2 * Copyright (C) 2007 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
20 #include <linux/slab.h>
21 #include <linux/sched.h>
22 #include <linux/writeback.h>
23 #include <linux/pagemap.h>
24 #include <linux/blkdev.h>
25 #include <linux/uuid.h>
28 #include "transaction.h"
31 #include "inode-map.h"
33 #include "dev-replace.h"
36 #define BTRFS_ROOT_TRANS_TAG 0
38 static const unsigned int btrfs_blocked_trans_types
[TRANS_STATE_MAX
] = {
39 [TRANS_STATE_RUNNING
] = 0U,
40 [TRANS_STATE_BLOCKED
] = (__TRANS_USERSPACE
|
42 [TRANS_STATE_COMMIT_START
] = (__TRANS_USERSPACE
|
45 [TRANS_STATE_COMMIT_DOING
] = (__TRANS_USERSPACE
|
49 [TRANS_STATE_UNBLOCKED
] = (__TRANS_USERSPACE
|
54 [TRANS_STATE_COMPLETED
] = (__TRANS_USERSPACE
|
61 void btrfs_put_transaction(struct btrfs_transaction
*transaction
)
63 WARN_ON(atomic_read(&transaction
->use_count
) == 0);
64 if (atomic_dec_and_test(&transaction
->use_count
)) {
65 BUG_ON(!list_empty(&transaction
->list
));
66 WARN_ON(!RB_EMPTY_ROOT(&transaction
->delayed_refs
.href_root
));
67 if (transaction
->delayed_refs
.pending_csums
)
68 printk(KERN_ERR
"pending csums is %llu\n",
69 transaction
->delayed_refs
.pending_csums
);
70 while (!list_empty(&transaction
->pending_chunks
)) {
71 struct extent_map
*em
;
73 em
= list_first_entry(&transaction
->pending_chunks
,
74 struct extent_map
, list
);
75 list_del_init(&em
->list
);
78 kmem_cache_free(btrfs_transaction_cachep
, transaction
);
82 static void clear_btree_io_tree(struct extent_io_tree
*tree
)
84 spin_lock(&tree
->lock
);
86 * Do a single barrier for the waitqueue_active check here, the state
87 * of the waitqueue should not change once clear_btree_io_tree is
91 while (!RB_EMPTY_ROOT(&tree
->state
)) {
93 struct extent_state
*state
;
95 node
= rb_first(&tree
->state
);
96 state
= rb_entry(node
, struct extent_state
, rb_node
);
97 rb_erase(&state
->rb_node
, &tree
->state
);
98 RB_CLEAR_NODE(&state
->rb_node
);
100 * btree io trees aren't supposed to have tasks waiting for
101 * changes in the flags of extent states ever.
103 ASSERT(!waitqueue_active(&state
->wq
));
104 free_extent_state(state
);
106 cond_resched_lock(&tree
->lock
);
108 spin_unlock(&tree
->lock
);
111 static noinline
void switch_commit_roots(struct btrfs_transaction
*trans
,
112 struct btrfs_fs_info
*fs_info
)
114 struct btrfs_root
*root
, *tmp
;
116 down_write(&fs_info
->commit_root_sem
);
117 list_for_each_entry_safe(root
, tmp
, &trans
->switch_commits
,
119 list_del_init(&root
->dirty_list
);
120 free_extent_buffer(root
->commit_root
);
121 root
->commit_root
= btrfs_root_node(root
);
122 if (is_fstree(root
->objectid
))
123 btrfs_unpin_free_ino(root
);
124 clear_btree_io_tree(&root
->dirty_log_pages
);
127 /* We can free old roots now. */
128 spin_lock(&trans
->dropped_roots_lock
);
129 while (!list_empty(&trans
->dropped_roots
)) {
130 root
= list_first_entry(&trans
->dropped_roots
,
131 struct btrfs_root
, root_list
);
132 list_del_init(&root
->root_list
);
133 spin_unlock(&trans
->dropped_roots_lock
);
134 btrfs_drop_and_free_fs_root(fs_info
, root
);
135 spin_lock(&trans
->dropped_roots_lock
);
137 spin_unlock(&trans
->dropped_roots_lock
);
138 up_write(&fs_info
->commit_root_sem
);
141 static inline void extwriter_counter_inc(struct btrfs_transaction
*trans
,
144 if (type
& TRANS_EXTWRITERS
)
145 atomic_inc(&trans
->num_extwriters
);
148 static inline void extwriter_counter_dec(struct btrfs_transaction
*trans
,
151 if (type
& TRANS_EXTWRITERS
)
152 atomic_dec(&trans
->num_extwriters
);
155 static inline void extwriter_counter_init(struct btrfs_transaction
*trans
,
158 atomic_set(&trans
->num_extwriters
, ((type
& TRANS_EXTWRITERS
) ? 1 : 0));
161 static inline int extwriter_counter_read(struct btrfs_transaction
*trans
)
163 return atomic_read(&trans
->num_extwriters
);
167 * either allocate a new transaction or hop into the existing one
169 static noinline
int join_transaction(struct btrfs_root
*root
, unsigned int type
)
171 struct btrfs_transaction
*cur_trans
;
172 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
174 spin_lock(&fs_info
->trans_lock
);
176 /* The file system has been taken offline. No new transactions. */
177 if (test_bit(BTRFS_FS_STATE_ERROR
, &fs_info
->fs_state
)) {
178 spin_unlock(&fs_info
->trans_lock
);
182 cur_trans
= fs_info
->running_transaction
;
184 if (cur_trans
->aborted
) {
185 spin_unlock(&fs_info
->trans_lock
);
186 return cur_trans
->aborted
;
188 if (btrfs_blocked_trans_types
[cur_trans
->state
] & type
) {
189 spin_unlock(&fs_info
->trans_lock
);
192 atomic_inc(&cur_trans
->use_count
);
193 atomic_inc(&cur_trans
->num_writers
);
194 extwriter_counter_inc(cur_trans
, type
);
195 spin_unlock(&fs_info
->trans_lock
);
198 spin_unlock(&fs_info
->trans_lock
);
201 * If we are ATTACH, we just want to catch the current transaction,
202 * and commit it. If there is no transaction, just return ENOENT.
204 if (type
== TRANS_ATTACH
)
208 * JOIN_NOLOCK only happens during the transaction commit, so
209 * it is impossible that ->running_transaction is NULL
211 BUG_ON(type
== TRANS_JOIN_NOLOCK
);
213 cur_trans
= kmem_cache_alloc(btrfs_transaction_cachep
, GFP_NOFS
);
217 spin_lock(&fs_info
->trans_lock
);
218 if (fs_info
->running_transaction
) {
220 * someone started a transaction after we unlocked. Make sure
221 * to redo the checks above
223 kmem_cache_free(btrfs_transaction_cachep
, cur_trans
);
225 } else if (test_bit(BTRFS_FS_STATE_ERROR
, &fs_info
->fs_state
)) {
226 spin_unlock(&fs_info
->trans_lock
);
227 kmem_cache_free(btrfs_transaction_cachep
, cur_trans
);
231 atomic_set(&cur_trans
->num_writers
, 1);
232 extwriter_counter_init(cur_trans
, type
);
233 init_waitqueue_head(&cur_trans
->writer_wait
);
234 init_waitqueue_head(&cur_trans
->commit_wait
);
235 init_waitqueue_head(&cur_trans
->pending_wait
);
236 cur_trans
->state
= TRANS_STATE_RUNNING
;
238 * One for this trans handle, one so it will live on until we
239 * commit the transaction.
241 atomic_set(&cur_trans
->use_count
, 2);
242 atomic_set(&cur_trans
->pending_ordered
, 0);
243 cur_trans
->flags
= 0;
244 cur_trans
->start_time
= get_seconds();
246 memset(&cur_trans
->delayed_refs
, 0, sizeof(cur_trans
->delayed_refs
));
248 cur_trans
->delayed_refs
.href_root
= RB_ROOT
;
249 cur_trans
->delayed_refs
.dirty_extent_root
= RB_ROOT
;
250 atomic_set(&cur_trans
->delayed_refs
.num_entries
, 0);
253 * although the tree mod log is per file system and not per transaction,
254 * the log must never go across transaction boundaries.
