irqchip/zevio: Use irq_data_get_chip_type() helper
[linux/fpc-iii.git] / fs / btrfs / transaction.c
blob3367a3c6f214f5ca248a79fff36c6404a49fbf4f
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
19 #include <linux/fs.h>
20 #include <linux/slab.h>
21 #include <linux/sched.h>
22 #include <linux/writeback.h>
23 #include <linux/pagemap.h>
24 #include <linux/blkdev.h>
25 #include <linux/uuid.h>
26 #include "ctree.h"
27 #include "disk-io.h"
28 #include "transaction.h"
29 #include "locking.h"
30 #include "tree-log.h"
31 #include "inode-map.h"
32 #include "volumes.h"
33 #include "dev-replace.h"
34 #include "qgroup.h"
36 #define BTRFS_ROOT_TRANS_TAG 0
38 static const unsigned int btrfs_blocked_trans_types[TRANS_STATE_MAX] = {
39 [TRANS_STATE_RUNNING] = 0U,
40 [TRANS_STATE_BLOCKED] = (__TRANS_USERSPACE |
41 __TRANS_START),
42 [TRANS_STATE_COMMIT_START] = (__TRANS_USERSPACE |
43 __TRANS_START |
44 __TRANS_ATTACH),
45 [TRANS_STATE_COMMIT_DOING] = (__TRANS_USERSPACE |
46 __TRANS_START |
47 __TRANS_ATTACH |
48 __TRANS_JOIN),
49 [TRANS_STATE_UNBLOCKED] = (__TRANS_USERSPACE |
50 __TRANS_START |
51 __TRANS_ATTACH |
52 __TRANS_JOIN |
53 __TRANS_JOIN_NOLOCK),
54 [TRANS_STATE_COMPLETED] = (__TRANS_USERSPACE |
55 __TRANS_START |
56 __TRANS_ATTACH |
57 __TRANS_JOIN |
58 __TRANS_JOIN_NOLOCK),
61 void btrfs_put_transaction(struct btrfs_transaction *transaction)
63 WARN_ON(atomic_read(&transaction->use_count) == 0);
64 if (atomic_dec_and_test(&transaction->use_count)) {
65 BUG_ON(!list_empty(&transaction->list));
66 WARN_ON(!RB_EMPTY_ROOT(&transaction->delayed_refs.href_root));
67 if (transaction->delayed_refs.pending_csums)
68 printk(KERN_ERR "pending csums is %llu\n",
69 transaction->delayed_refs.pending_csums);
70 while (!list_empty(&transaction->pending_chunks)) {
71 struct extent_map *em;
73 em = list_first_entry(&transaction->pending_chunks,
74 struct extent_map, list);
75 list_del_init(&em->list);
76 free_extent_map(em);
78 kmem_cache_free(btrfs_transaction_cachep, transaction);
82 static void clear_btree_io_tree(struct extent_io_tree *tree)
84 spin_lock(&tree->lock);
86 * Do a single barrier for the waitqueue_active check here, the state
87 * of the waitqueue should not change once clear_btree_io_tree is
88 * called.
90 smp_mb();
91 while (!RB_EMPTY_ROOT(&tree->state)) {
92 struct rb_node *node;
93 struct extent_state *state;
95 node = rb_first(&tree->state);
96 state = rb_entry(node, struct extent_state, rb_node);
97 rb_erase(&state->rb_node, &tree->state);
98 RB_CLEAR_NODE(&state->rb_node);
100 * btree io trees aren't supposed to have tasks waiting for
101 * changes in the flags of extent states ever.
103 ASSERT(!waitqueue_active(&state->wq));
104 free_extent_state(state);
106 cond_resched_lock(&tree->lock);
108 spin_unlock(&tree->lock);
111 static noinline void switch_commit_roots(struct btrfs_transaction *trans,
112 struct btrfs_fs_info *fs_info)
114 struct btrfs_root *root, *tmp;
116 down_write(&fs_info->commit_root_sem);
117 list_for_each_entry_safe(root, tmp, &trans->switch_commits,
118 dirty_list) {
119 list_del_init(&root->dirty_list);
120 free_extent_buffer(root->commit_root);
121 root->commit_root = btrfs_root_node(root);
122 if (is_fstree(root->objectid))
123 btrfs_unpin_free_ino(root);
124 clear_btree_io_tree(&root->dirty_log_pages);
127 /* We can free old roots now. */
128 spin_lock(&trans->dropped_roots_lock);
129 while (!list_empty(&trans->dropped_roots)) {
130 root = list_first_entry(&trans->dropped_roots,
131 struct btrfs_root, root_list);
132 list_del_init(&root->root_list);
133 spin_unlock(&trans->dropped_roots_lock);
134 btrfs_drop_and_free_fs_root(fs_info, root);
135 spin_lock(&trans->dropped_roots_lock);
137 spin_unlock(&trans->dropped_roots_lock);
138 up_write(&fs_info->commit_root_sem);
141 static inline void extwriter_counter_inc(struct btrfs_transaction *trans,
142 unsigned int type)
144 if (type & TRANS_EXTWRITERS)
145 atomic_inc(&trans->num_extwriters);
148 static inline void extwriter_counter_dec(struct btrfs_transaction *trans,
149 unsigned int type)
151 if (type & TRANS_EXTWRITERS)
152 atomic_dec(&trans->num_extwriters);
155 static inline void extwriter_counter_init(struct btrfs_transaction *trans,
156 unsigned int type)
158 atomic_set(&trans->num_extwriters, ((type & TRANS_EXTWRITERS) ? 1 : 0));
161 static inline int extwriter_counter_read(struct btrfs_transaction *trans)
163 return atomic_read(&trans->num_extwriters);
167 * either allocate a new transaction or hop into the existing one
169 static noinline int join_transaction(struct btrfs_root *root, unsigned int type)
171 struct btrfs_transaction *cur_trans;
172 struct btrfs_fs_info *fs_info = root->fs_info;
174 spin_lock(&fs_info->trans_lock);
175 loop:
176 /* The file system has been taken offline. No new transactions. */
177 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
178 spin_unlock(&fs_info->trans_lock);
179 return -EROFS;
182 cur_trans = fs_info->running_transaction;
183 if (cur_trans) {
184 if (cur_trans->aborted) {
185 spin_unlock(&fs_info->trans_lock);
186 return cur_trans->aborted;
188 if (btrfs_blocked_trans_types[cur_trans->state] & type) {
189 spin_unlock(&fs_info->trans_lock);
190 return -EBUSY;
192 atomic_inc(&cur_trans->use_count);
193 atomic_inc(&cur_trans->num_writers);
194 extwriter_counter_inc(cur_trans, type);
195 spin_unlock(&fs_info->trans_lock);
196 return 0;
198 spin_unlock(&fs_info->trans_lock);
201 * If we are ATTACH, we just want to catch the current transaction,
202 * and commit it. If there is no transaction, just return ENOENT.
204 if (type == TRANS_ATTACH)
205 return -ENOENT;
208 * JOIN_NOLOCK only happens during the transaction commit, so
209 * it is impossible that ->running_transaction is NULL
211 BUG_ON(type == TRANS_JOIN_NOLOCK);
213 cur_trans = kmem_cache_alloc(btrfs_transaction_cachep, GFP_NOFS);
214 if (!cur_trans)
215 return -ENOMEM;
217 spin_lock(&fs_info->trans_lock);
218 if (fs_info->running_transaction) {
220 * someone started a transaction after we unlocked. Make sure
221 * to redo the checks above
223 kmem_cache_free(btrfs_transaction_cachep, cur_trans);
224 goto loop;
225 } else if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
226 spin_unlock(&fs_info->trans_lock);
227 kmem_cache_free(btrfs_transaction_cachep, cur_trans);
228 return -EROFS;
231 atomic_set(&cur_trans->num_writers, 1);
232 extwriter_counter_init(cur_trans, type);
233 init_waitqueue_head(&cur_trans->writer_wait);
234 init_waitqueue_head(&cur_trans->commit_wait);
235 init_waitqueue_head(&cur_trans->pending_wait);
236 cur_trans->state = TRANS_STATE_RUNNING;
238 * One for this trans handle, one so it will live on until we
239 * commit the transaction.
241 atomic_set(&cur_trans->use_count, 2);
242 atomic_set(&cur_trans->pending_ordered, 0);
243 cur_trans->flags = 0;
244 cur_trans->start_time = get_seconds();
246 memset(&cur_trans->delayed_refs, 0, sizeof(cur_trans->delayed_refs));
248 cur_trans->delayed_refs.href_root = RB_ROOT;
249 cur_trans->delayed_refs.dirty_extent_root = RB_ROOT;
250 atomic_set(&cur_trans->delayed_refs.num_entries, 0);
253 * although the tree mod log is per file system and not per transaction,
254 * the log must never go across transaction boundaries.
