irqchip/zevio: Use irq_data_get_chip_type() helper
[linux/fpc-iii.git] / drivers / rtc / rtc-ds1305.c
blob85706a9f82c99429bcc7cefdc2760138c11193a2
1 /*
2 * rtc-ds1305.c -- driver for DS1305 and DS1306 SPI RTC chips
4 * Copyright (C) 2008 David Brownell
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
11 #include <linux/kernel.h>
12 #include <linux/init.h>
13 #include <linux/bcd.h>
14 #include <linux/slab.h>
15 #include <linux/rtc.h>
16 #include <linux/workqueue.h>
18 #include <linux/spi/spi.h>
19 #include <linux/spi/ds1305.h>
20 #include <linux/module.h>
24 * Registers ... mask DS1305_WRITE into register address to write,
25 * otherwise you're reading it. All non-bitmask values are BCD.
27 #define DS1305_WRITE 0x80
30 /* RTC date/time ... the main special cases are that we:
31 * - Need fancy "hours" encoding in 12hour mode
32 * - Don't rely on the "day-of-week" field (or tm_wday)
33 * - Are a 21st-century clock (2000 <= year < 2100)
35 #define DS1305_RTC_LEN 7 /* bytes for RTC regs */
37 #define DS1305_SEC 0x00 /* register addresses */
38 #define DS1305_MIN 0x01
39 #define DS1305_HOUR 0x02
40 # define DS1305_HR_12 0x40 /* set == 12 hr mode */
41 # define DS1305_HR_PM 0x20 /* set == PM (12hr mode) */
42 #define DS1305_WDAY 0x03
43 #define DS1305_MDAY 0x04
44 #define DS1305_MON 0x05
45 #define DS1305_YEAR 0x06
48 /* The two alarms have only sec/min/hour/wday fields (ALM_LEN).
49 * DS1305_ALM_DISABLE disables a match field (some combos are bad).
51 * NOTE that since we don't use WDAY, we limit ourselves to alarms
52 * only one day into the future (vs potentially up to a week).
54 * NOTE ALSO that while we could generate once-a-second IRQs (UIE), we
55 * don't currently support them. We'd either need to do it only when
56 * no alarm is pending (not the standard model), or to use the second
57 * alarm (implying that this is a DS1305 not DS1306, *and* that either
58 * it's wired up a second IRQ we know, or that INTCN is set)
60 #define DS1305_ALM_LEN 4 /* bytes for ALM regs */
61 #define DS1305_ALM_DISABLE 0x80
63 #define DS1305_ALM0(r) (0x07 + (r)) /* register addresses */
64 #define DS1305_ALM1(r) (0x0b + (r))
67 /* three control registers */
68 #define DS1305_CONTROL_LEN 3 /* bytes of control regs */
70 #define DS1305_CONTROL 0x0f /* register addresses */
71 # define DS1305_nEOSC 0x80 /* low enables oscillator */
72 # define DS1305_WP 0x40 /* write protect */
73 # define DS1305_INTCN 0x04 /* clear == only int0 used */
74 # define DS1306_1HZ 0x04 /* enable 1Hz output */
75 # define DS1305_AEI1 0x02 /* enable ALM1 IRQ */
76 # define DS1305_AEI0 0x01 /* enable ALM0 IRQ */
77 #define DS1305_STATUS 0x10
78 /* status has just AEIx bits, mirrored as IRQFx */
79 #define DS1305_TRICKLE 0x11
80 /* trickle bits are defined in <linux/spi/ds1305.h> */
82 /* a bunch of NVRAM */
83 #define DS1305_NVRAM_LEN 96 /* bytes of NVRAM */
85 #define DS1305_NVRAM 0x20 /* register addresses */
88 struct ds1305 {
89 struct spi_device *spi;
90 struct rtc_device *rtc;
92 struct work_struct work;
94 unsigned long flags;
95 #define FLAG_EXITING 0
97 bool hr12;
98 u8 ctrl[DS1305_CONTROL_LEN];
102 /*----------------------------------------------------------------------*/
105 * Utilities ... tolerate 12-hour AM/PM notation in case of non-Linux
106 * software (like a bootloader) which may require it.
