irqchip/zevio: Use irq_data_get_chip_type() helper
[linux/fpc-iii.git] / drivers / of / base.c
blob017dd94f16ea3dd8ebbc37b81188f2d47933e878
1 /*
2 * Procedures for creating, accessing and interpreting the device tree.
4 * Paul Mackerras August 1996.
5 * Copyright (C) 1996-2005 Paul Mackerras.
7 * Adapted for 64bit PowerPC by Dave Engebretsen and Peter Bergner.
8 * {engebret|bergner}@us.ibm.com
10 * Adapted for sparc and sparc64 by David S. Miller davem@davemloft.net
12 * Reconsolidated from arch/x/kernel/prom.c by Stephen Rothwell and
13 * Grant Likely.
15 * This program is free software; you can redistribute it and/or
16 * modify it under the terms of the GNU General Public License
17 * as published by the Free Software Foundation; either version
18 * 2 of the License, or (at your option) any later version.
20 #include <linux/console.h>
21 #include <linux/ctype.h>
22 #include <linux/cpu.h>
23 #include <linux/module.h>
24 #include <linux/of.h>
25 #include <linux/of_graph.h>
26 #include <linux/spinlock.h>
27 #include <linux/slab.h>
28 #include <linux/string.h>
29 #include <linux/proc_fs.h>
31 #include "of_private.h"
33 LIST_HEAD(aliases_lookup);
35 struct device_node *of_root;
36 EXPORT_SYMBOL(of_root);
37 struct device_node *of_chosen;
38 struct device_node *of_aliases;
39 struct device_node *of_stdout;
40 static const char *of_stdout_options;
42 struct kset *of_kset;
45 * Used to protect the of_aliases, to hold off addition of nodes to sysfs.
46 * This mutex must be held whenever modifications are being made to the
47 * device tree. The of_{attach,detach}_node() and
48 * of_{add,remove,update}_property() helpers make sure this happens.
50 DEFINE_MUTEX(of_mutex);
52 /* use when traversing tree through the child, sibling,
53 * or parent members of struct device_node.
55 DEFINE_RAW_SPINLOCK(devtree_lock);
57 int of_n_addr_cells(struct device_node *np)
59 const __be32 *ip;
61 do {
62 if (np->parent)
63 np = np->parent;
64 ip = of_get_property(np, "#address-cells", NULL);
65 if (ip)
66 return be32_to_cpup(ip);
67 } while (np->parent);
68 /* No #address-cells property for the root node */
69 return OF_ROOT_NODE_ADDR_CELLS_DEFAULT;
71 EXPORT_SYMBOL(of_n_addr_cells);
73 int of_n_size_cells(struct device_node *np)
75 const __be32 *ip;
77 do {
78 if (np->parent)
79 np = np->parent;
80 ip = of_get_property(np, "#size-cells", NULL);
81 if (ip)
82 return be32_to_cpup(ip);
83 } while (np->parent);
84 /* No #size-cells property for the root node */
85 return OF_ROOT_NODE_SIZE_CELLS_DEFAULT;
87 EXPORT_SYMBOL(of_n_size_cells);
89 #ifdef CONFIG_NUMA
90 int __weak of_node_to_nid(struct device_node *np)
92 return NUMA_NO_NODE;
94 #endif
96 #ifndef CONFIG_OF_DYNAMIC
97 static void of_node_release(struct kobject *kobj)
99 /* Without CONFIG_OF_DYNAMIC, no nodes gets freed */
101 #endif /* CONFIG_OF_DYNAMIC */
103 struct kobj_type of_node_ktype = {
104 .release = of_node_release,
107 static ssize_t of_node_property_read(struct file *filp, struct kobject *kobj,
108 struct bin_attribute *bin_attr, char *buf,
109 loff_t offset, size_t count)
111 struct property *pp = container_of(bin_attr, struct property, attr);
112 return memory_read_from_buffer(buf, count, &offset, pp->value, pp->length);
115 static const char *safe_name(struct kobject *kobj, const char *orig_name)
117 const char *name = orig_name;
118 struct kernfs_node *kn;
119 int i = 0;
121 /* don't be a hero. After 16 tries give up */
122 while (i < 16 && (kn = sysfs_get_dirent(kobj->sd, name))) {
123 sysfs_put(kn);
124 if (name != orig_name)
125 kfree(name);
126 name = kasprintf(GFP_KERNEL, "%s#%i", orig_name, ++i);
129 if (name != orig_name)
130 pr_warn("device-tree: Duplicate name in %s, renamed to \"%s\"\n",
131 kobject_name(kobj), name);
132 return name;
135 int __of_add_property_sysfs(struct device_node *np, struct property *pp)
137 int rc;
139 /* Important: Don't leak passwords */
140 bool secure = strncmp(pp->name, "security-", 9) == 0;
142 if (!IS_ENABLED(CONFIG_SYSFS))
143 return 0;
145 if (!of_kset || !of_node_is_attached(np))
146 return 0;
148 sysfs_bin_attr_init(&pp->attr);
149 pp->attr.attr.name = safe_name(&np->kobj, pp->name);
150 pp->attr.attr.mode = secure ? S_IRUSR : S_IRUGO;
151 pp->attr.size = secure ? 0 : pp->length;
152 pp->attr.read = of_node_property_read;
154 rc = sysfs_create_bin_file(&np->kobj, &pp->attr);
155 WARN(rc, "error adding attribute %s to node %s\n", pp->name, np->full_name);
156 return rc;
159 int __of_attach_node_sysfs(struct device_node *np)
161 const char *name;
162 struct property *pp;
163 int rc;
165 if (!IS_ENABLED(CONFIG_SYSFS))
166 return 0;
168 if (!of_kset)
169 return 0;
171 np->kobj.kset = of_kset;
172 if (!np->parent) {
173 /* Nodes without parents are new top level trees */
174 rc = kobject_add(&np->kobj, NULL, "%s",
175 safe_name(&of_kset->kobj, "base"));
176 } else {
177 name = safe_name(&np->parent->kobj, kbasename(np->full_name));
178 if (!name || !name[0])
179 return -EINVAL;
181 rc = kobject_add(&np->kobj, &np->parent->kobj, "%s", name);
183 if (rc)
184 return rc;
186 for_each_property_of_node(np, pp)
187 __of_add_property_sysfs(np, pp);
189 return 0;
192 void __init of_core_init(void)
194 struct device_node *np;
196 /* Create the kset, and register existing nodes */
197 mutex_lock(&of_mutex);
198 of_kset = kset_create_and_add("devicetree", NULL, firmware_kobj);
199 if (!of_kset) {
200 mutex_unlock(&of_mutex);
201 pr_err("devicetree: failed to register existing nodes\n");
202 return;
204 for_each_of_allnodes(np)
205 __of_attach_node_sysfs(np);
206 mutex_unlock(&of_mutex);
208 /* Symlink in /proc as required by userspace ABI */
209 if (of_root)
210 proc_symlink("device-tree", NULL, "/sys/firmware/devicetree/base");
213 static struct property *__of_find_property(const struct device_node *np,
214 const char *name, int *lenp)
216 struct property *pp;
218 if (!np)
219 return NULL;
221 for (pp = np->properties; pp; pp = pp->next) {
222 if (of_prop_cmp(pp->name, name) == 0) {
223 if (lenp)
224 *lenp = pp->length;
225 break;
229 return pp;
232 struct property *of_find_property(const struct device_node *np,
233 const char *name,
234 int *lenp)
236 struct property *pp;
237 unsigned long flags;
239 raw_spin_lock_irqsave(&devtree_lock, flags);
240 pp = __of_find_property(np, name, lenp);
241 raw_spin_unlock_irqrestore(&devtree_lock, flags);
243 return pp;
245 EXPORT_SYMBOL(of_find_property);
247 struct device_node *__of_find_all_nodes(struct device_node *prev)
249 struct device_node *np;
250 if (!prev) {
251 np = of_root;
252 } else if (prev->child) {
253 np = prev->child;
254 } else {
255 /* Walk back up looking for a sibling, or the end of the structure */
256 np = prev;
257 while (np->parent && !np->sibling)
258 np = np->parent;
259 np = np->sibling; /* Might be null at the end of the tree */
261 return np;
265 * of_find_all_nodes - Get next node in global list
266 * @prev: Previous node or NULL to start iteration
267 * of_node_put() will be called on it
269 * Returns a node pointer with refcount incremented, use
270 * of_node_put() on it when done.
272 struct device_node *of_find_all_nodes(struct device_node *prev)
274 struct device_node *np;
275 unsigned long flags;
277 raw_spin_lock_irqsave(&devtree_lock, flags);
278 np = __of_find_all_nodes(prev);
279 of_node_get(np);
280 of_node_put(prev);
281 raw_spin_unlock_irqrestore(&devtree_lock, flags);
282 return np;
284 EXPORT_SYMBOL(of_find_all_nodes);
287 * Find a property with a given name for a given node
288 * and return the value.