256 smp_mb();
257 if (!list_empty(&fs_info->tree_mod_seq_list))
258 WARN(1, KERN_ERR "BTRFS: tree_mod_seq_list not empty when "
259 "creating a fresh transaction\n");
260 if (!RB_EMPTY_ROOT(&fs_info->tree_mod_log))
261 WARN(1, KERN_ERR "BTRFS: tree_mod_log rb tree not empty when "
262 "creating a fresh transaction\n");
263 atomic64_set(&fs_info->tree_mod_seq, 0);
265 spin_lock_init(&cur_trans->delayed_refs.lock);
267 INIT_LIST_HEAD(&cur_trans->pending_snapshots);
268 INIT_LIST_HEAD(&cur_trans->pending_chunks);
269 INIT_LIST_HEAD(&cur_trans->switch_commits);
270 INIT_LIST_HEAD(&cur_trans->dirty_bgs);
271 INIT_LIST_HEAD(&cur_trans->io_bgs);
272 INIT_LIST_HEAD(&cur_trans->dropped_roots);
273 mutex_init(&cur_trans->cache_write_mutex);
274 cur_trans->num_dirty_bgs = 0;
275 spin_lock_init(&cur_trans->dirty_bgs_lock);
276 INIT_LIST_HEAD(&cur_trans->deleted_bgs);
277 spin_lock_init(&cur_trans->deleted_bgs_lock);
278 spin_lock_init(&cur_trans->dropped_roots_lock);
279 list_add_tail(&cur_trans->list, &fs_info->trans_list);
280 extent_io_tree_init(&cur_trans->dirty_pages,
281 fs_info->btree_inode->i_mapping);
282 fs_info->generation++;
283 cur_trans->transid = fs_info->generation;
284 fs_info->running_transaction = cur_trans;
285 cur_trans->aborted = 0;
286 spin_unlock(&fs_info->trans_lock);
288 return 0;
292 * this does all the record keeping required to make sure that a reference
293 * counted root is properly recorded in a given transaction. This is required
294 * to make sure the old root from before we joined the transaction is deleted
295 * when the transaction commits
297 static int record_root_in_trans(struct btrfs_trans_handle *trans,
298 struct btrfs_root *root)
300 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
301 root->last_trans < trans->transid) {
302 WARN_ON(root == root->fs_info->extent_root);
303 WARN_ON(root->commit_root != root->node);
306 * see below for IN_TRANS_SETUP usage rules
307 * we have the reloc mutex held now, so there
308 * is only one writer in this function
310 set_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state);
312 /* make sure readers find IN_TRANS_SETUP before
313 * they find our root->last_trans update
315 smp_wmb();
317 spin_lock(&root->fs_info->fs_roots_radix_lock);
318 if (root->last_trans == trans->transid) {
319 spin_unlock(&root->fs_info->fs_roots_radix_lock);
320 return 0;
322 radix_tree_tag_set(&root->fs_info->fs_roots_radix,
323 (unsigned long)root->root_key.objectid,
324 BTRFS_ROOT_TRANS_TAG);
325 spin_unlock(&root->fs_info->fs_roots_radix_lock);
326 root->last_trans = trans->transid;
328 /* this is pretty tricky. We don't want to
329 * take the relocation lock in btrfs_record_root_in_trans
330 * unless we're really doing the first setup for this root in
331 * this transaction.
333 * Normally we'd use root->last_trans as a flag to decide
334 * if we want to take the expensive mutex.
336 * But, we have to set root->last_trans before we
337 * init the relocation root, otherwise, we trip over warnings
338 * in ctree.c. The solution used here is to flag ourselves
339 * with root IN_TRANS_SETUP. When this is 1, we're still
340 * fixing up the reloc trees and everyone must wait.
342 * When this is zero, they can trust root->last_trans and fly
343 * through btrfs_record_root_in_trans without having to take the
344 * lock. smp_wmb() makes sure that all the writes above are
345 * done before we pop in the zero below
347 btrfs_init_reloc_root(trans, root);
348 smp_mb__before_atomic();
349 clear_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state);
351 return 0;
355 void btrfs_add_dropped_root(struct btrfs_trans_handle *trans,
356 struct btrfs_root *root)
358 struct btrfs_transaction *cur_trans = trans->transaction;
360 /* Add ourselves to the transaction dropped list */
361 spin_lock(&cur_trans->dropped_roots_lock);
362 list_add_tail(&root->root_list, &cur_trans->dropped_roots);
363 spin_unlock(&cur_trans->dropped_roots_lock);
365 /* Make sure we don't try to update the root at commit time */
366 spin_lock(&root->fs_info->fs_roots_radix_lock);
367 radix_tree_tag_clear(&root->fs_info->fs_roots_radix,
368 (unsigned long)root->root_key.objectid,
369 BTRFS_ROOT_TRANS_TAG);
370 spin_unlock(&root->fs_info->fs_roots_radix_lock);
373 int btrfs_record_root_in_trans(struct btrfs_trans_handle *trans,
374 struct btrfs_root *root)
376 if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state))
377 return 0;
380 * see record_root_in_trans for comments about IN_TRANS_SETUP usage
381 * and barriers
383 smp_rmb();
384 if (root->last_trans == trans->transid &&
385 !test_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state))
386 return 0;
388 mutex_lock(&root->fs_info->reloc_mutex);
389 record_root_in_trans(trans, root);
390 mutex_unlock(&root->fs_info->reloc_mutex);
392 return 0;
395 static inline int is_transaction_blocked(struct btrfs_transaction *trans)
397 return (trans->state >= TRANS_STATE_BLOCKED &&
398 trans->state < TRANS_STATE_UNBLOCKED &&
399 !trans->aborted);
402 /* wait for commit against the current transaction to become unblocked
403 * when this is done, it is safe to start a new transaction, but the current
404 * transaction might not be fully on disk.
406 static void wait_current_trans(struct btrfs_root *root)
408 struct btrfs_transaction *cur_trans;
410 spin_lock(&root->fs_info->trans_lock);
411 cur_trans = root->fs_info->running_transaction;
412 if (cur_trans && is_transaction_blocked(cur_trans)) {
413 atomic_inc(&cur_trans->use_count);
414 spin_unlock(&root->fs_info->trans_lock);
416 wait_event(root->fs_info->transaction_wait,
417 cur_trans->state >= TRANS_STATE_UNBLOCKED ||
418 cur_trans->aborted);
419 btrfs_put_transaction(cur_trans);
420 } else {
421 spin_unlock(&root->fs_info->trans_lock);
425 static int may_wait_transaction(struct btrfs_root *root, int type)
427 if (root->fs_info->log_root_recovering)
428 return 0;
430 if (type == TRANS_USERSPACE)
431 return 1;
433 if (type == TRANS_START &&
434 !atomic_read(&root->fs_info->open_ioctl_trans))
435 return 1;
437 return 0;
440 static inline bool need_reserve_reloc_root(struct btrfs_root *root)
442 if (!root->fs_info->reloc_ctl ||
443 !test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
444 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
445 root->reloc_root)
446 return false;
448 return true;
451 static struct btrfs_trans_handle *
452 start_transaction(struct btrfs_root *root, unsigned int num_items,
453 unsigned int type, enum btrfs_reserve_flush_enum flush)
455 struct btrfs_trans_handle *h;
456 struct btrfs_transaction *cur_trans;
457 u64 num_bytes = 0;
458 u64 qgroup_reserved = 0;
459 bool reloc_reserved = false;
460 int ret;
462 /* Send isn't supposed to start transactions. */
463 ASSERT(current->journal_info != BTRFS_SEND_TRANS_STUB);
465 if (test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state))
466 return ERR_PTR(-EROFS);
468 if (current->journal_info) {
469 WARN_ON(type & TRANS_EXTWRITERS);
470 h = current->journal_info;
471 h->use_count++;
472 WARN_ON(h->use_count > 2);
473 h->orig_rsv = h->block_rsv;
474 h->block_rsv = NULL;
475 goto got_it;
479 * Do the reservation before we join the transaction so we can do all
480 * the appropriate flushing if need be.
482 if (num_items > 0 && root != root->fs_info->chunk_root) {
483 qgroup_reserved = num_items * root->nodesize;
484 ret = btrfs_qgroup_reserve_meta(root, qgroup_reserved);
485 if (ret)
486 return ERR_PTR(ret);
488 num_bytes = btrfs_calc_trans_metadata_size(root, num_items);
490 * Do the reservation for the relocation root creation
492 if (need_reserve_reloc_root(root)) {
493 num_bytes += root->nodesize;
494 reloc_reserved = true;
497 ret = btrfs_block_rsv_add(root,
498 &root->fs_info->trans_block_rsv,
499 num_bytes, flush);
500 if (ret)
501 goto reserve_fail;
503 again:
504 h = kmem_cache_zalloc(btrfs_trans_handle_cachep, GFP_NOFS);
505 if (!h) {
506 ret = -ENOMEM;
507 goto alloc_fail;
511 * If we are JOIN_NOLOCK we're already committing a transaction and
512 * waiting on this guy, so we don't need to do the sb_start_intwrite
513 * because we're already holding a ref. We need this because we could
514 * have raced in and did an fsync() on a file which can kick a commit
515 * and then we deadlock with somebody doing a freeze.
517 * If we are ATTACH, it means we just want to catch the current
518 * transaction and commit it, so we needn't do sb_start_intwrite().
