irqchip/zevio: Use irq_data_get_chip_type() helper
[linux/fpc-iii.git] / fs / xfs / xfs_file.c
blobf5392ab2def1ab806aa075bcc19643cbac6ca8f9
1 /*
2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_shared.h"
21 #include "xfs_format.h"
22 #include "xfs_log_format.h"
23 #include "xfs_trans_resv.h"
24 #include "xfs_mount.h"
25 #include "xfs_da_format.h"
26 #include "xfs_da_btree.h"
27 #include "xfs_inode.h"
28 #include "xfs_trans.h"
29 #include "xfs_inode_item.h"
30 #include "xfs_bmap.h"
31 #include "xfs_bmap_util.h"
32 #include "xfs_error.h"
33 #include "xfs_dir2.h"
34 #include "xfs_dir2_priv.h"
35 #include "xfs_ioctl.h"
36 #include "xfs_trace.h"
37 #include "xfs_log.h"
38 #include "xfs_icache.h"
39 #include "xfs_pnfs.h"
41 #include <linux/dcache.h>
42 #include <linux/falloc.h>
43 #include <linux/pagevec.h>
44 #include <linux/backing-dev.h>
46 static const struct vm_operations_struct xfs_file_vm_ops;
49 * Locking primitives for read and write IO paths to ensure we consistently use
50 * and order the inode->i_mutex, ip->i_lock and ip->i_iolock.
52 static inline void
53 xfs_rw_ilock(
54 struct xfs_inode *ip,
55 int type)
57 if (type & XFS_IOLOCK_EXCL)
58 mutex_lock(&VFS_I(ip)->i_mutex);
59 xfs_ilock(ip, type);
62 static inline void
63 xfs_rw_iunlock(
64 struct xfs_inode *ip,
65 int type)
67 xfs_iunlock(ip, type);
68 if (type & XFS_IOLOCK_EXCL)
69 mutex_unlock(&VFS_I(ip)->i_mutex);
72 static inline void
73 xfs_rw_ilock_demote(
74 struct xfs_inode *ip,
75 int type)
77 xfs_ilock_demote(ip, type);
78 if (type & XFS_IOLOCK_EXCL)
79 mutex_unlock(&VFS_I(ip)->i_mutex);
83 * xfs_iozero clears the specified range supplied via the page cache (except in
84 * the DAX case). Writes through the page cache will allocate blocks over holes,
85 * though the callers usually map the holes first and avoid them. If a block is
86 * not completely zeroed, then it will be read from disk before being partially
87 * zeroed.
89 * In the DAX case, we can just directly write to the underlying pages. This
90 * will not allocate blocks, but will avoid holes and unwritten extents and so
91 * not do unnecessary work.
93 int
94 xfs_iozero(
95 struct xfs_inode *ip, /* inode */
96 loff_t pos, /* offset in file */
97 size_t count) /* size of data to zero */
99 struct page *page;
100 struct address_space *mapping;
101 int status = 0;
104 mapping = VFS_I(ip)->i_mapping;
105 do {
106 unsigned offset, bytes;
107 void *fsdata;
109 offset = (pos & (PAGE_CACHE_SIZE -1)); /* Within page */
110 bytes = PAGE_CACHE_SIZE - offset;
111 if (bytes > count)
112 bytes = count;
114 if (IS_DAX(VFS_I(ip))) {
115 status = dax_zero_page_range(VFS_I(ip), pos, bytes,
116 xfs_get_blocks_direct);
117 if (status)
118 break;
119 } else {
120 status = pagecache_write_begin(NULL, mapping, pos, bytes,
121 AOP_FLAG_UNINTERRUPTIBLE,
122 &page, &fsdata);
123 if (status)
124 break;
126 zero_user(page, offset, bytes);
128 status = pagecache_write_end(NULL, mapping, pos, bytes,
129 bytes, page, fsdata);
130 WARN_ON(status <= 0); /* can't return less than zero! */
131 status = 0;
133 pos += bytes;
134 count -= bytes;
135 } while (count);
137 return status;
141 xfs_update_prealloc_flags(
142 struct xfs_inode *ip,
143 enum xfs_prealloc_flags flags)
145 struct xfs_trans *tp;
146 int error;
148 tp = xfs_trans_alloc(ip->i_mount, XFS_TRANS_WRITEID);
149 error = xfs_trans_reserve(tp, &M_RES(ip->i_mount)->tr_writeid, 0, 0);
150 if (error) {
151 xfs_trans_cancel(tp);
152 return error;
155 xfs_ilock(ip, XFS_ILOCK_EXCL);
156 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
158 if (!(flags & XFS_PREALLOC_INVISIBLE)) {
159 ip->i_d.di_mode &= ~S_ISUID;
160 if (ip->i_d.di_mode & S_IXGRP)
161 ip->i_d.di_mode &= ~S_ISGID;
162 xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
165 if (flags & XFS_PREALLOC_SET)
166 ip->i_d.di_flags |= XFS_DIFLAG_PREALLOC;
167 if (flags & XFS_PREALLOC_CLEAR)
168 ip->i_d.di_flags &= ~XFS_DIFLAG_PREALLOC;
170 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
171 if (flags & XFS_PREALLOC_SYNC)
172 xfs_trans_set_sync(tp);
173 return xfs_trans_commit(tp);
177 * Fsync operations on directories are much simpler than on regular files,
178 * as there is no file data to flush, and thus also no need for explicit
179 * cache flush operations, and there are no non-transaction metadata updates
180 * on directories either.
182 STATIC int
183 xfs_dir_fsync(
184 struct file *file,
185 loff_t start,
186 loff_t end,
187 int datasync)
189 struct xfs_inode *ip = XFS_I(file->f_mapping->host);
190 struct xfs_mount *mp = ip->i_mount;
191 xfs_lsn_t lsn = 0;
193 trace_xfs_dir_fsync(ip);
195 xfs_ilock(ip, XFS_ILOCK_SHARED);
196 if (xfs_ipincount(ip))
197 lsn = ip->i_itemp->ili_last_lsn;
198 xfs_iunlock(ip, XFS_ILOCK_SHARED);
200 if (!lsn)
201 return 0;
202 return _xfs_log_force_lsn(mp, lsn, XFS_LOG_SYNC, NULL);
205 STATIC int
206 xfs_file_fsync(
207 struct file *file,
208 loff_t start,
209 loff_t end,
210 int datasync)
212 struct inode *inode = file->f_mapping->host;
213 struct xfs_inode *ip = XFS_I(inode);
214 struct xfs_mount *mp = ip->i_mount;
215 int error = 0;
216 int log_flushed = 0;
217 xfs_lsn_t lsn = 0;
219 trace_xfs_file_fsync(ip);
221 error = filemap_write_and_wait_range(inode->i_mapping, start, end);
222 if (error)
223 return error;
225 if (XFS_FORCED_SHUTDOWN(mp))
226 return -EIO;
228 xfs_iflags_clear(ip, XFS_ITRUNCATED);
230 if (mp->m_flags & XFS_MOUNT_BARRIER) {
232 * If we have an RT and/or log subvolume we need to make sure
233 * to flush the write cache the device used for file data
234 * first. This is to ensure newly written file data make
235 * it to disk before logging the new inode size in case of
236 * an extending write.