109 static unsigned bcd2hour(u8 bcd)
111 if (bcd & DS1305_HR_12) {
112 unsigned hour = 0;
114 bcd &= ~DS1305_HR_12;
115 if (bcd & DS1305_HR_PM) {
116 hour = 12;
117 bcd &= ~DS1305_HR_PM;
119 hour += bcd2bin(bcd);
120 return hour - 1;
122 return bcd2bin(bcd);
125 static u8 hour2bcd(bool hr12, int hour)
127 if (hr12) {
128 hour++;
129 if (hour <= 12)
130 return DS1305_HR_12 | bin2bcd(hour);
131 hour -= 12;
132 return DS1305_HR_12 | DS1305_HR_PM | bin2bcd(hour);
134 return bin2bcd(hour);
137 /*----------------------------------------------------------------------*/
140 * Interface to RTC framework
143 static int ds1305_alarm_irq_enable(struct device *dev, unsigned int enabled)
145 struct ds1305 *ds1305 = dev_get_drvdata(dev);
146 u8 buf[2];
147 long err = -EINVAL;
149 buf[0] = DS1305_WRITE | DS1305_CONTROL;
150 buf[1] = ds1305->ctrl[0];
152 if (enabled) {
153 if (ds1305->ctrl[0] & DS1305_AEI0)
154 goto done;
155 buf[1] |= DS1305_AEI0;
156 } else {
157 if (!(buf[1] & DS1305_AEI0))
158 goto done;
159 buf[1] &= ~DS1305_AEI0;
161 err = spi_write_then_read(ds1305->spi, buf, sizeof(buf), NULL, 0);
162 if (err >= 0)
163 ds1305->ctrl[0] = buf[1];
164 done:
165 return err;
171 * Get/set of date and time is pretty normal.
174 static int ds1305_get_time(struct device *dev, struct rtc_time *time)
176 struct ds1305 *ds1305 = dev_get_drvdata(dev);
177 u8 addr = DS1305_SEC;
178 u8 buf[DS1305_RTC_LEN];
179 int status;
181 /* Use write-then-read to get all the date/time registers
182 * since dma from stack is nonportable
184 status = spi_write_then_read(ds1305->spi, &addr, sizeof(addr),
185 buf, sizeof(buf));
186 if (status < 0)
187 return status;
189 dev_vdbg(dev, "%s: %02x %02x %02x, %02x %02x %02x %02x\n",
190 "read", buf[0], buf[1], buf[2], buf[3],
191 buf[4], buf[5], buf[6]);
193 /* Decode the registers */
194 time->tm_sec = bcd2bin(buf[DS1305_SEC]);
195 time->tm_min = bcd2bin(buf[DS1305_MIN]);
196 time->tm_hour = bcd2hour(buf[DS1305_HOUR]);
197 time->tm_wday = buf[DS1305_WDAY] - 1;
198 time->tm_mday = bcd2bin(buf[DS1305_MDAY]);
199 time->tm_mon = bcd2bin(buf[DS1305_MON]) - 1;
200 time->tm_year = bcd2bin(buf[DS1305_YEAR]) + 100;
202 dev_vdbg(dev, "%s secs=%d, mins=%d, "
203 "hours=%d, mday=%d, mon=%d, year=%d, wday=%d\n",
204 "read", time->tm_sec, time->tm_min,
205 time->tm_hour, time->tm_mday,
206 time->tm_mon, time->tm_year, time->tm_wday);
208 /* Time may not be set */
209 return rtc_valid_tm(time);
212 static int ds1305_set_time(struct device *dev, struct rtc_time *time)
214 struct ds1305 *ds1305 = dev_get_drvdata(dev);
215 u8 buf[1 + DS1305_RTC_LEN];
216 u8 *bp = buf;
218 dev_vdbg(dev, "%s secs=%d, mins=%d, "
219 "hours=%d, mday=%d, mon=%d, year=%d, wday=%d\n",
220 "write", time->tm_sec, time->tm_min,
221 time->tm_hour, time->tm_mday,
222 time->tm_mon, time->tm_year, time->tm_wday);
224 /* Write registers starting at the first time/date address. */
225 *bp++ = DS1305_WRITE | DS1305_SEC;
227 *bp++ = bin2bcd(time->tm_sec);
228 *bp++ = bin2bcd(time->tm_min);
229 *bp++ = hour2bcd(ds1305->hr12, time->tm_hour);
230 *bp++ = (time->tm_wday < 7) ? (time->tm_wday + 1) : 1;
231 *bp++ = bin2bcd(time->tm_mday);
232 *bp++ = bin2bcd(time->tm_mon + 1);
233 *bp++ = bin2bcd(time->tm_year - 100);
235 dev_dbg(dev, "%s: %02x %02x %02x, %02x %02x %02x %02x\n",
236 "write", buf[1], buf[2], buf[3],
237 buf[4], buf[5], buf[6], buf[7]);
239 /* use write-then-read since dma from stack is nonportable */
240 return spi_write_then_read(ds1305->spi, buf, sizeof(buf),
241 NULL, 0);
245 * Get/set of alarm is a bit funky:
247 * - First there's the inherent raciness of getting the (partitioned)
248 * status of an alarm that could trigger while we're reading parts
249 * of that status.
