached
269 phys_addr_t offset = pfn << PAGE_SHIFT;
271 if (uncached_access(file, offset))
272 return pgprot_noncached(vma_prot);
273 #endif
274 return vma_prot;
276 #endif
278 #ifndef CONFIG_MMU
279 static unsigned long get_unmapped_area_mem(struct file *file,
280 unsigned long addr,
281 unsigned long len,
282 unsigned long pgoff,
283 unsigned long flags)
285 if (!valid_mmap_phys_addr_range(pgoff, len))
286 return (unsigned long) -EINVAL;
287 return pgoff << PAGE_SHIFT;
290 /* permit direct mmap, for read, write or exec */
291 static unsigned memory_mmap_capabilities(struct file *file)
293 return NOMMU_MAP_DIRECT |
294 NOMMU_MAP_READ | NOMMU_MAP_WRITE | NOMMU_MAP_EXEC;
297 static unsigned zero_mmap_capabilities(struct file *file)
299 return NOMMU_MAP_COPY;
302 /* can't do an in-place private mapping if there's no MMU */
303 static inline int private_mapping_ok(struct vm_area_struct *vma)
305 return vma->vm_flags & VM_MAYSHARE;
307 #else
309 static inline int private_mapping_ok(struct vm_area_struct *vma)
311 return 1;
313 #endif
315 static const struct vm_operations_struct mmap_mem_ops = {
316 #ifdef CONFIG_HAVE_IOREMAP_PROT
317 .access = generic_access_phys
318 #endif
321 static int mmap_mem(struct file *file, struct vm_area_struct *vma)
323 size_t size = vma->vm_end - vma->vm_start;
325 if (!valid_mmap_phys_addr_range(vma->vm_pgoff, size))
326 return -EINVAL;
328 if (!private_mapping_ok(vma))
329 return -ENOSYS;
331 if (!range_is_allowed(vma->vm_pgoff, size))
332 return -EPERM;
334 if (!phys_mem_access_prot_allowed(file, vma->vm_pgoff, size,
335 &vma->vm_page_prot))
336 return -EINVAL;
338 vma->vm_page_prot = phys_mem_access_prot(file, vma->vm_pgoff,
339 size,
340 vma->vm_page_prot);
342 vma->vm_ops = &mmap_mem_ops;
344 /* Remap-pfn-range will mark the range VM_IO */
345 if (remap_pfn_range(vma,
346 vma->vm_start,
347 vma->vm_pgoff,
348 size,
349 vma->vm_page_prot)) {
350 return -EAGAIN;
352 return 0;
355 static int mmap_kmem(struct file *file, struct vm_area_struct *vma)
357 unsigned long pfn;
359 /* Turn a kernel-virtual address into a physical page frame */
360 pfn = __pa((u64)vma->vm_pgoff << PAGE_SHIFT) >> PAGE_SHIFT;
363 * RED-PEN: on some architectures there is more mapped memory than
364 * available in mem_map which pfn_valid checks for. Perhaps should add a
365 * new macro here.
367 * RED-PEN: vmalloc is not supported right now.
369 if (!pfn_valid(pfn))
370 return -EIO;
372 vma->vm_pgoff = pfn;
373 return mmap_mem(file, vma);
377 * This function reads the *virtual* memory as seen by the kernel.