290 const void *__of_get_property(const struct device_node *np,
291 const char *name, int *lenp)
293 struct property *pp = __of_find_property(np, name, lenp);
295 return pp ? pp->value : NULL;
299 * Find a property with a given name for a given node
300 * and return the value.
302 const void *of_get_property(const struct device_node *np, const char *name,
303 int *lenp)
305 struct property *pp = of_find_property(np, name, lenp);
307 return pp ? pp->value : NULL;
309 EXPORT_SYMBOL(of_get_property);
312 * arch_match_cpu_phys_id - Match the given logical CPU and physical id
314 * @cpu: logical cpu index of a core/thread
315 * @phys_id: physical identifier of a core/thread
317 * CPU logical to physical index mapping is architecture specific.
318 * However this __weak function provides a default match of physical
319 * id to logical cpu index. phys_id provided here is usually values read
320 * from the device tree which must match the hardware internal registers.
322 * Returns true if the physical identifier and the logical cpu index
323 * correspond to the same core/thread, false otherwise.
325 bool __weak arch_match_cpu_phys_id(int cpu, u64 phys_id)
327 return (u32)phys_id == cpu;
331 * Checks if the given "prop_name" property holds the physical id of the
332 * core/thread corresponding to the logical cpu 'cpu'. If 'thread' is not
333 * NULL, local thread number within the core is returned in it.
335 static bool __of_find_n_match_cpu_property(struct device_node *cpun,
336 const char *prop_name, int cpu, unsigned int *thread)
338 const __be32 *cell;
339 int ac, prop_len, tid;
340 u64 hwid;
342 ac = of_n_addr_cells(cpun);
343 cell = of_get_property(cpun, prop_name, &prop_len);
344 if (!cell || !ac)
345 return false;
346 prop_len /= sizeof(*cell) * ac;
347 for (tid = 0; tid < prop_len; tid++) {
348 hwid = of_read_number(cell, ac);
349 if (arch_match_cpu_phys_id(cpu, hwid)) {
350 if (thread)
351 *thread = tid;
352 return true;
354 cell += ac;
356 return false;
360 * arch_find_n_match_cpu_physical_id - See if the given device node is
361 * for the cpu corresponding to logical cpu 'cpu'. Return true if so,
362 * else false. If 'thread' is non-NULL, the local thread number within the
363 * core is returned in it.
365 bool __weak arch_find_n_match_cpu_physical_id(struct device_node *cpun,
366 int cpu, unsigned int *thread)
368 /* Check for non-standard "ibm,ppc-interrupt-server#s" property
369 * for thread ids on PowerPC. If it doesn't exist fallback to
370 * standard "reg" property.
372 if (IS_ENABLED(CONFIG_PPC) &&
373 __of_find_n_match_cpu_property(cpun,
374 "ibm,ppc-interrupt-server#s",
375 cpu, thread))
376 return true;
378 return __of_find_n_match_cpu_property(cpun, "reg", cpu, thread);
382 * of_get_cpu_node - Get device node associated with the given logical CPU
384 * @cpu: CPU number(logical index) for which device node is required
385 * @thread: if not NULL, local thread number within the physical core is
386 * returned
388 * The main purpose of this function is to retrieve the device node for the
389 * given logical CPU index. It should be used to initialize the of_node in
390 * cpu device. Once of_node in cpu device is populated, all the further
391 * references can use that instead.
393 * CPU logical to physical index mapping is architecture specific and is built
394 * before booting secondary cores. This function uses arch_match_cpu_phys_id
395 * which can be overridden by architecture specific implementation.
397 * Returns a node pointer for the logical cpu if found, else NULL.
399 struct device_node *of_get_cpu_node(int cpu, unsigned int *thread)
401 struct device_node *cpun;
403 for_each_node_by_type(cpun, "cpu") {
404 if (arch_find_n_match_cpu_physical_id(cpun, cpu, thread))
405 return cpun;
407 return NULL;
409 EXPORT_SYMBOL(of_get_cpu_node);
412 * __of_device_is_compatible() - Check if the node matches given constraints
413 * @device: pointer to node
414 * @compat: required compatible string, NULL or "" for any match
415 * @type: required device_type value, NULL or "" for any match
416 * @name: required node name, NULL or "" for any match
418 * Checks if the given @compat, @type and @name strings match the
419 * properties of the given @device. A constraints can be skipped by
420 * passing NULL or an empty string as the constraint.
422 * Returns 0 for no match, and a positive integer on match. The return
423 * value is a relative score with larger values indicating better
424 * matches. The score is weighted for the most specific compatible value
425 * to get the highest score. Matching type is next, followed by matching
426 * name. Practically speaking, this results in the following priority
427 * order for matches:
429 * 1. specific compatible && type && name
430 * 2. specific compatible && type
431 * 3. specific compatible && name
432 * 4. specific compatible
433 * 5. general compatible && type && name
434 * 6. general compatible && type
435 * 7. general compatible && name
436 * 8. general compatible
437 * 9. type && name
438 * 10. type
439 * 11. name
441 static int __of_device_is_compatible(const struct device_node *device,
442 const char *compat, const char *type, const char *name)
444 struct property *prop;
445 const char *cp;
446 int index = 0, score = 0;
448 /* Compatible match has highest priority */
449 if (compat && compat[0]) {
450 prop = __of_find_property(device, "compatible", NULL);
451 for (cp = of_prop_next_string(prop, NULL); cp;
452 cp = of_prop_next_string(prop, cp), index++) {
453 if (of_compat_cmp(cp, compat, strlen(compat)) == 0) {
454 score = INT_MAX/2 - (index << 2);
455 break;
458 if (!score)
459 return 0;
462 /* Matching type is better than matching name */
463 if (type && type[0]) {
464 if (!device->type || of_node_cmp(type, device->type))
465 return 0;
466 score += 2;
469 /* Matching name is a bit better than not */
470 if (name && name[0]) {
471 if (!device->name || of_node_cmp(name, device->name))
472 return 0;
473 score++;
476 return score;
479 /** Checks if the given "compat" string matches one of the strings in
480 * the device's "compatible" property
482 int of_device_is_compatible(const struct device_node *device,
483 const char *compat)
485 unsigned long flags;
486 int res;
488 raw_spin_lock_irqsave(&devtree_lock, flags);
489 res = __of_device_is_compatible(device, compat, NULL, NULL);
490 raw_spin_unlock_irqrestore(&devtree_lock, flags);
491 return res;
493 EXPORT_SYMBOL(of_device_is_compatible);
496 * of_machine_is_compatible - Test root of device tree for a given compatible value
497 * @compat: compatible string to look for in root node's compatible property.
499 * Returns a positive integer if the root node has the given value in its
500 * compatible property.
502 int of_machine_is_compatible(const char *compat)
504 struct device_node *root;
505 int rc = 0;
507 root = of_find_node_by_path("/");
508 if (root) {
509 rc = of_device_is_compatible(root, compat);
510 of_node_put(root);
512 return rc;
514 EXPORT_SYMBOL(of_machine_is_compatible);
517 * __of_device_is_available - check if a device is available for use
519 * @device: Node to check for availability, with locks already held
521 * Returns true if the status property is absent or set to "okay" or "ok",
522 * false otherwise
524 static bool __of_device_is_available(const struct device_node *device)
526 const char *status;
527 int statlen;
529 if (!device)
530 return false;
532 status = __of_get_property(device, "status", &statlen);
533 if (status == NULL)
534 return true;
536 if (statlen > 0) {
537 if (!strcmp(status, "okay") || !strcmp(status, "ok"))
538 return true;
541 return false;
545 * of_device_is_available - check if a device is available for use
547 * @device: Node to check for availability
549 * Returns true if the status property is absent or set to "okay" or "ok",
550 * false otherwise
552 bool of_device_is_available(const struct device_node *device)
554 unsigned long flags;
555 bool res;
557 raw_spin_lock_irqsave(&devtree_lock, flags);
558 res = __of_device_is_available(device);
559 raw_spin_unlock_irqrestore(&devtree_lock, flags);
560 return res;
563 EXPORT_SYMBOL(of_device_is_available);
566 * of_device_is_big_endian - check if a device has BE registers
568 * @device: Node to check for endianness
570 * Returns true if the device has a "big-endian" property, or if the kernel
571 * was compiled for BE *and* the device has a "native-endian" property.
572 * Returns false otherwise.
574 * Callers would nominally use ioread32be/iowrite32be if
575 * of_device_is_big_endian() == true, or readl/writel otherwise.
577 bool of_device_is_big_endian(const struct device_node *device)
579 if (of_property_read_bool(device, "big-endian"))
580 return true;
581 if (IS_ENABLED(CONFIG_CPU_BIG_ENDIAN) &&
582 of_property_read_bool(device, "native-endian"))
583 return true;
584 return false;
586 EXPORT_SYMBOL(of_device_is_big_endian);
589 * of_get_parent - Get a node's parent if any
590 * @node: Node to get parent
592 * Returns a node pointer with refcount incremented, use
593 * of_node_put() on it when done.