251 * - Second there's its limited range (we could increase it a bit by
252 * relying on WDAY), which means it will easily roll over.
254 * - Third there's the choice of two alarms and alarm signals.
255 * Here we use ALM0 and expect that nINT0 (open drain) is used;
256 * that's the only real option for DS1306 runtime alarms, and is
257 * natural on DS1305.
259 * - Fourth, there's also ALM1, and a second interrupt signal:
260 * + On DS1305 ALM1 uses nINT1 (when INTCN=1) else nINT0;
261 * + On DS1306 ALM1 only uses INT1 (an active high pulse)
262 * and it won't work when VCC1 is active.
264 * So to be most general, we should probably set both alarms to the
265 * same value, letting ALM1 be the wakeup event source on DS1306
266 * and handling several wiring options on DS1305.
268 * - Fifth, we support the polled mode (as well as possible; why not?)
269 * even when no interrupt line is wired to an IRQ.
273 * Context: caller holds rtc->ops_lock (to protect ds1305->ctrl)
275 static int ds1305_get_alarm(struct device *dev, struct rtc_wkalrm *alm)
277 struct ds1305 *ds1305 = dev_get_drvdata(dev);
278 struct spi_device *spi = ds1305->spi;
279 u8 addr;
280 int status;
281 u8 buf[DS1305_ALM_LEN];
283 /* Refresh control register cache BEFORE reading ALM0 registers,
284 * since reading alarm registers acks any pending IRQ. That
285 * makes returning "pending" status a bit of a lie, but that bit
286 * of EFI status is at best fragile anyway (given IRQ handlers).
288 addr = DS1305_CONTROL;
289 status = spi_write_then_read(spi, &addr, sizeof(addr),
290 ds1305->ctrl, sizeof(ds1305->ctrl));
291 if (status < 0)
292 return status;
294 alm->enabled = !!(ds1305->ctrl[0] & DS1305_AEI0);
295 alm->pending = !!(ds1305->ctrl[1] & DS1305_AEI0);
297 /* get and check ALM0 registers */
298 addr = DS1305_ALM0(DS1305_SEC);
299 status = spi_write_then_read(spi, &addr, sizeof(addr),
300 buf, sizeof(buf));
301 if (status < 0)
302 return status;
304 dev_vdbg(dev, "%s: %02x %02x %02x %02x\n",
305 "alm0 read", buf[DS1305_SEC], buf[DS1305_MIN],
306 buf[DS1305_HOUR], buf[DS1305_WDAY]);
308 if ((DS1305_ALM_DISABLE & buf[DS1305_SEC])
309 || (DS1305_ALM_DISABLE & buf[DS1305_MIN])
310 || (DS1305_ALM_DISABLE & buf[DS1305_HOUR]))
311 return -EIO;
313 /* Stuff these values into alm->time and let RTC framework code
314 * fill in the rest ... and also handle rollover to tomorrow when
315 * that's needed.