520 if (type & __TRANS_FREEZABLE)
521 sb_start_intwrite(root->fs_info->sb);
523 if (may_wait_transaction(root, type))
524 wait_current_trans(root);
526 do {
527 ret = join_transaction(root, type);
528 if (ret == -EBUSY) {
529 wait_current_trans(root);
530 if (unlikely(type == TRANS_ATTACH))
531 ret = -ENOENT;
533 } while (ret == -EBUSY);
535 if (ret < 0) {
536 /* We must get the transaction if we are JOIN_NOLOCK. */
537 BUG_ON(type == TRANS_JOIN_NOLOCK);
538 goto join_fail;
541 cur_trans = root->fs_info->running_transaction;
543 h->transid = cur_trans->transid;
544 h->transaction = cur_trans;
545 h->root = root;
546 h->use_count = 1;
548 h->type = type;
549 h->can_flush_pending_bgs = true;
550 INIT_LIST_HEAD(&h->qgroup_ref_list);
551 INIT_LIST_HEAD(&h->new_bgs);
553 smp_mb();
554 if (cur_trans->state >= TRANS_STATE_BLOCKED &&
555 may_wait_transaction(root, type)) {
556 current->journal_info = h;
557 btrfs_commit_transaction(h, root);
558 goto again;
561 if (num_bytes) {
562 trace_btrfs_space_reservation(root->fs_info, "transaction",
563 h->transid, num_bytes, 1);
564 h->block_rsv = &root->fs_info->trans_block_rsv;
565 h->bytes_reserved = num_bytes;
566 h->reloc_reserved = reloc_reserved;
569 got_it:
570 btrfs_record_root_in_trans(h, root);
572 if (!current->journal_info && type != TRANS_USERSPACE)
573 current->journal_info = h;
574 return h;
576 join_fail:
577 if (type & __TRANS_FREEZABLE)
578 sb_end_intwrite(root->fs_info->sb);
579 kmem_cache_free(btrfs_trans_handle_cachep, h);
580 alloc_fail:
581 if (num_bytes)
582 btrfs_block_rsv_release(root, &root->fs_info->trans_block_rsv,
583 num_bytes);
584 reserve_fail:
585 btrfs_qgroup_free_meta(root, qgroup_reserved);
586 return ERR_PTR(ret);
589 struct btrfs_trans_handle *btrfs_start_transaction(struct btrfs_root *root,
590 unsigned int num_items)
592 return start_transaction(root, num_items, TRANS_START,
593 BTRFS_RESERVE_FLUSH_ALL);
595 struct btrfs_trans_handle *btrfs_start_transaction_fallback_global_rsv(
596 struct btrfs_root *root,
597 unsigned int num_items,
598 int min_factor)
600 struct btrfs_trans_handle *trans;
601 u64 num_bytes;
602 int ret;
604 trans = btrfs_start_transaction(root, num_items);
605 if (!IS_ERR(trans) || PTR_ERR(trans) != -ENOSPC)
606 return trans;
608 trans = btrfs_start_transaction(root, 0);
609 if (IS_ERR(trans))
610 return trans;
612 num_bytes = btrfs_calc_trans_metadata_size(root, num_items);
613 ret = btrfs_cond_migrate_bytes(root->fs_info,
614 &root->fs_info->trans_block_rsv,
615 num_bytes,
616 min_factor);
617 if (ret) {
618 btrfs_end_transaction(trans, root);
619 return ERR_PTR(ret);
622 trans->block_rsv = &root->fs_info->trans_block_rsv;
623 trans->bytes_reserved = num_bytes;
625 return trans;
628 struct btrfs_trans_handle *btrfs_start_transaction_lflush(
629 struct btrfs_root *root,
630 unsigned int num_items)
632 return start_transaction(root, num_items, TRANS_START,
633 BTRFS_RESERVE_FLUSH_LIMIT);
636 struct btrfs_trans_handle *btrfs_join_transaction(struct btrfs_root *root)
638 return start_transaction(root, 0, TRANS_JOIN, 0);
641 struct btrfs_trans_handle *btrfs_join_transaction_nolock(struct btrfs_root *root)
643 return start_transaction(root, 0, TRANS_JOIN_NOLOCK, 0);
646 struct btrfs_trans_handle *btrfs_start_ioctl_transaction(struct btrfs_root *root)
648 return start_transaction(root, 0, TRANS_USERSPACE, 0);
652 * btrfs_attach_transaction() - catch the running transaction
654 * It is used when we want to commit the current the transaction, but
655 * don't want to start a new one.
657 * Note: If this function return -ENOENT, it just means there is no
658 * running transaction. But it is possible that the inactive transaction
659 * is still in the memory, not fully on disk. If you hope there is no
660 * inactive transaction in the fs when -ENOENT is returned, you should
661 * invoke
662 * btrfs_attach_transaction_barrier()
664 struct btrfs_trans_handle *btrfs_attach_transaction(struct btrfs_root *root)
666 return start_transaction(root, 0, TRANS_ATTACH, 0);
670 * btrfs_attach_transaction_barrier() - catch the running transaction
672 * It is similar to the above function, the differentia is this one
673 * will wait for all the inactive transactions until they fully
674 * complete.
676 struct btrfs_trans_handle *
677 btrfs_attach_transaction_barrier(struct btrfs_root *root)
679 struct btrfs_trans_handle *trans;
681 trans = start_transaction(root, 0, TRANS_ATTACH, 0);
682 if (IS_ERR(trans) && PTR_ERR(trans) == -ENOENT)
683 btrfs_wait_for_commit(root, 0);
685 return trans;
688 /* wait for a transaction commit to be fully complete */
689 static noinline void wait_for_commit(struct btrfs_root *root,
690 struct btrfs_transaction *commit)
692 wait_event(commit->commit_wait, commit->state == TRANS_STATE_COMPLETED);
695 int btrfs_wait_for_commit(struct btrfs_root *root, u64 transid)
697 struct btrfs_transaction *cur_trans = NULL, *t;
698 int ret = 0;
700 if (transid) {
701 if (transid <= root->fs_info->last_trans_committed)
702 goto out;
704 /* find specified transaction */
705 spin_lock(&root->fs_info->trans_lock);
706 list_for_each_entry(t, &root->fs_info->trans_list, list) {
707 if (t->transid == transid) {
708 cur_trans = t;
709 atomic_inc(&cur_trans->use_count);
710 ret = 0;
711 break;
713 if (t->transid > transid) {
714 ret = 0;
715 break;
718 spin_unlock(&root->fs_info->trans_lock);
721 * The specified transaction doesn't exist, or we
722 * raced with btrfs_commit_transaction
724 if (!cur_trans) {
725 if (transid > root->fs_info->last_trans_committed)
726 ret = -EINVAL;
727 goto out;
729 } else {
730 /* find newest transaction that is committing | committed */
731 spin_lock(&root->fs_info->trans_lock);
732 list_for_each_entry_reverse(t, &root->fs_info->trans_list,
733 list) {
734 if (t->state >= TRANS_STATE_COMMIT_START) {
735 if (t->state == TRANS_STATE_COMPLETED)
736 break;
737 cur_trans = t;
738 atomic_inc(&cur_trans->use_count);
739 break;
742 spin_unlock(&root->fs_info->trans_lock);
743 if (!cur_trans)
744 goto out; /* nothing committing|committed */
747 wait_for_commit(root, cur_trans);
748 btrfs_put_transaction(cur_trans);
749 out:
750 return ret;
753 void btrfs_throttle(struct btrfs_root *root)
755 if (!atomic_read(&root->fs_info->open_ioctl_trans))
756 wait_current_trans(root);
759 static int should_end_transaction(struct btrfs_trans_handle *trans,
760 struct btrfs_root *root)
762 if (root->fs_info->global_block_rsv.space_info->full &&
763 btrfs_check_space_for_delayed_refs(trans, root))
764 return 1;
766 return !!btrfs_block_rsv_check(root, &root->fs_info->global_block_rsv, 5);
769 int btrfs_should_end_transaction(struct btrfs_trans_handle *trans,
770 struct btrfs_root *root)
772 struct btrfs_transaction *cur_trans = trans->transaction;
773 int updates;
774 int err;
776 smp_mb();
777 if (cur_trans->state >= TRANS_STATE_BLOCKED ||
778 cur_trans->delayed_refs.flushing)
779 return 1;
781 updates = trans->delayed_ref_updates;
782 trans->delayed_ref_updates = 0;
783 if (updates) {
784 err = btrfs_run_delayed_refs(trans, root, updates * 2);
785 if (err) /* Error code will also eval true */
786 return err;
789 return should_end_transaction(trans, root);
792 static int __btrfs_end_transaction(struct btrfs_trans_handle *trans,
793 struct btrfs_root *root, int throttle)
795 struct btrfs_transaction *cur_trans = trans->transaction;
796 struct btrfs_fs_info *info = root->fs_info;
797 unsigned long cur = trans->delayed_ref_updates;
798 int lock = (trans->type != TRANS_JOIN_NOLOCK);
799 int err = 0;
800 int must_run_delayed_refs = 0;
802 if (trans->use_count > 1) {
803 trans->use_count--;
804 trans->block_rsv = trans->orig_rsv;
805 return 0;
808 btrfs_trans_release_metadata(trans, root);
809 trans->block_rsv = NULL;
811 if (!list_empty(&trans->new_bgs))
812 btrfs_create_pending_block_groups(trans, root);
814 trans->delayed_ref_updates = 0;
815 if (!trans->sync) {
816 must_run_delayed_refs =
817 btrfs_should_throttle_delayed_refs(trans, root);
818 cur = max_t(unsigned long, cur, 32);
821 * don't make the caller wait if they are from a NOLOCK
822 * or ATTACH transaction, it will deadlock with commit
824 if (must_run_delayed_refs == 1 &&
825 (trans->type & (__TRANS_JOIN_NOLOCK | __TRANS_ATTACH)))
826 must_run_delayed_refs = 2;
829 btrfs_trans_release_metadata(trans, root);
830 trans->block_rsv = NULL;
832 if (!list_empty(&trans->new_bgs))
833 btrfs_create_pending_block_groups(trans, root);
835 btrfs_trans_release_chunk_metadata(trans);
837 if (lock && !atomic_read(&root->fs_info->open_ioctl_trans) &&
838 should_end_transaction(trans, root) &&
839 ACCESS_ONCE(cur_trans->state) == TRANS_STATE_RUNNING) {
840 spin_lock(&info->trans_lock);
841 if (cur_trans->state == TRANS_STATE_RUNNING)
842 cur_trans->state = TRANS_STATE_BLOCKED;
843 spin_unlock(&info->trans_lock);
846 if (lock && ACCESS_ONCE(cur_trans->state) == TRANS_STATE_BLOCKED) {
847 if (throttle)
848 return btrfs_commit_transaction(trans, root);
849 else
850 wake_up_process(info->transaction_kthread);
853 if (trans->type & __TRANS_FREEZABLE)
854 sb_end_intwrite(root->fs_info->sb);
856 WARN_ON(cur_trans != info->running_transaction);
857 WARN_ON(atomic_read(&cur_trans->num_writers) < 1);
858 atomic_dec(&cur_trans->num_writers);
859 extwriter_counter_dec(cur_trans, trans->type);
862 * Make sure counter is updated before we wake up waiters.