257 if (!list_empty(&fs_info
->tree_mod_seq_list
))
258 WARN(1, KERN_ERR
"BTRFS: tree_mod_seq_list not empty when "
259 "creating a fresh transaction\n");
260 if (!RB_EMPTY_ROOT(&fs_info
->tree_mod_log
))
261 WARN(1, KERN_ERR
"BTRFS: tree_mod_log rb tree not empty when "
262 "creating a fresh transaction\n");
263 atomic64_set(&fs_info
->tree_mod_seq
, 0);
265 spin_lock_init(&cur_trans
->delayed_refs
.lock
);
267 INIT_LIST_HEAD(&cur_trans
->pending_snapshots
);
268 INIT_LIST_HEAD(&cur_trans
->pending_chunks
);
269 INIT_LIST_HEAD(&cur_trans
->switch_commits
);
270 INIT_LIST_HEAD(&cur_trans
->dirty_bgs
);
271 INIT_LIST_HEAD(&cur_trans
->io_bgs
);
272 INIT_LIST_HEAD(&cur_trans
->dropped_roots
);
273 mutex_init(&cur_trans
->cache_write_mutex
);
274 cur_trans
->num_dirty_bgs
= 0;
275 spin_lock_init(&cur_trans
->dirty_bgs_lock
);
276 INIT_LIST_HEAD(&cur_trans
->deleted_bgs
);
277 spin_lock_init(&cur_trans
->deleted_bgs_lock
);
278 spin_lock_init(&cur_trans
->dropped_roots_lock
);
279 list_add_tail(&cur_trans
->list
, &fs_info
->trans_list
);
280 extent_io_tree_init(&cur_trans
->dirty_pages
,
281 fs_info
->btree_inode
->i_mapping
);
282 fs_info
->generation
++;
283 cur_trans
->transid
= fs_info
->generation
;
284 fs_info
->running_transaction
= cur_trans
;
285 cur_trans
->aborted
= 0;
286 spin_unlock(&fs_info
->trans_lock
);
292 * this does all the record keeping required to make sure that a reference
293 * counted root is properly recorded in a given transaction. This is required
294 * to make sure the old root from before we joined the transaction is deleted
295 * when the transaction commits
297 static int record_root_in_trans(struct btrfs_trans_handle
*trans
,
298 struct btrfs_root
*root
)
300 if (test_bit(BTRFS_ROOT_REF_COWS
, &root
->state
) &&
301 root
->last_trans
< trans
->transid
) {
302 WARN_ON(root
== root
->fs_info
->extent_root
);
303 WARN_ON(root
->commit_root
!= root
->node
);
306 * see below for IN_TRANS_SETUP usage rules
307 * we have the reloc mutex held now, so there
308 * is only one writer in this function
310 set_bit(BTRFS_ROOT_IN_TRANS_SETUP
, &root
->state
);
312 /* make sure readers find IN_TRANS_SETUP before
313 * they find our root->last_trans update
317 spin_lock(&root
->fs_info
->fs_roots_radix_lock
);
318 if (root
->last_trans
== trans
->transid
) {
319 spin_unlock(&root
->fs_info
->fs_roots_radix_lock
);
322 radix_tree_tag_set(&root
->fs_info
->fs_roots_radix
,
323 (unsigned long)root
->root_key
.objectid
,
324 BTRFS_ROOT_TRANS_TAG
);
325 spin_unlock(&root
->fs_info
->fs_roots_radix_lock
);
326 root
->last_trans
= trans
->transid
;
328 /* this is pretty tricky. We don't want to
329 * take the relocation lock in btrfs_record_root_in_trans
330 * unless we're really doing the first setup for this root in
333 * Normally we'd use root->last_trans as a flag to decide
334 * if we want to take the expensive mutex.
336 * But, we have to set root->last_trans before we
337 * init the relocation root, otherwise, we trip over warnings
338 * in ctree.c. The solution used here is to flag ourselves
339 * with root IN_TRANS_SETUP. When this is 1, we're still
340 * fixing up the reloc trees and everyone must wait.
342 * When this is zero, they can trust root->last_trans and fly
343 * through btrfs_record_root_in_trans without having to take the
344 * lock. smp_wmb() makes sure that all the writes above are
345 * done before we pop in the zero below
347 btrfs_init_reloc_root(trans
, root
);
348 smp_mb__before_atomic();
349 clear_bit(BTRFS_ROOT_IN_TRANS_SETUP
, &root
->state
);
355 void btrfs_add_dropped_root(struct btrfs_trans_handle
*trans
,
356 struct btrfs_root
*root
)
358 struct btrfs_transaction
*cur_trans
= trans
->transaction
;
360 /* Add ourselves to the transaction dropped list */
361 spin_lock(&cur_trans
->dropped_roots_lock
);
362 list_add_tail(&root
->root_list
, &cur_trans
->dropped_roots
);
363 spin_unlock(&cur_trans
->dropped_roots_lock
);
365 /* Make sure we don't try to update the root at commit time */
366 spin_lock(&root
->fs_info
->fs_roots_radix_lock
);
367 radix_tree_tag_clear(&root
->fs_info
->fs_roots_radix
,
368 (unsigned long)root
->root_key
.objectid
,
369 BTRFS_ROOT_TRANS_TAG
);
370 spin_unlock(&root
->fs_info
->fs_roots_radix_lock
);
373 int btrfs_record_root_in_trans(struct btrfs_trans_handle
*trans
,
374 struct btrfs_root
*root
)
376 if (!test_bit(BTRFS_ROOT_REF_COWS
, &root
->state
))
380 * see record_root_in_trans for comments about IN_TRANS_SETUP usage
384 if (root
->last_trans
== trans
->transid
&&
385 !test_bit(BTRFS_ROOT_IN_TRANS_SETUP
, &root
->state
))
388 mutex_lock(&root
->fs_info
->reloc_mutex
);
389 record_root_in_trans(trans
, root
);
390 mutex_unlock(&root
->fs_info
->reloc_mutex
);
395 static inline int is_transaction_blocked(struct btrfs_transaction
*trans
)
397 return (trans
->state
>= TRANS_STATE_BLOCKED
&&
398 trans
->state
< TRANS_STATE_UNBLOCKED
&&
402 /* wait for commit against the current transaction to become unblocked
403 * when this is done, it is safe to start a new transaction, but the current
404 * transaction might not be fully on disk.
406 static void wait_current_trans(struct btrfs_root
*root
)
408 struct btrfs_transaction
*cur_trans
;
410 spin_lock(&root
->fs_info
->trans_lock
);
411 cur_trans
= root
->fs_info
->running_transaction
;
412 if (cur_trans
&& is_transaction_blocked(cur_trans
)) {
413 atomic_inc(&cur_trans
->use_count
);
414 spin_unlock(&root
->fs_info
->trans_lock
);
416 wait_event(root
->fs_info
->transaction_wait
,
417 cur_trans
->state
>= TRANS_STATE_UNBLOCKED
||
419 btrfs_put_transaction(cur_trans
);
421 spin_unlock(&root
->fs_info
->trans_lock
);
425 static int may_wait_transaction(struct btrfs_root
*root
, int type
)
427 if (root
->fs_info
->log_root_recovering
)
430 if (type
== TRANS_USERSPACE
)
433 if (type
== TRANS_START
&&
434 !atomic_read(&root
->fs_info
->open_ioctl_trans
))
440 static inline bool need_reserve_reloc_root(struct btrfs_root
*root
)
442 if (!root
->fs_info
->reloc_ctl
||
443 !test_bit(BTRFS_ROOT_REF_COWS
, &root
->state
) ||
444 root
->root_key
.objectid
== BTRFS_TREE_RELOC_OBJECTID
||
451 static struct btrfs_trans_handle
*
452 start_transaction(struct btrfs_root
*root
, unsigned int num_items
,
453 unsigned int type
, enum btrfs_reserve_flush_enum flush
)
455 struct btrfs_trans_handle
*h
;
456 struct btrfs_transaction
*cur_trans
;
458 u64 qgroup_reserved
= 0;
459 bool reloc_reserved
= false;
462 /* Send isn't supposed to start transactions. */
463 ASSERT(current
->journal_info
!= BTRFS_SEND_TRANS_STUB
);
465 if (test_bit(BTRFS_FS_STATE_ERROR
, &root
->fs_info
->fs_state
))
466 return ERR_PTR(-EROFS
);
468 if (current
->journal_info
) {
469 WARN_ON(type
& TRANS_EXTWRITERS
);
470 h
= current
->journal_info
;
472 WARN_ON(h
->use_count
> 2);
473 h
->orig_rsv
= h
->block_rsv
;
479 * Do the reservation before we join the transaction so we can do all
480 * the appropriate flushing if need be.
482 if (num_items
> 0 && root
!= root
->fs_info
->chunk_root
) {
483 qgroup_reserved
= num_items
* root
->nodesize
;
484 ret
= btrfs_qgroup_reserve_meta(root
, qgroup_reserved
);
488 num_bytes
= btrfs_calc_trans_metadata_size(root
, num_items
);
490 * Do the reservation for the relocation root creation
492 if (need_reserve_reloc_root(root
)) {
493 num_bytes
+= root
->nodesize
;
494 reloc_reserved
= true;
497 ret
= btrfs_block_rsv_add(root
,
498 &root
->fs_info
->trans_block_rsv
,
504 h
= kmem_cache_zalloc(btrfs_trans_handle_cachep
, GFP_NOFS
);
511 * If we are JOIN_NOLOCK we're already committing a transaction and
512 * waiting on this guy, so we don't need to do the sb_start_intwrite
513 * because we're already holding a ref. We need this because we could
514 * have raced in and did an fsync() on a file which can kick a commit
515 * and then we deadlock with somebody doing a freeze.
517 * If we are ATTACH, it means we just want to catch the current
518 * transaction and commit it, so we needn't do sb_start_intwrite().