317 alm->time.tm_sec = bcd2bin(buf[DS1305_SEC]);
318 alm->time.tm_min = bcd2bin(buf[DS1305_MIN]);
319 alm->time.tm_hour = bcd2hour(buf[DS1305_HOUR]);
320 alm->time.tm_mday = -1;
321 alm->time.tm_mon = -1;
322 alm->time.tm_year = -1;
323 /* next three fields are unused by Linux */
324 alm->time.tm_wday = -1;
325 alm->time.tm_mday = -1;
326 alm->time.tm_isdst = -1;
328 return 0;
332 * Context: caller holds rtc->ops_lock (to protect ds1305->ctrl)
334 static int ds1305_set_alarm(struct device *dev, struct rtc_wkalrm *alm)
336 struct ds1305 *ds1305 = dev_get_drvdata(dev);
337 struct spi_device *spi = ds1305->spi;
338 unsigned long now, later;
339 struct rtc_time tm;
340 int status;
341 u8 buf[1 + DS1305_ALM_LEN];
343 /* convert desired alarm to time_t */
344 status = rtc_tm_to_time(&alm->time, &later);
345 if (status < 0)
346 return status;
348 /* Read current time as time_t */
349 status = ds1305_get_time(dev, &tm);
350 if (status < 0)
351 return status;
352 status = rtc_tm_to_time(&tm, &now);
353 if (status < 0)
354 return status;
356 /* make sure alarm fires within the next 24 hours */
357 if (later <= now)
358 return -EINVAL;
359 if ((later - now) > 24 * 60 * 60)
360 return -EDOM;
362 /* disable alarm if needed */
363 if (ds1305->ctrl[0] & DS1305_AEI0) {
364 ds1305->ctrl[0] &= ~DS1305_AEI0;
366 buf[0] = DS1305_WRITE | DS1305_CONTROL;
367 buf[1] = ds1305->ctrl[0];
368 status = spi_write_then_read(ds1305->spi, buf, 2, NULL, 0);
369 if (status < 0)
370 return status;
373 /* write alarm */
374 buf[0] = DS1305_WRITE | DS1305_ALM0(DS1305_SEC);
375 buf[1 + DS1305_SEC] = bin2bcd(alm->time.tm_sec);
376 buf[1 + DS1305_MIN] = bin2bcd(alm->time.tm_min);
377 buf[1 + DS1305_HOUR] = hour2bcd(ds1305->hr12, alm->time.tm_hour);
378 buf[1 + DS1305_WDAY] = DS1305_ALM_DISABLE;
380 dev_dbg(dev, "%s: %02x %02x %02x %02x\n",
381 "alm0 write", buf[1 + DS1305_SEC], buf[1 + DS1305_MIN],
382 buf[1 + DS1305_HOUR], buf[1 + DS1305_WDAY]);
384 status = spi_write_then_read(spi, buf, sizeof(buf), NULL, 0);
385 if (status < 0)
386 return status;
388 /* enable alarm if requested */
389 if (alm->enabled) {
390 ds1305->ctrl[0] |= DS1305_AEI0;
392 buf[0] = DS1305_WRITE | DS1305_CONTROL;
393 buf[1] = ds1305->ctrl[0];
394 status = spi_write_then_read(ds1305->spi, buf, 2, NULL, 0);
397 return status;
400 #ifdef CONFIG_PROC_FS
402 static int ds1305_proc(struct device *dev, struct seq_file *seq)
404 struct ds1305 *ds1305 = dev_get_drvdata(dev);
405 char *diodes = "no";
406 char *resistors = "";
408 /* ctrl[2] is treated as read-only; no locking needed */
409 if ((ds1305->ctrl[2] & 0xf0) == DS1305_TRICKLE_MAGIC) {
410 switch (ds1305->ctrl[2] & 0x0c) {
411 case DS1305_TRICKLE_DS2:
412 diodes = "2 diodes, ";
413 break;
414 case DS1305_TRICKLE_DS1:
415 diodes = "1 diode, ";
416 break;
417 default:
418 goto done;
420 switch (ds1305->ctrl[2] & 0x03) {
421 case DS1305_TRICKLE_2K:
422 resistors = "2k Ohm";
423 break;
424 case DS1305_TRICKLE_4K:
425 resistors = "4k Ohm";
426 break;
427 case DS1305_TRICKLE_8K:
428 resistors = "8k Ohm";
429 break;
430 default:
431 diodes = "no";
432 break;
436 done:
437 seq_printf(seq, "trickle_charge\t: %s%s\n", diodes, resistors);
439 return 0;
442 #else
443 #define ds1305_proc NULL
444 #endif
446 static const struct rtc_class_ops ds1305_ops = {
447 .read_time = ds1305_get_time,
448 .set_time = ds1305_set_time,
449 .read_alarm = ds1305_get_alarm,
450 .set_alarm = ds1305_set_alarm,
451 .proc = ds1305_proc,
452 .alarm_irq_enable = ds1305_alarm_irq_enable,
455 static void ds1305_work(struct work_struct *work)
