irqchip/zevio: Use irq_data_get_chip_type() helper
[linux/fpc-iii.git] / include / net / sock.h
blob52d27ee924f47867026d8f65c65551a9137219d3
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
6 * Definitions for the AF_INET socket handler.
8 * Version: @(#)sock.h 1.0.4 05/13/93
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Corey Minyard <wf-rch!minyard@relay.EU.net>
13 * Florian La Roche <flla@stud.uni-sb.de>
15 * Fixes:
16 * Alan Cox : Volatiles in skbuff pointers. See
17 * skbuff comments. May be overdone,
18 * better to prove they can be removed
19 * than the reverse.
20 * Alan Cox : Added a zapped field for tcp to note
21 * a socket is reset and must stay shut up
22 * Alan Cox : New fields for options
23 * Pauline Middelink : identd support
24 * Alan Cox : Eliminate low level recv/recvfrom
25 * David S. Miller : New socket lookup architecture.
26 * Steve Whitehouse: Default routines for sock_ops
27 * Arnaldo C. Melo : removed net_pinfo, tp_pinfo and made
28 * protinfo be just a void pointer, as the
29 * protocol specific parts were moved to
30 * respective headers and ipv4/v6, etc now
31 * use private slabcaches for its socks
32 * Pedro Hortas : New flags field for socket options
35 * This program is free software; you can redistribute it and/or
36 * modify it under the terms of the GNU General Public License
37 * as published by the Free Software Foundation; either version
38 * 2 of the License, or (at your option) any later version.
40 #ifndef _SOCK_H
41 #define _SOCK_H
43 #include <linux/hardirq.h>
44 #include <linux/kernel.h>
45 #include <linux/list.h>
46 #include <linux/list_nulls.h>
47 #include <linux/timer.h>
48 #include <linux/cache.h>
49 #include <linux/bitops.h>
50 #include <linux/lockdep.h>
51 #include <linux/netdevice.h>
52 #include <linux/skbuff.h> /* struct sk_buff */
53 #include <linux/mm.h>
54 #include <linux/security.h>
55 #include <linux/slab.h>
56 #include <linux/uaccess.h>
57 #include <linux/page_counter.h>
58 #include <linux/memcontrol.h>
59 #include <linux/static_key.h>
60 #include <linux/sched.h>
62 #include <linux/filter.h>
63 #include <linux/rculist_nulls.h>
64 #include <linux/poll.h>
66 #include <linux/atomic.h>
67 #include <net/dst.h>
68 #include <net/checksum.h>
69 #include <net/tcp_states.h>
70 #include <linux/net_tstamp.h>
72 struct cgroup;
73 struct cgroup_subsys;
74 #ifdef CONFIG_NET
75 int mem_cgroup_sockets_init(struct mem_cgroup *memcg, struct cgroup_subsys *ss);
76 void mem_cgroup_sockets_destroy(struct mem_cgroup *memcg);
77 #else
78 static inline
79 int mem_cgroup_sockets_init(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
81 return 0;
83 static inline
84 void mem_cgroup_sockets_destroy(struct mem_cgroup *memcg)
87 #endif
89 * This structure really needs to be cleaned up.
90 * Most of it is for TCP, and not used by any of
91 * the other protocols.
94 /* Define this to get the SOCK_DBG debugging facility. */
95 #define SOCK_DEBUGGING
96 #ifdef SOCK_DEBUGGING
97 #define SOCK_DEBUG(sk, msg...) do { if ((sk) && sock_flag((sk), SOCK_DBG)) \
98 printk(KERN_DEBUG msg); } while (0)
99 #else
100 /* Validate arguments and do nothing */
101 static inline __printf(2, 3)
102 void SOCK_DEBUG(const struct sock *sk, const char *msg, ...)
105 #endif
107 /* This is the per-socket lock. The spinlock provides a synchronization
108 * between user contexts and software interrupt processing, whereas the
109 * mini-semaphore synchronizes multiple users amongst themselves.