520 if (type
& __TRANS_FREEZABLE
)
521 sb_start_intwrite(root
->fs_info
->sb
);
523 if (may_wait_transaction(root
, type
))
524 wait_current_trans(root
);
527 ret
= join_transaction(root
, type
);
529 wait_current_trans(root
);
530 if (unlikely(type
== TRANS_ATTACH
))
533 } while (ret
== -EBUSY
);
536 /* We must get the transaction if we are JOIN_NOLOCK. */
537 BUG_ON(type
== TRANS_JOIN_NOLOCK
);
541 cur_trans
= root
->fs_info
->running_transaction
;
543 h
->transid
= cur_trans
->transid
;
544 h
->transaction
= cur_trans
;
549 h
->can_flush_pending_bgs
= true;
550 INIT_LIST_HEAD(&h
->qgroup_ref_list
);
551 INIT_LIST_HEAD(&h
->new_bgs
);
554 if (cur_trans
->state
>= TRANS_STATE_BLOCKED
&&
555 may_wait_transaction(root
, type
)) {
556 current
->journal_info
= h
;
557 btrfs_commit_transaction(h
, root
);
562 trace_btrfs_space_reservation(root
->fs_info
, "transaction",
563 h
->transid
, num_bytes
, 1);
564 h
->block_rsv
= &root
->fs_info
->trans_block_rsv
;
565 h
->bytes_reserved
= num_bytes
;
566 h
->reloc_reserved
= reloc_reserved
;
570 btrfs_record_root_in_trans(h
, root
);
572 if (!current
->journal_info
&& type
!= TRANS_USERSPACE
)
573 current
->journal_info
= h
;
577 if (type
& __TRANS_FREEZABLE
)
578 sb_end_intwrite(root
->fs_info
->sb
);
579 kmem_cache_free(btrfs_trans_handle_cachep
, h
);
582 btrfs_block_rsv_release(root
, &root
->fs_info
->trans_block_rsv
,
585 btrfs_qgroup_free_meta(root
, qgroup_reserved
);
589 struct btrfs_trans_handle
*btrfs_start_transaction(struct btrfs_root
*root
,
590 unsigned int num_items
)
592 return start_transaction(root
, num_items
, TRANS_START
,
593 BTRFS_RESERVE_FLUSH_ALL
);
595 struct btrfs_trans_handle
*btrfs_start_transaction_fallback_global_rsv(
596 struct btrfs_root
*root
,
597 unsigned int num_items
,
600 struct btrfs_trans_handle
*trans
;
604 trans
= btrfs_start_transaction(root
, num_items
);
605 if (!IS_ERR(trans
) || PTR_ERR(trans
) != -ENOSPC
)
608 trans
= btrfs_start_transaction(root
, 0);
612 num_bytes
= btrfs_calc_trans_metadata_size(root
, num_items
);
613 ret
= btrfs_cond_migrate_bytes(root
->fs_info
,
614 &root
->fs_info
->trans_block_rsv
,
618 btrfs_end_transaction(trans
, root
);
622 trans
->block_rsv
= &root
->fs_info
->trans_block_rsv
;
623 trans
->bytes_reserved
= num_bytes
;
628 struct btrfs_trans_handle
*btrfs_start_transaction_lflush(
629 struct btrfs_root
*root
,
630 unsigned int num_items
)
632 return start_transaction(root
, num_items
, TRANS_START
,
633 BTRFS_RESERVE_FLUSH_LIMIT
);
636 struct btrfs_trans_handle
*btrfs_join_transaction(struct btrfs_root
*root
)
638 return start_transaction(root
, 0, TRANS_JOIN
, 0);
641 struct btrfs_trans_handle
*btrfs_join_transaction_nolock(struct btrfs_root
*root
)
643 return start_transaction(root
, 0, TRANS_JOIN_NOLOCK
, 0);
646 struct btrfs_trans_handle
*btrfs_start_ioctl_transaction(struct btrfs_root
*root
)
648 return start_transaction(root
, 0, TRANS_USERSPACE
, 0);
652 * btrfs_attach_transaction() - catch the running transaction
654 * It is used when we want to commit the current the transaction, but
655 * don't want to start a new one.
657 * Note: If this function return -ENOENT, it just means there is no
658 * running transaction. But it is possible that the inactive transaction
659 * is still in the memory, not fully on disk. If you hope there is no
660 * inactive transaction in the fs when -ENOENT is returned, you should
662 * btrfs_attach_transaction_barrier()
664 struct btrfs_trans_handle
*btrfs_attach_transaction(struct btrfs_root
*root
)
666 return start_transaction(root
, 0, TRANS_ATTACH
, 0);
670 * btrfs_attach_transaction_barrier() - catch the running transaction
672 * It is similar to the above function, the differentia is this one
673 * will wait for all the inactive transactions until they fully
676 struct btrfs_trans_handle
*
677 btrfs_attach_transaction_barrier(struct btrfs_root
*root
)
679 struct btrfs_trans_handle
*trans
;
681 trans
= start_transaction(root
, 0, TRANS_ATTACH
, 0);
682 if (IS_ERR(trans
) && PTR_ERR(trans
) == -ENOENT
)
683 btrfs_wait_for_commit(root
, 0);
688 /* wait for a transaction commit to be fully complete */
689 static noinline
void wait_for_commit(struct btrfs_root
*root
,
690 struct btrfs_transaction
*commit
)
692 wait_event(commit
->commit_wait
, commit
->state
== TRANS_STATE_COMPLETED
);
695 int btrfs_wait_for_commit(struct btrfs_root
*root
, u64 transid
)
697 struct btrfs_transaction
*cur_trans
= NULL
, *t
;
701 if (transid
<= root
->fs_info
->last_trans_committed
)
704 /* find specified transaction */
705 spin_lock(&root
->fs_info
->trans_lock
);
706 list_for_each_entry(t
, &root
->fs_info
->trans_list
, list
) {
707 if (t
->transid
== transid
) {
709 atomic_inc(&cur_trans
->use_count
);
713 if (t
->transid
> transid
) {
718 spin_unlock(&root
->fs_info
->trans_lock
);
721 * The specified transaction doesn't exist, or we
722 * raced with btrfs_commit_transaction
725 if (transid
> root
->fs_info
->last_trans_committed
)
730 /* find newest transaction that is committing | committed */
731 spin_lock(&root
->fs_info
->trans_lock
);
732 list_for_each_entry_reverse(t
, &root
->fs_info
->trans_list
,
734 if (t
->state
>= TRANS_STATE_COMMIT_START
) {
735 if (t
->state
== TRANS_STATE_COMPLETED
)
738 atomic_inc(&cur_trans
->use_count
);
742 spin_unlock(&root
->fs_info
->trans_lock
);
744 goto out
; /* nothing committing|committed */
747 wait_for_commit(root
, cur_trans
);
748 btrfs_put_transaction(cur_trans
);
753 void btrfs_throttle(struct btrfs_root
*root
)
755 if (!atomic_read(&root
->fs_info
->open_ioctl_trans
))
756 wait_current_trans(root
);
759 static int should_end_transaction(struct btrfs_trans_handle
*trans
,
760 struct btrfs_root
*root
)
762 if (root
->fs_info
->global_block_rsv
.space_info
->full
&&
763 btrfs_check_space_for_delayed_refs(trans
, root
))
766 return !!btrfs_block_rsv_check(root
, &root
->fs_info
->global_block_rsv
, 5);
769 int btrfs_should_end_transaction(struct btrfs_trans_handle
*trans
,
770 struct btrfs_root
*root
)
772 struct btrfs_transaction
*cur_trans
= trans
->transaction
;
777 if (cur_trans
->state
>= TRANS_STATE_BLOCKED
||
778 cur_trans
->delayed_refs
.flushing
)
781 updates
= trans
->delayed_ref_updates
;
782 trans
->delayed_ref_updates
= 0;
784 err
= btrfs_run_delayed_refs(trans
, root
, updates
* 2);
785 if (err
) /* Error code will also eval true */
789 return should_end_transaction(trans
, root
);
792 static int __btrfs_end_transaction(struct btrfs_trans_handle
*trans
,
793 struct btrfs_root
*root
, int throttle
)
795 struct btrfs_transaction
*cur_trans
= trans
->transaction
;
796 struct btrfs_fs_info
*info
= root
->fs_info
;
797 unsigned long cur
= trans
->delayed_ref_updates
;
798 int lock
= (trans
->type
!= TRANS_JOIN_NOLOCK
);
800 int must_run_delayed_refs
= 0;
802 if (trans
->use_count
> 1) {
804 trans
->block_rsv
= trans
->orig_rsv
;
808 btrfs_trans_release_metadata(trans
, root
);
809 trans
->block_rsv
= NULL
;
811 if (!list_empty(&trans
->new_bgs
))
812 btrfs_create_pending_block_groups(trans
, root
);
814 trans
->delayed_ref_updates
= 0;
816 must_run_delayed_refs
=
817 btrfs_should_throttle_delayed_refs(trans
, root
);
818 cur
= max_t(unsigned long, cur
, 32);
821 * don't make the caller wait if they are from a NOLOCK
822 * or ATTACH transaction, it will deadlock with commit
824 if (must_run_delayed_refs
== 1 &&
825 (trans
->type
& (__TRANS_JOIN_NOLOCK
| __TRANS_ATTACH
)))
826 must_run_delayed_refs
= 2;
829 btrfs_trans_release_metadata(trans
, root
);
830 trans
->block_rsv
= NULL
;
832 if (!list_empty(&trans
->new_bgs
))
833 btrfs_create_pending_block_groups(trans
, root
);
835 btrfs_trans_release_chunk_metadata(trans
);
837 if (lock
&& !atomic_read(&root
->fs_info
->open_ioctl_trans
) &&
838 should_end_transaction(trans
, root
) &&
839 ACCESS_ONCE(cur_trans
->state
) == TRANS_STATE_RUNNING
) {
840 spin_lock(&info
->trans_lock
);
841 if (cur_trans
->state
== TRANS_STATE_RUNNING
)
842 cur_trans
->state
= TRANS_STATE_BLOCKED
;
843 spin_unlock(&info
->trans_lock
);
846 if (lock
&& ACCESS_ONCE(cur_trans
->state
) == TRANS_STATE_BLOCKED
) {
848 return btrfs_commit_transaction(trans
, root
);
850 wake_up_process(info
->transaction_kthread
);
853 if (trans
->type
& __TRANS_FREEZABLE
)
854 sb_end_intwrite(root
->fs_info
->sb
);
856 WARN_ON(cur_trans
!= info
->running_transaction
);
857 WARN_ON(atomic_read(&cur_trans
->num_writers
) < 1);
858 atomic_dec(&cur_trans
->num_writers
);
859 extwriter_counter_dec(cur_trans
, trans
->type
);
862 * Make sure counter is updated before we wake up waiters.