864 smp_mb();
865 if (waitqueue_active(&cur_trans->writer_wait))
866 wake_up(&cur_trans->writer_wait);
867 btrfs_put_transaction(cur_trans);
869 if (current->journal_info == trans)
870 current->journal_info = NULL;
872 if (throttle)
873 btrfs_run_delayed_iputs(root);
875 if (trans->aborted ||
876 test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state)) {
877 wake_up_process(info->transaction_kthread);
878 err = -EIO;
880 assert_qgroups_uptodate(trans);
882 kmem_cache_free(btrfs_trans_handle_cachep, trans);
883 if (must_run_delayed_refs) {
884 btrfs_async_run_delayed_refs(root, cur,
885 must_run_delayed_refs == 1);
887 return err;
890 int btrfs_end_transaction(struct btrfs_trans_handle *trans,
891 struct btrfs_root *root)
893 return __btrfs_end_transaction(trans, root, 0);
896 int btrfs_end_transaction_throttle(struct btrfs_trans_handle *trans,
897 struct btrfs_root *root)
899 return __btrfs_end_transaction(trans, root, 1);
903 * when btree blocks are allocated, they have some corresponding bits set for
904 * them in one of two extent_io trees. This is used to make sure all of
905 * those extents are sent to disk but does not wait on them
907 int btrfs_write_marked_extents(struct btrfs_root *root,
908 struct extent_io_tree *dirty_pages, int mark)
910 int err = 0;
911 int werr = 0;
912 struct address_space *mapping = root->fs_info->btree_inode->i_mapping;
913 struct extent_state *cached_state = NULL;
914 u64 start = 0;
915 u64 end;
917 while (!find_first_extent_bit(dirty_pages, start, &start, &end,
918 mark, &cached_state)) {
919 bool wait_writeback = false;
921 err = convert_extent_bit(dirty_pages, start, end,
922 EXTENT_NEED_WAIT,
923 mark, &cached_state, GFP_NOFS);
925 * convert_extent_bit can return -ENOMEM, which is most of the
926 * time a temporary error. So when it happens, ignore the error
927 * and wait for writeback of this range to finish - because we
928 * failed to set the bit EXTENT_NEED_WAIT for the range, a call
929 * to btrfs_wait_marked_extents() would not know that writeback
930 * for this range started and therefore wouldn't wait for it to
931 * finish - we don't want to commit a superblock that points to
932 * btree nodes/leafs for which writeback hasn't finished yet
933 * (and without errors).
934 * We cleanup any entries left in the io tree when committing
935 * the transaction (through clear_btree_io_tree()).
937 if (err == -ENOMEM) {
938 err = 0;
939 wait_writeback = true;
941 if (!err)
942 err = filemap_fdatawrite_range(mapping, start, end);
943 if (err)
944 werr = err;
945 else if (wait_writeback)
946 werr = filemap_fdatawait_range(mapping, start, end);
947 free_extent_state(cached_state);
948 cached_state = NULL;
949 cond_resched();
950 start = end + 1;
952 return werr;
956 * when btree blocks are allocated, they have some corresponding bits set for
957 * them in one of two extent_io trees. This is used to make sure all of
958 * those extents are on disk for transaction or log commit. We wait
959 * on all the pages and clear them from the dirty pages state tree
961 int btrfs_wait_marked_extents(struct btrfs_root *root,
962 struct extent_io_tree *dirty_pages, int mark)
964 int err = 0;
965 int werr = 0;
966 struct address_space *mapping = root->fs_info->btree_inode->i_mapping;
967 struct extent_state *cached_state = NULL;
968 u64 start = 0;
969 u64 end;
970 struct btrfs_inode *btree_ino = BTRFS_I(root->fs_info->btree_inode);
971 bool errors = false;
973 while (!find_first_extent_bit(dirty_pages, start, &start, &end,
974 EXTENT_NEED_WAIT, &cached_state)) {
976 * Ignore -ENOMEM errors returned by clear_extent_bit().
977 * When committing the transaction, we'll remove any entries
978 * left in the io tree. For a log commit, we don't remove them
979 * after committing the log because the tree can be accessed
980 * concurrently - we do it only at transaction commit time when
981 * it's safe to do it (through clear_btree_io_tree()).
983 err = clear_extent_bit(dirty_pages, start, end,
984 EXTENT_NEED_WAIT,
985 0, 0, &cached_state, GFP_NOFS);
986 if (err == -ENOMEM)
987 err = 0;
988 if (!err)
989 err = filemap_fdatawait_range(mapping, start, end);
990 if (err)
991 werr = err;
992 free_extent_state(cached_state);
993 cached_state = NULL;
994 cond_resched();
995 start = end + 1;
997 if (err)
998 werr = err;
1000 if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) {
1001 if ((mark & EXTENT_DIRTY) &&
1002 test_and_clear_bit(BTRFS_INODE_BTREE_LOG1_ERR,
1003 &btree_ino->runtime_flags))
1004 errors = true;
1006 if ((mark & EXTENT_NEW) &&
1007 test_and_clear_bit(BTRFS_INODE_BTREE_LOG2_ERR,
1008 &btree_ino->runtime_flags))
1009 errors = true;
1010 } else {
1011 if (test_and_clear_bit(BTRFS_INODE_BTREE_ERR,
1012 &btree_ino->runtime_flags))
1013 errors = true;
1016 if (errors && !werr)
1017 werr = -EIO;
1019 return werr;
1023 * when btree blocks are allocated, they have some corresponding bits set for
1024 * them in one of two extent_io trees. This is used to make sure all of
1025 * those extents are on disk for transaction or log commit
1027 static int btrfs_write_and_wait_marked_extents(struct btrfs_root *root,
1028 struct extent_io_tree *dirty_pages, int mark)
1030 int ret;
1031 int ret2;
1032 struct blk_plug plug;
1034 blk_start_plug(&plug);
1035 ret = btrfs_write_marked_extents(root, dirty_pages, mark);
1036 blk_finish_plug(&plug);
1037 ret2 = btrfs_wait_marked_extents(root, dirty_pages, mark);
1039 if (ret)
1040 return ret;
1041 if (ret2)
1042 return ret2;
1043 return 0;
1046 static int btrfs_write_and_wait_transaction(struct btrfs_trans_handle *trans,
1047 struct btrfs_root *root)
1049 int ret;
1051 ret = btrfs_write_and_wait_marked_extents(root,
1052 &trans->transaction->dirty_pages,
1053 EXTENT_DIRTY);
1054 clear_btree_io_tree(&trans->transaction->dirty_pages);
1056 return ret;
1060 * this is used to update the root pointer in the tree of tree roots.
1062 * But, in the case of the extent allocation tree, updating the root
1063 * pointer may allocate blocks which may change the root of the extent
1064 * allocation tree.
1066 * So, this loops and repeats and makes sure the cowonly root didn't
1067 * change while the root pointer was being updated in the metadata.
1069 static int update_cowonly_root(struct btrfs_trans_handle *trans,
1070 struct btrfs_root *root)
1072 int ret;
1073 u64 old_root_bytenr;
1074 u64 old_root_used;
1075 struct btrfs_root *tree_root = root->fs_info->tree_root;
1077 old_root_used = btrfs_root_used(&root->root_item);
1079 while (1) {
1080 old_root_bytenr = btrfs_root_bytenr(&root->root_item);
1081 if (old_root_bytenr == root->node->start &&
1082 old_root_used == btrfs_root_used(&root->root_item))
1083 break;
1085 btrfs_set_root_node(&root->root_item, root->node);
1086 ret = btrfs_update_root(trans, tree_root,
1087 &root->root_key,
1088 &root->root_item);
1089 if (ret)
1090 return ret;
1092 old_root_used = btrfs_root_used(&root->root_item);
1095 return 0;
1099 * update all the cowonly tree roots on disk
1101 * The error handling in this function may not be obvious. Any of the
1102 * failures will cause the file system to go offline. We still need
1103 * to clean up the delayed refs.