111 typedef struct {
112 spinlock_t slock;
113 int owned;
114 wait_queue_head_t wq;
116 * We express the mutex-alike socket_lock semantics
117 * to the lock validator by explicitly managing
118 * the slock as a lock variant (in addition to
119 * the slock itself):
121 #ifdef CONFIG_DEBUG_LOCK_ALLOC
122 struct lockdep_map dep_map;
123 #endif
124 } socket_lock_t;
126 struct sock;
127 struct proto;
128 struct net;
130 typedef __u32 __bitwise __portpair;
131 typedef __u64 __bitwise __addrpair;
134 * struct sock_common - minimal network layer representation of sockets
135 * @skc_daddr: Foreign IPv4 addr
136 * @skc_rcv_saddr: Bound local IPv4 addr
137 * @skc_hash: hash value used with various protocol lookup tables
138 * @skc_u16hashes: two u16 hash values used by UDP lookup tables
139 * @skc_dport: placeholder for inet_dport/tw_dport
140 * @skc_num: placeholder for inet_num/tw_num
141 * @skc_family: network address family
142 * @skc_state: Connection state
143 * @skc_reuse: %SO_REUSEADDR setting
144 * @skc_reuseport: %SO_REUSEPORT setting
145 * @skc_bound_dev_if: bound device index if != 0
146 * @skc_bind_node: bind hash linkage for various protocol lookup tables
147 * @skc_portaddr_node: second hash linkage for UDP/UDP-Lite protocol
148 * @skc_prot: protocol handlers inside a network family
149 * @skc_net: reference to the network namespace of this socket
150 * @skc_node: main hash linkage for various protocol lookup tables
151 * @skc_nulls_node: main hash linkage for TCP/UDP/UDP-Lite protocol
152 * @skc_tx_queue_mapping: tx queue number for this connection
153 * @skc_flags: place holder for sk_flags
154 * %SO_LINGER (l_onoff), %SO_BROADCAST, %SO_KEEPALIVE,
155 * %SO_OOBINLINE settings, %SO_TIMESTAMPING settings
156 * @skc_incoming_cpu: record/match cpu processing incoming packets
157 * @skc_refcnt: reference count
159 * This is the minimal network layer representation of sockets, the header
160 * for struct sock and struct inet_timewait_sock.
162 struct sock_common {
163 /* skc_daddr and skc_rcv_saddr must be grouped on a 8 bytes aligned
164 * address on 64bit arches : cf INET_MATCH()
166 union {
167 __addrpair skc_addrpair;
168 struct {
169 __be32 skc_daddr;
170 __be32 skc_rcv_saddr;
173 union {
174 unsigned int skc_hash;
175 __u16 skc_u16hashes[2];
177 /* skc_dport && skc_num must be grouped as well */
178 union {
179 __portpair skc_portpair;
180 struct {
181 __be16 skc_dport;
182 __u16 skc_num;
186 unsigned short skc_family;
187 volatile unsigned char skc_state;
188 unsigned char skc_reuse:4;
189 unsigned char skc_reuseport:1;
190 unsigned char skc_ipv6only:1;
191 unsigned char skc_net_refcnt:1;
192 int skc_bound_dev_if;
193 union {
194 struct hlist_node skc_bind_node;
195 struct hlist_nulls_node skc_portaddr_node;
197 struct proto *skc_prot;
198 possible_net_t skc_net;
200 #if IS_ENABLED(CONFIG_IPV6)
201 struct in6_addr skc_v6_daddr;
202 struct in6_addr skc_v6_rcv_saddr;
203 #endif
205 atomic64_t skc_cookie;
207 /* following fields are padding to force
208 * offset(struct sock, sk_refcnt) == 128 on 64bit arches
209 * assuming IPV6 is enabled. We use this padding differently
210 * for different kind of 'sockets'
212 union {
213 unsigned long skc_flags;
214 struct sock *skc_listener; /* request_sock */