865 if (waitqueue_active(&cur_trans
->writer_wait
))
866 wake_up(&cur_trans
->writer_wait
);
867 btrfs_put_transaction(cur_trans
);
869 if (current
->journal_info
== trans
)
870 current
->journal_info
= NULL
;
873 btrfs_run_delayed_iputs(root
);
875 if (trans
->aborted
||
876 test_bit(BTRFS_FS_STATE_ERROR
, &root
->fs_info
->fs_state
)) {
877 wake_up_process(info
->transaction_kthread
);
880 assert_qgroups_uptodate(trans
);
882 kmem_cache_free(btrfs_trans_handle_cachep
, trans
);
883 if (must_run_delayed_refs
) {
884 btrfs_async_run_delayed_refs(root
, cur
,
885 must_run_delayed_refs
== 1);
890 int btrfs_end_transaction(struct btrfs_trans_handle
*trans
,
891 struct btrfs_root
*root
)
893 return __btrfs_end_transaction(trans
, root
, 0);
896 int btrfs_end_transaction_throttle(struct btrfs_trans_handle
*trans
,
897 struct btrfs_root
*root
)
899 return __btrfs_end_transaction(trans
, root
, 1);
903 * when btree blocks are allocated, they have some corresponding bits set for
904 * them in one of two extent_io trees. This is used to make sure all of
905 * those extents are sent to disk but does not wait on them
907 int btrfs_write_marked_extents(struct btrfs_root
*root
,
908 struct extent_io_tree
*dirty_pages
, int mark
)
912 struct address_space
*mapping
= root
->fs_info
->btree_inode
->i_mapping
;
913 struct extent_state
*cached_state
= NULL
;
917 while (!find_first_extent_bit(dirty_pages
, start
, &start
, &end
,
918 mark
, &cached_state
)) {
919 bool wait_writeback
= false;
921 err
= convert_extent_bit(dirty_pages
, start
, end
,
923 mark
, &cached_state
, GFP_NOFS
);
925 * convert_extent_bit can return -ENOMEM, which is most of the
926 * time a temporary error. So when it happens, ignore the error
927 * and wait for writeback of this range to finish - because we
928 * failed to set the bit EXTENT_NEED_WAIT for the range, a call
929 * to btrfs_wait_marked_extents() would not know that writeback
930 * for this range started and therefore wouldn't wait for it to
931 * finish - we don't want to commit a superblock that points to
932 * btree nodes/leafs for which writeback hasn't finished yet
933 * (and without errors).
934 * We cleanup any entries left in the io tree when committing
935 * the transaction (through clear_btree_io_tree()).
937 if (err
== -ENOMEM
) {
939 wait_writeback
= true;
942 err
= filemap_fdatawrite_range(mapping
, start
, end
);
945 else if (wait_writeback
)
946 werr
= filemap_fdatawait_range(mapping
, start
, end
);
947 free_extent_state(cached_state
);
956 * when btree blocks are allocated, they have some corresponding bits set for
957 * them in one of two extent_io trees. This is used to make sure all of
958 * those extents are on disk for transaction or log commit. We wait
959 * on all the pages and clear them from the dirty pages state tree
961 int btrfs_wait_marked_extents(struct btrfs_root
*root
,
962 struct extent_io_tree
*dirty_pages
, int mark
)
966 struct address_space
*mapping
= root
->fs_info
->btree_inode
->i_mapping
;
967 struct extent_state
*cached_state
= NULL
;
970 struct btrfs_inode
*btree_ino
= BTRFS_I(root
->fs_info
->btree_inode
);
973 while (!find_first_extent_bit(dirty_pages
, start
, &start
, &end
,
974 EXTENT_NEED_WAIT
, &cached_state
)) {
976 * Ignore -ENOMEM errors returned by clear_extent_bit().
977 * When committing the transaction, we'll remove any entries
978 * left in the io tree. For a log commit, we don't remove them
979 * after committing the log because the tree can be accessed
980 * concurrently - we do it only at transaction commit time when
981 * it's safe to do it (through clear_btree_io_tree()).
983 err
= clear_extent_bit(dirty_pages
, start
, end
,
985 0, 0, &cached_state
, GFP_NOFS
);
989 err
= filemap_fdatawait_range(mapping
, start
, end
);
992 free_extent_state(cached_state
);
1000 if (root
->root_key
.objectid
== BTRFS_TREE_LOG_OBJECTID
) {
1001 if ((mark
& EXTENT_DIRTY
) &&
1002 test_and_clear_bit(BTRFS_INODE_BTREE_LOG1_ERR
,
1003 &btree_ino
->runtime_flags
))
1006 if ((mark
& EXTENT_NEW
) &&
1007 test_and_clear_bit(BTRFS_INODE_BTREE_LOG2_ERR
,
1008 &btree_ino
->runtime_flags
))
1011 if (test_and_clear_bit(BTRFS_INODE_BTREE_ERR
,
1012 &btree_ino
->runtime_flags
))
1016 if (errors
&& !werr
)
1023 * when btree blocks are allocated, they have some corresponding bits set for
1024 * them in one of two extent_io trees. This is used to make sure all of
1025 * those extents are on disk for transaction or log commit
1027 static int btrfs_write_and_wait_marked_extents(struct btrfs_root
*root
,
1028 struct extent_io_tree
*dirty_pages
, int mark
)
1032 struct blk_plug plug
;
1034 blk_start_plug(&plug
);
1035 ret
= btrfs_write_marked_extents(root
, dirty_pages
, mark
);
1036 blk_finish_plug(&plug
);
1037 ret2
= btrfs_wait_marked_extents(root
, dirty_pages
, mark
);
1046 static int btrfs_write_and_wait_transaction(struct btrfs_trans_handle
*trans
,
1047 struct btrfs_root
*root
)
1051 ret
= btrfs_write_and_wait_marked_extents(root
,
1052 &trans
->transaction
->dirty_pages
,
1054 clear_btree_io_tree(&trans
->transaction
->dirty_pages
);
1060 * this is used to update the root pointer in the tree of tree roots.
1062 * But, in the case of the extent allocation tree, updating the root
1063 * pointer may allocate blocks which may change the root of the extent
1066 * So, this loops and repeats and makes sure the cowonly root didn't
1067 * change while the root pointer was being updated in the metadata.
1069 static int update_cowonly_root(struct btrfs_trans_handle
*trans
,
1070 struct btrfs_root
*root
)
1073 u64 old_root_bytenr
;
1075 struct btrfs_root
*tree_root
= root
->fs_info
->tree_root
;
1077 old_root_used
= btrfs_root_used(&root
->root_item
);
1080 old_root_bytenr
= btrfs_root_bytenr(&root
->root_item
);
1081 if (old_root_bytenr
== root
->node
->start
&&
1082 old_root_used
== btrfs_root_used(&root
->root_item
))
1085 btrfs_set_root_node(&root
->root_item
, root
->node
);
1086 ret
= btrfs_update_root(trans
, tree_root
,
1092 old_root_used
= btrfs_root_used(&root
->root_item
);
1099 * update all the cowonly tree roots on disk
1101 * The error handling in this function may not be obvious. Any of the
1102 * failures will cause the file system to go offline. We still need
1103 * to clean up the delayed refs.
1105 static noinline
int commit_cowonly_roots(struct btrfs_trans_handle
*trans
,
1106 struct btrfs_root
*root
)
1108 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
1109 struct list_head
*dirty_bgs
= &trans
->transaction
->dirty_bgs
;
1110 struct list_head
*io_bgs
= &trans
->transaction
->io_bgs
;
1111 struct list_head
*next
;
1112 struct extent_buffer
*eb
;
1115 eb
= btrfs_lock_root_node(fs_info
->tree_root
);
1116 ret
= btrfs_cow_block(trans
, fs_info
->tree_root
, eb
, NULL
,
1118 btrfs_tree_unlock(eb
);
1119 free_extent_buffer(eb
);
1124 ret
= btrfs_run_delayed_refs(trans
, root
, (unsigned long)-1);
1128 ret
= btrfs_run_dev_stats(trans
, root
->fs_info
);
1131 ret
= btrfs_run_dev_replace(trans
, root
->fs_info
);
1134 ret
= btrfs_run_qgroups(trans
, root
->fs_info
);
1138 ret
= btrfs_setup_space_cache(trans
, root
);
1142 /* run_qgroups might have added some more refs */
1143 ret
= btrfs_run_delayed_refs(trans
, root
, (unsigned long)-1);
1147 while (!list_empty(&fs_info
->dirty_cowonly_roots
)) {
1148 next
= fs_info
->dirty_cowonly_roots
.next
;
1149 list_del_init(next
);
1150 root
= list_entry(next
, struct btrfs_root
, dirty_list
);
1151 clear_bit(BTRFS_ROOT_DIRTY
, &root
->state
);
1153 if (root
!= fs_info
->extent_root
)
1154 list_add_tail(&root
->dirty_list
,
1155 &trans
->transaction
->switch_commits
);
1156 ret
= update_cowonly_root(trans
, root
);
1159 ret
= btrfs_run_delayed_refs(trans
, root
, (unsigned long)-1);
1164 while (!list_empty(dirty_bgs
) || !list_empty(io_bgs
)) {
1165 ret
= btrfs_write_dirty_block_groups(trans
, root
);
1168 ret
= btrfs_run_delayed_refs(trans
, root
, (unsigned long)-1);
1173 if (!list_empty(&fs_info
->dirty_cowonly_roots
))
1176 list_add_tail(&fs_info
->extent_root
->dirty_list
,
1177 &trans
->transaction
->switch_commits
);
1178 btrfs_after_dev_replace_commit(fs_info
);
1184 * dead roots are old snapshots that need to be deleted. This allocates
1185 * a dirty root struct and adds it into the list of dead roots that need to
1188 void btrfs_add_dead_root(struct btrfs_root
*root
)
1190 spin_lock(&root
->fs_info
->trans_lock
);
1191 if (list_empty(&root
->root_list
))
1192 list_add_tail(&root
->root_list
, &root
->fs_info
->dead_roots
);
1193 spin_unlock(&root
->fs_info
->trans_lock
);
1197 * update all the cowonly tree roots on disk
1199 static noinline
int commit_fs_roots(struct btrfs_trans_handle
*trans
,
1200 struct btrfs_root
*root
)
1202 struct btrfs_root
*gang
[8];
1203 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
1208 spin_lock(&fs_info
->fs_roots_radix_lock
);
1210 ret
= radix_tree_gang_lookup_tag(&fs_info
->fs_roots_radix
,
1213 BTRFS_ROOT_TRANS_TAG
);
1216 for (i
= 0; i
< ret
; i
++) {
1218 radix_tree_tag_clear(&fs_info
->fs_roots_radix
,
1219 (unsigned long)root
->root_key
.objectid
,
1220 BTRFS_ROOT_TRANS_TAG
);
1221 spin_unlock(&fs_info
->fs_roots_radix_lock
);
1223 btrfs_free_log(trans
, root
);
1224 btrfs_update_reloc_root(trans
, root
);
1225 btrfs_orphan_commit_root(trans
, root
);
1227 btrfs_save_ino_cache(root
, trans
);
1229 /* see comments in should_cow_block() */
1230 clear_bit(BTRFS_ROOT_FORCE_COW
, &root
->state
);
1231 smp_mb__after_atomic();
1233 if (root
->commit_root
!= root
->node
) {
1234 list_add_tail(&root
->dirty_list
,
1235 &trans
->transaction
->switch_commits
);
1236 btrfs_set_root_node(&root
->root_item
,
1240 err
= btrfs_update_root(trans
, fs_info
->tree_root
,
1243 spin_lock(&fs_info
->fs_roots_radix_lock
);
1246 btrfs_qgroup_free_meta_all(root
);
1249 spin_unlock(&fs_info
->fs_roots_radix_lock
);
1254 * defrag a given btree.