595 struct device_node *of_get_parent(const struct device_node *node)
597 struct device_node *np;
598 unsigned long flags;
600 if (!node)
601 return NULL;
603 raw_spin_lock_irqsave(&devtree_lock, flags);
604 np = of_node_get(node->parent);
605 raw_spin_unlock_irqrestore(&devtree_lock, flags);
606 return np;
608 EXPORT_SYMBOL(of_get_parent);
611 * of_get_next_parent - Iterate to a node's parent
612 * @node: Node to get parent of
614 * This is like of_get_parent() except that it drops the
615 * refcount on the passed node, making it suitable for iterating
616 * through a node's parents.
618 * Returns a node pointer with refcount incremented, use
619 * of_node_put() on it when done.
621 struct device_node *of_get_next_parent(struct device_node *node)
623 struct device_node *parent;
624 unsigned long flags;
626 if (!node)
627 return NULL;
629 raw_spin_lock_irqsave(&devtree_lock, flags);
630 parent = of_node_get(node->parent);
631 of_node_put(node);
632 raw_spin_unlock_irqrestore(&devtree_lock, flags);
633 return parent;
635 EXPORT_SYMBOL(of_get_next_parent);
637 static struct device_node *__of_get_next_child(const struct device_node *node,
638 struct device_node *prev)
640 struct device_node *next;
642 if (!node)
643 return NULL;
645 next = prev ? prev->sibling : node->child;
646 for (; next; next = next->sibling)
647 if (of_node_get(next))
648 break;
649 of_node_put(prev);
650 return next;
652 #define __for_each_child_of_node(parent, child) \
653 for (child = __of_get_next_child(parent, NULL); child != NULL; \
654 child = __of_get_next_child(parent, child))
657 * of_get_next_child - Iterate a node childs
658 * @node: parent node
659 * @prev: previous child of the parent node, or NULL to get first
661 * Returns a node pointer with refcount incremented, use of_node_put() on
662 * it when done. Returns NULL when prev is the last child. Decrements the
663 * refcount of prev.
665 struct device_node *of_get_next_child(const struct device_node *node,
666 struct device_node *prev)
668 struct device_node *next;
669 unsigned long flags;
671 raw_spin_lock_irqsave(&devtree_lock, flags);
672 next = __of_get_next_child(node, prev);
673 raw_spin_unlock_irqrestore(&devtree_lock, flags);
674 return next;
676 EXPORT_SYMBOL(of_get_next_child);
679 * of_get_next_available_child - Find the next available child node
680 * @node: parent node
681 * @prev: previous child of the parent node, or NULL to get first
683 * This function is like of_get_next_child(), except that it
684 * automatically skips any disabled nodes (i.e. status = "disabled").
686 struct device_node *of_get_next_available_child(const struct device_node *node,
687 struct device_node *prev)
689 struct device_node *next;
690 unsigned long flags;
692 if (!node)
693 return NULL;
695 raw_spin_lock_irqsave(&devtree_lock, flags);
696 next = prev ? prev->sibling : node->child;
697 for (; next; next = next->sibling) {
698 if (!__of_device_is_available(next))
699 continue;
700 if (of_node_get(next))
701 break;
703 of_node_put(prev);
704 raw_spin_unlock_irqrestore(&devtree_lock, flags);
705 return next;
707 EXPORT_SYMBOL(of_get_next_available_child);
710 * of_get_child_by_name - Find the child node by name for a given parent
711 * @node: parent node
712 * @name: child name to look for.
714 * This function looks for child node for given matching name
716 * Returns a node pointer if found, with refcount incremented, use
717 * of_node_put() on it when done.
718 * Returns NULL if node is not found.
720 struct device_node *of_get_child_by_name(const struct device_node *node,
721 const char *name)
723 struct device_node *child;
725 for_each_child_of_node(node, child)
726 if (child->name && (of_node_cmp(child->name, name) == 0))
727 break;
728 return child;
730 EXPORT_SYMBOL(of_get_child_by_name);
732 static struct device_node *__of_find_node_by_path(struct device_node *parent,
733 const char *path)
735 struct device_node *child;
736 int len;
738 len = strcspn(path, "/:");
739 if (!len)
740 return NULL;
742 __for_each_child_of_node(parent, child) {
743 const char *name = strrchr(child->full_name, '/');
744 if (WARN(!name, "malformed device_node %s\n", child->full_name))
745 continue;
746 name++;
747 if (strncmp(path, name, len) == 0 && (strlen(name) == len))
748 return child;
750 return NULL;
754 * of_find_node_opts_by_path - Find a node matching a full OF path
755 * @path: Either the full path to match, or if the path does not
756 * start with '/', the name of a property of the /aliases
757 * node (an alias). In the case of an alias, the node
758 * matching the alias' value will be returned.
759 * @opts: Address of a pointer into which to store the start of
760 * an options string appended to the end of the path with
761 * a ':' separator.
763 * Valid paths:
764 * /foo/bar Full path
765 * foo Valid alias
766 * foo/bar Valid alias + relative path
768 * Returns a node pointer with refcount incremented, use
769 * of_node_put() on it when done.
771 struct device_node *of_find_node_opts_by_path(const char *path, const char **opts)
773 struct device_node *np = NULL;
774 struct property *pp;
775 unsigned long flags;
776 const char *separator = strchr(path, ':');
778 if (opts)
779 *opts = separator ? separator + 1 : NULL;
781 if (strcmp(path, "/") == 0)
782 return of_node_get(of_root);
784 /* The path could begin with an alias */
785 if (*path != '/') {
786 int len;
787 const char *p = separator;
789 if (!p)
790 p = strchrnul(path, '/');
791 len = p - path;
793 /* of_aliases must not be NULL */
794 if (!of_aliases)
795 return NULL;
797 for_each_property_of_node(of_aliases, pp) {
798 if (strlen(pp->name) == len && !strncmp(pp->name, path, len)) {
799 np = of_find_node_by_path(pp->value);
800 break;
803 if (!np)
804 return NULL;
805 path = p;
808 /* Step down the tree matching path components */
809 raw_spin_lock_irqsave(&devtree_lock, flags);
810 if (!np)
811 np = of_node_get(of_root);
812 while (np && *path == '/') {
813 path++; /* Increment past '/' delimiter */
814 np = __of_find_node_by_path(np, path);
815 path = strchrnul(path, '/');
816 if (separator && separator < path)
817 break;
819 raw_spin_unlock_irqrestore(&devtree_lock, flags);
820 return np;
822 EXPORT_SYMBOL(of_find_node_opts_by_path);
825 * of_find_node_by_name - Find a node by its "name" property
826 * @from: The node to start searching from or NULL, the node
827 * you pass will not be searched, only the next one
828 * will; typically, you pass what the previous call
829 * returned. of_node_put() will be called on it
830 * @name: The name string to match against
832 * Returns a node pointer with refcount incremented, use
833 * of_node_put() on it when done.
835 struct device_node *of_find_node_by_name(struct device_node *from,
836 const char *name)
838 struct device_node *np;
839 unsigned long flags;
841 raw_spin_lock_irqsave(&devtree_lock, flags);
842 for_each_of_allnodes_from(from, np)
843 if (np->name && (of_node_cmp(np->name, name) == 0)
844 && of_node_get(np))
845 break;
846 of_node_put(from);
847 raw_spin_unlock_irqrestore(&devtree_lock, flags);
848 return np;
850 EXPORT_SYMBOL(of_find_node_by_name);
853 * of_find_node_by_type - Find a node by its "device_type" property
854 * @from: The node to start searching from, or NULL to start searching
855 * the entire device tree. The node you pass will not be
856 * searched, only the next one will; typically, you pass
857 * what the previous call returned. of_node_put() will be
858 * called on from for you.
859 * @type: The type string to match against
861 * Returns a node pointer with refcount incremented, use
862 * of_node_put() on it when done.
864 struct device_node *of_find_node_by_type(struct device_node *from,
865 const char *type)
867 struct device_node *np;
868 unsigned long flags;
870 raw_spin_lock_irqsave(&devtree_lock, flags);
871 for_each_of_allnodes_from(from, np)
872 if (np->type && (of_node_cmp(np->type, type) == 0)
873 && of_node_get(np))
874 break;
875 of_node_put(from);
876 raw_spin_unlock_irqrestore(&devtree_lock, flags);
877 return np;
879 EXPORT_SYMBOL(of_find_node_by_type);
882 * of_find_compatible_node - Find a node based on type and one of the
883 * tokens in its "compatible" property
884 * @from: The node to start searching from or NULL, the node
885 * you pass will not be searched, only the next one
886 * will; typically, you pass what the previous call
887 * returned. of_node_put() will be called on it
888 * @type: The type string to match "device_type" or NULL to ignore
889 * @compatible: The string to match to one of the tokens in the device
890 * "compatible" list.