1105 static noinline int commit_cowonly_roots(struct btrfs_trans_handle *trans,
1106 struct btrfs_root *root)
1108 struct btrfs_fs_info *fs_info = root->fs_info;
1109 struct list_head *dirty_bgs = &trans->transaction->dirty_bgs;
1110 struct list_head *io_bgs = &trans->transaction->io_bgs;
1111 struct list_head *next;
1112 struct extent_buffer *eb;
1113 int ret;
1115 eb = btrfs_lock_root_node(fs_info->tree_root);
1116 ret = btrfs_cow_block(trans, fs_info->tree_root, eb, NULL,
1117 0, &eb);
1118 btrfs_tree_unlock(eb);
1119 free_extent_buffer(eb);
1121 if (ret)
1122 return ret;
1124 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1125 if (ret)
1126 return ret;
1128 ret = btrfs_run_dev_stats(trans, root->fs_info);
1129 if (ret)
1130 return ret;
1131 ret = btrfs_run_dev_replace(trans, root->fs_info);
1132 if (ret)
1133 return ret;
1134 ret = btrfs_run_qgroups(trans, root->fs_info);
1135 if (ret)
1136 return ret;
1138 ret = btrfs_setup_space_cache(trans, root);
1139 if (ret)
1140 return ret;
1142 /* run_qgroups might have added some more refs */
1143 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1144 if (ret)
1145 return ret;
1146 again:
1147 while (!list_empty(&fs_info->dirty_cowonly_roots)) {
1148 next = fs_info->dirty_cowonly_roots.next;
1149 list_del_init(next);
1150 root = list_entry(next, struct btrfs_root, dirty_list);
1151 clear_bit(BTRFS_ROOT_DIRTY, &root->state);
1153 if (root != fs_info->extent_root)
1154 list_add_tail(&root->dirty_list,
1155 &trans->transaction->switch_commits);
1156 ret = update_cowonly_root(trans, root);
1157 if (ret)
1158 return ret;
1159 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1160 if (ret)
1161 return ret;
1164 while (!list_empty(dirty_bgs) || !list_empty(io_bgs)) {
1165 ret = btrfs_write_dirty_block_groups(trans, root);
1166 if (ret)
1167 return ret;
1168 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1169 if (ret)
1170 return ret;
1173 if (!list_empty(&fs_info->dirty_cowonly_roots))
1174 goto again;
1176 list_add_tail(&fs_info->extent_root->dirty_list,
1177 &trans->transaction->switch_commits);
1178 btrfs_after_dev_replace_commit(fs_info);
1180 return 0;
1184 * dead roots are old snapshots that need to be deleted. This allocates
1185 * a dirty root struct and adds it into the list of dead roots that need to
1186 * be deleted
1188 void btrfs_add_dead_root(struct btrfs_root *root)
1190 spin_lock(&root->fs_info->trans_lock);
1191 if (list_empty(&root->root_list))
1192 list_add_tail(&root->root_list, &root->fs_info->dead_roots);
1193 spin_unlock(&root->fs_info->trans_lock);
1197 * update all the cowonly tree roots on disk
1199 static noinline int commit_fs_roots(struct btrfs_trans_handle *trans,
1200 struct btrfs_root *root)
1202 struct btrfs_root *gang[8];
1203 struct btrfs_fs_info *fs_info = root->fs_info;
1204 int i;
1205 int ret;
1206 int err = 0;
1208 spin_lock(&fs_info->fs_roots_radix_lock);
1209 while (1) {
1210 ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix,
1211 (void **)gang, 0,
1212 ARRAY_SIZE(gang),
1213 BTRFS_ROOT_TRANS_TAG);
1214 if (ret == 0)
1215 break;
1216 for (i = 0; i < ret; i++) {
1217 root = gang[i];
1218 radix_tree_tag_clear(&fs_info->fs_roots_radix,
1219 (unsigned long)root->root_key.objectid,
1220 BTRFS_ROOT_TRANS_TAG);
1221 spin_unlock(&fs_info->fs_roots_radix_lock);
1223 btrfs_free_log(trans, root);
1224 btrfs_update_reloc_root(trans, root);
1225 btrfs_orphan_commit_root(trans, root);
1227 btrfs_save_ino_cache(root, trans);
1229 /* see comments in should_cow_block() */
1230 clear_bit(BTRFS_ROOT_FORCE_COW, &root->state);
1231 smp_mb__after_atomic();
1233 if (root->commit_root != root->node) {
1234 list_add_tail(&root->dirty_list,
1235 &trans->transaction->switch_commits);
1236 btrfs_set_root_node(&root->root_item,
1237 root->node);
1240 err = btrfs_update_root(trans, fs_info->tree_root,
1241 &root->root_key,
1242 &root->root_item);
1243 spin_lock(&fs_info->fs_roots_radix_lock);
1244 if (err)
1245 break;
1246 btrfs_qgroup_free_meta_all(root);
1249 spin_unlock(&fs_info->fs_roots_radix_lock);
1250 return err;
1254 * defrag a given btree.
1255 * Every leaf in the btree is read and defragged.
1257 int btrfs_defrag_root(struct btrfs_root *root)
1259 struct btrfs_fs_info *info = root->fs_info;
1260 struct btrfs_trans_handle *trans;
1261 int ret;
1263 if (test_and_set_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state))
1264 return 0;
1266 while (1) {
1267 trans = btrfs_start_transaction(root, 0);
1268 if (IS_ERR(trans))
1269 return PTR_ERR(trans);
1271 ret = btrfs_defrag_leaves(trans, root);
1273 btrfs_end_transaction(trans, root);
1274 btrfs_btree_balance_dirty(info->tree_root);
1275 cond_resched();
1277 if (btrfs_fs_closing(root->fs_info) || ret != -EAGAIN)
1278 break;
1280 if (btrfs_defrag_cancelled(root->fs_info)) {
1281 pr_debug("BTRFS: defrag_root cancelled\n");
1282 ret = -EAGAIN;
1283 break;
1286 clear_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state);
1287 return ret;
1291 * new snapshots need to be created at a very specific time in the
1292 * transaction commit. This does the actual creation.
1294 * Note:
1295 * If the error which may affect the commitment of the current transaction
1296 * happens, we should return the error number. If the error which just affect
1297 * the creation of the pending snapshots, just return 0.
1299 static noinline int create_pending_snapshot(struct btrfs_trans_handle *trans,
1300 struct btrfs_fs_info *fs_info,
1301 struct btrfs_pending_snapshot *pending)
1303 struct btrfs_key key;
1304 struct btrfs_root_item *new_root_item;
1305 struct btrfs_root *tree_root = fs_info->tree_root;
1306 struct btrfs_root *root = pending->root;
1307 struct btrfs_root *parent_root;
1308 struct btrfs_block_rsv *rsv;
1309 struct inode *parent_inode;
1310 struct btrfs_path *path;
1311 struct btrfs_dir_item *dir_item;
1312 struct dentry *dentry;
1313 struct extent_buffer *tmp;
1314 struct extent_buffer *old;
1315 struct timespec cur_time = CURRENT_TIME;
1316 int ret = 0;
1317 u64 to_reserve = 0;
1318 u64 index = 0;
1319 u64 objectid;
1320 u64 root_flags;
1321 uuid_le new_uuid;
1323 path = btrfs_alloc_path();
1324 if (!path) {
1325 pending->error = -ENOMEM;
1326 return 0;
1329 new_root_item = kmalloc(sizeof(*new_root_item), GFP_NOFS);
1330 if (!new_root_item) {
1331 pending->error = -ENOMEM;
1332 goto root_item_alloc_fail;
1335 pending->error = btrfs_find_free_objectid(tree_root, &objectid);
1336 if (pending->error)
1337 goto no_free_objectid;
1340 * Make qgroup to skip current new snapshot's qgroupid, as it is
1341 * accounted by later btrfs_qgroup_inherit().
1343 btrfs_set_skip_qgroup(trans, objectid);
1345 btrfs_reloc_pre_snapshot(pending, &to_reserve);
1347 if (to_reserve > 0) {
1348 pending->error = btrfs_block_rsv_add(root,
1349 &pending->block_rsv,
1350 to_reserve,
1351 BTRFS_RESERVE_NO_FLUSH);
1352 if (pending->error)
1353 goto clear_skip_qgroup;
1356 key.objectid = objectid;
1357 key.offset = (u64)-1;
1358 key.type = BTRFS_ROOT_ITEM_KEY;
1360 rsv = trans->block_rsv;
1361 trans->block_rsv = &pending->block_rsv;
1362 trans->bytes_reserved = trans->block_rsv->reserved;
1364 dentry = pending->dentry;
1365 parent_inode = pending->dir;
1366 parent_root = BTRFS_I(parent_inode)->root;
1367 record_root_in_trans(trans, parent_root);
1370 * insert the directory item
1372 ret = btrfs_set_inode_index(parent_inode, &index);
1373 BUG_ON(ret); /* -ENOMEM */
1375 /* check if there is a file/dir which has the same name. */
1376 dir_item = btrfs_lookup_dir_item(NULL, parent_root, path,
1377 btrfs_ino(parent_inode),
1378 dentry->d_name.name,
1379 dentry->d_name.len, 0);
1380 if (dir_item != NULL && !IS_ERR(dir_item)) {
1381 pending->error = -EEXIST;
1382 goto dir_item_existed;
1383 } else if (IS_ERR(dir_item)) {
1384 ret = PTR_ERR(dir_item);
1385 btrfs_abort_transaction(trans, root, ret);
1386 goto fail;
1388 btrfs_release_path(path);
1391 * pull in the delayed directory update
1392 * and the delayed inode item
1393 * otherwise we corrupt the FS during
1394 * snapshot
1396 ret = btrfs_run_delayed_items(trans, root);
1397 if (ret) { /* Transaction aborted */
1398 btrfs_abort_transaction(trans, root, ret);
1399 goto fail;
1402 record_root_in_trans(trans, root);
1403 btrfs_set_root_last_snapshot(&root->root_item, trans->transid);
1404 memcpy(new_root_item, &root->root_item, sizeof(*new_root_item));
1405 btrfs_check_and_init_root_item(new_root_item);
1407 root_flags = btrfs_root_flags(new_root_item);
1408 if (pending->readonly)
1409 root_flags |= BTRFS_ROOT_SUBVOL_RDONLY;
1410 else
1411 root_flags &= ~BTRFS_ROOT_SUBVOL_RDONLY;
1412 btrfs_set_root_flags(new_root_item, root_flags);
1414 btrfs_set_root_generation_v2(new_root_item,
1415 trans->transid);