1255 * Every leaf in the btree is read and defragged.
1257 int btrfs_defrag_root(struct btrfs_root
*root
)
1259 struct btrfs_fs_info
*info
= root
->fs_info
;
1260 struct btrfs_trans_handle
*trans
;
1263 if (test_and_set_bit(BTRFS_ROOT_DEFRAG_RUNNING
, &root
->state
))
1267 trans
= btrfs_start_transaction(root
, 0);
1269 return PTR_ERR(trans
);
1271 ret
= btrfs_defrag_leaves(trans
, root
);
1273 btrfs_end_transaction(trans
, root
);
1274 btrfs_btree_balance_dirty(info
->tree_root
);
1277 if (btrfs_fs_closing(root
->fs_info
) || ret
!= -EAGAIN
)
1280 if (btrfs_defrag_cancelled(root
->fs_info
)) {
1281 pr_debug("BTRFS: defrag_root cancelled\n");
1286 clear_bit(BTRFS_ROOT_DEFRAG_RUNNING
, &root
->state
);
1291 * new snapshots need to be created at a very specific time in the
1292 * transaction commit. This does the actual creation.
1295 * If the error which may affect the commitment of the current transaction
1296 * happens, we should return the error number. If the error which just affect
1297 * the creation of the pending snapshots, just return 0.
1299 static noinline
int create_pending_snapshot(struct btrfs_trans_handle
*trans
,
1300 struct btrfs_fs_info
*fs_info
,
1301 struct btrfs_pending_snapshot
*pending
)
1303 struct btrfs_key key
;
1304 struct btrfs_root_item
*new_root_item
;
1305 struct btrfs_root
*tree_root
= fs_info
->tree_root
;
1306 struct btrfs_root
*root
= pending
->root
;
1307 struct btrfs_root
*parent_root
;
1308 struct btrfs_block_rsv
*rsv
;
1309 struct inode
*parent_inode
;
1310 struct btrfs_path
*path
;
1311 struct btrfs_dir_item
*dir_item
;
1312 struct dentry
*dentry
;
1313 struct extent_buffer
*tmp
;
1314 struct extent_buffer
*old
;
1315 struct timespec cur_time
= CURRENT_TIME
;
1323 path
= btrfs_alloc_path();
1325 pending
->error
= -ENOMEM
;
1329 new_root_item
= kmalloc(sizeof(*new_root_item
), GFP_NOFS
);
1330 if (!new_root_item
) {
1331 pending
->error
= -ENOMEM
;
1332 goto root_item_alloc_fail
;
1335 pending
->error
= btrfs_find_free_objectid(tree_root
, &objectid
);
1337 goto no_free_objectid
;
1340 * Make qgroup to skip current new snapshot's qgroupid, as it is
1341 * accounted by later btrfs_qgroup_inherit().
1343 btrfs_set_skip_qgroup(trans
, objectid
);
1345 btrfs_reloc_pre_snapshot(pending
, &to_reserve
);
1347 if (to_reserve
> 0) {
1348 pending
->error
= btrfs_block_rsv_add(root
,
1349 &pending
->block_rsv
,
1351 BTRFS_RESERVE_NO_FLUSH
);
1353 goto clear_skip_qgroup
;
1356 key
.objectid
= objectid
;
1357 key
.offset
= (u64
)-1;
1358 key
.type
= BTRFS_ROOT_ITEM_KEY
;
1360 rsv
= trans
->block_rsv
;
1361 trans
->block_rsv
= &pending
->block_rsv
;
1362 trans
->bytes_reserved
= trans
->block_rsv
->reserved
;
1364 dentry
= pending
->dentry
;
1365 parent_inode
= pending
->dir
;
1366 parent_root
= BTRFS_I(parent_inode
)->root
;
1367 record_root_in_trans(trans
, parent_root
);
1370 * insert the directory item
1372 ret
= btrfs_set_inode_index(parent_inode
, &index
);
1373 BUG_ON(ret
); /* -ENOMEM */
1375 /* check if there is a file/dir which has the same name. */
1376 dir_item
= btrfs_lookup_dir_item(NULL
, parent_root
, path
,
1377 btrfs_ino(parent_inode
),
1378 dentry
->d_name
.name
,
1379 dentry
->d_name
.len
, 0);
1380 if (dir_item
!= NULL
&& !IS_ERR(dir_item
)) {
1381 pending
->error
= -EEXIST
;
1382 goto dir_item_existed
;
1383 } else if (IS_ERR(dir_item
)) {
1384 ret
= PTR_ERR(dir_item
);
1385 btrfs_abort_transaction(trans
, root
, ret
);
1388 btrfs_release_path(path
);
1391 * pull in the delayed directory update
1392 * and the delayed inode item
1393 * otherwise we corrupt the FS during
1396 ret
= btrfs_run_delayed_items(trans
, root
);
1397 if (ret
) { /* Transaction aborted */
1398 btrfs_abort_transaction(trans
, root
, ret
);
1402 record_root_in_trans(trans
, root
);
1403 btrfs_set_root_last_snapshot(&root
->root_item
, trans
->transid
);
1404 memcpy(new_root_item
, &root
->root_item
, sizeof(*new_root_item
));
1405 btrfs_check_and_init_root_item(new_root_item
);
1407 root_flags
= btrfs_root_flags(new_root_item
);
1408 if (pending
->readonly
)
1409 root_flags
|= BTRFS_ROOT_SUBVOL_RDONLY
;
1411 root_flags
&= ~BTRFS_ROOT_SUBVOL_RDONLY
;
1412 btrfs_set_root_flags(new_root_item
, root_flags
);
1414 btrfs_set_root_generation_v2(new_root_item
,
1416 uuid_le_gen(&new_uuid
);
1417 memcpy(new_root_item
->uuid
, new_uuid
.b
, BTRFS_UUID_SIZE
);
1418 memcpy(new_root_item
->parent_uuid
, root
->root_item
.uuid
,
1420 if (!(root_flags
& BTRFS_ROOT_SUBVOL_RDONLY
)) {
1421 memset(new_root_item
->received_uuid
, 0,
1422 sizeof(new_root_item
->received_uuid
));
1423 memset(&new_root_item
->stime
, 0, sizeof(new_root_item
->stime
));
1424 memset(&new_root_item
->rtime
, 0, sizeof(new_root_item
->rtime
));
1425 btrfs_set_root_stransid(new_root_item
, 0);
1426 btrfs_set_root_rtransid(new_root_item
, 0);
1428 btrfs_set_stack_timespec_sec(&new_root_item
->otime
, cur_time
.tv_sec
);
1429 btrfs_set_stack_timespec_nsec(&new_root_item
->otime
, cur_time
.tv_nsec
);
1430 btrfs_set_root_otransid(new_root_item
, trans
->transid
);
1432 old
= btrfs_lock_root_node(root
);
1433 ret
= btrfs_cow_block(trans
, root
, old
, NULL
, 0, &old
);
1435 btrfs_tree_unlock(old
);
1436 free_extent_buffer(old
);
1437 btrfs_abort_transaction(trans
, root
, ret
);
1441 btrfs_set_lock_blocking(old
);
1443 ret
= btrfs_copy_root(trans
, root
, old
, &tmp
, objectid
);
1444 /* clean up in any case */
1445 btrfs_tree_unlock(old
);
1446 free_extent_buffer(old
);
1448 btrfs_abort_transaction(trans
, root
, ret
);
1451 /* see comments in should_cow_block() */
1452 set_bit(BTRFS_ROOT_FORCE_COW
, &root
->state
);
1455 btrfs_set_root_node(new_root_item
, tmp
);
1456 /* record when the snapshot was created in key.offset */
1457 key
.offset
= trans
->transid
;
1458 ret
= btrfs_insert_root(trans
, tree_root
, &key
, new_root_item
);
1459 btrfs_tree_unlock(tmp
);
1460 free_extent_buffer(tmp
);
1462 btrfs_abort_transaction(trans
, root
, ret
);
1467 * insert root back/forward references
1469 ret
= btrfs_add_root_ref(trans
, tree_root
, objectid
,
1470 parent_root
->root_key
.objectid
,
1471 btrfs_ino(parent_inode
), index
,
1472 dentry
->d_name
.name
, dentry
->d_name
.len
);
1474 btrfs_abort_transaction(trans
, root
, ret
);
1478 key
.offset
= (u64
)-1;
1479 pending
->snap
= btrfs_read_fs_root_no_name(root
->fs_info
, &key
);
1480 if (IS_ERR(pending
->snap
)) {
1481 ret
= PTR_ERR(pending
->snap
);
1482 btrfs_abort_transaction(trans
, root
, ret
);
1486 ret
= btrfs_reloc_post_snapshot(trans
, pending
);
1488 btrfs_abort_transaction(trans
, root
, ret
);
1492 ret
= btrfs_run_delayed_refs(trans
, root
, (unsigned long)-1);
1494 btrfs_abort_transaction(trans