238 if (XFS_IS_REALTIME_INODE(ip))
239 xfs_blkdev_issue_flush(mp->m_rtdev_targp);
240 else if (mp->m_logdev_targp != mp->m_ddev_targp)
241 xfs_blkdev_issue_flush(mp->m_ddev_targp);
245 * All metadata updates are logged, which means that we just have to
246 * flush the log up to the latest LSN that touched the inode. If we have
247 * concurrent fsync/fdatasync() calls, we need them to all block on the
248 * log force before we clear the ili_fsync_fields field. This ensures
249 * that we don't get a racing sync operation that does not wait for the
250 * metadata to hit the journal before returning. If we race with
251 * clearing the ili_fsync_fields, then all that will happen is the log
252 * force will do nothing as the lsn will already be on disk. We can't
253 * race with setting ili_fsync_fields because that is done under
254 * XFS_ILOCK_EXCL, and that can't happen because we hold the lock shared
255 * until after the ili_fsync_fields is cleared.
257 xfs_ilock(ip, XFS_ILOCK_SHARED);
258 if (xfs_ipincount(ip)) {
259 if (!datasync ||
260 (ip->i_itemp->ili_fsync_fields & ~XFS_ILOG_TIMESTAMP))
261 lsn = ip->i_itemp->ili_last_lsn;
264 if (lsn) {
265 error = _xfs_log_force_lsn(mp, lsn, XFS_LOG_SYNC, &log_flushed);
266 ip->i_itemp->ili_fsync_fields = 0;
268 xfs_iunlock(ip, XFS_ILOCK_SHARED);
271 * If we only have a single device, and the log force about was
272 * a no-op we might have to flush the data device cache here.
273 * This can only happen for fdatasync/O_DSYNC if we were overwriting
274 * an already allocated file and thus do not have any metadata to
275 * commit.
277 if ((mp->m_flags & XFS_MOUNT_BARRIER) &&
278 mp->m_logdev_targp == mp->m_ddev_targp &&
279 !XFS_IS_REALTIME_INODE(ip) &&
280 !log_flushed)
281 xfs_blkdev_issue_flush(mp->m_ddev_targp);
283 return error;
286 STATIC ssize_t
287 xfs_file_read_iter(
288 struct kiocb *iocb,
289 struct iov_iter *to)
291 struct file *file = iocb->ki_filp;
292 struct inode *inode = file->f_mapping->host;
293 struct xfs_inode *ip = XFS_I(inode);
294 struct xfs_mount *mp = ip->i_mount;
295 size_t size = iov_iter_count(to);
296 ssize_t ret = 0;
297 int ioflags = 0;
298 xfs_fsize_t n;
299 loff_t pos = iocb->ki_pos;
301 XFS_STATS_INC(mp, xs_read_calls);
303 if (unlikely(iocb->ki_flags & IOCB_DIRECT))
304 ioflags |= XFS_IO_ISDIRECT;
305 if (file->f_mode & FMODE_NOCMTIME)
306 ioflags |= XFS_IO_INVIS;
308 if ((ioflags & XFS_IO_ISDIRECT) && !IS_DAX(inode)) {
309 xfs_buftarg_t *target =
310 XFS_IS_REALTIME_INODE(ip) ?
311 mp->m_rtdev_targp : mp->m_ddev_targp;
312 /* DIO must be aligned to device logical sector size */
313 if ((pos | size) & target->bt_logical_sectormask) {
314 if (pos == i_size_read(inode))
315 return 0;
316 return -EINVAL;
320 n = mp->m_super->s_maxbytes - pos;
321 if (n <= 0 || size == 0)
322 return 0;
324 if (n < size)
325 size = n;
327 if (XFS_FORCED_SHUTDOWN(mp))
328 return -EIO;
331 * Locking is a bit tricky here. If we take an exclusive lock for direct
332 * IO, we effectively serialise all new concurrent read IO to this file
333 * and block it behind IO that is currently in progress because IO in
334 * progress holds the IO lock shared. We only need to hold the lock
335 * exclusive to blow away the page cache, so only take lock exclusively
336 * if the page cache needs invalidation. This allows the normal direct
337 * IO case of no page cache pages to proceeed concurrently without
338 * serialisation.
340 xfs_rw_ilock(ip, XFS_IOLOCK_SHARED);
341 if ((ioflags & XFS_IO_ISDIRECT) && inode->i_mapping->nrpages) {
342 xfs_rw_iunlock(ip, XFS_IOLOCK_SHARED);
343 xfs_rw_ilock(ip, XFS_IOLOCK_EXCL);
346 * The generic dio code only flushes the range of the particular
347 * I/O. Because we take an exclusive lock here, this whole
348 * sequence is considerably more expensive for us. This has a
349 * noticeable performance impact for any file with cached pages,
350 * even when outside of the range of the particular I/O.
352 * Hence, amortize the cost of the lock against a full file
353 * flush and reduce the chances of repeated iolock cycles going
354 * forward.
356 if (inode->i_mapping->nrpages) {
357 ret = filemap_write_and_wait(VFS_I(ip)->i_mapping);
358 if (ret) {
359 xfs_rw_iunlock(ip, XFS_IOLOCK_EXCL);
360 return ret;
364 * Invalidate whole pages. This can return an error if
365 * we fail to invalidate a page, but this should never
366 * happen on XFS. Warn if it does fail.
368 ret = invalidate_inode_pages2(VFS_I(ip)->i_mapping);
369 WARN_ON_ONCE(ret);
370 ret = 0;
372 xfs_rw_ilock_demote(ip, XFS_IOLOCK_EXCL);
375 trace_xfs_file_read(ip, size, pos, ioflags);
377 ret = generic_file_read_iter(iocb, to);
378 if (ret > 0)
379 XFS_STATS_ADD(mp, xs_read_bytes, ret);
381 xfs_rw_iunlock(ip, XFS_IOLOCK_SHARED);
382 return ret;
385 STATIC ssize_t
386 xfs_file_splice_read(
387 struct file *infilp,
388 loff_t *ppos,
389 struct pipe_inode_info *pipe,
390 size_t count,
391 unsigned int flags)
393 struct xfs_inode *ip = XFS_I(infilp->f_mapping->host);
394 int ioflags = 0;
395 ssize_t ret;
397 XFS_STATS_INC(ip->i_mount, xs_read_calls);
399 if (infilp->f_mode & FMODE_NOCMTIME)
400 ioflags |= XFS_IO_INVIS;
402 if (XFS_FORCED_SHUTDOWN(ip->i_mount))
403 return -EIO;
405 xfs_rw_ilock(ip, XFS_IOLOCK_SHARED);
407 trace_xfs_file_splice_read(ip, count, *ppos, ioflags);
409 /* for dax, we need to avoid the page cache */
410 if (IS_DAX(VFS_I(ip)))
411 ret = default_file_splice_read(infilp, ppos, pipe, count, flags);
412 else
413 ret = generic_file_splice_read(infilp, ppos, pipe, count, flags);
414 if (ret > 0)
415 XFS_STATS_ADD(ip->i_mount, xs_read_bytes, ret);
417 xfs_rw_iunlock(ip, XFS_IOLOCK_SHARED);
418 return ret;
422 * This routine is called to handle zeroing any space in the last block of the
423 * file that is beyond the EOF. We do this since the size is being increased
424 * without writing anything to that block and we don't want to read the
425 * garbage on the disk.