1416 uuid_le_gen(&new_uuid);
1417 memcpy(new_root_item->uuid, new_uuid.b, BTRFS_UUID_SIZE);
1418 memcpy(new_root_item->parent_uuid, root->root_item.uuid,
1419 BTRFS_UUID_SIZE);
1420 if (!(root_flags & BTRFS_ROOT_SUBVOL_RDONLY)) {
1421 memset(new_root_item->received_uuid, 0,
1422 sizeof(new_root_item->received_uuid));
1423 memset(&new_root_item->stime, 0, sizeof(new_root_item->stime));
1424 memset(&new_root_item->rtime, 0, sizeof(new_root_item->rtime));
1425 btrfs_set_root_stransid(new_root_item, 0);
1426 btrfs_set_root_rtransid(new_root_item, 0);
1428 btrfs_set_stack_timespec_sec(&new_root_item->otime, cur_time.tv_sec);
1429 btrfs_set_stack_timespec_nsec(&new_root_item->otime, cur_time.tv_nsec);
1430 btrfs_set_root_otransid(new_root_item, trans->transid);
1432 old = btrfs_lock_root_node(root);
1433 ret = btrfs_cow_block(trans, root, old, NULL, 0, &old);
1434 if (ret) {
1435 btrfs_tree_unlock(old);
1436 free_extent_buffer(old);
1437 btrfs_abort_transaction(trans, root, ret);
1438 goto fail;
1441 btrfs_set_lock_blocking(old);
1443 ret = btrfs_copy_root(trans, root, old, &tmp, objectid);
1444 /* clean up in any case */
1445 btrfs_tree_unlock(old);
1446 free_extent_buffer(old);
1447 if (ret) {
1448 btrfs_abort_transaction(trans, root, ret);
1449 goto fail;
1451 /* see comments in should_cow_block() */
1452 set_bit(BTRFS_ROOT_FORCE_COW, &root->state);
1453 smp_wmb();
1455 btrfs_set_root_node(new_root_item, tmp);
1456 /* record when the snapshot was created in key.offset */
1457 key.offset = trans->transid;
1458 ret = btrfs_insert_root(trans, tree_root, &key, new_root_item);
1459 btrfs_tree_unlock(tmp);
1460 free_extent_buffer(tmp);
1461 if (ret) {
1462 btrfs_abort_transaction(trans, root, ret);
1463 goto fail;
1467 * insert root back/forward references
1469 ret = btrfs_add_root_ref(trans, tree_root, objectid,
1470 parent_root->root_key.objectid,
1471 btrfs_ino(parent_inode), index,
1472 dentry->d_name.name, dentry->d_name.len);
1473 if (ret) {
1474 btrfs_abort_transaction(trans, root, ret);
1475 goto fail;
1478 key.offset = (u64)-1;
1479 pending->snap = btrfs_read_fs_root_no_name(root->fs_info, &key);
1480 if (IS_ERR(pending->snap)) {
1481 ret = PTR_ERR(pending->snap);
1482 btrfs_abort_transaction(trans, root, ret);
1483 goto fail;
1486 ret = btrfs_reloc_post_snapshot(trans, pending);
1487 if (ret) {
1488 btrfs_abort_transaction(trans, root, ret);
1489 goto fail;
1492 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1493 if (ret) {
1494 btrfs_abort_transaction(trans, root, ret);
1495 goto fail;
1498 ret = btrfs_insert_dir_item(trans, parent_root,
1499 dentry->d_name.name, dentry->d_name.len,
1500 parent_inode, &key,
1501 BTRFS_FT_DIR, index);
1502 /* We have check then name at the beginning, so it is impossible. */
1503 BUG_ON(ret == -EEXIST || ret == -EOVERFLOW);
1504 if (ret) {
1505 btrfs_abort_transaction(trans, root, ret);
1506 goto fail;
1509 btrfs_i_size_write(parent_inode, parent_inode->i_size +
1510 dentry->d_name.len * 2);
1511 parent_inode->i_mtime = parent_inode->i_ctime = CURRENT_TIME;
1512 ret = btrfs_update_inode_fallback(trans, parent_root, parent_inode);
1513 if (ret) {
1514 btrfs_abort_transaction(trans, root, ret);
1515 goto fail;
1517 ret = btrfs_uuid_tree_add(trans, fs_info->uuid_root, new_uuid.b,
1518 BTRFS_UUID_KEY_SUBVOL, objectid);
1519 if (ret) {
1520 btrfs_abort_transaction(trans, root, ret);
1521 goto fail;
1523 if (!btrfs_is_empty_uuid(new_root_item->received_uuid)) {
1524 ret = btrfs_uuid_tree_add(trans, fs_info->uuid_root,
1525 new_root_item->received_uuid,
1526 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
1527 objectid);
1528 if (ret && ret != -EEXIST) {
1529 btrfs_abort_transaction(trans, root, ret);
1530 goto fail;
1534 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1535 if (ret) {
1536 btrfs_abort_transaction(trans, root, ret);
1537 goto fail;
1541 * account qgroup counters before qgroup_inherit()
1543 ret = btrfs_qgroup_prepare_account_extents(trans, fs_info);
1544 if (ret)
1545 goto fail;
1546 ret = btrfs_qgroup_account_extents(trans, fs_info);
1547 if (ret)
1548 goto fail;
1549 ret = btrfs_qgroup_inherit(trans, fs_info,
1550 root->root_key.objectid,
1551 objectid, pending->inherit);
1552 if (ret) {
1553 btrfs_abort_transaction(trans, root, ret);
1554 goto fail;
1557 fail:
1558 pending->error = ret;
1559 dir_item_existed:
1560 trans->block_rsv = rsv;
1561 trans->bytes_reserved = 0;
1562 clear_skip_qgroup:
1563 btrfs_clear_skip_qgroup(trans);
1564 no_free_objectid:
1565 kfree(new_root_item);
1566 root_item_alloc_fail:
1567 btrfs_free_path(path);
1568 return ret;
1572 * create all the snapshots we've scheduled for creation
1574 static noinline int create_pending_snapshots(struct btrfs_trans_handle *trans,
1575 struct btrfs_fs_info *fs_info)
1577 struct btrfs_pending_snapshot *pending, *next;
1578 struct list_head *head = &trans->transaction->pending_snapshots;
1579 int ret = 0;
1581 list_for_each_entry_safe(pending, next, head, list) {
1582 list_del(&pending->list);
1583 ret = create_pending_snapshot(trans, fs_info, pending);
1584 if (ret)
1585 break;
1587 return ret;
1590 static void update_super_roots(struct btrfs_root *root)
1592 struct btrfs_root_item *root_item;
1593 struct btrfs_super_block *super;
1595 super = root->fs_info->super_copy;
1597 root_item = &root->fs_info->chunk_root->root_item;
1598 super->chunk_root = root_item->bytenr;
1599 super->chunk_root_generation = root_item->generation;
1600 super->chunk_root_level = root_item->level;
1602 root_item = &root->fs_info->tree_root->root_item;
1603 super->root = root_item->bytenr;
1604 super->generation = root_item->generation;
1605 super->root_level = root_item->level;
1606 if (btrfs_test_opt(root, SPACE_CACHE))
1607 super->cache_generation = root_item->generation;
1608 if (root->fs_info->update_uuid_tree_gen)
1609 super->uuid_tree_generation = root_item->generation;
1612 int btrfs_transaction_in_commit(struct btrfs_fs_info *info)
1614 struct btrfs_transaction *trans;
1615 int ret = 0;
1617 spin_lock(&info->trans_lock);
1618 trans = info->running_transaction;
1619 if (trans)
1620 ret = (trans->state >= TRANS_STATE_COMMIT_START);
1621 spin_unlock(&info->trans_lock);
1622 return ret;
1625 int btrfs_transaction_blocked(struct btrfs_fs_info *info)
1627 struct btrfs_transaction *trans;
1628 int ret = 0;
1630 spin_lock(&info->trans_lock);
1631 trans = info->running_transaction;
1632 if (trans)
1633 ret = is_transaction_blocked(trans);
1634 spin_unlock(&info->trans_lock);
1635 return ret;
1639 * wait for the current transaction commit to start and block subsequent
1640 * transaction joins
1642 static void wait_current_trans_commit_start(struct btrfs_root *root,
1643 struct btrfs_transaction *trans)
1645 wait_event(root->fs_info->transaction_blocked_wait,
1646 trans->state >= TRANS_STATE_COMMIT_START ||
1647 trans->aborted);
1651 * wait for the current transaction to start and then become unblocked.
1652 * caller holds ref.
1654 static void wait_current_trans_commit_start_and_unblock(struct btrfs_root *root,
1655 struct btrfs_transaction *trans)
1657 wait_event(root->fs_info->transaction_wait,
1658 trans->state >= TRANS_STATE_UNBLOCKED ||
1659 trans->aborted);
1663 * commit transactions asynchronously. once btrfs_commit_transaction_async
1664 * returns, any subsequent transaction will not be allowed to join.
1666 struct btrfs_async_commit {
1667 struct btrfs_trans_handle *newtrans;
1668 struct btrfs_root *root;
1669 struct work_struct work;
1672 static void do_async_commit(struct work_struct *work)
1674 struct btrfs_async_commit *ac =
1675 container_of(work, struct btrfs_async_commit, work);
1678 * We've got freeze protection passed with the transaction.
1679 * Tell lockdep about it.
1681 if (ac->newtrans->type & __TRANS_FREEZABLE)
1682 __sb_writers_acquired(ac->root->fs_info->sb, SB_FREEZE_FS);
1684 current->journal_info = ac->newtrans;
1686 btrfs_commit_transaction(ac->newtrans, ac->root);
1687 kfree(ac);
1690 int btrfs_commit_transaction_async(struct btrfs_trans_handle *trans,
1691 struct btrfs_root *root,
1692 int wait_for_unblock)
1694 struct btrfs_async_commit *ac;
1695 struct btrfs_transaction *cur_trans;
1697 ac = kmalloc(sizeof(*ac), GFP_NOFS);
1698 if (!ac)
1699 return -ENOMEM;
1701 INIT_WORK(&ac->work, do_async_commit);
1702 ac->root = root;
1703 ac->newtrans = btrfs_join_transaction(root);
1704 if (IS_ERR(ac->newtrans)) {
1705 int err = PTR_ERR(ac->newtrans);
1706 kfree(ac);
1707 return err;
1710 /* take transaction reference */
1711 cur_trans = trans->transaction;
1712 atomic_inc(&cur_trans->use_count);
1714 btrfs_end_transaction(trans, root);
1717 * Tell lockdep we've released the freeze rwsem, since the
1718 * async commit thread will be the one to unlock it.