215 struct inet_timewait_death_row *skc_tw_dr; /* inet_timewait_sock */
218 * fields between dontcopy_begin/dontcopy_end
219 * are not copied in sock_copy()
221 /* private: */
222 int skc_dontcopy_begin[0];
223 /* public: */
224 union {
225 struct hlist_node skc_node;
226 struct hlist_nulls_node skc_nulls_node;
228 int skc_tx_queue_mapping;
229 union {
230 int skc_incoming_cpu;
231 u32 skc_rcv_wnd;
232 u32 skc_tw_rcv_nxt; /* struct tcp_timewait_sock */
235 atomic_t skc_refcnt;
236 /* private: */
237 int skc_dontcopy_end[0];
238 union {
239 u32 skc_rxhash;
240 u32 skc_window_clamp;
241 u32 skc_tw_snd_nxt; /* struct tcp_timewait_sock */
243 /* public: */
246 struct cg_proto;
248 * struct sock - network layer representation of sockets
249 * @__sk_common: shared layout with inet_timewait_sock
250 * @sk_shutdown: mask of %SEND_SHUTDOWN and/or %RCV_SHUTDOWN
251 * @sk_userlocks: %SO_SNDBUF and %SO_RCVBUF settings
252 * @sk_lock: synchronizer
253 * @sk_rcvbuf: size of receive buffer in bytes
254 * @sk_wq: sock wait queue and async head
255 * @sk_rx_dst: receive input route used by early demux
256 * @sk_dst_cache: destination cache
257 * @sk_policy: flow policy
258 * @sk_receive_queue: incoming packets
259 * @sk_wmem_alloc: transmit queue bytes committed
260 * @sk_write_queue: Packet sending queue
261 * @sk_omem_alloc: "o" is "option" or "other"
262 * @sk_wmem_queued: persistent queue size
263 * @sk_forward_alloc: space allocated forward
264 * @sk_napi_id: id of the last napi context to receive data for sk
265 * @sk_ll_usec: usecs to busypoll when there is no data
266 * @sk_allocation: allocation mode
267 * @sk_pacing_rate: Pacing rate (if supported by transport/packet scheduler)
268 * @sk_max_pacing_rate: Maximum pacing rate (%SO_MAX_PACING_RATE)
269 * @sk_sndbuf: size of send buffer in bytes
270 * @sk_no_check_tx: %SO_NO_CHECK setting, set checksum in TX packets
271 * @sk_no_check_rx: allow zero checksum in RX packets
272 * @sk_route_caps: route capabilities (e.g. %NETIF_F_TSO)
273 * @sk_route_nocaps: forbidden route capabilities (e.g NETIF_F_GSO_MASK)
274 * @sk_gso_type: GSO type (e.g. %SKB_GSO_TCPV4)
275 * @sk_gso_max_size: Maximum GSO segment size to build
276 * @sk_gso_max_segs: Maximum number of GSO segments
277 * @sk_lingertime: %SO_LINGER l_linger setting
278 * @sk_backlog: always used with the per-socket spinlock held
279 * @sk_callback_lock: used with the callbacks in the end of this struct
280 * @sk_error_queue: rarely used
281 * @sk_prot_creator: sk_prot of original sock creator (see ipv6_setsockopt,
282 * IPV6_ADDRFORM for instance)
283 * @sk_err: last error
284 * @sk_err_soft: errors that don't cause failure but are the cause of a
285 * persistent failure not just 'timed out'
286 * @sk_drops: raw/udp drops counter
287 * @sk_ack_backlog: current listen backlog
288 * @sk_max_ack_backlog: listen backlog set in listen()
289 * @sk_priority: %SO_PRIORITY setting
290 * @sk_cgrp_prioidx: socket group's priority map index
291 * @sk_type: socket type (%SOCK_STREAM, etc)
292 * @sk_protocol: which protocol this socket belongs in this network family
293 * @sk_peer_pid: &struct pid for this socket's peer
294 * @sk_peer_cred: %SO_PEERCRED setting
295 * @sk_rcvlowat: %SO_RCVLOWAT setting
296 * @sk_rcvtimeo: %SO_RCVTIMEO setting