427 STATIC int /* error (positive) */
428 xfs_zero_last_block(
429 struct xfs_inode *ip,
430 xfs_fsize_t offset,
431 xfs_fsize_t isize,
432 bool *did_zeroing)
434 struct xfs_mount *mp = ip->i_mount;
435 xfs_fileoff_t last_fsb = XFS_B_TO_FSBT(mp, isize);
436 int zero_offset = XFS_B_FSB_OFFSET(mp, isize);
437 int zero_len;
438 int nimaps = 1;
439 int error = 0;
440 struct xfs_bmbt_irec imap;
442 xfs_ilock(ip, XFS_ILOCK_EXCL);
443 error = xfs_bmapi_read(ip, last_fsb, 1, &imap, &nimaps, 0);
444 xfs_iunlock(ip, XFS_ILOCK_EXCL);
445 if (error)
446 return error;
448 ASSERT(nimaps > 0);
451 * If the block underlying isize is just a hole, then there
452 * is nothing to zero.
454 if (imap.br_startblock == HOLESTARTBLOCK)
455 return 0;
457 zero_len = mp->m_sb.sb_blocksize - zero_offset;
458 if (isize + zero_len > offset)
459 zero_len = offset - isize;
460 *did_zeroing = true;
461 return xfs_iozero(ip, isize, zero_len);
465 * Zero any on disk space between the current EOF and the new, larger EOF.
467 * This handles the normal case of zeroing the remainder of the last block in
468 * the file and the unusual case of zeroing blocks out beyond the size of the
469 * file. This second case only happens with fixed size extents and when the
470 * system crashes before the inode size was updated but after blocks were
471 * allocated.
473 * Expects the iolock to be held exclusive, and will take the ilock internally.
475 int /* error (positive) */
476 xfs_zero_eof(
477 struct xfs_inode *ip,
478 xfs_off_t offset, /* starting I/O offset */
479 xfs_fsize_t isize, /* current inode size */
480 bool *did_zeroing)
482 struct xfs_mount *mp = ip->i_mount;
483 xfs_fileoff_t start_zero_fsb;
484 xfs_fileoff_t end_zero_fsb;
485 xfs_fileoff_t zero_count_fsb;
486 xfs_fileoff_t last_fsb;
487 xfs_fileoff_t zero_off;
488 xfs_fsize_t zero_len;
489 int nimaps;
490 int error = 0;
491 struct xfs_bmbt_irec imap;
493 ASSERT(xfs_isilocked(ip, XFS_IOLOCK_EXCL));
494 ASSERT(offset > isize);
496 trace_xfs_zero_eof(ip, isize, offset - isize);
499 * First handle zeroing the block on which isize resides.
501 * We only zero a part of that block so it is handled specially.
503 if (XFS_B_FSB_OFFSET(mp, isize) != 0) {
504 error = xfs_zero_last_block(ip, offset, isize, did_zeroing);
505 if (error)
506 return error;
510 * Calculate the range between the new size and the old where blocks
511 * needing to be zeroed may exist.
513 * To get the block where the last byte in the file currently resides,
514 * we need to subtract one from the size and truncate back to a block
515 * boundary. We subtract 1 in case the size is exactly on a block
516 * boundary.
518 last_fsb = isize ? XFS_B_TO_FSBT(mp, isize - 1) : (xfs_fileoff_t)-1;
519 start_zero_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)isize);
520 end_zero_fsb = XFS_B_TO_FSBT(mp, offset - 1);
521 ASSERT((xfs_sfiloff_t)last_fsb < (xfs_sfiloff_t)start_zero_fsb);
522 if (last_fsb == end_zero_fsb) {
524 * The size was only incremented on its last block.
525 * We took care of that above, so just return.
527 return 0;
530 ASSERT(start_zero_fsb <= end_zero_fsb);
531 while (start_zero_fsb <= end_zero_fsb) {
532 nimaps = 1;
533 zero_count_fsb = end_zero_fsb - start_zero_fsb + 1;
535 xfs_ilock(ip, XFS_ILOCK_EXCL);
536 error = xfs_bmapi_read(ip, start_zero_fsb, zero_count_fsb,
537 &imap, &nimaps, 0);
538 xfs_iunlock(ip, XFS_ILOCK_EXCL);
539 if (error)
540 return error;
542 ASSERT(nimaps > 0);
544 if (imap.br_state == XFS_EXT_UNWRITTEN ||
545 imap.br_startblock == HOLESTARTBLOCK) {
546 start_zero_fsb = imap.br_startoff + imap.br_blockcount;
547 ASSERT(start_zero_fsb <= (end_zero_fsb + 1));
548 continue;
552 * There are blocks we need to zero.
554 zero_off = XFS_FSB_TO_B(mp, start_zero_fsb);
555 zero_len = XFS_FSB_TO_B(mp, imap.br_blockcount);
557 if ((zero_off + zero_len) > offset)
558 zero_len = offset - zero_off;
560 error = xfs_iozero(ip, zero_off, zero_len);
561 if (error)
562 return error;
564 *did_zeroing = true;
565 start_zero_fsb = imap.br_startoff + imap.br_blockcount;
566 ASSERT(start_zero_fsb <= (end_zero_fsb + 1));
569 return 0;
573 * Common pre-write limit and setup checks.
575 * Called with the iolocked held either shared and exclusive according to
576 * @iolock, and returns with it held. Might upgrade the iolock to exclusive
577 * if called for a direct write beyond i_size.
579 STATIC ssize_t
580 xfs_file_aio_write_checks(
581 struct kiocb *iocb,
582 struct iov_iter *from,
583 int *iolock)
585 struct file *file = iocb->ki_filp;
586 struct inode *inode = file->f_mapping->host;
587 struct xfs_inode *ip = XFS_I(inode);
588 ssize_t error = 0;
589 size_t count = iov_iter_count(from);
590 bool drained_dio = false;
592 restart:
593 error = generic_write_checks(iocb, from);
594 if (error <= 0)
595 return error;
597 error = xfs_break_layouts(inode, iolock, true);
598 if (error)
599 return error;
601 /* For changing security info in file_remove_privs() we need i_mutex */
602 if (*iolock == XFS_IOLOCK_SHARED && !IS_NOSEC(inode)) {
603 xfs_rw_iunlock(ip, *iolock);
604 *iolock = XFS_IOLOCK_EXCL;
605 xfs_rw_ilock(ip, *iolock);
606 goto restart;
609 * If the offset is beyond the size of the file, we need to zero any
610 * blocks that fall between the existing EOF and the start of this
611 * write. If zeroing is needed and we are currently holding the
612 * iolock shared, we need to update it to exclusive which implies
613 * having to redo all checks before.