1720 if (ac->newtrans->type & __TRANS_FREEZABLE)
1721 __sb_writers_release(root->fs_info->sb, SB_FREEZE_FS);
1723 schedule_work(&ac->work);
1725 /* wait for transaction to start and unblock */
1726 if (wait_for_unblock)
1727 wait_current_trans_commit_start_and_unblock(root, cur_trans);
1728 else
1729 wait_current_trans_commit_start(root, cur_trans);
1731 if (current->journal_info == trans)
1732 current->journal_info = NULL;
1734 btrfs_put_transaction(cur_trans);
1735 return 0;
1739 static void cleanup_transaction(struct btrfs_trans_handle *trans,
1740 struct btrfs_root *root, int err)
1742 struct btrfs_transaction *cur_trans = trans->transaction;
1743 DEFINE_WAIT(wait);
1745 WARN_ON(trans->use_count > 1);
1747 btrfs_abort_transaction(trans, root, err);
1749 spin_lock(&root->fs_info->trans_lock);
1752 * If the transaction is removed from the list, it means this
1753 * transaction has been committed successfully, so it is impossible
1754 * to call the cleanup function.
1756 BUG_ON(list_empty(&cur_trans->list));
1758 list_del_init(&cur_trans->list);
1759 if (cur_trans == root->fs_info->running_transaction) {
1760 cur_trans->state = TRANS_STATE_COMMIT_DOING;
1761 spin_unlock(&root->fs_info->trans_lock);
1762 wait_event(cur_trans->writer_wait,
1763 atomic_read(&cur_trans->num_writers) == 1);
1765 spin_lock(&root->fs_info->trans_lock);
1767 spin_unlock(&root->fs_info->trans_lock);
1769 btrfs_cleanup_one_transaction(trans->transaction, root);
1771 spin_lock(&root->fs_info->trans_lock);
1772 if (cur_trans == root->fs_info->running_transaction)
1773 root->fs_info->running_transaction = NULL;
1774 spin_unlock(&root->fs_info->trans_lock);
1776 if (trans->type & __TRANS_FREEZABLE)
1777 sb_end_intwrite(root->fs_info->sb);
1778 btrfs_put_transaction(cur_trans);
1779 btrfs_put_transaction(cur_trans);
1781 trace_btrfs_transaction_commit(root);
1783 if (current->journal_info == trans)
1784 current->journal_info = NULL;
1785 btrfs_scrub_cancel(root->fs_info);
1787 kmem_cache_free(btrfs_trans_handle_cachep, trans);
1790 static inline int btrfs_start_delalloc_flush(struct btrfs_fs_info *fs_info)
1792 if (btrfs_test_opt(fs_info->tree_root, FLUSHONCOMMIT))
1793 return btrfs_start_delalloc_roots(fs_info, 1, -1);
1794 return 0;
1797 static inline void btrfs_wait_delalloc_flush(struct btrfs_fs_info *fs_info)
1799 if (btrfs_test_opt(fs_info->tree_root, FLUSHONCOMMIT))
1800 btrfs_wait_ordered_roots(fs_info, -1);
1803 static inline void
1804 btrfs_wait_pending_ordered(struct btrfs_transaction *cur_trans)
1806 wait_event(cur_trans->pending_wait,
1807 atomic_read(&cur_trans->pending_ordered) == 0);
1810 int btrfs_commit_transaction(struct btrfs_trans_handle *trans,
1811 struct btrfs_root *root)
1813 struct btrfs_transaction *cur_trans = trans->transaction;
1814 struct btrfs_transaction *prev_trans = NULL;
1815 struct btrfs_inode *btree_ino = BTRFS_I(root->fs_info->btree_inode);
1816 int ret;
1818 /* Stop the commit early if ->aborted is set */
1819 if (unlikely(ACCESS_ONCE(cur_trans->aborted))) {
1820 ret = cur_trans->aborted;
1821 btrfs_end_transaction(trans, root);
1822 return ret;
1825 /* make a pass through all the delayed refs we have so far
1826 * any runnings procs may add more while we are here
1828 ret = btrfs_run_delayed_refs(trans, root, 0);
1829 if (ret) {
1830 btrfs_end_transaction(trans, root);
1831 return ret;
1834 btrfs_trans_release_metadata(trans, root);
1835 trans->block_rsv = NULL;
1837 cur_trans = trans->transaction;
1840 * set the flushing flag so procs in this transaction have to
1841 * start sending their work down.
1843 cur_trans->delayed_refs.flushing = 1;
1844 smp_wmb();
1846 if (!list_empty(&trans->new_bgs))
1847 btrfs_create_pending_block_groups(trans, root);
1849 ret = btrfs_run_delayed_refs(trans, root, 0);
1850 if (ret) {
1851 btrfs_end_transaction(trans, root);
1852 return ret;
1855 if (!test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &cur_trans->flags)) {
1856 int run_it = 0;
1858 /* this mutex is also taken before trying to set
1859 * block groups readonly. We need to make sure
1860 * that nobody has set a block group readonly
1861 * after a extents from that block group have been
1862 * allocated for cache files. btrfs_set_block_group_ro
1863 * will wait for the transaction to commit if it
1864 * finds BTRFS_TRANS_DIRTY_BG_RUN set.
1866 * The BTRFS_TRANS_DIRTY_BG_RUN flag is also used to make sure
1867 * only one process starts all the block group IO. It wouldn't
1868 * hurt to have more than one go through, but there's no
1869 * real advantage to it either.
1871 mutex_lock(&root->fs_info->ro_block_group_mutex);
1872 if (!test_and_set_bit(BTRFS_TRANS_DIRTY_BG_RUN,
1873 &cur_trans->flags))
1874 run_it = 1;
1875 mutex_unlock(&root->fs_info->ro_block_group_mutex);
1877 if (run_it)
1878 ret = btrfs_start_dirty_block_groups(trans, root);
1880 if (ret) {
1881 btrfs_end_transaction(trans, root);
1882 return ret;
1885 spin_lock(&root->fs_info->trans_lock);
1886 if (cur_trans->state >= TRANS_STATE_COMMIT_START) {
1887 spin_unlock(&root->fs_info->trans_lock);
1888 atomic_inc(&cur_trans->use_count);
1889 ret = btrfs_end_transaction(trans, root);
1891 wait_for_commit(root, cur_trans);
1893 if (unlikely(cur_trans->aborted))
1894 ret = cur_trans->aborted;
1896 btrfs_put_transaction(cur_trans);
1898 return ret;
1901 cur_trans->state = TRANS_STATE_COMMIT_START;
1902 wake_up(&root->fs_info->transaction_blocked_wait);
1904 if (cur_trans->list.prev != &root->fs_info->trans_list) {
1905 prev_trans = list_entry(cur_trans->list.prev,
1906 struct btrfs_transaction, list);
1907 if (prev_trans->state != TRANS_STATE_COMPLETED) {
1908 atomic_inc(&prev_trans->use_count);
1909 spin_unlock(&root->fs_info->trans_lock);
1911 wait_for_commit(root, prev_trans);
1912 ret = prev_trans->aborted;
1914 btrfs_put_transaction(prev_trans);
1915 if (ret)
1916 goto cleanup_transaction;
1917 } else {
1918 spin_unlock(&root->fs_info->trans_lock);
1920 } else {
1921 spin_unlock(&root->fs_info->trans_lock);
1924 extwriter_counter_dec(cur_trans, trans->type);
1926 ret = btrfs_start_delalloc_flush(root->fs_info);
1927 if (ret)
1928 goto cleanup_transaction;
1930 ret = btrfs_run_delayed_items(trans, root);
1931 if (ret)
1932 goto cleanup_transaction;
1934 wait_event(cur_trans->writer_wait,
1935 extwriter_counter_read(cur_trans) == 0);
1937 /* some pending stuffs might be added after the previous flush. */
1938 ret = btrfs_run_delayed_items(trans, root);
1939 if (ret)
1940 goto cleanup_transaction;
1942 btrfs_wait_delalloc_flush(root->fs_info);
1944 btrfs_wait_pending_ordered(cur_trans);
1946 btrfs_scrub_pause(root);
1948 * Ok now we need to make sure to block out any other joins while we
1949 * commit the transaction. We could have started a join before setting
1950 * COMMIT_DOING so make sure to wait for num_writers to == 1 again.
1952 spin_lock(&root->fs_info->trans_lock);
1953 cur_trans->state = TRANS_STATE_COMMIT_DOING;
1954 spin_unlock(&root->fs_info->trans_lock);
1955 wait_event(cur_trans->writer_wait,
1956 atomic_read(&cur_trans->num_writers) == 1);
1958 /* ->aborted might be set after the previous check, so check it */
1959 if (unlikely(ACCESS_ONCE(cur_trans->aborted))) {
1960 ret = cur_trans->aborted;
1961 goto scrub_continue;
1964 * the reloc mutex makes sure that we stop
1965 * the balancing code from coming in and moving
1966 * extents around in the middle of the commit
1968 mutex_lock(&root->fs_info->reloc_mutex);
1971 * We needn't worry about the delayed items because we will
1972 * deal with them in create_pending_snapshot(), which is the
1973 * core function of the snapshot creation.
1975 ret = create_pending_snapshots(trans, root->fs_info);
1976 if (ret) {
1977 mutex_unlock(&root->fs_info->reloc_mutex);
1978 goto scrub_continue;
1982 * We insert the dir indexes of the snapshots and update the inode
1983 * of the snapshots' parents after the snapshot creation, so there
1984 * are some delayed items which are not dealt with. Now deal with
1985 * them.
1987 * We needn't worry that this operation will corrupt the snapshots,
1988 * because all the tree which are snapshoted will be forced to COW
1989 * the nodes and leaves.