892 * Returns a node pointer with refcount incremented, use
893 * of_node_put() on it when done.
895 struct device_node *of_find_compatible_node(struct device_node *from,
896 const char *type, const char *compatible)
898 struct device_node *np;
899 unsigned long flags;
901 raw_spin_lock_irqsave(&devtree_lock, flags);
902 for_each_of_allnodes_from(from, np)
903 if (__of_device_is_compatible(np, compatible, type, NULL) &&
904 of_node_get(np))
905 break;
906 of_node_put(from);
907 raw_spin_unlock_irqrestore(&devtree_lock, flags);
908 return np;
910 EXPORT_SYMBOL(of_find_compatible_node);
913 * of_find_node_with_property - Find a node which has a property with
914 * the given name.
915 * @from: The node to start searching from or NULL, the node
916 * you pass will not be searched, only the next one
917 * will; typically, you pass what the previous call
918 * returned. of_node_put() will be called on it
919 * @prop_name: The name of the property to look for.
921 * Returns a node pointer with refcount incremented, use
922 * of_node_put() on it when done.
924 struct device_node *of_find_node_with_property(struct device_node *from,
925 const char *prop_name)
927 struct device_node *np;
928 struct property *pp;
929 unsigned long flags;
931 raw_spin_lock_irqsave(&devtree_lock, flags);
932 for_each_of_allnodes_from(from, np) {
933 for (pp = np->properties; pp; pp = pp->next) {
934 if (of_prop_cmp(pp->name, prop_name) == 0) {
935 of_node_get(np);
936 goto out;
940 out:
941 of_node_put(from);
942 raw_spin_unlock_irqrestore(&devtree_lock, flags);
943 return np;
945 EXPORT_SYMBOL(of_find_node_with_property);
947 static
948 const struct of_device_id *__of_match_node(const struct of_device_id *matches,
949 const struct device_node *node)
951 const struct of_device_id *best_match = NULL;
952 int score, best_score = 0;
954 if (!matches)
955 return NULL;
957 for (; matches->name[0] || matches->type[0] || matches->compatible[0]; matches++) {
958 score = __of_device_is_compatible(node, matches->compatible,
959 matches->type, matches->name);
960 if (score > best_score) {
961 best_match = matches;
962 best_score = score;
966 return best_match;
970 * of_match_node - Tell if a device_node has a matching of_match structure
971 * @matches: array of of device match structures to search in
972 * @node: the of device structure to match against
974 * Low level utility function used by device matching.
976 const struct of_device_id *of_match_node(const struct of_device_id *matches,
977 const struct device_node *node)
979 const struct of_device_id *match;
980 unsigned long flags;
982 raw_spin_lock_irqsave(&devtree_lock, flags);
983 match = __of_match_node(matches, node);
984 raw_spin_unlock_irqrestore(&devtree_lock, flags);
985 return match;
987 EXPORT_SYMBOL(of_match_node);
990 * of_find_matching_node_and_match - Find a node based on an of_device_id
991 * match table.
992 * @from: The node to start searching from or NULL, the node
993 * you pass will not be searched, only the next one
994 * will; typically, you pass what the previous call
995 * returned. of_node_put() will be called on it
996 * @matches: array of of device match structures to search in
997 * @match Updated to point at the matches entry which matched
999 * Returns a node pointer with refcount incremented, use
1000 * of_node_put() on it when done.
1002 struct device_node *of_find_matching_node_and_match(struct device_node *from,
1003 const struct of_device_id *matches,
1004 const struct of_device_id **match)
1006 struct device_node *np;
1007 const struct of_device_id *m;
1008 unsigned long flags;
1010 if (match)
1011 *match = NULL;
1013 raw_spin_lock_irqsave(&devtree_lock, flags);
1014 for_each_of_allnodes_from(from, np) {
1015 m = __of_match_node(matches, np);
1016 if (m && of_node_get(np)) {
1017 if (match)
1018 *match = m;
1019 break;
1022 of_node_put(from);
1023 raw_spin_unlock_irqrestore(&devtree_lock, flags);
1024 return np;
1026 EXPORT_SYMBOL(of_find_matching_node_and_match);
1029 * of_modalias_node - Lookup appropriate modalias for a device node
1030 * @node: pointer to a device tree node
1031 * @modalias: Pointer to buffer that modalias value will be copied into
1032 * @len: Length of modalias value
1034 * Based on the value of the compatible property, this routine will attempt
1035 * to choose an appropriate modalias value for a particular device tree node.
1036 * It does this by stripping the manufacturer prefix (as delimited by a ',')
1037 * from the first entry in the compatible list property.
1039 * This routine returns 0 on success, <0 on failure.
1041 int of_modalias_node(struct device_node *node, char *modalias, int len)
1043 const char *compatible, *p;
1044 int cplen;
1046 compatible = of_get_property(node, "compatible", &cplen);
1047 if (!compatible || strlen(compatible) > cplen)
1048 return -ENODEV;
1049 p = strchr(compatible, ',');
1050 strlcpy(modalias, p ? p + 1 : compatible, len);
1051 return 0;
1053 EXPORT_SYMBOL_GPL(of_modalias_node);
1056 * of_find_node_by_phandle - Find a node given a phandle
1057 * @handle: phandle of the node to find
1059 * Returns a node pointer with refcount incremented, use
1060 * of_node_put() on it when done.
1062 struct device_node *of_find_node_by_phandle(phandle handle)
1064 struct device_node *np;
1065 unsigned long flags;
1067 if (!handle)
1068 return NULL;
1070 raw_spin_lock_irqsave(&devtree_lock, flags);
1071 for_each_of_allnodes(np)
1072 if (np->phandle == handle)
1073 break;
1074 of_node_get(np);
1075 raw_spin_unlock_irqrestore(&devtree_lock, flags);
1076 return np;
1078 EXPORT_SYMBOL(of_find_node_by_phandle);
1081 * of_property_count_elems_of_size - Count the number of elements in a property
1083 * @np: device node from which the property value is to be read.
1084 * @propname: name of the property to be searched.
1085 * @elem_size: size of the individual element
1087 * Search for a property in a device node and count the number of elements of
1088 * size elem_size in it. Returns number of elements on sucess, -EINVAL if the
1089 * property does not exist or its length does not match a multiple of elem_size
1090 * and -ENODATA if the property does not have a value.
1092 int of_property_count_elems_of_size(const struct device_node *np,
1093 const char *propname, int elem_size)
1095 struct property *prop = of_find_property(np, propname, NULL);
1097 if (!prop)
1098 return -EINVAL;
1099 if (!prop->value)
1100 return -ENODATA;
1102 if (prop->length % elem_size != 0) {
1103 pr_err("size of %s in node %s is not a multiple of %d\n",
1104 propname, np->full_name, elem_size);
1105 return -EINVAL;
1108 return prop->length / elem_size;
1110 EXPORT_SYMBOL_GPL(of_property_count_elems_of_size);
1113 * of_find_property_value_of_size
1115 * @np: device node from which the property value is to be read.
1116 * @propname: name of the property to be searched.
1117 * @len: requested length of property value
1119 * Search for a property in a device node and valid the requested size.
1120 * Returns the property value on success, -EINVAL if the property does not
1121 * exist, -ENODATA if property does not have a value, and -EOVERFLOW if the
1122 * property data isn't large enough.
1125 static void *of_find_property_value_of_size(const struct device_node *np,
1126 const char *propname, u32 len)
1128 struct property *prop = of_find_property(np, propname, NULL);
1130 if (!prop)
1131 return ERR_PTR(-EINVAL);
1132 if (!prop->value)
1133 return ERR_PTR(-ENODATA);
1134 if (len > prop->length)
1135 return ERR_PTR(-EOVERFLOW);
1137 return prop->value;
1141 * of_property_read_u32_index - Find and read a u32 from a multi-value property.
1143 * @np: device node from which the property value is to be read.
1144 * @propname: name of the property to be searched.
1145 * @index: index of the u32 in the list of values
1146 * @out_value: pointer to return value, modified only if no error.
1148 * Search for a property in a device node and read nth 32-bit value from
1149 * it. Returns 0 on success, -EINVAL if the property does not exist,
1150 * -ENODATA if property does not have a value, and -EOVERFLOW if the
1151 * property data isn't large enough.
1153 * The out_value is modified only if a valid u32 value can be decoded.
1155 int of_property_read_u32_index(const struct device_node *np,
1156 const char *propname,
1157 u32 index, u32 *out_value)
1159 const u32 *val = of_find_property_value_of_size(np, propname,
1160 ((index + 1) * sizeof(*out_value)));
1162 if (IS_ERR(val))
1163 return PTR_ERR(val);
1165 *out_value = be32_to_cpup(((__be32 *)val) + index);
1166 return 0;
1168 EXPORT_SYMBOL_GPL(of_property_read_u32_index);
1171 * of_property_read_u8_array - Find and read an array of u8 from a property.