457 struct ds1305 *ds1305 = container_of(work, struct ds1305, work);
458 struct mutex *lock = &ds1305->rtc->ops_lock;
459 struct spi_device *spi = ds1305->spi;
460 u8 buf[3];
461 int status;
463 /* lock to protect ds1305->ctrl */
464 mutex_lock(lock);
466 /* Disable the IRQ, and clear its status ... for now, we "know"
467 * that if more than one alarm is active, they're in sync.
468 * Note that reading ALM data registers also clears IRQ status.
470 ds1305->ctrl[0] &= ~(DS1305_AEI1 | DS1305_AEI0);
471 ds1305->ctrl[1] = 0;
473 buf[0] = DS1305_WRITE | DS1305_CONTROL;
474 buf[1] = ds1305->ctrl[0];
475 buf[2] = 0;
477 status = spi_write_then_read(spi, buf, sizeof(buf),
478 NULL, 0);
479 if (status < 0)
480 dev_dbg(&spi->dev, "clear irq --> %d\n", status);
482 mutex_unlock(lock);
484 if (!test_bit(FLAG_EXITING, &ds1305->flags))
485 enable_irq(spi->irq);
487 rtc_update_irq(ds1305->rtc, 1, RTC_AF | RTC_IRQF);
491 * This "real" IRQ handler hands off to a workqueue mostly to allow
492 * mutex locking for ds1305->ctrl ... unlike I2C, we could issue async
493 * I/O requests in IRQ context (to clear the IRQ status).
495 static irqreturn_t ds1305_irq(int irq, void *p)
497 struct ds1305 *ds1305 = p;
499 disable_irq(irq);
500 schedule_work(&ds1305->work);
501 return IRQ_HANDLED;
504 /*----------------------------------------------------------------------*/
507 * Interface for NVRAM
510 static void msg_init(struct spi_message *m, struct spi_transfer *x,
511 u8 *addr, size_t count, char *tx, char *rx)
513 spi_message_init(m);
514 memset(x, 0, 2 * sizeof(*x));
516 x->tx_buf = addr;
517 x->len = 1;
518 spi_message_add_tail(x, m);
520 x++;
522 x->tx_buf = tx;
523 x->rx_buf = rx;
524 x->len = count;
525 spi_message_add_tail(x, m);
528 static ssize_t
529 ds1305_nvram_read(struct file *filp, struct kobject *kobj,
530 struct bin_attribute *attr,
531 char *buf, loff_t off, size_t count)
533 struct spi_device *spi;
534 u8 addr;
535 struct spi_message m;
536 struct spi_transfer x[2];
537 int status;
539 spi = container_of(kobj, struct spi_device, dev.kobj);
541 addr = DS1305_NVRAM + off;
542 msg_init(&m, x, &addr, count, NULL, buf);
544 status = spi_sync(spi, &m);
545 if (status < 0)
546 dev_err(&spi->dev, "nvram %s error %d\n", "read", status);
547 return (status < 0) ? status : count;
550 static ssize_t
551 ds1305_nvram_write(struct file *filp, struct kobject *kobj,
552 struct bin_attribute *attr,
553 char *buf, loff_t off, size_t count)
555 struct spi_device *spi;
556 u8 addr;
557 struct spi_message m;
558 struct spi_transfer x[2];
559 int status;
561 spi = container_of(kobj, struct spi_device, dev.kobj);
563 addr = (DS1305_WRITE | DS1305_NVRAM) + off;
564 msg_init(&m, x, &addr, count, buf, NULL);
566 status = spi_sync(spi, &m);
567 if (status < 0)
568 dev_err(&spi->dev, "nvram %s error %d\n", "write", status);
569 return (status < 0) ? status : count;
572 static struct bin_attribute nvram = {
573 .attr.name = "nvram",
574 .attr.mode = S_IRUGO | S_IWUSR,
575 .read = ds1305_nvram_read,
576 .write = ds1305_nvram_write,
577 .size = DS1305_NVRAM_LEN,
580 /*----------------------------------------------------------------------*/
583 * Interface to SPI stack
586 static int ds1305_probe(struct spi_device *spi)
588 struct ds1305 *ds1305;
589 int status;
590 u8 addr, value;
591 struct ds1305_platform_data *pdata = dev_get_platdata(&spi->dev);
592 bool write_ctrl = false;
594 /* Sanity check board setup data. This may be hooked up
595 * in 3wire mode, but we don't care. Note that unless
596 * there's an inverter in place, this needs SPI_CS_HIGH!