, root
, ret
);
1498 ret
= btrfs_insert_dir_item(trans
, parent_root
,
1499 dentry
->d_name
.name
, dentry
->d_name
.len
,
1501 BTRFS_FT_DIR
, index
);
1502 /* We have check then name at the beginning, so it is impossible. */
1503 BUG_ON(ret
== -EEXIST
|| ret
== -EOVERFLOW
);
1505 btrfs_abort_transaction(trans
, root
, ret
);
1509 btrfs_i_size_write(parent_inode
, parent_inode
->i_size
+
1510 dentry
->d_name
.len
* 2);
1511 parent_inode
->i_mtime
= parent_inode
->i_ctime
= CURRENT_TIME
;
1512 ret
= btrfs_update_inode_fallback(trans
, parent_root
, parent_inode
);
1514 btrfs_abort_transaction(trans
, root
, ret
);
1517 ret
= btrfs_uuid_tree_add(trans
, fs_info
->uuid_root
, new_uuid
.b
,
1518 BTRFS_UUID_KEY_SUBVOL
, objectid
);
1520 btrfs_abort_transaction(trans
, root
, ret
);
1523 if (!btrfs_is_empty_uuid(new_root_item
->received_uuid
)) {
1524 ret
= btrfs_uuid_tree_add(trans
, fs_info
->uuid_root
,
1525 new_root_item
->received_uuid
,
1526 BTRFS_UUID_KEY_RECEIVED_SUBVOL
,
1528 if (ret
&& ret
!= -EEXIST
) {
1529 btrfs_abort_transaction(trans
, root
, ret
);
1534 ret
= btrfs_run_delayed_refs(trans
, root
, (unsigned long)-1);
1536 btrfs_abort_transaction(trans
, root
, ret
);
1541 * account qgroup counters before qgroup_inherit()
1543 ret
= btrfs_qgroup_prepare_account_extents(trans
, fs_info
);
1546 ret
= btrfs_qgroup_account_extents(trans
, fs_info
);
1549 ret
= btrfs_qgroup_inherit(trans
, fs_info
,
1550 root
->root_key
.objectid
,
1551 objectid
, pending
->inherit
);
1553 btrfs_abort_transaction(trans
, root
, ret
);
1558 pending
->error
= ret
;
1560 trans
->block_rsv
= rsv
;
1561 trans
->bytes_reserved
= 0;
1563 btrfs_clear_skip_qgroup(trans
);
1565 kfree(new_root_item
);
1566 root_item_alloc_fail
:
1567 btrfs_free_path(path
);
1572 * create all the snapshots we've scheduled for creation
1574 static noinline
int create_pending_snapshots(struct btrfs_trans_handle
*trans
,
1575 struct btrfs_fs_info
*fs_info
)
1577 struct btrfs_pending_snapshot
*pending
, *next
;
1578 struct list_head
*head
= &trans
->transaction
->pending_snapshots
;
1581 list_for_each_entry_safe(pending
, next
, head
, list
) {
1582 list_del(&pending
->list
);
1583 ret
= create_pending_snapshot(trans
, fs_info
, pending
);
1590 static void update_super_roots(struct btrfs_root
*root
)
1592 struct btrfs_root_item
*root_item
;
1593 struct btrfs_super_block
*super
;
1595 super
= root
->fs_info
->super_copy
;
1597 root_item
= &root
->fs_info
->chunk_root
->root_item
;
1598 super
->chunk_root
= root_item
->bytenr
;
1599 super
->chunk_root_generation
= root_item
->generation
;
1600 super
->chunk_root_level
= root_item
->level
;
1602 root_item
= &root
->fs_info
->tree_root
->root_item
;
1603 super
->root
= root_item
->bytenr
;
1604 super
->generation
= root_item
->generation
;
1605 super
->root_level
= root_item
->level
;
1606 if (btrfs_test_opt(root
, SPACE_CACHE
))
1607 super
->cache_generation
= root_item
->generation
;
1608 if (root
->fs_info
->update_uuid_tree_gen
)
1609 super
->uuid_tree_generation
= root_item
->generation
;
1612 int btrfs_transaction_in_commit(struct btrfs_fs_info
*info
)
1614 struct btrfs_transaction
*trans
;
1617 spin_lock(&info
->trans_lock
);
1618 trans
= info
->running_transaction
;
1620 ret
= (trans
->state
>= TRANS_STATE_COMMIT_START
);
1621 spin_unlock(&info
->trans_lock
);
1625 int btrfs_transaction_blocked(struct btrfs_fs_info
*info
)
1627 struct btrfs_transaction
*trans
;
1630 spin_lock(&info
->trans_lock
);
1631 trans
= info
->running_transaction
;
1633 ret
= is_transaction_blocked(trans
);
1634 spin_unlock(&info
->trans_lock
);
1639 * wait for the current transaction commit to start and block subsequent
1642 static void wait_current_trans_commit_start(struct btrfs_root
*root
,
1643 struct btrfs_transaction
*trans
)
1645 wait_event(root
->fs_info
->transaction_blocked_wait
,
1646 trans
->state
>= TRANS_STATE_COMMIT_START
||
1651 * wait for the current transaction to start and then become unblocked.
1654 static void wait_current_trans_commit_start_and_unblock(struct btrfs_root
*root
,
1655 struct btrfs_transaction
*trans
)
1657 wait_event(root
->fs_info
->transaction_wait
,
1658 trans
->state
>= TRANS_STATE_UNBLOCKED
||
1663 * commit transactions asynchronously. once btrfs_commit_transaction_async
1664 * returns, any subsequent transaction will not be allowed to join.
1666 struct btrfs_async_commit
{
1667 struct btrfs_trans_handle
*newtrans
;
1668 struct btrfs_root
*root
;
1669 struct work_struct work
;
1672 static void do_async_commit(struct work_struct
*work
)
1674 struct btrfs_async_commit
*ac
=
1675 container_of(work
, struct btrfs_async_commit
, work
);
1678 * We've got freeze protection passed with the transaction.
1679 * Tell lockdep about it.
1681 if (ac
->newtrans
->type
& __TRANS_FREEZABLE
)
1682 __sb_writers_acquired(ac
->root
->fs_info
->sb
, SB_FREEZE_FS
);
1684 current
->journal_info
= ac
->newtrans
;
1686 btrfs_commit_transaction(ac
->newtrans
, ac
->root
);
1690 int btrfs_commit_transaction_async(struct btrfs_trans_handle
*trans
,
1691 struct btrfs_root
*root
,
1692 int wait_for_unblock
)
1694 struct btrfs_async_commit
*ac
;
1695 struct btrfs_transaction
*cur_trans
;
1697 ac
= kmalloc(sizeof(*ac
), GFP_NOFS
);
1701 INIT_WORK(&ac
->work
, do_async_commit
);
1703 ac
->newtrans
= btrfs_join_transaction(root
);
1704 if (IS_ERR(ac
->newtrans
)) {
1705 int err
= PTR_ERR(ac
->newtrans
);
1710 /* take transaction reference */
1711 cur_trans
= trans
->transaction
;
1712 atomic_inc(&cur_trans
->use_count
);
1714 btrfs_end_transaction(trans
, root
);
1717 * Tell lockdep we've released the freeze rwsem, since the
1718 * async commit thread will be the one to unlock it.
1720 if (ac
->newtrans
->type
& __TRANS_FREEZABLE
)
1721 __sb_writers_release(root
->fs_info
->sb
, SB_FREEZE_FS
);
1723 schedule_work(&ac
->work
);
1725 /* wait for transaction to start and unblock */
1726 if (wait_for_unblock
)
1727 wait_current_trans_commit_start_and_unblock(root
, cur_trans
);
1729 wait_current_trans_commit_start(root
, cur_trans
);
1731 if (current
->journal_info
== trans
)
1732 current
->journal_info
= NULL
;
1734 btrfs_put_transaction(cur_trans
);
1739 static void cleanup_transaction(struct btrfs_trans_handle
*trans
,
1740 struct btrfs_root
*root
, int err
)
1742 struct btrfs_transaction
*cur_trans
= trans
->transaction
;
1745 WARN_ON(trans
->use_count
> 1);
1747 btrfs_abort_transaction(trans
, root
, err
);
1749 spin_lock(&root
->fs_info
->trans_lock
);
1752 * If the transaction is removed from the list, it means this
1753 * transaction has been committed successfully, so it is impossible
1754 * to call the cleanup function.