1173 * @np: device node from which the property value is to be read.
1174 * @propname: name of the property to be searched.
1175 * @out_values: pointer to return value, modified only if return value is 0.
1176 * @sz: number of array elements to read
1178 * Search for a property in a device node and read 8-bit value(s) from
1179 * it. Returns 0 on success, -EINVAL if the property does not exist,
1180 * -ENODATA if property does not have a value, and -EOVERFLOW if the
1181 * property data isn't large enough.
1183 * dts entry of array should be like:
1184 * property = /bits/ 8 <0x50 0x60 0x70>;
1186 * The out_values is modified only if a valid u8 value can be decoded.
1188 int of_property_read_u8_array(const struct device_node *np,
1189 const char *propname, u8 *out_values, size_t sz)
1191 const u8 *val = of_find_property_value_of_size(np, propname,
1192 (sz * sizeof(*out_values)));
1194 if (IS_ERR(val))
1195 return PTR_ERR(val);
1197 while (sz--)
1198 *out_values++ = *val++;
1199 return 0;
1201 EXPORT_SYMBOL_GPL(of_property_read_u8_array);
1204 * of_property_read_u16_array - Find and read an array of u16 from a property.
1206 * @np: device node from which the property value is to be read.
1207 * @propname: name of the property to be searched.
1208 * @out_values: pointer to return value, modified only if return value is 0.
1209 * @sz: number of array elements to read
1211 * Search for a property in a device node and read 16-bit value(s) from
1212 * it. Returns 0 on success, -EINVAL if the property does not exist,
1213 * -ENODATA if property does not have a value, and -EOVERFLOW if the
1214 * property data isn't large enough.
1216 * dts entry of array should be like:
1217 * property = /bits/ 16 <0x5000 0x6000 0x7000>;
1219 * The out_values is modified only if a valid u16 value can be decoded.
1221 int of_property_read_u16_array(const struct device_node *np,
1222 const char *propname, u16 *out_values, size_t sz)
1224 const __be16 *val = of_find_property_value_of_size(np, propname,
1225 (sz * sizeof(*out_values)));
1227 if (IS_ERR(val))
1228 return PTR_ERR(val);
1230 while (sz--)
1231 *out_values++ = be16_to_cpup(val++);
1232 return 0;
1234 EXPORT_SYMBOL_GPL(of_property_read_u16_array);
1237 * of_property_read_u32_array - Find and read an array of 32 bit integers
1238 * from a property.
1240 * @np: device node from which the property value is to be read.
1241 * @propname: name of the property to be searched.
1242 * @out_values: pointer to return value, modified only if return value is 0.
1243 * @sz: number of array elements to read
1245 * Search for a property in a device node and read 32-bit value(s) from
1246 * it. Returns 0 on success, -EINVAL if the property does not exist,
1247 * -ENODATA if property does not have a value, and -EOVERFLOW if the
1248 * property data isn't large enough.
1250 * The out_values is modified only if a valid u32 value can be decoded.
1252 int of_property_read_u32_array(const struct device_node *np,
1253 const char *propname, u32 *out_values,
1254 size_t sz)
1256 const __be32 *val = of_find_property_value_of_size(np, propname,
1257 (sz * sizeof(*out_values)));
1259 if (IS_ERR(val))
1260 return PTR_ERR(val);
1262 while (sz--)
1263 *out_values++ = be32_to_cpup(val++);
1264 return 0;
1266 EXPORT_SYMBOL_GPL(of_property_read_u32_array);
1269 * of_property_read_u64 - Find and read a 64 bit integer from a property
1270 * @np: device node from which the property value is to be read.
1271 * @propname: name of the property to be searched.
1272 * @out_value: pointer to return value, modified only if return value is 0.
1274 * Search for a property in a device node and read a 64-bit value from
1275 * it. Returns 0 on success, -EINVAL if the property does not exist,
1276 * -ENODATA if property does not have a value, and -EOVERFLOW if the
1277 * property data isn't large enough.
1279 * The out_value is modified only if a valid u64 value can be decoded.
1281 int of_property_read_u64(const struct device_node *np, const char *propname,
1282 u64 *out_value)
1284 const __be32 *val = of_find_property_value_of_size(np, propname,
1285 sizeof(*out_value));
1287 if (IS_ERR(val))
1288 return PTR_ERR(val);
1290 *out_value = of_read_number(val, 2);
1291 return 0;
1293 EXPORT_SYMBOL_GPL(of_property_read_u64);
1296 * of_property_read_u64_array - Find and read an array of 64 bit integers
1297 * from a property.
1299 * @np: device node from which the property value is to be read.
1300 * @propname: name of the property to be searched.
1301 * @out_values: pointer to return value, modified only if return value is 0.
1302 * @sz: number of array elements to read
1304 * Search for a property in a device node and read 64-bit value(s) from
1305 * it. Returns 0 on success, -EINVAL if the property does not exist,
1306 * -ENODATA if property does not have a value, and -EOVERFLOW if the
1307 * property data isn't large enough.
1309 * The out_values is modified only if a valid u64 value can be decoded.
1311 int of_property_read_u64_array(const struct device_node *np,
1312 const char *propname, u64 *out_values,
1313 size_t sz)
1315 const __be32 *val = of_find_property_value_of_size(np, propname,
1316 (sz * sizeof(*out_values)));
1318 if (IS_ERR(val))
1319 return PTR_ERR(val);
1321 while (sz--) {
1322 *out_values++ = of_read_number(val, 2);
1323 val += 2;
1325 return 0;
1327 EXPORT_SYMBOL_GPL(of_property_read_u64_array);
1330 * of_property_read_string - Find and read a string from a property
1331 * @np: device node from which the property value is to be read.
1332 * @propname: name of the property to be searched.
1333 * @out_string: pointer to null terminated return string, modified only if
1334 * return value is 0.
1336 * Search for a property in a device tree node and retrieve a null
1337 * terminated string value (pointer to data, not a copy). Returns 0 on
1338 * success, -EINVAL if the property does not exist, -ENODATA if property
1339 * does not have a value, and -EILSEQ if the string is not null-terminated
1340 * within the length of the property data.
1342 * The out_string pointer is modified only if a valid string can be decoded.
1344 int of_property_read_string(struct device_node *np, const char *propname,
1345 const char **out_string)
1347 struct property *prop = of_find_property(np, propname, NULL);
1348 if (!prop)
1349 return -EINVAL;
1350 if (!prop->value)
1351 return -ENODATA;
1352 if (strnlen(prop->value, prop->length) >= prop->length)
1353 return -EILSEQ;
1354 *out_string = prop->value;
1355 return 0;
1357 EXPORT_SYMBOL_GPL(of_property_read_string);
1360 * of_property_match_string() - Find string in a list and return index
1361 * @np: pointer to node containing string list property
1362 * @propname: string list property name
1363 * @string: pointer to string to search for in string list
1365 * This function searches a string list property and returns the index
1366 * of a specific string value.
1368 int of_property_match_string(struct device_node *np, const char *propname,
1369 const char *string)
1371 struct property *prop = of_find_property(np, propname, NULL);
1372 size_t l;
1373 int i;
1374 const char *p, *end;
1376 if (!prop)
1377 return -EINVAL;
1378 if (!prop->value)
1379 return -ENODATA;
1381 p = prop->value;
1382 end = p + prop->length;
1384 for (i = 0; p < end; i++, p += l) {
1385 l = strnlen(p, end - p) + 1;
1386 if (p + l > end)
1387 return -EILSEQ;
1388 pr_debug("comparing %s with %s\n", string, p);
1389 if (strcmp(string, p) == 0)
1390 return i; /* Found it; return index */
1392 return -ENODATA;
1394 EXPORT_SYMBOL_GPL(of_property_match_string);
1397 * of_property_read_string_helper() - Utility helper for parsing string properties
1398 * @np: device node from which the property value is to be read.
1399 * @propname: name of the property to be searched.
1400 * @out_strs: output array of string pointers.
1401 * @sz: number of array elements to read.
1402 * @skip: Number of strings to skip over at beginning of list.
1404 * Don't call this function directly. It is a utility helper for the
1405 * of_property_read_string*() family of functions.