615 * We need to serialise against EOF updates that occur in IO
616 * completions here. We want to make sure that nobody is changing the
617 * size while we do this check until we have placed an IO barrier (i.e.
618 * hold the XFS_IOLOCK_EXCL) that prevents new IO from being dispatched.
619 * The spinlock effectively forms a memory barrier once we have the
620 * XFS_IOLOCK_EXCL so we are guaranteed to see the latest EOF value
621 * and hence be able to correctly determine if we need to run zeroing.
623 spin_lock(&ip->i_flags_lock);
624 if (iocb->ki_pos > i_size_read(inode)) {
625 bool zero = false;
627 spin_unlock(&ip->i_flags_lock);
628 if (!drained_dio) {
629 if (*iolock == XFS_IOLOCK_SHARED) {
630 xfs_rw_iunlock(ip, *iolock);
631 *iolock = XFS_IOLOCK_EXCL;
632 xfs_rw_ilock(ip, *iolock);
633 iov_iter_reexpand(from, count);
636 * We now have an IO submission barrier in place, but
637 * AIO can do EOF updates during IO completion and hence
638 * we now need to wait for all of them to drain. Non-AIO
639 * DIO will have drained before we are given the
640 * XFS_IOLOCK_EXCL, and so for most cases this wait is a
641 * no-op.
643 inode_dio_wait(inode);
644 drained_dio = true;
645 goto restart;
647 error = xfs_zero_eof(ip, iocb->ki_pos, i_size_read(inode), &zero);
648 if (error)
649 return error;
650 } else
651 spin_unlock(&ip->i_flags_lock);
654 * Updating the timestamps will grab the ilock again from
655 * xfs_fs_dirty_inode, so we have to call it after dropping the
656 * lock above. Eventually we should look into a way to avoid
657 * the pointless lock roundtrip.
659 if (likely(!(file->f_mode & FMODE_NOCMTIME))) {
660 error = file_update_time(file);
661 if (error)
662 return error;
666 * If we're writing the file then make sure to clear the setuid and
667 * setgid bits if the process is not being run by root. This keeps
668 * people from modifying setuid and setgid binaries.
670 if (!IS_NOSEC(inode))
671 return file_remove_privs(file);
672 return 0;
676 * xfs_file_dio_aio_write - handle direct IO writes
678 * Lock the inode appropriately to prepare for and issue a direct IO write.
679 * By separating it from the buffered write path we remove all the tricky to
680 * follow locking changes and looping.
682 * If there are cached pages or we're extending the file, we need IOLOCK_EXCL
683 * until we're sure the bytes at the new EOF have been zeroed and/or the cached
684 * pages are flushed out.
686 * In most cases the direct IO writes will be done holding IOLOCK_SHARED
687 * allowing them to be done in parallel with reads and other direct IO writes.
688 * However, if the IO is not aligned to filesystem blocks, the direct IO layer
689 * needs to do sub-block zeroing and that requires serialisation against other
690 * direct IOs to the same block. In this case we need to serialise the
691 * submission of the unaligned IOs so that we don't get racing block zeroing in
692 * the dio layer. To avoid the problem with aio, we also need to wait for
693 * outstanding IOs to complete so that unwritten extent conversion is completed
694 * before we try to map the overlapping block. This is currently implemented by
695 * hitting it with a big hammer (i.e. inode_dio_wait()).
697 * Returns with locks held indicated by @iolock and errors indicated by
698 * negative return values.
700 STATIC ssize_t
701 xfs_file_dio_aio_write(
702 struct kiocb *iocb,
703 struct iov_iter *from)
705 struct file *file = iocb->ki_filp;
706 struct address_space *mapping = file->f_mapping;
707 struct inode *inode = mapping->host;
708 struct xfs_inode *ip = XFS_I(inode);
709 struct xfs_mount *mp = ip->i_mount;
710 ssize_t ret = 0;
711 int unaligned_io = 0;
712 int iolock;
713 size_t count = iov_iter_count(from);
714 loff_t pos = iocb->ki_pos;
715 loff_t end;
716 struct iov_iter data;
717 struct xfs_buftarg *target = XFS_IS_REALTIME_INODE(ip) ?
718 mp->m_rtdev_targp : mp->m_ddev_targp;
720 /* DIO must be aligned to device logical sector size */
721 if (!IS_DAX(inode) && ((pos | count) & target->bt_logical_sectormask))
722 return -EINVAL;
724 /* "unaligned" here means not aligned to a filesystem block */
725 if ((pos & mp->m_blockmask) || ((pos + count) & mp->m_blockmask))
726 unaligned_io = 1;
729 * We don't need to take an exclusive lock unless there page cache needs
730 * to be invalidated or unaligned IO is being executed. We don't need to
731 * consider the EOF extension case here because
732 * xfs_file_aio_write_checks() will relock the inode as necessary for
733 * EOF zeroing cases and fill out the new inode size as appropriate.
735 if (unaligned_io || mapping->nrpages)
736 iolock = XFS_IOLOCK_EXCL;
737 else
738 iolock = XFS_IOLOCK_SHARED;
739 xfs_rw_ilock(ip, iolock);
742 * Recheck if there are cached pages that need invalidate after we got
743 * the iolock to protect against other threads adding new pages while
744 * we were waiting for the iolock.
746 if (mapping->nrpages && iolock == XFS_IOLOCK_SHARED) {
747 xfs_rw_iunlock(ip, iolock);
748 iolock = XFS_IOLOCK_EXCL;
749 xfs_rw_ilock(ip, iolock);
752 ret = xfs_file_aio_write_checks(iocb, from, &iolock);
753 if (ret)
754 goto out;
755 count = iov_iter_count(from);
756 pos = iocb->ki_pos;
757 end = pos + count - 1;
760 * See xfs_file_read_iter() for why we do a full-file flush here.
762 if (mapping->nrpages) {
763 ret = filemap_write_and_wait(VFS_I(ip)->i_mapping);
764 if (ret)
765 goto out;
767 * Invalidate whole pages. This can return an error if we fail
768 * to invalidate a page, but this should never happen on XFS.
769 * Warn if it does fail.
771 ret = invalidate_inode_pages2(VFS_I(ip)->i_mapping);
772 WARN_ON_ONCE(ret);
773 ret = 0;
777 * If we are doing unaligned IO, wait for all other IO to drain,
778 * otherwise demote the lock if we had to flush cached pages
780 if (unaligned_io)
781 inode_dio_wait(inode);
782 else if (iolock == XFS_IOLOCK_EXCL) {
783 xfs_rw_ilock_demote(ip, XFS_IOLOCK_EXCL);
784 iolock = XFS_IOLOCK_SHARED;
787 trace_xfs_file_direct_write(ip, count, iocb->ki_pos, 0);
789 data = *from;
790 ret = mapping->a_ops->direct_IO(iocb, &data, pos);
792 /* see generic_file_direct_write() for why this is necessary */
793 if (mapping->nrpages) {
794 invalidate_inode_pages2_range(mapping,
795 pos >> PAGE_CACHE_SHIFT,
796 end >> PAGE_CACHE_SHIFT);
799 if (ret > 0) {
800 pos += ret;
801 iov_iter_advance(from, ret);
802 iocb->ki_pos = pos;
804 out:
805 xfs_rw_iunlock(ip, iolock);
808 * No fallback to buffered IO on errors for XFS. DAX can result in
809 * partial writes, but direct IO will either complete fully or fail.