297 * @sk_sndtimeo: %SO_SNDTIMEO setting
298 * @sk_txhash: computed flow hash for use on transmit
299 * @sk_filter: socket filtering instructions
300 * @sk_timer: sock cleanup timer
301 * @sk_stamp: time stamp of last packet received
302 * @sk_tsflags: SO_TIMESTAMPING socket options
303 * @sk_tskey: counter to disambiguate concurrent tstamp requests
304 * @sk_socket: Identd and reporting IO signals
305 * @sk_user_data: RPC layer private data
306 * @sk_frag: cached page frag
307 * @sk_peek_off: current peek_offset value
308 * @sk_send_head: front of stuff to transmit
309 * @sk_security: used by security modules
310 * @sk_mark: generic packet mark
311 * @sk_classid: this socket's cgroup classid
312 * @sk_cgrp: this socket's cgroup-specific proto data
313 * @sk_write_pending: a write to stream socket waits to start
314 * @sk_state_change: callback to indicate change in the state of the sock
315 * @sk_data_ready: callback to indicate there is data to be processed
316 * @sk_write_space: callback to indicate there is bf sending space available
317 * @sk_error_report: callback to indicate errors (e.g. %MSG_ERRQUEUE)
318 * @sk_backlog_rcv: callback to process the backlog
319 * @sk_destruct: called at sock freeing time, i.e. when all refcnt == 0
321 struct sock {
323 * Now struct inet_timewait_sock also uses sock_common, so please just
324 * don't add nothing before this first member (__sk_common) --acme
326 struct sock_common __sk_common;
327 #define sk_node __sk_common.skc_node
328 #define sk_nulls_node __sk_common.skc_nulls_node
329 #define sk_refcnt __sk_common.skc_refcnt
330 #define sk_tx_queue_mapping __sk_common.skc_tx_queue_mapping
332 #define sk_dontcopy_begin __sk_common.skc_dontcopy_begin
333 #define sk_dontcopy_end __sk_common.skc_dontcopy_end
334 #define sk_hash __sk_common.skc_hash
335 #define sk_portpair __sk_common.skc_portpair
336 #define sk_num __sk_common.skc_num
337 #define sk_dport __sk_common.skc_dport
338 #define sk_addrpair __sk_common.skc_addrpair
339 #define sk_daddr __sk_common.skc_daddr
340 #define sk_rcv_saddr __sk_common.skc_rcv_saddr
341 #define sk_family __sk_common.skc_family
342 #define sk_state __sk_common.skc_state
343 #define sk_reuse __sk_common.skc_reuse
344 #define sk_reuseport __sk_common.skc_reuseport
345 #define sk_ipv6only __sk_common.skc_ipv6only
346 #define sk_net_refcnt __sk_common.skc_net_refcnt
347 #define sk_bound_dev_if __sk_common.skc_bound_dev_if
348 #define sk_bind_node __sk_common.skc_bind_node
349 #define sk_prot __sk_common.skc_prot
350 #define sk_net __sk_common.skc_net
351 #define sk_v6_daddr __sk_common.skc_v6_daddr
352 #define sk_v6_rcv_saddr __sk_common.skc_v6_rcv_saddr
353 #define sk_cookie __sk_common.skc_cookie
354 #define sk_incoming_cpu __sk_common.skc_incoming_cpu
355 #define sk_flags __sk_common.skc_flags
356 #define sk_rxhash __sk_common.skc_rxhash
358 socket_lock_t sk_lock;
359 struct sk_buff_head sk_receive_queue;
361 * The backlog queue is special, it is always used with
362 * the per-socket spinlock held and requires low latency
363 * access. Therefore we special case it's implementation.
364 * Note : rmem_alloc is in this structure to fill a hole
365 * on 64bit arches, not because its logically part of
366 * backlog.