1407 int of_property_read_string_helper(struct device_node *np, const char *propname,
1408 const char **out_strs, size_t sz, int skip)
1410 struct property *prop = of_find_property(np, propname, NULL);
1411 int l = 0, i = 0;
1412 const char *p, *end;
1414 if (!prop)
1415 return -EINVAL;
1416 if (!prop->value)
1417 return -ENODATA;
1418 p = prop->value;
1419 end = p + prop->length;
1421 for (i = 0; p < end && (!out_strs || i < skip + sz); i++, p += l) {
1422 l = strnlen(p, end - p) + 1;
1423 if (p + l > end)
1424 return -EILSEQ;
1425 if (out_strs && i >= skip)
1426 *out_strs++ = p;
1428 i -= skip;
1429 return i <= 0 ? -ENODATA : i;
1431 EXPORT_SYMBOL_GPL(of_property_read_string_helper);
1433 void of_print_phandle_args(const char *msg, const struct of_phandle_args *args)
1435 int i;
1436 printk("%s %s", msg, of_node_full_name(args->np));
1437 for (i = 0; i < args->args_count; i++)
1438 printk(i ? ",%08x" : ":%08x", args->args[i]);
1439 printk("\n");
1442 static int __of_parse_phandle_with_args(const struct device_node *np,
1443 const char *list_name,
1444 const char *cells_name,
1445 int cell_count, int index,
1446 struct of_phandle_args *out_args)
1448 const __be32 *list, *list_end;
1449 int rc = 0, size, cur_index = 0;
1450 uint32_t count = 0;
1451 struct device_node *node = NULL;
1452 phandle phandle;
1454 /* Retrieve the phandle list property */
1455 list = of_get_property(np, list_name, &size);
1456 if (!list)
1457 return -ENOENT;
1458 list_end = list + size / sizeof(*list);
1460 /* Loop over the phandles until all the requested entry is found */
1461 while (list < list_end) {
1462 rc = -EINVAL;
1463 count = 0;
1466 * If phandle is 0, then it is an empty entry with no
1467 * arguments. Skip forward to the next entry.
1469 phandle = be32_to_cpup(list++);
1470 if (phandle) {
1472 * Find the provider node and parse the #*-cells
1473 * property to determine the argument length.
1475 * This is not needed if the cell count is hard-coded
1476 * (i.e. cells_name not set, but cell_count is set),
1477 * except when we're going to return the found node
1478 * below.
1480 if (cells_name || cur_index == index) {
1481 node = of_find_node_by_phandle(phandle);
1482 if (!node) {
1483 pr_err("%s: could not find phandle\n",
1484 np->full_name);
1485 goto err;
1489 if (cells_name) {
1490 if (of_property_read_u32(node, cells_name,
1491 &count)) {
1492 pr_err("%s: could not get %s for %s\n",
1493 np->full_name, cells_name,
1494 node->full_name);
1495 goto err;
1497 } else {
1498 count = cell_count;
1502 * Make sure that the arguments actually fit in the
1503 * remaining property data length
1505 if (list + count > list_end) {
1506 pr_err("%s: arguments longer than property\n",
1507 np->full_name);
1508 goto err;
1513 * All of the error cases above bail out of the loop, so at
1514 * this point, the parsing is successful. If the requested
1515 * index matches, then fill the out_args structure and return,
1516 * or return -ENOENT for an empty entry.
1518 rc = -ENOENT;
1519 if (cur_index == index) {
1520 if (!phandle)
1521 goto err;
1523 if (out_args) {
1524 int i;
1525 if (WARN_ON(count > MAX_PHANDLE_ARGS))
1526 count = MAX_PHANDLE_ARGS;
1527 out_args->np = node;
1528 out_args->args_count = count;
1529 for (i = 0; i < count; i++)
1530 out_args->args[i] = be32_to_cpup(list++);
1531 } else {
1532 of_node_put(node);
1535 /* Found it! return success */
1536 return 0;
1539 of_node_put(node);
1540 node = NULL;
1541 list += count;
1542 cur_index++;
1546 * Unlock node before returning result; will be one of:
1547 * -ENOENT : index is for empty phandle
1548 * -EINVAL : parsing error on data
1549 * [1..n] : Number of phandle (count mode; when index = -1)
1551 rc = index < 0 ? cur_index : -ENOENT;
1552 err:
1553 if (node)
1554 of_node_put(node);
1555 return rc;
1559 * of_parse_phandle - Resolve a phandle property to a device_node pointer
1560 * @np: Pointer to device node holding phandle property
1561 * @phandle_name: Name of property holding a phandle value
1562 * @index: For properties holding a table of phandles, this is the index into
1563 * the table
1565 * Returns the device_node pointer with refcount incremented. Use
1566 * of_node_put() on it when done.
1568 struct device_node *of_parse_phandle(const struct device_node *np,
1569 const char *phandle_name, int index)
1571 struct of_phandle_args args;
1573 if (index < 0)
1574 return NULL;
1576 if (__of_parse_phandle_with_args(np, phandle_name, NULL, 0,
1577 index, &args))
1578 return NULL;
1580 return args.np;
1582 EXPORT_SYMBOL(of_parse_phandle);
1585 * of_parse_phandle_with_args() - Find a node pointed by phandle in a list
1586 * @np: pointer to a device tree node containing a list
1587 * @list_name: property name that contains a list
1588 * @cells_name: property name that specifies phandles' arguments count
1589 * @index: index of a phandle to parse out
1590 * @out_args: optional pointer to output arguments structure (will be filled)
1592 * This function is useful to parse lists of phandles and their arguments.
1593 * Returns 0 on success and fills out_args, on error returns appropriate
1594 * errno value.
1596 * Caller is responsible to call of_node_put() on the returned out_args->np
1597 * pointer.
1599 * Example:
1601 * phandle1: node1 {
1602 * #list-cells = <2>;
1605 * phandle2: node2 {
1606 * #list-cells = <1>;
1609 * node3 {
1610 * list = <&phandle1 1 2 &phandle2 3>;
1613 * To get a device_node of the `node2' node you may call this:
1614 * of_parse_phandle_with_args(node3, "list", "#list-cells", 1, &args);
1616 int of_parse_phandle_with_args(const struct device_node *np, const char *list_name,
1617 const char *cells_name, int index,
1618 struct of_phandle_args *out_args)
1620 if (index < 0)
1621 return -EINVAL;
1622 return __of_parse_phandle_with_args(np, list_name, cells_name, 0,
1623 index, out_args);
1625 EXPORT_SYMBOL(of_parse_phandle_with_args);
1628 * of_parse_phandle_with_fixed_args() - Find a node pointed by phandle in a list
1629 * @np: pointer to a device tree node containing a list
1630 * @list_name: property name that contains a list
1631 * @cell_count: number of argument cells following the phandle
1632 * @index: index of a phandle to parse out
1633 * @out_args: optional pointer to output arguments structure (will be filled)
1635 * This function is useful to parse lists of phandles and their arguments.
1636 * Returns 0 on success and fills out_args, on error returns appropriate
1637 * errno value.
1639 * Caller is responsible to call of_node_put() on the returned out_args->np
1640 * pointer.
1642 * Example:
1644 * phandle1: node1 {
1647 * phandle2: node2 {
1650 * node3 {
1651 * list = <&phandle1 0 2 &phandle2 2 3>;
1654 * To get a device_node of the `node2' node you may call this:
1655 * of_parse_phandle_with_fixed_args(node3, "list", 2, 1, &args);
1657 int of_parse_phandle_with_fixed_args(const struct device_node *np,
1658 const char *list_name, int cell_count,
1659 int index, struct of_phandle_args *out_args)
1661 if (index < 0)
1662 return -EINVAL;
1663 return __of_parse_phandle_with_args(np, list_name, NULL, cell_count,
1664 index, out_args);
1666 EXPORT_SYMBOL(of_parse_phandle_with_fixed_args);
1669 * of_count_phandle_with_args() - Find the number of phandles references in a property
1670 * @np: pointer to a device tree node containing a list
1671 * @list_name: property name that contains a list
1672 * @cells_name: property name that specifies phandles' arguments count
1674 * Returns the number of phandle + argument tuples within a property. It
1675 * is a typical pattern to encode a list of phandle and variable
1676 * arguments into a single property. The number of arguments is encoded
1677 * by a property in the phandle-target node. For example, a gpios
1678 * property would contain a list of GPIO specifies consisting of a
1679 * phandle and 1 or more arguments. The number of arguments are
1680 * determined by the #gpio-cells property in the node pointed to by the
1681 * phandle.