811 ASSERT(ret < 0 || ret == count || IS_DAX(VFS_I(ip)));
812 return ret;
815 STATIC ssize_t
816 xfs_file_buffered_aio_write(
817 struct kiocb *iocb,
818 struct iov_iter *from)
820 struct file *file = iocb->ki_filp;
821 struct address_space *mapping = file->f_mapping;
822 struct inode *inode = mapping->host;
823 struct xfs_inode *ip = XFS_I(inode);
824 ssize_t ret;
825 int enospc = 0;
826 int iolock = XFS_IOLOCK_EXCL;
828 xfs_rw_ilock(ip, iolock);
830 ret = xfs_file_aio_write_checks(iocb, from, &iolock);
831 if (ret)
832 goto out;
834 /* We can write back this queue in page reclaim */
835 current->backing_dev_info = inode_to_bdi(inode);
837 write_retry:
838 trace_xfs_file_buffered_write(ip, iov_iter_count(from),
839 iocb->ki_pos, 0);
840 ret = generic_perform_write(file, from, iocb->ki_pos);
841 if (likely(ret >= 0))
842 iocb->ki_pos += ret;
845 * If we hit a space limit, try to free up some lingering preallocated
846 * space before returning an error. In the case of ENOSPC, first try to
847 * write back all dirty inodes to free up some of the excess reserved
848 * metadata space. This reduces the chances that the eofblocks scan
849 * waits on dirty mappings. Since xfs_flush_inodes() is serialized, this
850 * also behaves as a filter to prevent too many eofblocks scans from
851 * running at the same time.
853 if (ret == -EDQUOT && !enospc) {
854 enospc = xfs_inode_free_quota_eofblocks(ip);
855 if (enospc)
856 goto write_retry;
857 } else if (ret == -ENOSPC && !enospc) {
858 struct xfs_eofblocks eofb = {0};
860 enospc = 1;
861 xfs_flush_inodes(ip->i_mount);
862 eofb.eof_scan_owner = ip->i_ino; /* for locking */
863 eofb.eof_flags = XFS_EOF_FLAGS_SYNC;
864 xfs_icache_free_eofblocks(ip->i_mount, &eofb);
865 goto write_retry;
868 current->backing_dev_info = NULL;
869 out:
870 xfs_rw_iunlock(ip, iolock);
871 return ret;
874 STATIC ssize_t
875 xfs_file_write_iter(
876 struct kiocb *iocb,
877 struct iov_iter *from)
879 struct file *file = iocb->ki_filp;
880 struct address_space *mapping = file->f_mapping;
881 struct inode *inode = mapping->host;
882 struct xfs_inode *ip = XFS_I(inode);
883 ssize_t ret;
884 size_t ocount = iov_iter_count(from);
886 XFS_STATS_INC(ip->i_mount, xs_write_calls);
888 if (ocount == 0)
889 return 0;
891 if (XFS_FORCED_SHUTDOWN(ip->i_mount))
892 return -EIO;
894 if ((iocb->ki_flags & IOCB_DIRECT) || IS_DAX(inode))
895 ret = xfs_file_dio_aio_write(iocb, from);
896 else
897 ret = xfs_file_buffered_aio_write(iocb, from);
899 if (ret > 0) {
900 ssize_t err;
902 XFS_STATS_ADD(ip->i_mount, xs_write_bytes, ret);
904 /* Handle various SYNC-type writes */
905 err = generic_write_sync(file, iocb->ki_pos - ret, ret);
906 if (err < 0)
907 ret = err;
909 return ret;
912 #define XFS_FALLOC_FL_SUPPORTED \
913 (FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE | \
914 FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_ZERO_RANGE | \
915 FALLOC_FL_INSERT_RANGE)
917 STATIC long
918 xfs_file_fallocate(
919 struct file *file,
920 int mode,
921 loff_t offset,
922 loff_t len)
924 struct inode *inode = file_inode(file);
925 struct xfs_inode *ip = XFS_I(inode);
926 long error;
927 enum xfs_prealloc_flags flags = 0;
928 uint iolock = XFS_IOLOCK_EXCL;
929 loff_t new_size = 0;
930 bool do_file_insert = 0;
932 if (!S_ISREG(inode->i_mode))
933 return -EINVAL;
934 if (mode & ~XFS_FALLOC_FL_SUPPORTED)
935 return -EOPNOTSUPP;
937 xfs_ilock(ip, iolock);
938 error = xfs_break_layouts(inode, &iolock, false);
939 if (error)
940 goto out_unlock;
942 xfs_ilock(ip, XFS_MMAPLOCK_EXCL);
943 iolock |= XFS_MMAPLOCK_EXCL;
945 if (mode & FALLOC_FL_PUNCH_HOLE) {
946 error = xfs_free_file_space(ip, offset, len);
947 if (error)
948 goto out_unlock;
949 } else if (mode & FALLOC_FL_COLLAPSE_RANGE) {
950 unsigned blksize_mask = (1 << inode->i_blkbits) - 1;
952 if (offset & blksize_mask || len & blksize_mask) {
953 error = -EINVAL;
954 goto out_unlock;
958 * There is no need to overlap collapse range with EOF,
959 * in which case it is effectively a truncate operation
961 if (offset + len >= i_size_read(inode)) {
962 error = -EINVAL;
963 goto out_unlock;
966 new_size = i_size_read(inode) - len;
968 error = xfs_collapse_file_space(ip, offset, len);
969 if (error)
970 goto out_unlock;
971 } else if (mode & FALLOC_FL_INSERT_RANGE) {
972 unsigned blksize_mask = (1 << inode->i_blkbits) - 1;
974 new_size = i_size_read(inode) + len;
975 if (offset & blksize_mask || len & blksize_mask) {
976 error = -EINVAL;
977 goto out_unlock;
980 /* check the new inode size does not wrap through zero */
981 if (new_size > inode->i_sb->s_maxbytes) {
982 error = -EFBIG;
983 goto out_unlock;
986 /* Offset should be less than i_size */
987 if (offset >= i_size_read(inode)) {
988 error = -EINVAL;
989 goto out_unlock;
991 do_file_insert = 1;
992 } else {
993 flags |= XFS_PREALLOC_SET;
995 if (!(mode & FALLOC_FL_KEEP_SIZE) &&
996 offset + len > i_size_read(inode)) {
997 new_size = offset + len;
998 error = inode_newsize_ok(inode, new_size);
999 if (error)
1000 goto out_unlock;
1003 if (mode & FALLOC_FL_ZERO_RANGE)
1004 error = xfs_zero_file_space(ip, offset, len);
1005 else
1006 error = xfs_alloc_file_space(ip, offset, len,
1007 XFS_BMAPI_PREALLOC);
1008 if (error)
1009 goto out_unlock;
1012 if (file->f_flags & O_DSYNC)
1013 flags |= XFS_PREALLOC_SYNC;
1015 error = xfs_update_prealloc_flags(ip, flags);
1016 if (error)
1017 goto out_unlock;
1019 /* Change file size if needed */
1020 if (new_size) {
1021 struct iattr iattr;
1023 iattr.ia_valid = ATTR_SIZE;
1024 iattr.ia_size = new_size;
1025 error = xfs_setattr_size(ip, &iattr);
1026 if (error)
1027 goto out_unlock;
1031 * Perform hole insertion now that the file size has been
1032 * updated so that if we crash during the operation we don't
1033 * leave shifted extents past EOF and hence losing access to
1034 * the data that is contained within them.