379 static ssize_t read_kmem(struct file *file, char __user *buf,
380 size_t count, loff_t *ppos)
382 unsigned long p = *ppos;
383 ssize_t low_count, read, sz;
384 char *kbuf; /* k-addr because vread() takes vmlist_lock rwlock */
385 int err = 0;
387 read = 0;
388 if (p < (unsigned long) high_memory) {
389 low_count = count;
390 if (count > (unsigned long)high_memory - p)
391 low_count = (unsigned long)high_memory - p;
393 #ifdef __ARCH_HAS_NO_PAGE_ZERO_MAPPED
394 /* we don't have page 0 mapped on sparc and m68k.. */
395 if (p < PAGE_SIZE && low_count > 0) {
396 sz = size_inside_page(p, low_count);
397 if (clear_user(buf, sz))
398 return -EFAULT;
399 buf += sz;
400 p += sz;
401 read += sz;
402 low_count -= sz;
403 count -= sz;
405 #endif
406 while (low_count > 0) {
407 sz = size_inside_page(p, low_count);
410 * On ia64 if a page has been mapped somewhere as
411 * uncached, then it must also be accessed uncached
412 * by the kernel or data corruption may occur
414 kbuf = xlate_dev_kmem_ptr((void *)p);
416 if (copy_to_user(buf, kbuf, sz))
417 return -EFAULT;
418 buf += sz;
419 p += sz;
420 read += sz;
421 low_count -= sz;
422 count -= sz;
426 if (count > 0) {
427 kbuf = (char *)__get_free_page(GFP_KERNEL);
428 if (!kbuf)
429 return -ENOMEM;
430 while (count > 0) {
431 sz = size_inside_page(p, count);
432 if (!is_vmalloc_or_module_addr((void *)p)) {
433 err = -ENXIO;
434 break;
436 sz = vread(kbuf, (char *)p, sz);
437 if (!sz)
438 break;
439 if (copy_to_user(buf, kbuf, sz)) {
440 err = -EFAULT;
441 break;
443 count -= sz;
444 buf += sz;
445 read += sz;
446 p += sz;
448 free_page((unsigned long)kbuf);
450 *ppos = p;
451 return read ? read : err;
455 static ssize_t do_write_kmem(unsigned long p, const char __user *buf,
456 size_t count, loff_t *ppos)
458 ssize_t written, sz;
459 unsigned long copied;
461 written = 0;
462 #ifdef __ARCH_HAS_NO_PAGE_ZERO_MAPPED
463 /* we don't have page 0 mapped on sparc and m68k.. */
464 if (p < PAGE_SIZE) {
465 sz = size_inside_page(p, count);
466 /* Hmm. Do something? */
467 buf += sz;
468 p += sz;
469 count -= sz;
470 written += sz;
472 #endif
474 while (count > 0) {
475 void *ptr;
477 sz = size_inside_page(p, count);
480 * On ia64 if a page has been mapped somewhere as uncached, then
481 * it must also be accessed uncached by the kernel or data
482 * corruption may occur.
484 ptr = xlate_dev_kmem_ptr((void *)p);
486 copied = copy_from_user(ptr, buf, sz);
487 if (copied) {
488 written += sz - copied;
489 if (written)
490 break;
491 return -EFAULT;
493 buf += sz;
494 p += sz;
495 count -= sz;
496 written += sz;
499 *ppos += written;
500 return written;
504 * This function writes to the *virtual* memory as seen by the kernel.
506 static ssize_t write_kmem(struct file *file, const char __user *buf,
507 size_t count, loff_t *ppos)
509 unsigned long p = *ppos;
510 ssize_t wrote = 0;
511 ssize_t virtr = 0;
512 char *kbuf; /* k-addr because vwrite() takes vmlist_lock rwlock */
513 int err = 0;
515 if (p < (unsigned long) high_memory) {
516 unsigned long to_write = min_t(unsigned long, count,
517 (unsigned long)high_memory - p);
518 wrote = do_write_kmem(p, buf, to_write, ppos);
519 if (wrote != to_write)
520 return wrote;
521 p += wrote;
522 buf += wrote;
523 count -= wrote;
526 if (count > 0) {
527 kbuf = (char *)__get_free_page(GFP_KERNEL);
528 if (!kbuf)
529 return wrote ? wrote : -ENOMEM;
530 while (count > 0) {
531 unsigned long sz = size_inside_page(p, count);
532 unsigned long n;
534 if (!is_vmalloc_or_module_addr((void *)p)) {
535 err = -ENXIO;
536 break;
538 n = copy_from_user(kbuf, buf, sz);
539 if (n) {
540 err = -EFAULT;
541 break;
543 vwrite(kbuf, (char *)p, sz);
544 count -= sz;
545 buf += sz;
546 virtr += sz;
547 p += sz;
549 free_page((unsigned long)kbuf);
552 *ppos = p;