1756 BUG_ON(list_empty(&cur_trans
->list
));
1758 list_del_init(&cur_trans
->list
);
1759 if (cur_trans
== root
->fs_info
->running_transaction
) {
1760 cur_trans
->state
= TRANS_STATE_COMMIT_DOING
;
1761 spin_unlock(&root
->fs_info
->trans_lock
);
1762 wait_event(cur_trans
->writer_wait
,
1763 atomic_read(&cur_trans
->num_writers
) == 1);
1765 spin_lock(&root
->fs_info
->trans_lock
);
1767 spin_unlock(&root
->fs_info
->trans_lock
);
1769 btrfs_cleanup_one_transaction(trans
->transaction
, root
);
1771 spin_lock(&root
->fs_info
->trans_lock
);
1772 if (cur_trans
== root
->fs_info
->running_transaction
)
1773 root
->fs_info
->running_transaction
= NULL
;
1774 spin_unlock(&root
->fs_info
->trans_lock
);
1776 if (trans
->type
& __TRANS_FREEZABLE
)
1777 sb_end_intwrite(root
->fs_info
->sb
);
1778 btrfs_put_transaction(cur_trans
);
1779 btrfs_put_transaction(cur_trans
);
1781 trace_btrfs_transaction_commit(root
);
1783 if (current
->journal_info
== trans
)
1784 current
->journal_info
= NULL
;
1785 btrfs_scrub_cancel(root
->fs_info
);
1787 kmem_cache_free(btrfs_trans_handle_cachep
, trans
);
1790 static inline int btrfs_start_delalloc_flush(struct btrfs_fs_info
*fs_info
)
1792 if (btrfs_test_opt(fs_info
->tree_root
, FLUSHONCOMMIT
))
1793 return btrfs_start_delalloc_roots(fs_info
, 1, -1);
1797 static inline void btrfs_wait_delalloc_flush(struct btrfs_fs_info
*fs_info
)
1799 if (btrfs_test_opt(fs_info
->tree_root
, FLUSHONCOMMIT
))
1800 btrfs_wait_ordered_roots(fs_info
, -1);
1804 btrfs_wait_pending_ordered(struct btrfs_transaction
*cur_trans
)
1806 wait_event(cur_trans
->pending_wait
,
1807 atomic_read(&cur_trans
->pending_ordered
) == 0);
1810 int btrfs_commit_transaction(struct btrfs_trans_handle
*trans
,
1811 struct btrfs_root
*root
)
1813 struct btrfs_transaction
*cur_trans
= trans
->transaction
;
1814 struct btrfs_transaction
*prev_trans
= NULL
;
1815 struct btrfs_inode
*btree_ino
= BTRFS_I(root
->fs_info
->btree_inode
);
1818 /* Stop the commit early if ->aborted is set */
1819 if (unlikely(ACCESS_ONCE(cur_trans
->aborted
))) {
1820 ret
= cur_trans
->aborted
;
1821 btrfs_end_transaction(trans
, root
);
1825 /* make a pass through all the delayed refs we have so far
1826 * any runnings procs may add more while we are here
1828 ret
= btrfs_run_delayed_refs(trans
, root
, 0);
1830 btrfs_end_transaction(trans
, root
);
1834 btrfs_trans_release_metadata(trans
, root
);
1835 trans
->block_rsv
= NULL
;
1837 cur_trans
= trans
->transaction
;
1840 * set the flushing flag so procs in this transaction have to
1841 * start sending their work down.
1843 cur_trans
->delayed_refs
.flushing
= 1;
1846 if (!list_empty(&trans
->new_bgs
))
1847 btrfs_create_pending_block_groups(trans
, root
);
1849 ret
= btrfs_run_delayed_refs(trans
, root
, 0);
1851 btrfs_end_transaction(trans
, root
);
1855 if (!test_bit(BTRFS_TRANS_DIRTY_BG_RUN
, &cur_trans
->flags
)) {
1858 /* this mutex is also taken before trying to set
1859 * block groups readonly. We need to make sure
1860 * that nobody has set a block group readonly
1861 * after a extents from that block group have been
1862 * allocated for cache files. btrfs_set_block_group_ro
1863 * will wait for the transaction to commit if it
1864 * finds BTRFS_TRANS_DIRTY_BG_RUN set.
1866 * The BTRFS_TRANS_DIRTY_BG_RUN flag is also used to make sure
1867 * only one process starts all the block group IO. It wouldn't
1868 * hurt to have more than one go through, but there's no
1869 * real advantage to it either.
1871 mutex_lock(&root
->fs_info
->ro_block_group_mutex
);
1872 if (!test_and_set_bit(BTRFS_TRANS_DIRTY_BG_RUN
,
1875 mutex_unlock(&root
->fs_info
->ro_block_group_mutex
);
1878 ret
= btrfs_start_dirty_block_groups(trans
, root
);
1881 btrfs_end_transaction(trans
, root
);
1885 spin_lock(&root
->fs_info
->trans_lock
);
1886 if (cur_trans
->state
>= TRANS_STATE_COMMIT_START
) {
1887 spin_unlock(&root
->fs_info
->trans_lock
);
1888 atomic_inc(&cur_trans
->use_count
);
1889 ret
= btrfs_end_transaction(trans
, root
);
1891 wait_for_commit(root
, cur_trans
);
1893 if (unlikely(cur_trans
->aborted
))
1894 ret
= cur_trans
->aborted
;
1896 btrfs_put_transaction(cur_trans
);
1901 cur_trans
->state
= TRANS_STATE_COMMIT_START
;
1902 wake_up(&root
->fs_info
->transaction_blocked_wait
);
1904 if (cur_trans
->list
.prev
!= &root
->fs_info
->trans_list
) {
1905 prev_trans
= list_entry(cur_trans
->list
.prev
,
1906 struct btrfs_transaction
, list
);
1907 if (prev_trans
->state
!= TRANS_STATE_COMPLETED
) {
1908 atomic_inc(&prev_trans
->use_count
);
1909 spin_unlock(&root
->fs_info
->trans_lock
);
1911 wait_for_commit(root
, prev_trans
);
1912 ret
= prev_trans
->aborted
;
1914 btrfs_put_transaction(prev_trans
);
1916 goto cleanup_transaction
;
1918 spin_unlock(&root
->fs_info
->trans_lock
);
1921 spin_unlock(&root
->fs_info
->trans_lock
);
1924 extwriter_counter_dec(cur_trans
, trans
->type
);
1926 ret
= btrfs_start_delalloc_flush(root
->fs_info
);
1928 goto cleanup_transaction
;
1930 ret
= btrfs_run_delayed_items(trans
, root
);
1932 goto cleanup_transaction
;
1934 wait_event(cur_trans
->writer_wait
,
1935 extwriter_counter_read(cur_trans
) == 0);
1937 /* some pending stuffs might be added after the previous flush. */
1938 ret
= btrfs_run_delayed_items(trans
, root
);
1940 goto cleanup_transaction
;
1942 btrfs_wait_delalloc_flush(root
->fs_info
);
1944 btrfs_wait_pending_ordered(cur_trans
);
1946 btrfs_scrub_pause(root
);
1948 * Ok now we need to make sure to block out any other joins while we
1949 * commit the transaction. We could have started a join before setting
1950 * COMMIT_DOING so make sure to wait for num_writers to == 1 again.
1952 spin_lock(&root
->fs_info
->trans_lock
);
1953 cur_trans
->state
= TRANS_STATE_COMMIT_DOING
;
1954 spin_unlock(&root
->fs_info
->trans_lock
);
1955 wait_event(cur_trans
->writer_wait
,
1956 atomic_read(&cur_trans
->num_writers
) == 1);
1958 /* ->aborted might be set after the previous check, so check it */
1959 if (unlikely(ACCESS_ONCE(cur_trans
->aborted
))) {
1960 ret
= cur_trans
->aborted
;
1961 goto scrub_continue
;
1964 * the reloc mutex makes sure that we stop
1965 * the balancing code from coming in and moving
1966 * extents around in the middle of the commit
1968 mutex_lock(&root
->fs_info
->reloc_mutex
);
1971 * We needn't worry about the delayed items because we will
1972 * deal with them in create_pending_snapshot(), which is the
1973 * core function of the snapshot creation.
1975 ret
= create_pending_snapshots(trans
, root
->fs_info
);
1977 mutex_unlock(&root
->fs_info
->reloc_mutex
);
1978 goto scrub_continue
;
1982 * We insert the dir indexes of the snapshots and update the inode
1983 * of the snapshots' parents after the snapshot creation, so there
1984 * are some delayed items which are not dealt with. Now deal with
1987 * We needn't worry that this operation will corrupt the snapshots,
1988 * because all the tree which are snapshoted will be forced to COW
1989 * the nodes and leaves.