1683 int of_count_phandle_with_args(const struct device_node *np, const char *list_name,
1684 const char *cells_name)
1686 return __of_parse_phandle_with_args(np, list_name, cells_name, 0, -1,
1687 NULL);
1689 EXPORT_SYMBOL(of_count_phandle_with_args);
1692 * __of_add_property - Add a property to a node without lock operations
1694 int __of_add_property(struct device_node *np, struct property *prop)
1696 struct property **next;
1698 prop->next = NULL;
1699 next = &np->properties;
1700 while (*next) {
1701 if (strcmp(prop->name, (*next)->name) == 0)
1702 /* duplicate ! don't insert it */
1703 return -EEXIST;
1705 next = &(*next)->next;
1707 *next = prop;
1709 return 0;
1713 * of_add_property - Add a property to a node
1715 int of_add_property(struct device_node *np, struct property *prop)
1717 unsigned long flags;
1718 int rc;
1720 mutex_lock(&of_mutex);
1722 raw_spin_lock_irqsave(&devtree_lock, flags);
1723 rc = __of_add_property(np, prop);
1724 raw_spin_unlock_irqrestore(&devtree_lock, flags);
1726 if (!rc)
1727 __of_add_property_sysfs(np, prop);
1729 mutex_unlock(&of_mutex);
1731 if (!rc)
1732 of_property_notify(OF_RECONFIG_ADD_PROPERTY, np, prop, NULL);
1734 return rc;
1737 int __of_remove_property(struct device_node *np, struct property *prop)
1739 struct property **next;
1741 for (next = &np->properties; *next; next = &(*next)->next) {
1742 if (*next == prop)
1743 break;
1745 if (*next == NULL)
1746 return -ENODEV;
1748 /* found the node */
1749 *next = prop->next;
1750 prop->next = np->deadprops;
1751 np->deadprops = prop;
1753 return 0;
1756 void __of_remove_property_sysfs(struct device_node *np, struct property *prop)
1758 if (!IS_ENABLED(CONFIG_SYSFS))
1759 return;
1761 /* at early boot, bail here and defer setup to of_init() */
1762 if (of_kset && of_node_is_attached(np))
1763 sysfs_remove_bin_file(&np->kobj, &prop->attr);
1767 * of_remove_property - Remove a property from a node.
1769 * Note that we don't actually remove it, since we have given out
1770 * who-knows-how-many pointers to the data using get-property.
1771 * Instead we just move the property to the "dead properties"
1772 * list, so it won't be found any more.
1774 int of_remove_property(struct device_node *np, struct property *prop)
1776 unsigned long flags;
1777 int rc;
1779 mutex_lock(&of_mutex);
1781 raw_spin_lock_irqsave(&devtree_lock, flags);
1782 rc = __of_remove_property(np, prop);
1783 raw_spin_unlock_irqrestore(&devtree_lock, flags);
1785 if (!rc)
1786 __of_remove_property_sysfs(np, prop);
1788 mutex_unlock(&of_mutex);
1790 if (!rc)
1791 of_property_notify(OF_RECONFIG_REMOVE_PROPERTY, np, prop, NULL);
1793 return rc;
1796 int __of_update_property(struct device_node *np, struct property *newprop,
1797 struct property **oldpropp)
1799 struct property **next, *oldprop;
1801 for (next = &np->properties; *next; next = &(*next)->next) {
1802 if (of_prop_cmp((*next)->name, newprop->name) == 0)
1803 break;
1805 *oldpropp = oldprop = *next;
1807 if (oldprop) {
1808 /* replace the node */
1809 newprop->next = oldprop->next;
1810 *next = newprop;
1811 oldprop->next = np->deadprops;
1812 np->deadprops = oldprop;
1813 } else {
1814 /* new node */
1815 newprop->next = NULL;
1816 *next = newprop;
1819 return 0;
1822 void __of_update_property_sysfs(struct device_node *np, struct property *newprop,
1823 struct property *oldprop)
1825 if (!IS_ENABLED(CONFIG_SYSFS))
1826 return;
1828 /* At early boot, bail out and defer setup to of_init() */
1829 if (!of_kset)
1830 return;
1832 if (oldprop)
1833 sysfs_remove_bin_file(&np->kobj, &oldprop->attr);
1834 __of_add_property_sysfs(np, newprop);
1838 * of_update_property - Update a property in a node, if the property does
1839 * not exist, add it.
1841 * Note that we don't actually remove it, since we have given out
1842 * who-knows-how-many pointers to the data using get-property.
1843 * Instead we just move the property to the "dead properties" list,
1844 * and add the new property to the property list
1846 int of_update_property(struct device_node *np, struct property *newprop)
1848 struct property *oldprop;
1849 unsigned long flags;
1850 int rc;
1852 if (!newprop->name)
1853 return -EINVAL;
1855 mutex_lock(&of_mutex);
1857 raw_spin_lock_irqsave(&devtree_lock, flags);
1858 rc = __of_update_property(np, newprop, &oldprop);
1859 raw_spin_unlock_irqrestore(&devtree_lock, flags);
1861 if (!rc)
1862 __of_update_property_sysfs(np, newprop, oldprop);
1864 mutex_unlock(&of_mutex);
1866 if (!rc)
1867 of_property_notify(OF_RECONFIG_UPDATE_PROPERTY, np, newprop, oldprop);
1869 return rc;
1872 static void of_alias_add(struct alias_prop *ap, struct device_node *np,
1873 int id, const char *stem, int stem_len)
1875 ap->np = np;
1876 ap->id = id;
1877 strncpy(ap->stem, stem, stem_len);
1878 ap->stem[stem_len] = 0;
1879 list_add_tail(&ap->link, &aliases_lookup);
1880 pr_debug("adding DT alias:%s: stem=%s id=%i node=%s\n",
1881 ap->alias, ap->stem, ap->id, of_node_full_name(np));
1885 * of_alias_scan - Scan all properties of the 'aliases' node
1887 * The function scans all the properties of the 'aliases' node and populates
1888 * the global lookup table with the properties. It returns the
1889 * number of alias properties found, or an error code in case of failure.
1891 * @dt_alloc: An allocator that provides a virtual address to memory
1892 * for storing the resulting tree
1894 void of_alias_scan(void * (*dt_alloc)(u64 size, u64 align))
1896 struct property *pp;
1898 of_aliases = of_find_node_by_path("/aliases");
1899 of_chosen = of_find_node_by_path("/chosen");
1900 if (of_chosen == NULL)
1901 of_chosen = of_find_node_by_path("/chosen@0");
1903 if (of_chosen) {
1904 /* linux,stdout-path and /aliases/stdout are for legacy compatibility */
1905 const char *name = of_get_property(of_chosen, "stdout-path", NULL);
1906 if (!name)
1907 name = of_get_property(of_chosen, "linux,stdout-path", NULL);
1908 if (IS_ENABLED(CONFIG_PPC) && !name)
1909 name = of_get_property(of_aliases, "stdout", NULL);
1910 if (name)
1911 of_stdout = of_find_node_opts_by_path(name, &of_stdout_options);
1914 if (!of_aliases)
1915 return;
1917 for_each_property_of_node(of_aliases, pp) {
1918 const char *start = pp->name;
1919 const char *end = start + strlen(start);
1920 struct device_node *np;
1921 struct alias_prop *ap;
1922 int id, len;
1924 /* Skip those we do not want to proceed */
1925 if (!strcmp(pp->name, "name") ||
1926 !strcmp(pp->name, "phandle") ||
1927 !strcmp(pp->name, "linux,phandle"))
1928 continue;
1930 np = of_find_node_by_path(pp->value);
1931 if (!np)
1932 continue;
1934 /* walk the alias backwards to extract the id and work out
1935 * the 'stem' string */
1936 while (isdigit(*(end-1)) && end > start)
1937 end--;
1938 len = end - start;
1940 if (kstrtoint(end, 10, &id) < 0)
1941 continue;
1943 /* Allocate an alias_prop with enough space for the stem */
1944 ap = dt_alloc(sizeof(*ap) + len + 1, 4);
1945 if (!ap)
1946 continue;
1947 memset(ap, 0, sizeof(*ap) + len + 1);
1948 ap->alias = start;
1949 of_alias_add(ap, np, id, start, len);
1954 * of_alias_get_id - Get alias id for the given device_node
1955 * @np: Pointer to the given device_node
1956 * @stem: Alias stem of the given device_node
1958 * The function travels the lookup table to get the alias id for the given
1959 * device_node and alias stem. It returns the alias id if found.
1961 int of_alias_get_id(struct device_node *np, const char *stem)
1963 struct alias_prop *app;
1964 int id = -ENODEV;
1966 mutex_lock(&of_mutex);
1967 list_for_each_entry(app, &aliases_lookup, link) {
1968 if (strcmp(app->stem, stem) != 0)
1969 continue;
1971 if (np == app->np) {
1972 id = app->id;
1973 break;
1976 mutex_unlock(&of_mutex);
1978 return id;
1980 EXPORT_SYMBOL_GPL(of_alias_get_id);
1983 * of_alias_get_highest_id - Get highest alias id for the given stem
1984 * @stem: Alias stem to be examined
1986 * The function travels the lookup table to get the highest alias id for the
1987 * given alias stem. It returns the alias id if found.