598 if ((spi->bits_per_word && spi->bits_per_word != 8)
599 || (spi->max_speed_hz > 2000000)
600 || !(spi->mode & SPI_CPHA))
601 return -EINVAL;
603 /* set up driver data */
604 ds1305 = devm_kzalloc(&spi->dev, sizeof(*ds1305), GFP_KERNEL);
605 if (!ds1305)
606 return -ENOMEM;
607 ds1305->spi = spi;
608 spi_set_drvdata(spi, ds1305);
610 /* read and cache control registers */
611 addr = DS1305_CONTROL;
612 status = spi_write_then_read(spi, &addr, sizeof(addr),
613 ds1305->ctrl, sizeof(ds1305->ctrl));
614 if (status < 0) {
615 dev_dbg(&spi->dev, "can't %s, %d\n",
616 "read", status);
617 return status;
620 dev_dbg(&spi->dev, "ctrl %s: %3ph\n", "read", ds1305->ctrl);
622 /* Sanity check register values ... partially compensating for the
623 * fact that SPI has no device handshake. A pullup on MISO would
624 * make these tests fail; but not all systems will have one. If
625 * some register is neither 0x00 nor 0xff, a chip is likely there.
627 if ((ds1305->ctrl[0] & 0x38) != 0 || (ds1305->ctrl[1] & 0xfc) != 0) {
628 dev_dbg(&spi->dev, "RTC chip is not present\n");
629 return -ENODEV;
631 if (ds1305->ctrl[2] == 0)
632 dev_dbg(&spi->dev, "chip may not be present\n");
634 /* enable writes if needed ... if we were paranoid it would
635 * make sense to enable them only when absolutely necessary.
637 if (ds1305->ctrl[0] & DS1305_WP) {
638 u8 buf[2];
640 ds1305->ctrl[0] &= ~DS1305_WP;
642 buf[0] = DS1305_WRITE | DS1305_CONTROL;
643 buf[1] = ds1305->ctrl[0];
644 status = spi_write_then_read(spi, buf, sizeof(buf), NULL, 0);
646 dev_dbg(&spi->dev, "clear WP --> %d\n", status);
647 if (status < 0)
648 return status;
651 /* on DS1305, maybe start oscillator; like most low power
652 * oscillators, it may take a second to stabilize
654 if (ds1305->ctrl[0] & DS1305_nEOSC) {
655 ds1305->ctrl[0] &= ~DS1305_nEOSC;
656 write_ctrl = true;
657 dev_warn(&spi->dev, "SET TIME!\n");
660 /* ack any pending IRQs */
661 if (ds1305->ctrl[1]) {
662 ds1305->ctrl[1] = 0;
663 write_ctrl = true;
666 /* this may need one-time (re)init */
667 if (pdata) {
668 /* maybe enable trickle charge */
669 if (((ds1305->ctrl[2] & 0xf0) != DS1305_TRICKLE_MAGIC)) {
670 ds1305->ctrl[2] = DS1305_TRICKLE_MAGIC
671 | pdata->trickle;
672 write_ctrl = true;
675 /* on DS1306, configure 1 Hz signal */
676 if (pdata->is_ds1306) {
677 if (pdata->en_1hz) {
678 if (!(ds1305->ctrl[0] & DS1306_1HZ)) {
679 ds1305->ctrl[0] |= DS1306_1HZ;
680 write_ctrl = true;
682 } else {
683 if (ds1305->ctrl[0] & DS1306_1HZ) {
684 ds1305->ctrl[0] &= ~DS1306_1HZ;
685 write_ctrl = true;
691 if (write_ctrl) {
692 u8 buf[4];