1036 if (do_file_insert)
1037 error = xfs_insert_file_space(ip, offset, len);
1039 out_unlock:
1040 xfs_iunlock(ip, iolock);
1041 return error;
1045 STATIC int
1046 xfs_file_open(
1047 struct inode *inode,
1048 struct file *file)
1050 if (!(file->f_flags & O_LARGEFILE) && i_size_read(inode) > MAX_NON_LFS)
1051 return -EFBIG;
1052 if (XFS_FORCED_SHUTDOWN(XFS_M(inode->i_sb)))
1053 return -EIO;
1054 return 0;
1057 STATIC int
1058 xfs_dir_open(
1059 struct inode *inode,
1060 struct file *file)
1062 struct xfs_inode *ip = XFS_I(inode);
1063 int mode;
1064 int error;
1066 error = xfs_file_open(inode, file);
1067 if (error)
1068 return error;
1071 * If there are any blocks, read-ahead block 0 as we're almost
1072 * certain to have the next operation be a read there.
1074 mode = xfs_ilock_data_map_shared(ip);
1075 if (ip->i_d.di_nextents > 0)
1076 xfs_dir3_data_readahead(ip, 0, -1);
1077 xfs_iunlock(ip, mode);
1078 return 0;
1081 STATIC int
1082 xfs_file_release(
1083 struct inode *inode,
1084 struct file *filp)
1086 return xfs_release(XFS_I(inode));
1089 STATIC int
1090 xfs_file_readdir(
1091 struct file *file,
1092 struct dir_context *ctx)
1094 struct inode *inode = file_inode(file);
1095 xfs_inode_t *ip = XFS_I(inode);
1096 size_t bufsize;
1099 * The Linux API doesn't pass down the total size of the buffer
1100 * we read into down to the filesystem. With the filldir concept
1101 * it's not needed for correct information, but the XFS dir2 leaf
1102 * code wants an estimate of the buffer size to calculate it's
1103 * readahead window and size the buffers used for mapping to
1104 * physical blocks.
1106 * Try to give it an estimate that's good enough, maybe at some
1107 * point we can change the ->readdir prototype to include the
1108 * buffer size. For now we use the current glibc buffer size.
1110 bufsize = (size_t)min_t(loff_t, 32768, ip->i_d.di_size);
1112 return xfs_readdir(ip, ctx, bufsize);
1116 * This type is designed to indicate the type of offset we would like
1117 * to search from page cache for xfs_seek_hole_data().
1119 enum {
1120 HOLE_OFF = 0,
1121 DATA_OFF,
1125 * Lookup the desired type of offset from the given page.
1127 * On success, return true and the offset argument will point to the
1128 * start of the region that was found. Otherwise this function will
1129 * return false and keep the offset argument unchanged.
1131 STATIC bool
1132 xfs_lookup_buffer_offset(
1133 struct page *page,
1134 loff_t *offset,
1135 unsigned int type)
1137 loff_t lastoff = page_offset(page);
1138 bool found = false;
1139 struct buffer_head *bh, *head;
1141 bh = head = page_buffers(page);
1142 do {
1144 * Unwritten extents that have data in the page
1145 * cache covering them can be identified by the
1146 * BH_Unwritten state flag. Pages with multiple
1147 * buffers might have a mix of holes, data and
1148 * unwritten extents - any buffer with valid
1149 * data in it should have BH_Uptodate flag set
1150 * on it.
1152 if (buffer_unwritten(bh) ||
1153 buffer_uptodate(bh)) {
1154 if (type == DATA_OFF)
1155 found = true;
1156 } else {
1157 if (type == HOLE_OFF)
1158 found = true;
1161 if (found) {
1162 *offset = lastoff;
1163 break;
1165 lastoff += bh->b_size;
1166 } while ((bh = bh->b_this_page) != head);
1168 return found;
1172 * This routine is called to find out and return a data or hole offset
1173 * from the page cache for unwritten extents according to the desired
1174 * type for xfs_seek_hole_data().
1176 * The argument offset is used to tell where we start to search from the
1177 * page cache. Map is used to figure out the end points of the range to
1178 * lookup pages.
1180 * Return true if the desired type of offset was found, and the argument
1181 * offset is filled with that address. Otherwise, return false and keep
1182 * offset unchanged.
1184 STATIC bool
1185 xfs_find_get_desired_pgoff(
1186 struct inode *inode,
1187 struct xfs_bmbt_irec *map,
1188 unsigned int type,
1189 loff_t *offset)
1191 struct xfs_inode *ip = XFS_I(inode);
1192 struct xfs_mount *mp = ip->i_mount;
1193 struct pagevec pvec;
1194 pgoff_t index;
1195 pgoff_t end;
1196 loff_t endoff;
1197 loff_t startoff = *offset;
1198 loff_t lastoff = startoff;
1199 bool found = false;
1201 pagevec_init(&pvec, 0);
1203 index = startoff >> PAGE_CACHE_SHIFT;
1204 endoff = XFS_FSB_TO_B(mp, map->br_startoff + map->br_blockcount);
1205 end = endoff >> PAGE_CACHE_SHIFT;
1206 do {
1207 int want;
1208 unsigned nr_pages;
1209 unsigned int i;
1211 want = min_t(pgoff_t, end - index, PAGEVEC_SIZE);
1212 nr_pages = pagevec_lookup(&pvec, inode->i_mapping, index,
1213 want);
1215 * No page mapped into given range. If we are searching holes
1216 * and if this is the first time we got into the loop, it means
1217 * that the given offset is landed in a hole, return it.
1219 * If we have already stepped through some block buffers to find
1220 * holes but they all contains data. In this case, the last
1221 * offset is already updated and pointed to the end of the last
1222 * mapped page, if it does not reach the endpoint to search,
1223 * that means there should be a hole between them.
1225 if (nr_pages == 0) {
1226 /* Data search found nothing */
1227 if (type == DATA_OFF)
1228 break;
1230 ASSERT(type == HOLE_OFF);
1231 if (lastoff == startoff || lastoff < endoff) {
1232 found = true;
1233 *offset = lastoff;
1235 break;
1239 * At lease we found one page. If this is the first time we
1240 * step into the loop, and if the first page index offset is
1241 * greater than the given search offset, a hole was found.