1989 int of_alias_get_highest_id(const char *stem)
1991 struct alias_prop *app;
1992 int id = -ENODEV;
1994 mutex_lock(&of_mutex);
1995 list_for_each_entry(app, &aliases_lookup, link) {
1996 if (strcmp(app->stem, stem) != 0)
1997 continue;
1999 if (app->id > id)
2000 id = app->id;
2002 mutex_unlock(&of_mutex);
2004 return id;
2006 EXPORT_SYMBOL_GPL(of_alias_get_highest_id);
2008 const __be32 *of_prop_next_u32(struct property *prop, const __be32 *cur,
2009 u32 *pu)
2011 const void *curv = cur;
2013 if (!prop)
2014 return NULL;
2016 if (!cur) {
2017 curv = prop->value;
2018 goto out_val;
2021 curv += sizeof(*cur);
2022 if (curv >= prop->value + prop->length)
2023 return NULL;
2025 out_val:
2026 *pu = be32_to_cpup(curv);
2027 return curv;
2029 EXPORT_SYMBOL_GPL(of_prop_next_u32);
2031 const char *of_prop_next_string(struct property *prop, const char *cur)
2033 const void *curv = cur;
2035 if (!prop)
2036 return NULL;
2038 if (!cur)
2039 return prop->value;
2041 curv += strlen(cur) + 1;
2042 if (curv >= prop->value + prop->length)
2043 return NULL;
2045 return curv;
2047 EXPORT_SYMBOL_GPL(of_prop_next_string);
2050 * of_console_check() - Test and setup console for DT setup
2051 * @dn - Pointer to device node
2052 * @name - Name to use for preferred console without index. ex. "ttyS"
2053 * @index - Index to use for preferred console.
2055 * Check if the given device node matches the stdout-path property in the
2056 * /chosen node. If it does then register it as the preferred console and return
2057 * TRUE. Otherwise return FALSE.
2059 bool of_console_check(struct device_node *dn, char *name, int index)
2061 if (!dn || dn != of_stdout || console_set_on_cmdline)
2062 return false;
2063 return !add_preferred_console(name, index,
2064 kstrdup(of_stdout_options, GFP_KERNEL));
2066 EXPORT_SYMBOL_GPL(of_console_check);
2069 * of_find_next_cache_node - Find a node's subsidiary cache
2070 * @np: node of type "cpu" or "cache"
2072 * Returns a node pointer with refcount incremented, use
2073 * of_node_put() on it when done. Caller should hold a reference
2074 * to np.
2076 struct device_node *of_find_next_cache_node(const struct device_node *np)
2078 struct device_node *child;
2079 const phandle *handle;
2081 handle = of_get_property(np, "l2-cache", NULL);
2082 if (!handle)
2083 handle = of_get_property(np, "next-level-cache", NULL);
2085 if (handle)
2086 return of_find_node_by_phandle(be32_to_cpup(handle));
2088 /* OF on pmac has nodes instead of properties named "l2-cache"
2089 * beneath CPU nodes.
2091 if (!strcmp(np->type, "cpu"))
2092 for_each_child_of_node(np, child)
2093 if (!strcmp(child->type, "cache"))
2094 return child;
2096 return NULL;
2100 * of_graph_parse_endpoint() - parse common endpoint node properties
2101 * @node: pointer to endpoint device_node
2102 * @endpoint: pointer to the OF endpoint data structure
2104 * The caller should hold a reference to @node.
2106 int of_graph_parse_endpoint(const struct device_node *node,
2107 struct of_endpoint *endpoint)
2109 struct device_node *port_node = of_get_parent(node);
2111 WARN_ONCE(!port_node, "%s(): endpoint %s has no parent node\n",
2112 __func__, node->full_name);
2114 memset(endpoint, 0, sizeof(*endpoint));
2116 endpoint->local_node = node;
2118 * It doesn't matter whether the two calls below succeed.
2119 * If they don't then the default value 0 is used.
2121 of_property_read_u32(port_node, "reg", &endpoint->port);
2122 of_property_read_u32(node, "reg", &endpoint->id);
2124 of_node_put(port_node);
2126 return 0;
2128 EXPORT_SYMBOL(of_graph_parse_endpoint);
2131 * of_graph_get_port_by_id() - get the port matching a given id
2132 * @parent: pointer to the parent device node
2133 * @id: id of the port
2135 * Return: A 'port' node pointer with refcount incremented. The caller
2136 * has to use of_node_put() on it when done.
2138 struct device_node *of_graph_get_port_by_id(struct device_node *parent, u32 id)
2140 struct device_node *node, *port;
2142 node = of_get_child_by_name(parent, "ports");
2143 if (node)
2144 parent = node;
2146 for_each_child_of_node(parent, port) {
2147 u32 port_id = 0;
2149 if (of_node_cmp(port->name, "port") != 0)
2150 continue;
2151 of_property_read_u32(port, "reg", &port_id);
2152 if (id == port_id)
2153 break;
2156 of_node_put(node);
2158 return port;
2160 EXPORT_SYMBOL(of_graph_get_port_by_id);
2163 * of_graph_get_next_endpoint() - get next endpoint node
2164 * @parent: pointer to the parent device node
2165 * @prev: previous endpoint node, or NULL to get first
2167 * Return: An 'endpoint' node pointer with refcount incremented. Refcount
2168 * of the passed @prev node is decremented.
2170 struct device_node *of_graph_get_next_endpoint(const struct device_node *parent,
2171 struct device_node *prev)
2173 struct device_node *endpoint;
2174 struct device_node *port;
2176 if (!parent)
2177 return NULL;
2180 * Start by locating the port node. If no previous endpoint is specified
2181 * search for the first port node, otherwise get the previous endpoint
2182 * parent port node.
2184 if (!prev) {
2185 struct device_node *node;
2187 node = of_get_child_by_name(parent, "ports");
2188 if (node)
2189 parent = node;
2191 port = of_get_child_by_name(parent, "port");
2192 of_node_put(node);
2194 if (!port) {
2195 pr_err("%s(): no port node found in %s\n",
2196 __func__, parent->full_name);
2197 return NULL;
2199 } else {
2200 port = of_get_parent(prev);
2201 if (WARN_ONCE(!port, "%s(): endpoint %s has no parent node\n",
2202 __func__, prev->full_name))
2203 return NULL;
2206 while (1) {
2208 * Now that we have a port node, get the next endpoint by
2209 * getting the next child. If the previous endpoint is NULL this
2210 * will return the first child.
2212 endpoint = of_get_next_child(port, prev);
2213 if (endpoint) {
2214 of_node_put(port);
2215 return endpoint;
2218 /* No more endpoints under this port, try the next one. */
2219 prev = NULL;
2221 do {
2222 port = of_get_next_child(parent, port);
2223 if (!port)
2224 return NULL;
2225 } while (of_node_cmp(port->name, "port"));
2228 EXPORT_SYMBOL(of_graph_get_next_endpoint);
2231 * of_graph_get_endpoint_by_regs() - get endpoint node of specific identifiers
2232 * @parent: pointer to the parent device node
2233 * @port_reg: identifier (value of reg property) of the parent port node
2234 * @reg: identifier (value of reg property) of the endpoint node
2236 * Return: An 'endpoint' node pointer which is identified by reg and at the same
2237 * is the child of a port node identified by port_reg. reg and port_reg are
2238 * ignored when they are -1.
2240 struct device_node *of_graph_get_endpoint_by_regs(
2241 const struct device_node *parent, int port_reg, int reg)
2243 struct of_endpoint endpoint;
2244 struct device_node *node, *prev_node = NULL;
2246 while (1) {
2247 node = of_graph_get_next_endpoint(parent, prev_node);
2248 of_node_put(prev_node);
2249 if (!node)
2250 break;
2252 of_graph_parse_endpoint(node, &endpoint);
2253 if (((port_reg == -1) || (endpoint.port == port_reg)) &&
2254 ((reg == -1) || (endpoint.id == reg)))
2255 return node;
2257 prev_node = node;
2260 return NULL;
2262 EXPORT_SYMBOL(of_graph_get_endpoint_by_regs);
2265 * of_graph_get_remote_port_parent() - get remote port's parent node
2266 * @node: pointer to a local endpoint device_node
2268 * Return: Remote device node associated with remote endpoint node linked
2269 * to @node. Use of_node_put() on it when done.
2271 struct device_node *of_graph_get_remote_port_parent(
2272 const struct device_node *node)
2274 struct device_node *np;
2275 unsigned int depth;
2277 /* Get remote endpoint node. */
2278 np = of_parse_phandle(node, "remote-endpoint", 0);
2280 /* Walk 3 levels up only if there is 'ports' node. */
2281 for (depth = 3; depth && np; depth--) {
2282 np = of_get_next_parent(np);
2283 if (depth == 2 && of_node_cmp(np->name, "ports"))
2284 break;
2286 return np;
2288 EXPORT_SYMBOL(of_graph_get_remote_port_parent);
2291 * of_graph_get_remote_port() - get remote port node
2292 * @node: pointer to a local endpoint device_node
2294 * Return: Remote port node associated with remote endpoint node linked
2295 * to @node. Use of_node_put() on it when done.
2297 struct device_node *of_graph_get_remote_port(const struct device_node *node)
2299 struct device_node *np;
2301 /* Get remote endpoint node. */
2302 np = of_parse_phandle(node, "remote-endpoint", 0);
2303 if (!np)
2304 return NULL;
2305 return of_get_next_parent(np);
2307 EXPORT_SYMBOL(of_graph_get_remote_port);