1991 ret = btrfs_run_delayed_items(trans, root);
1992 if (ret) {
1993 mutex_unlock(&root->fs_info->reloc_mutex);
1994 goto scrub_continue;
1997 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1998 if (ret) {
1999 mutex_unlock(&root->fs_info->reloc_mutex);
2000 goto scrub_continue;
2003 /* Reocrd old roots for later qgroup accounting */
2004 ret = btrfs_qgroup_prepare_account_extents(trans, root->fs_info);
2005 if (ret) {
2006 mutex_unlock(&root->fs_info->reloc_mutex);
2007 goto scrub_continue;
2011 * make sure none of the code above managed to slip in a
2012 * delayed item
2014 btrfs_assert_delayed_root_empty(root);
2016 WARN_ON(cur_trans != trans->transaction);
2018 /* btrfs_commit_tree_roots is responsible for getting the
2019 * various roots consistent with each other. Every pointer
2020 * in the tree of tree roots has to point to the most up to date
2021 * root for every subvolume and other tree. So, we have to keep
2022 * the tree logging code from jumping in and changing any
2023 * of the trees.
2025 * At this point in the commit, there can't be any tree-log
2026 * writers, but a little lower down we drop the trans mutex
2027 * and let new people in. By holding the tree_log_mutex
2028 * from now until after the super is written, we avoid races
2029 * with the tree-log code.
2031 mutex_lock(&root->fs_info->tree_log_mutex);
2033 ret = commit_fs_roots(trans, root);
2034 if (ret) {
2035 mutex_unlock(&root->fs_info->tree_log_mutex);
2036 mutex_unlock(&root->fs_info->reloc_mutex);
2037 goto scrub_continue;
2041 * Since the transaction is done, we can apply the pending changes
2042 * before the next transaction.
2044 btrfs_apply_pending_changes(root->fs_info);
2046 /* commit_fs_roots gets rid of all the tree log roots, it is now
2047 * safe to free the root of tree log roots
2049 btrfs_free_log_root_tree(trans, root->fs_info);
2052 * Since fs roots are all committed, we can get a quite accurate
2053 * new_roots. So let's do quota accounting.
2055 ret = btrfs_qgroup_account_extents(trans, root->fs_info);
2056 if (ret < 0) {
2057 mutex_unlock(&root->fs_info->tree_log_mutex);
2058 mutex_unlock(&root->fs_info->reloc_mutex);
2059 goto scrub_continue;
2062 ret = commit_cowonly_roots(trans, root);
2063 if (ret) {
2064 mutex_unlock(&root->fs_info->tree_log_mutex);
2065 mutex_unlock(&root->fs_info->reloc_mutex);
2066 goto scrub_continue;
2070 * The tasks which save the space cache and inode cache may also
2071 * update ->aborted, check it.
2073 if (unlikely(ACCESS_ONCE(cur_trans->aborted))) {
2074 ret = cur_trans->aborted;
2075 mutex_unlock(&root->fs_info->tree_log_mutex);
2076 mutex_unlock(&root->fs_info->reloc_mutex);
2077 goto scrub_continue;
2080 btrfs_prepare_extent_commit(trans, root);
2082 cur_trans = root->fs_info->running_transaction;
2084 btrfs_set_root_node(&root->fs_info->tree_root->root_item,
2085 root->fs_info->tree_root->node);
2086 list_add_tail(&root->fs_info->tree_root->dirty_list,
2087 &cur_trans->switch_commits);
2089 btrfs_set_root_node(&root->fs_info->chunk_root->root_item,
2090 root->fs_info->chunk_root->node);
2091 list_add_tail(&root->fs_info->chunk_root->dirty_list,
2092 &cur_trans->switch_commits);
2094 switch_commit_roots(cur_trans, root->fs_info);
2096 assert_qgroups_uptodate(trans);
2097 ASSERT(list_empty(&cur_trans->dirty_bgs));
2098 ASSERT(list_empty(&cur_trans->io_bgs));
2099 update_super_roots(root);
2101 btrfs_set_super_log_root(root->fs_info->super_copy, 0);
2102 btrfs_set_super_log_root_level(root->fs_info->super_copy, 0);
2103 memcpy(root->fs_info->super_for_commit, root->fs_info->super_copy,
2104 sizeof(*root->fs_info->super_copy));
2106 btrfs_update_commit_device_size(root->fs_info);
2107 btrfs_update_commit_device_bytes_used(root, cur_trans);
2109 clear_bit(BTRFS_INODE_BTREE_LOG1_ERR, &btree_ino->runtime_flags);
2110 clear_bit(BTRFS_INODE_BTREE_LOG2_ERR, &btree_ino->runtime_flags);
2112 btrfs_trans_release_chunk_metadata(trans);
2114 spin_lock(&root->fs_info->trans_lock);
2115 cur_trans->state = TRANS_STATE_UNBLOCKED;
2116 root->fs_info->running_transaction = NULL;
2117 spin_unlock(&root->fs_info->trans_lock);
2118 mutex_unlock(&root->fs_info->reloc_mutex);
2120 wake_up(&root->fs_info->transaction_wait);
2122 ret = btrfs_write_and_wait_transaction(trans, root);
2123 if (ret) {
2124 btrfs_std_error(root->fs_info, ret,
2125 "Error while writing out transaction");
2126 mutex_unlock(&root->fs_info->tree_log_mutex);
2127 goto scrub_continue;
2130 ret = write_ctree_super(trans, root, 0);
2131 if (ret) {
2132 mutex_unlock(&root->fs_info->tree_log_mutex);
2133 goto scrub_continue;
2137 * the super is written, we can safely allow the tree-loggers
2138 * to go about their business
2140 mutex_unlock(&root->fs_info->tree_log_mutex);
2142 btrfs_finish_extent_commit(trans, root);
2144 if (test_bit(BTRFS_TRANS_HAVE_FREE_BGS, &cur_trans->flags))
2145 btrfs_clear_space_info_full(root->fs_info);
2147 root->fs_info->last_trans_committed = cur_trans->transid;
2149 * We needn't acquire the lock here because there is no other task
2150 * which can change it.
2152 cur_trans->state = TRANS_STATE_COMPLETED;
2153 wake_up(&cur_trans->commit_wait);
2155 spin_lock(&root->fs_info->trans_lock);
2156 list_del_init(&cur_trans->list);
2157 spin_unlock(&root->fs_info->trans_lock);
2159 btrfs_put_transaction(cur_trans);
2160 btrfs_put_transaction(cur_trans);
2162 if (trans->type & __TRANS_FREEZABLE)
2163 sb_end_intwrite(root->fs_info->sb);
2165 trace_btrfs_transaction_commit(root);
2167 btrfs_scrub_continue(root);
2169 if (current->journal_info == trans)
2170 current->journal_info = NULL;
2172 kmem_cache_free(btrfs_trans_handle_cachep, trans);
2174 if (current != root->fs_info->transaction_kthread &&
2175 current != root->fs_info->cleaner_kthread)
2176 btrfs_run_delayed_iputs(root);
2178 return ret;
2180 scrub_continue:
2181 btrfs_scrub_continue(root);
2182 cleanup_transaction:
2183 btrfs_trans_release_metadata(trans, root);
2184 btrfs_trans_release_chunk_metadata(trans);
2185 trans->block_rsv = NULL;
2186 btrfs_warn(root->fs_info, "Skipping commit of aborted transaction.");
2187 if (current->journal_info == trans)
2188 current->journal_info = NULL;
2189 cleanup_transaction(trans, root, ret);
2191 return ret;
2195 * return < 0 if error
2196 * 0 if there are no more dead_roots at the time of call
2197 * 1 there are more to be processed, call me again
2199 * The return value indicates there are certainly more snapshots to delete, but
2200 * if there comes a new one during processing, it may return 0. We don't mind,
2201 * because btrfs_commit_super will poke cleaner thread and it will process it a
2202 * few seconds later.
2204 int btrfs_clean_one_deleted_snapshot(struct btrfs_root *root)
2206 int ret;
2207 struct btrfs_fs_info *fs_info = root->fs_info;
2209 spin_lock(&fs_info->trans_lock);
2210 if (list_empty(&fs_info->dead_roots)) {
2211 spin_unlock(&fs_info->trans_lock);
2212 return 0;
2214 root = list_first_entry(&fs_info->dead_roots,
2215 struct btrfs_root, root_list);
2216 list_del_init(&root->root_list);
2217 spin_unlock(&fs_info->trans_lock);
2219 pr_debug("BTRFS: cleaner removing %llu\n", root->objectid);
2221 btrfs_kill_all_delayed_nodes(root);
2223 if (btrfs_header_backref_rev(root->node) <
2224 BTRFS_MIXED_BACKREF_REV)
2225 ret = btrfs_drop_snapshot(root, NULL, 0, 0);
2226 else
2227 ret = btrfs_drop_snapshot(root, NULL, 1, 0);
2229 return (ret < 0) ? 0 : 1;
2232 void btrfs_apply_pending_changes(struct btrfs_fs_info *fs_info)
2234 unsigned long prev;
2235 unsigned long bit;
2237 prev = xchg(&fs_info->pending_changes, 0);
2238 if (!prev)
2239 return;
2241 bit = 1 << BTRFS_PENDING_SET_INODE_MAP_CACHE;
2242 if (prev & bit)
2243 btrfs_set_opt(fs_info->mount_opt, INODE_MAP_CACHE);
2244 prev &= ~bit;
2246 bit = 1 << BTRFS_PENDING_CLEAR_INODE_MAP_CACHE;
2247 if (prev & bit)
2248 btrfs_clear_opt(fs_info->mount_opt, INODE_MAP_CACHE);
2249 prev &= ~bit;
2251 bit = 1 << BTRFS_PENDING_COMMIT;
2252 if (prev & bit)
2253 btrfs_debug(fs_info, "pending commit done");
2254 prev &= ~bit;
2256 if (prev)
2257 btrfs_warn(fs_info,
2258 "unknown pending changes left 0x%lx, ignoring", prev);