1243 if (type == HOLE_OFF && lastoff == startoff &&
1244 lastoff < page_offset(pvec.pages[0])) {
1245 found = true;
1246 break;
1249 for (i = 0; i < nr_pages; i++) {
1250 struct page *page = pvec.pages[i];
1251 loff_t b_offset;
1254 * At this point, the page may be truncated or
1255 * invalidated (changing page->mapping to NULL),
1256 * or even swizzled back from swapper_space to tmpfs
1257 * file mapping. However, page->index will not change
1258 * because we have a reference on the page.
1260 * Searching done if the page index is out of range.
1261 * If the current offset is not reaches the end of
1262 * the specified search range, there should be a hole
1263 * between them.
1265 if (page->index > end) {
1266 if (type == HOLE_OFF && lastoff < endoff) {
1267 *offset = lastoff;
1268 found = true;
1270 goto out;
1273 lock_page(page);
1275 * Page truncated or invalidated(page->mapping == NULL).
1276 * We can freely skip it and proceed to check the next
1277 * page.
1279 if (unlikely(page->mapping != inode->i_mapping)) {
1280 unlock_page(page);
1281 continue;
1284 if (!page_has_buffers(page)) {
1285 unlock_page(page);
1286 continue;
1289 found = xfs_lookup_buffer_offset(page, &b_offset, type);
1290 if (found) {
1292 * The found offset may be less than the start
1293 * point to search if this is the first time to
1294 * come here.
1296 *offset = max_t(loff_t, startoff, b_offset);
1297 unlock_page(page);
1298 goto out;
1302 * We either searching data but nothing was found, or
1303 * searching hole but found a data buffer. In either
1304 * case, probably the next page contains the desired
1305 * things, update the last offset to it so.
1307 lastoff = page_offset(page) + PAGE_SIZE;
1308 unlock_page(page);
1312 * The number of returned pages less than our desired, search
1313 * done. In this case, nothing was found for searching data,
1314 * but we found a hole behind the last offset.
1316 if (nr_pages < want) {
1317 if (type == HOLE_OFF) {
1318 *offset = lastoff;
1319 found = true;
1321 break;
1324 index = pvec.pages[i - 1]->index + 1;
1325 pagevec_release(&pvec);
1326 } while (index <= end);
1328 out:
1329 pagevec_release(&pvec);
1330 return found;
1333 STATIC loff_t
1334 xfs_seek_hole_data(
1335 struct file *file,
1336 loff_t start,
1337 int whence)
1339 struct inode *inode = file->f_mapping->host;
1340 struct xfs_inode *ip = XFS_I(inode);
1341 struct xfs_mount *mp = ip->i_mount;
1342 loff_t uninitialized_var(offset);
1343 xfs_fsize_t isize;
1344 xfs_fileoff_t fsbno;
1345 xfs_filblks_t end;
1346 uint lock;
1347 int error;
1349 if (XFS_FORCED_SHUTDOWN(mp))
1350 return -EIO;
1352 lock = xfs_ilock_data_map_shared(ip);
1354 isize = i_size_read(inode);
1355 if (start >= isize) {
1356 error = -ENXIO;
1357 goto out_unlock;
1361 * Try to read extents from the first block indicated
1362 * by fsbno to the end block of the file.
1364 fsbno = XFS_B_TO_FSBT(mp, start);
1365 end = XFS_B_TO_FSB(mp, isize);
1367 for (;;) {
1368 struct xfs_bmbt_irec map[2];
1369 int nmap = 2;
1370 unsigned int i;
1372 error = xfs_bmapi_read(ip, fsbno, end - fsbno, map, &nmap,
1373 XFS_BMAPI_ENTIRE);
1374 if (error)
1375 goto out_unlock;
1377 /* No extents at given offset, must be beyond EOF */
1378 if (nmap == 0) {
1379 error = -ENXIO;
1380 goto out_unlock;
1383 for (i = 0; i < nmap; i++) {
1384 offset = max_t(loff_t, start,
1385 XFS_FSB_TO_B(mp, map[i].br_startoff));
1387 /* Landed in the hole we wanted? */
1388 if (whence == SEEK_HOLE &&
1389 map[i].br_startblock == HOLESTARTBLOCK)
1390 goto out;
1392 /* Landed in the data extent we wanted? */
1393 if (whence == SEEK_DATA &&
1394 (map[i].br_startblock == DELAYSTARTBLOCK ||
1395 (map[i].br_state == XFS_EXT_NORM &&
1396 !isnullstartblock(map[i].br_startblock))))
1397 goto out;
1400 * Landed in an unwritten extent, try to search
1401 * for hole or data from page cache.
1403 if (map[i].br_state == XFS_EXT_UNWRITTEN) {
1404 if (xfs_find_get_desired_pgoff(inode, &map[i],
1405 whence == SEEK_HOLE ? HOLE_OFF : DATA_OFF,
1406 &offset))
1407 goto out;
1412 * We only received one extent out of the two requested. This
1413 * means we've hit EOF and didn't find what we are looking for.
1415 if (nmap == 1) {
1417 * If we were looking for a hole, set offset to
1418 * the end of the file (i.e., there is an implicit
1419 * hole at the end of any file).
1421 if (whence == SEEK_HOLE) {
1422 offset = isize;
1423 break;
1426 * If we were looking for data, it's nowhere to be found
1428 ASSERT(whence == SEEK_DATA);
1429 error = -ENXIO;
1430 goto out_unlock;
1433 ASSERT(i > 1);
1436 * Nothing was found, proceed to the next round of search
1437 * if the next reading offset is not at or beyond EOF.
1439 fsbno = map[i - 1].br_startoff + map[i - 1].br_blockcount;
1440 start = XFS_FSB_TO_B(mp, fsbno);
1441 if (start >= isize) {
1442 if (whence == SEEK_HOLE) {
1443 offset = isize;
1444 break;
1446 ASSERT(whence == SEEK_DATA);
1447 error = -ENXIO;
1448 goto out_unlock;
1452 out:
1454 * If at this point we have found the hole we wanted, the returned
1455 * offset may be bigger than the file size as it may be aligned to
1456 * page boundary for unwritten extents. We need to deal with this
1457 * situation in particular.
1459 if (whence == SEEK_HOLE)
1460 offset = min_t(loff_t, offset, isize);
1461 offset = vfs_setpos(file, offset, inode->i_sb->s_maxbytes);
1463 out_unlock:
1464 xfs_iunlock(ip, lock);
1466 if (error)
1467 return error;
1468 return offset;
1471 STATIC loff_t
1472 xfs_file_llseek(
1473 struct file *file,
1474 loff_t offset,
1475 int whence)
1477 switch (whence) {
1478 case SEEK_END:
1479 case SEEK_CUR:
1480 case SEEK_SET:
1481 return generic_file_llseek(file, offset, whence);
1482 case SEEK_HOLE:
1483 case SEEK_DATA:
1484 return xfs_seek_hole_data(file, offset, whence);
1485 default:
1486 return -EINVAL;
1491 * Locking for serialisation of IO during page faults. This results in a lock
1492 * ordering of:
1494 * mmap_sem (MM)
1495 * sb_start_pagefault(vfs, freeze)
1496 * i_mmaplock (XFS - truncate serialisation)
1497 * page_lock (MM)
1498 * i_lock (XFS - extent map serialisation)
1502 * mmap()d file has taken write protection fault and is being made writable. We
1503 * can set the page state up correctly for a writable page, which means we can
1504 * do correct delalloc accounting (ENOSPC checking!) and unwritten extent
1505 * mapping.