553 return virtr + wrote ? : err;
556 static ssize_t read_port(struct file *file, char __user *buf,
557 size_t count, loff_t *ppos)
559 unsigned long i = *ppos;
560 char __user *tmp = buf;
562 if (!access_ok(VERIFY_WRITE, buf, count))
563 return -EFAULT;
564 while (count-- > 0 && i < 65536) {
565 if (__put_user(inb(i), tmp) < 0)
566 return -EFAULT;
567 i++;
568 tmp++;
570 *ppos = i;
571 return tmp-buf;
574 static ssize_t write_port(struct file *file, const char __user *buf,
575 size_t count, loff_t *ppos)
577 unsigned long i = *ppos;
578 const char __user *tmp = buf;
580 if (!access_ok(VERIFY_READ, buf, count))
581 return -EFAULT;
582 while (count-- > 0 && i < 65536) {
583 char c;
585 if (__get_user(c, tmp)) {
586 if (tmp > buf)
587 break;
588 return -EFAULT;
590 outb(c, i);
591 i++;
592 tmp++;
594 *ppos = i;
595 return tmp-buf;
598 static ssize_t read_null(struct file *file, char __user *buf,
599 size_t count, loff_t *ppos)
601 return 0;
604 static ssize_t write_null(struct file *file, const char __user *buf,
605 size_t count, loff_t *ppos)
607 return count;
610 static ssize_t read_iter_null(struct kiocb *iocb, struct iov_iter *to)
612 return 0;
615 static ssize_t write_iter_null(struct kiocb *iocb, struct iov_iter *from)
617 size_t count = iov_iter_count(from);
618 iov_iter_advance(from, count);
619 return count;
622 static int pipe_to_null(struct pipe_inode_info *info, struct pipe_buffer *buf,
623 struct splice_desc *sd)
625 return sd->len;
628 static ssize_t splice_write_null(struct pipe_inode_info *pipe, struct file *out,
629 loff_t *ppos, size_t len, unsigned int flags)
631 return splice_from_pipe(pipe, out, ppos, len, flags, pipe_to_null);
634 static ssize_t read_iter_zero(struct kiocb *iocb, struct iov_iter *iter)
636 size_t written = 0;
638 while (iov_iter_count(iter)) {
639 size_t chunk = iov_iter_count(iter), n;
641 if (chunk > PAGE_SIZE)
642 chunk = PAGE_SIZE; /* Just for latency reasons */
643 n = iov_iter_zero(chunk, iter);
644 if (!n && iov_iter_count(iter))
645 return written ? written : -EFAULT;
646 written += n;
647 if (signal_pending(current))
648 return written ? written : -ERESTARTSYS;
649 cond_resched();
651 return written;
654 static int mmap_zero(struct file *file, struct vm_area_struct *vma)
656 #ifndef CONFIG_MMU
657 return -ENOSYS;
658 #endif
659 if (vma->vm_flags & VM_SHARED)
660 return shmem_zero_setup(vma);
661 return 0;
664 static ssize_t write_full(struct file *file, const char __user *buf,
665 size_t count, loff_t *ppos)
667 return -ENOSPC;
671 * Special lseek() function for /dev/null and /dev/zero. Most notably, you
672 * can fopen() both devices with "a" now. This was previously impossible.
673 * -- SRB.
675 static loff_t null_lseek(struct file *file, loff_t offset, int orig)
677 return file->f_pos = 0;
681 * The memory devices use the full 32/64 bits of the offset, and so we cannot
682 * check against negative addresses: they are ok. The return value is weird,
683 * though, in that case (0).
685 * also note that seeking relative to the "end of file" isn't supported:
686 * it has no meaning, so it returns -EINVAL.
688 static loff_t memory_lseek(struct file *file, loff_t offset, int orig)
690 loff_t ret;
692 mutex_lock(&file_inode(file)->i_mutex);
693 switch (orig) {
694 case SEEK_CUR:
695 offset += file->f_pos;
696 case SEEK_SET:
697 /* to avoid userland mistaking f_pos=-9 as -EBADF=-9 */
698 if (IS_ERR_VALUE((unsigned long long)offset)) {
699 ret = -EOVERFLOW;
700 break;
702 file->f_pos = offset;
703 ret = file->f_pos;
704 force_successful_syscall_return();
705 break;
706 default:
707 ret = -EINVAL;
709 mutex_unlock(&file_inode(file)->i_mutex);
710 return ret;
713 static int open_port(struct inode *inode, struct file *filp)
715 return capable(CAP_SYS_RAWIO) ? 0 : -EPERM;