694 buf[0] = DS1305_WRITE | DS1305_CONTROL;
695 buf[1] = ds1305->ctrl[0];
696 buf[2] = ds1305->ctrl[1];
697 buf[3] = ds1305->ctrl[2];
698 status = spi_write_then_read(spi, buf, sizeof(buf), NULL, 0);
699 if (status < 0) {
700 dev_dbg(&spi->dev, "can't %s, %d\n",
701 "write", status);
702 return status;
705 dev_dbg(&spi->dev, "ctrl %s: %3ph\n", "write", ds1305->ctrl);
708 /* see if non-Linux software set up AM/PM mode */
709 addr = DS1305_HOUR;
710 status = spi_write_then_read(spi, &addr, sizeof(addr),
711 &value, sizeof(value));
712 if (status < 0) {
713 dev_dbg(&spi->dev, "read HOUR --> %d\n", status);
714 return status;
717 ds1305->hr12 = (DS1305_HR_12 & value) != 0;
718 if (ds1305->hr12)
719 dev_dbg(&spi->dev, "AM/PM\n");
721 /* register RTC ... from here on, ds1305->ctrl needs locking */
722 ds1305->rtc = devm_rtc_device_register(&spi->dev, "ds1305",
723 &ds1305_ops, THIS_MODULE);
724 if (IS_ERR(ds1305->rtc)) {
725 status = PTR_ERR(ds1305->rtc);
726 dev_dbg(&spi->dev, "register rtc --> %d\n", status);
727 return status;
730 /* Maybe set up alarm IRQ; be ready to handle it triggering right
731 * away. NOTE that we don't share this. The signal is active low,
732 * and we can't ack it before a SPI message delay. We temporarily
733 * disable the IRQ until it's acked, which lets us work with more
734 * IRQ trigger modes (not all IRQ controllers can do falling edge).
736 if (spi->irq) {
737 INIT_WORK(&ds1305->work, ds1305_work);
738 status = devm_request_irq(&spi->dev, spi->irq, ds1305_irq,
739 0, dev_name(&ds1305->rtc->dev), ds1305);
740 if (status < 0) {
741 dev_err(&spi->dev, "request_irq %d --> %d\n",
742 spi->irq, status);
743 } else {
744 device_set_wakeup_capable(&spi->dev, 1);
748 /* export NVRAM */
749 status = sysfs_create_bin_file(&spi->dev.kobj, &nvram);
750 if (status < 0) {
751 dev_err(&spi->dev, "register nvram --> %d\n", status);
754 return 0;
757 static int ds1305_remove(struct spi_device *spi)
759 struct ds1305 *ds1305 = spi_get_drvdata(spi);
761 sysfs_remove_bin_file(&spi->dev.kobj, &nvram);
763 /* carefully shut down irq and workqueue, if present */
764 if (spi->irq) {
765 set_bit(FLAG_EXITING, &ds1305->flags);
766 devm_free_irq(&spi->dev, spi->irq, ds1305);
767 cancel_work_sync(&ds1305->work);
770 return 0;
773 static struct spi_driver ds1305_driver = {
774 .driver.name = "rtc-ds1305",
775 .probe = ds1305_probe,
776 .remove = ds1305_remove,
777 /* REVISIT add suspend/resume */
780 module_spi_driver(ds1305_driver);
782 MODULE_DESCRIPTION("RTC driver for DS1305 and DS1306 chips");
783 MODULE_LICENSE("GPL");
784 MODULE_ALIAS("spi:rtc-ds1305");