1991 ret
= btrfs_run_delayed_items(trans
, root
);
1993 mutex_unlock(&root
->fs_info
->reloc_mutex
);
1994 goto scrub_continue
;
1997 ret
= btrfs_run_delayed_refs(trans
, root
, (unsigned long)-1);
1999 mutex_unlock(&root
->fs_info
->reloc_mutex
);
2000 goto scrub_continue
;
2003 /* Reocrd old roots for later qgroup accounting */
2004 ret
= btrfs_qgroup_prepare_account_extents(trans
, root
->fs_info
);
2006 mutex_unlock(&root
->fs_info
->reloc_mutex
);
2007 goto scrub_continue
;
2011 * make sure none of the code above managed to slip in a
2014 btrfs_assert_delayed_root_empty(root
);
2016 WARN_ON(cur_trans
!= trans
->transaction
);
2018 /* btrfs_commit_tree_roots is responsible for getting the
2019 * various roots consistent with each other. Every pointer
2020 * in the tree of tree roots has to point to the most up to date
2021 * root for every subvolume and other tree. So, we have to keep
2022 * the tree logging code from jumping in and changing any
2025 * At this point in the commit, there can't be any tree-log
2026 * writers, but a little lower down we drop the trans mutex
2027 * and let new people in. By holding the tree_log_mutex
2028 * from now until after the super is written, we avoid races
2029 * with the tree-log code.
2031 mutex_lock(&root
->fs_info
->tree_log_mutex
);
2033 ret
= commit_fs_roots(trans
, root
);
2035 mutex_unlock(&root
->fs_info
->tree_log_mutex
);
2036 mutex_unlock(&root
->fs_info
->reloc_mutex
);
2037 goto scrub_continue
;
2041 * Since the transaction is done, we can apply the pending changes
2042 * before the next transaction.
2044 btrfs_apply_pending_changes(root
->fs_info
);
2046 /* commit_fs_roots gets rid of all the tree log roots, it is now
2047 * safe to free the root of tree log roots
2049 btrfs_free_log_root_tree(trans
, root
->fs_info
);
2052 * Since fs roots are all committed, we can get a quite accurate
2053 * new_roots. So let's do quota accounting.
2055 ret
= btrfs_qgroup_account_extents(trans
, root
->fs_info
);
2057 mutex_unlock(&root
->fs_info
->tree_log_mutex
);
2058 mutex_unlock(&root
->fs_info
->reloc_mutex
);
2059 goto scrub_continue
;
2062 ret
= commit_cowonly_roots(trans
, root
);
2064 mutex_unlock(&root
->fs_info
->tree_log_mutex
);
2065 mutex_unlock(&root
->fs_info
->reloc_mutex
);
2066 goto scrub_continue
;
2070 * The tasks which save the space cache and inode cache may also
2071 * update ->aborted, check it.
2073 if (unlikely(ACCESS_ONCE(cur_trans
->aborted
))) {
2074 ret
= cur_trans
->aborted
;
2075 mutex_unlock(&root
->fs_info
->tree_log_mutex
);
2076 mutex_unlock(&root
->fs_info
->reloc_mutex
);
2077 goto scrub_continue
;
2080 btrfs_prepare_extent_commit(trans
, root
);
2082 cur_trans
= root
->fs_info
->running_transaction
;
2084 btrfs_set_root_node(&root
->fs_info
->tree_root
->root_item
,
2085 root
->fs_info
->tree_root
->node
);
2086 list_add_tail(&root
->fs_info
->tree_root
->dirty_list
,
2087 &cur_trans
->switch_commits
);
2089 btrfs_set_root_node(&root
->fs_info
->chunk_root
->root_item
,
2090 root
->fs_info
->chunk_root
->node
);
2091 list_add_tail(&root
->fs_info
->chunk_root
->dirty_list
,
2092 &cur_trans
->switch_commits
);
2094 switch_commit_roots(cur_trans
, root
->fs_info
);
2096 assert_qgroups_uptodate(trans
);
2097 ASSERT(list_empty(&cur_trans
->dirty_bgs
));
2098 ASSERT(list_empty(&cur_trans
->io_bgs
));
2099 update_super_roots(root
);
2101 btrfs_set_super_log_root(root
->fs_info
->super_copy
, 0);
2102 btrfs_set_super_log_root_level(root
->fs_info
->super_copy
, 0);
2103 memcpy(root
->fs_info
->super_for_commit
, root
->fs_info
->super_copy
,
2104 sizeof(*root
->fs_info
->super_copy
));
2106 btrfs_update_commit_device_size(root
->fs_info
);
2107 btrfs_update_commit_device_bytes_used(root
, cur_trans
);
2109 clear_bit(BTRFS_INODE_BTREE_LOG1_ERR
, &btree_ino
->runtime_flags
);
2110 clear_bit(BTRFS_INODE_BTREE_LOG2_ERR
, &btree_ino
->runtime_flags
);
2112 btrfs_trans_release_chunk_metadata(trans
);
2114 spin_lock(&root
->fs_info
->trans_lock
);
2115 cur_trans
->state
= TRANS_STATE_UNBLOCKED
;
2116 root
->fs_info
->running_transaction
= NULL
;
2117 spin_unlock(&root
->fs_info
->trans_lock
);
2118 mutex_unlock(&root
->fs_info
->reloc_mutex
);
2120 wake_up(&root
->fs_info
->transaction_wait
);
2122 ret
= btrfs_write_and_wait_transaction(trans
, root
);
2124 btrfs_std_error(root
->fs_info
, ret
,
2125 "Error while writing out transaction");
2126 mutex_unlock(&root
->fs_info
->tree_log_mutex
);
2127 goto scrub_continue
;
2130 ret
= write_ctree_super(trans
, root
, 0);
2132 mutex_unlock(&root
->fs_info
->tree_log_mutex
);
2133 goto scrub_continue
;
2137 * the super is written, we can safely allow the tree-loggers
2138 * to go about their business
2140 mutex_unlock(&root
->fs_info
->tree_log_mutex
);
2142 btrfs_finish_extent_commit(trans
, root
);
2144 if (test_bit(BTRFS_TRANS_HAVE_FREE_BGS
, &cur_trans
->flags
))
2145 btrfs_clear_space_info_full(root
->fs_info
);
2147 root
->fs_info
->last_trans_committed
= cur_trans
->transid
;
2149 * We needn't acquire the lock here because there is no other task
2150 * which can change it.
2152 cur_trans
->state
= TRANS_STATE_COMPLETED
;
2153 wake_up(&cur_trans
->commit_wait
);
2155 spin_lock(&root
->fs_info
->trans_lock
);
2156 list_del_init(&cur_trans
->list
);
2157 spin_unlock(&root
->fs_info
->trans_lock
);
2159 btrfs_put_transaction(cur_trans
);
2160 btrfs_put_transaction(cur_trans
);
2162 if (trans
->type
& __TRANS_FREEZABLE
)
2163 sb_end_intwrite(root
->fs_info
->sb
);
2165 trace_btrfs_transaction_commit(root
);
2167 btrfs_scrub_continue(root
);
2169 if (current
->journal_info
== trans
)
2170 current
->journal_info
= NULL
;
2172 kmem_cache_free(btrfs_trans_handle_cachep
, trans
);
2174 if (current
!= root
->fs_info
->transaction_kthread
&&
2175 current
!= root
->fs_info
->cleaner_kthread
)
2176 btrfs_run_delayed_iputs(root
);
2181 btrfs_scrub_continue(root
);
2182 cleanup_transaction
:
2183 btrfs_trans_release_metadata(trans
, root
);
2184 btrfs_trans_release_chunk_metadata(trans
);
2185 trans
->block_rsv
= NULL
;
2186 btrfs_warn(root
->fs_info
, "Skipping commit of aborted transaction.");
2187 if (current
->journal_info
== trans
)
2188 current
->journal_info
= NULL
;
2189 cleanup_transaction(trans
, root
, ret
);
2195 * return < 0 if error
2196 * 0 if there are no more dead_roots at the time of call
2197 * 1 there are more to be processed, call me again
2199 * The return value indicates there are certainly more snapshots to delete, but
2200 * if there comes a new one during processing, it may return 0. We don't mind,
2201 * because btrfs_commit_super will poke cleaner thread and it will process it a
2202 * few seconds later.
2204 int btrfs_clean_one_deleted_snapshot(struct btrfs_root
*root
)
2207 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
2209 spin_lock(&fs_info
->trans_lock
);
2210 if (list_empty(&fs_info
->dead_roots
)) {
2211 spin_unlock(&fs_info
->trans_lock
);
2214 root
= list_first_entry(&fs_info
->dead_roots
,
2215 struct btrfs_root
, root_list
);
2216 list_del_init(&root
->root_list
);
2217 spin_unlock(&fs_info
->trans_lock
);
2219 pr_debug("BTRFS: cleaner removing %llu\n", root
->objectid
);
2221 btrfs_kill_all_delayed_nodes(root
);
2223 if (btrfs_header_backref_rev(root
->node
) <
2224 BTRFS_MIXED_BACKREF_REV
)
2225 ret
= btrfs_drop_snapshot(root
, NULL
, 0, 0);
2227 ret
= btrfs_drop_snapshot(root
, NULL
, 1, 0);
2229 return (ret
< 0) ? 0 : 1;
2232 void btrfs_apply_pending_changes(struct btrfs_fs_info
*fs_info
)
2237 prev
= xchg(&fs_info
->pending_changes
, 0);
2241 bit
= 1 << BTRFS_PENDING_SET_INODE_MAP_CACHE
;
2243 btrfs_set_opt(fs_info
->mount_opt
, INODE_MAP_CACHE
);
2246 bit
= 1 << BTRFS_PENDING_CLEAR_INODE_MAP_CACHE
;
2248 btrfs_clear_opt(fs_info
->mount_opt
, INODE_MAP_CACHE
);
2251 bit
= 1 << BTRFS_PENDING_COMMIT
;
2253 btrfs_debug(fs_info
, "pending commit done");
2258 "unknown pending changes left 0x%lx, ignoring", prev
);