718 #define zero_lseek null_lseek
719 #define full_lseek null_lseek
720 #define write_zero write_null
721 #define write_iter_zero write_iter_null
722 #define open_mem open_port
723 #define open_kmem open_mem
725 static const struct file_operations __maybe_unused mem_fops = {
726 .llseek = memory_lseek,
727 .read = read_mem,
728 .write = write_mem,
729 .mmap = mmap_mem,
730 .open = open_mem,
731 #ifndef CONFIG_MMU
732 .get_unmapped_area = get_unmapped_area_mem,
733 .mmap_capabilities = memory_mmap_capabilities,
734 #endif
737 static const struct file_operations __maybe_unused kmem_fops = {
738 .llseek = memory_lseek,
739 .read = read_kmem,
740 .write = write_kmem,
741 .mmap = mmap_kmem,
742 .open = open_kmem,
743 #ifndef CONFIG_MMU
744 .get_unmapped_area = get_unmapped_area_mem,
745 .mmap_capabilities = memory_mmap_capabilities,
746 #endif
749 static const struct file_operations null_fops = {
750 .llseek = null_lseek,
751 .read = read_null,
752 .write = write_null,
753 .read_iter = read_iter_null,
754 .write_iter = write_iter_null,
755 .splice_write = splice_write_null,
758 static const struct file_operations __maybe_unused port_fops = {
759 .llseek = memory_lseek,
760 .read = read_port,
761 .write = write_port,
762 .open = open_port,
765 static const struct file_operations zero_fops = {
766 .llseek = zero_lseek,
767 .write = write_zero,
768 .read_iter = read_iter_zero,
769 .write_iter = write_iter_zero,
770 .mmap = mmap_zero,
771 #ifndef CONFIG_MMU
772 .mmap_capabilities = zero_mmap_capabilities,
773 #endif
776 static const struct file_operations full_fops = {
777 .llseek = full_lseek,
778 .read_iter = read_iter_zero,
779 .write = write_full,
782 static const struct memdev {
783 const char *name;
784 umode_t mode;
785 const struct file_operations *fops;
786 fmode_t fmode;
787 } devlist[] = {
788 #ifdef CONFIG_DEVMEM
789 [1] = { "mem", 0, &mem_fops, FMODE_UNSIGNED_OFFSET },
790 #endif
791 #ifdef CONFIG_DEVKMEM
792 [2] = { "kmem", 0, &kmem_fops, FMODE_UNSIGNED_OFFSET },
793 #endif
794 [3] = { "null", 0666, &null_fops, 0 },
795 #ifdef CONFIG_DEVPORT
796 [4] = { "port", 0, &port_fops, 0 },
797 #endif
798 [5] = { "zero", 0666, &zero_fops, 0 },
799 [7] = { "full", 0666, &full_fops, 0 },
800 [8] = { "random", 0666, &random_fops, 0 },
801 [9] = { "urandom", 0666, &urandom_fops, 0 },
802 #ifdef CONFIG_PRINTK
803 [11] = { "kmsg", 0644, &kmsg_fops, 0 },
804 #endif
807 static int memory_open(struct inode *inode, struct file *filp)
809 int minor;
810 const struct memdev *dev;
812 minor = iminor(inode);
813 if (minor >= ARRAY_SIZE(devlist))
814 return -ENXIO;
816 dev = &devlist[minor];
817 if (!dev->fops)
818 return -ENXIO;
820 filp->f_op = dev->fops;
821 filp->f_mode |= dev->fmode;
823 if (dev->fops->open)
824 return dev->fops->open(inode, filp);
826 return 0;
829 static const struct file_operations memory_fops = {
830 .open = memory_open,
831 .llseek = noop_llseek,
834 static char *mem_devnode(struct device *dev, umode_t *mode)
836 if (mode && devlist[MINOR(dev->devt)].mode)
837 *mode = devlist[MINOR(dev->devt)].mode;
838 return NULL;
841 static struct class *mem_class;
843 static int __init chr_dev_init(void)
845 int minor;
847 if (register_chrdev(MEM_MAJOR, "mem", &memory_fops))
848 printk("unable to get major %d for memory devs\n", MEM_MAJOR);
850 mem_class = class_create(THIS_MODULE, "mem");
851 if (IS_ERR(mem_class))
852 return PTR_ERR(mem_class);
854 mem_class->devnode = mem_devnode;
855 for (minor = 1; minor < ARRAY_SIZE(devlist); minor++) {
856 if (!devlist[minor].name)
857 continue;
860 * Create /dev/port?
862 if ((minor == DEVPORT_MINOR) && !arch_has_dev_port())
863 continue;
865 device_create(mem_class, NULL, MKDEV(MEM_MAJOR, minor),
866 NULL, devlist[minor].name);
869 return tty_init();
872 fs_initcall(chr_dev_init);