368 struct {
369 atomic_t rmem_alloc;
370 int len;
371 struct sk_buff *head;
372 struct sk_buff *tail;
373 } sk_backlog;
374 #define sk_rmem_alloc sk_backlog.rmem_alloc
375 int sk_forward_alloc;
377 __u32 sk_txhash;
378 #ifdef CONFIG_NET_RX_BUSY_POLL
379 unsigned int sk_napi_id;
380 unsigned int sk_ll_usec;
381 #endif
382 atomic_t sk_drops;
383 int sk_rcvbuf;
385 struct sk_filter __rcu *sk_filter;
386 union {
387 struct socket_wq __rcu *sk_wq;
388 struct socket_wq *sk_wq_raw;
390 #ifdef CONFIG_XFRM
391 struct xfrm_policy *sk_policy[2];
392 #endif
393 struct dst_entry *sk_rx_dst;
394 struct dst_entry __rcu *sk_dst_cache;
395 /* Note: 32bit hole on 64bit arches */
396 atomic_t sk_wmem_alloc;
397 atomic_t sk_omem_alloc;
398 int sk_sndbuf;
399 struct sk_buff_head sk_write_queue;
400 kmemcheck_bitfield_begin(flags);
401 unsigned int sk_shutdown : 2,
402 sk_no_check_tx : 1,
403 sk_no_check_rx : 1,
404 sk_userlocks : 4,
405 sk_protocol : 8,
406 sk_type : 16;
407 kmemcheck_bitfield_end(flags);
408 int sk_wmem_queued;
409 gfp_t sk_allocation;
410 u32 sk_pacing_rate; /* bytes per second */
411 u32 sk_max_pacing_rate;
412 netdev_features_t sk_route_caps;
413 netdev_features_t sk_route_nocaps;
414 int sk_gso_type;
415 unsigned int sk_gso_max_size;
416 u16 sk_gso_max_segs;
417 int sk_rcvlowat;
418 unsigned long sk_lingertime;
419 struct sk_buff_head sk_error_queue;
420 struct proto *sk_prot_creator;
421 rwlock_t sk_callback_lock;
422 int sk_err,
423 sk_err_soft;
424 u32 sk_ack_backlog;
425 u32 sk_max_ack_backlog;
426 __u32 sk_priority;
427 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
428 __u32 sk_cgrp_prioidx;
429 #endif
430 struct pid *sk_peer_pid;
431 const struct cred *sk_peer_cred;
432 long sk_rcvtimeo;
433 long sk_sndtimeo;
434 struct timer_list sk_timer;
435 ktime_t sk_stamp;
436 u16 sk_tsflags;
437 u32 sk_tskey;
438 struct socket *sk_socket;
439 void *sk_user_data;
440 struct page_frag sk_frag;
441 struct sk_buff *sk_send_head;
442 __s32 sk_peek_off;
443 int sk_write_pending;
444 #ifdef CONFIG_SECURITY
445 void *sk_security;
446 #endif
447 __u32 sk_mark;
448 #ifdef CONFIG_CGROUP_NET_CLASSID
449 u32 sk_classid;
450 #endif
451 struct cg_proto *sk_cgrp;
452 void (*sk_state_change)(struct sock *sk);
453 void (*sk_data_ready)(struct sock *sk);
454 void (*sk_write_space)(struct sock *sk);
455 void (*sk_error_report)(struct sock *sk);
456 int (*sk_backlog_rcv)(struct sock *sk,
457 struct sk_buff *skb);
458 void (*sk_destruct)(struct sock *sk);
461 #define __sk_user_data(sk) ((*((void __rcu **)&(sk)->sk_user_data)))
463 #define rcu_dereference_sk_user_data(sk) rcu_dereference(__sk_user_data((sk)))
464 #define rcu_assign_sk_user_data(sk, ptr) rcu_assign_pointer(__sk_user_data((sk)), ptr)
467 * SK_CAN_REUSE and SK_NO_REUSE on a socket mean that the socket is OK
468 * or not whether his port will be reused by someone else. SK_FORCE_REUSE
469 * on a socket means that the socket will reuse everybody else's port
470 * without looking at the other's sk_reuse value.
473 #define SK_NO_REUSE 0
474 #define SK_CAN_REUSE 1
475 #define SK_FORCE_REUSE 2
477 static inline int sk_peek_offset(struct sock *sk, int flags)
479 if ((flags & MSG_PEEK) && (sk->sk_peek_off >= 0))
480 return sk->sk_peek_off;
481 else
482 return 0;
485 static inline void sk_peek_offset_bwd(struct sock *sk, int val)
487 if (sk->sk_peek_off >= 0) {
488 if (sk->sk_peek_off >= val)
489 sk->sk_peek_off -= val;
490 else
491 sk->sk_peek_off = 0;
495 static inline void sk_peek_offset_fwd(struct sock *sk, int val)
497 if (sk->sk_peek_off >= 0)
498 sk->sk_peek_off += val;
502 * Hashed lists helper routines
504 static inline struct sock *sk_entry(const struct hlist_node *node)
506 return hlist_entry(node, struct sock, sk_node);
509 static inline struct sock *__sk_head(const struct hlist_head *head)
511 return hlist_entry(head->first, struct sock, sk_node);
514 static inline struct sock *sk_head(const struct hlist_head *head)
516 return hlist_empty(head) ? NULL : __sk_head(head);
519 static inline struct sock *__sk_nulls_head(const struct hlist_nulls_head *head)
521 return hlist_nulls_entry(head->first, struct sock, sk_nulls_node);
524 static inline struct sock *sk_nulls_head(const struct hlist_nulls_head *head)
526 return hlist_nulls_empty(head) ? NULL : __sk_nulls_head(head);
529 static inline struct sock *sk_next(const struct sock *sk)
531 return sk->sk_node.next ?