1507 STATIC int
1508 xfs_filemap_page_mkwrite(
1509 struct vm_area_struct *vma,
1510 struct vm_fault *vmf)
1512 struct inode *inode = file_inode(vma->vm_file);
1513 int ret;
1515 trace_xfs_filemap_page_mkwrite(XFS_I(inode));
1517 sb_start_pagefault(inode->i_sb);
1518 file_update_time(vma->vm_file);
1519 xfs_ilock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
1521 if (IS_DAX(inode)) {
1522 ret = __dax_mkwrite(vma, vmf, xfs_get_blocks_dax_fault, NULL);
1523 } else {
1524 ret = block_page_mkwrite(vma, vmf, xfs_get_blocks);
1525 ret = block_page_mkwrite_return(ret);
1528 xfs_iunlock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
1529 sb_end_pagefault(inode->i_sb);
1531 return ret;
1534 STATIC int
1535 xfs_filemap_fault(
1536 struct vm_area_struct *vma,
1537 struct vm_fault *vmf)
1539 struct inode *inode = file_inode(vma->vm_file);
1540 int ret;
1542 trace_xfs_filemap_fault(XFS_I(inode));
1544 /* DAX can shortcut the normal fault path on write faults! */
1545 if ((vmf->flags & FAULT_FLAG_WRITE) && IS_DAX(inode))
1546 return xfs_filemap_page_mkwrite(vma, vmf);
1548 xfs_ilock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
1549 if (IS_DAX(inode)) {
1551 * we do not want to trigger unwritten extent conversion on read
1552 * faults - that is unnecessary overhead and would also require
1553 * changes to xfs_get_blocks_direct() to map unwritten extent
1554 * ioend for conversion on read-only mappings.
1556 ret = __dax_fault(vma, vmf, xfs_get_blocks_dax_fault, NULL);
1557 } else
1558 ret = filemap_fault(vma, vmf);
1559 xfs_iunlock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
1561 return ret;
1565 * Similar to xfs_filemap_fault(), the DAX fault path can call into here on
1566 * both read and write faults. Hence we need to handle both cases. There is no
1567 * ->pmd_mkwrite callout for huge pages, so we have a single function here to
1568 * handle both cases here. @flags carries the information on the type of fault
1569 * occuring.
1571 STATIC int
1572 xfs_filemap_pmd_fault(
1573 struct vm_area_struct *vma,
1574 unsigned long addr,
1575 pmd_t *pmd,
1576 unsigned int flags)
1578 struct inode *inode = file_inode(vma->vm_file);
1579 struct xfs_inode *ip = XFS_I(inode);
1580 int ret;
1582 if (!IS_DAX(inode))
1583 return VM_FAULT_FALLBACK;
1585 trace_xfs_filemap_pmd_fault(ip);
1587 if (flags & FAULT_FLAG_WRITE) {
1588 sb_start_pagefault(inode->i_sb);
1589 file_update_time(vma->vm_file);
1592 xfs_ilock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
1593 ret = __dax_pmd_fault(vma, addr, pmd, flags, xfs_get_blocks_dax_fault,
1594 NULL);
1595 xfs_iunlock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
1597 if (flags & FAULT_FLAG_WRITE)
1598 sb_end_pagefault(inode->i_sb);
1600 return ret;
1604 * pfn_mkwrite was originally inteneded to ensure we capture time stamp
1605 * updates on write faults. In reality, it's need to serialise against
1606 * truncate similar to page_mkwrite. Hence we open-code dax_pfn_mkwrite()
1607 * here and cycle the XFS_MMAPLOCK_SHARED to ensure we serialise the fault
1608 * barrier in place.
1610 static int
1611 xfs_filemap_pfn_mkwrite(
1612 struct vm_area_struct *vma,
1613 struct vm_fault *vmf)
1616 struct inode *inode = file_inode(vma->vm_file);
1617 struct xfs_inode *ip = XFS_I(inode);
1618 int ret = VM_FAULT_NOPAGE;
1619 loff_t size;
1621 trace_xfs_filemap_pfn_mkwrite(ip);
1623 sb_start_pagefault(inode->i_sb);
1624 file_update_time(vma->vm_file);
1626 /* check if the faulting page hasn't raced with truncate */
1627 xfs_ilock(ip, XFS_MMAPLOCK_SHARED);
1628 size = (i_size_read(inode) + PAGE_SIZE - 1) >> PAGE_SHIFT;
1629 if (vmf->pgoff >= size)
1630 ret = VM_FAULT_SIGBUS;
1631 xfs_iunlock(ip, XFS_MMAPLOCK_SHARED);
1632 sb_end_pagefault(inode->i_sb);
1633 return ret;
1637 static const struct vm_operations_struct xfs_file_vm_ops = {
1638 .fault = xfs_filemap_fault,
1639 .pmd_fault = xfs_filemap_pmd_fault,
1640 .map_pages = filemap_map_pages,
1641 .page_mkwrite = xfs_filemap_page_mkwrite,
1642 .pfn_mkwrite = xfs_filemap_pfn_mkwrite,
1645 STATIC int
1646 xfs_file_mmap(
1647 struct file *filp,
1648 struct vm_area_struct *vma)
1650 file_accessed(filp);
1651 vma->vm_ops = &xfs_file_vm_ops;
1652 if (IS_DAX(file_inode(filp)))
1653 vma->vm_flags |= VM_MIXEDMAP | VM_HUGEPAGE;
1654 return 0;
1657 const struct file_operations xfs_file_operations = {
1658 .llseek = xfs_file_llseek,
1659 .read_iter = xfs_file_read_iter,
1660 .write_iter = xfs_file_write_iter,
1661 .splice_read = xfs_file_splice_read,
1662 .splice_write = iter_file_splice_write,
1663 .unlocked_ioctl = xfs_file_ioctl,
1664 #ifdef CONFIG_COMPAT
1665 .compat_ioctl = xfs_file_compat_ioctl,
1666 #endif
1667 .mmap = xfs_file_mmap,
1668 .open = xfs_file_open,
1669 .release = xfs_file_release,
1670 .fsync = xfs_file_fsync,
1671 .fallocate = xfs_file_fallocate,
1674 const struct file_operations xfs_dir_file_operations = {
1675 .open = xfs_dir_open,
1676 .read = generic_read_dir,
1677 .iterate = xfs_file_readdir,
1678 .llseek = generic_file_llseek,
1679 .unlocked_ioctl = xfs_file_ioctl,
1680 #ifdef CONFIG_COMPAT
1681 .compat_ioctl = xfs_file_compat_ioctl,
1682 #endif
1683 .fsync = xfs_dir_fsync,