532 hlist_entry(sk->sk_node.next, struct sock, sk_node) : NULL;
535 static inline struct sock *sk_nulls_next(const struct sock *sk)
537 return (!is_a_nulls(sk->sk_nulls_node.next)) ?
538 hlist_nulls_entry(sk->sk_nulls_node.next,
539 struct sock, sk_nulls_node) :
540 NULL;
543 static inline bool sk_unhashed(const struct sock *sk)
545 return hlist_unhashed(&sk->sk_node);
548 static inline bool sk_hashed(const struct sock *sk)
550 return !sk_unhashed(sk);
553 static inline void sk_node_init(struct hlist_node *node)
555 node->pprev = NULL;
558 static inline void sk_nulls_node_init(struct hlist_nulls_node *node)
560 node->pprev = NULL;
563 static inline void __sk_del_node(struct sock *sk)
565 __hlist_del(&sk->sk_node);
568 /* NB: equivalent to hlist_del_init_rcu */
569 static inline bool __sk_del_node_init(struct sock *sk)
571 if (sk_hashed(sk)) {
572 __sk_del_node(sk);
573 sk_node_init(&sk->sk_node);
574 return true;
576 return false;
579 /* Grab socket reference count. This operation is valid only
580 when sk is ALREADY grabbed f.e. it is found in hash table
581 or a list and the lookup is made under lock preventing hash table
582 modifications.
585 static inline void sock_hold(struct sock *sk)
587 atomic_inc(&sk->sk_refcnt);
590 /* Ungrab socket in the context, which assumes that socket refcnt
591 cannot hit zero, f.e. it is true in context of any socketcall.
593 static inline void __sock_put(struct sock *sk)
595 atomic_dec(&sk->sk_refcnt);
598 static inline bool sk_del_node_init(struct sock *sk)
600 bool rc = __sk_del_node_init(sk);
602 if (rc) {
603 /* paranoid for a while -acme */
604 WARN_ON(atomic_read(&sk->sk_refcnt) == 1);
605 __sock_put(sk);
607 return rc;
609 #define sk_del_node_init_rcu(sk) sk_del_node_init(sk)
611 static inline bool __sk_nulls_del_node_init_rcu(struct sock *sk)
613 if (sk_hashed(sk)) {
614 hlist_nulls_del_init_rcu(&sk->sk_nulls_node);
615 return true;
617 return false;
620 static inline bool sk_nulls_del_node_init_rcu(struct sock *sk)
622 bool rc = __sk_nulls_del_node_init_rcu(sk);
624 if (rc) {
625 /* paranoid for a while -acme */
626 WARN_ON(atomic_read(&sk->sk_refcnt) == 1);
627 __sock_put(sk);
629 return rc;
632 static inline void __sk_add_node(struct sock *sk, struct hlist_head *list)
634 hlist_add_head(&sk->sk_node, list);
637 static inline void sk_add_node(struct sock *sk, struct hlist_head *list)
639 sock_hold(sk);
640 __sk_add_node(sk, list);
643 static inline void sk_add_node_rcu(struct sock *sk, struct hlist_head *list)
645 sock_hold(sk);
646 hlist_add_head_rcu(&sk->sk_node, list);
649 static inline void __sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
651 hlist_nulls_add_head_rcu(&sk->sk_nulls_node, list);
654 static inline void sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
656 sock_hold(sk);
657 __sk_nulls_add_node_rcu(sk, list);
660 static inline void __sk_del_bind_node(struct sock *sk)
662 __hlist_del(&sk->sk_bind_node);
665 static inline void sk_add_bind_node(struct sock *sk,
666 struct hlist_head *list)
668 hlist_add_head(&sk->sk_bind_node, list);
671 #define sk_for_each(__sk, list) \
672 hlist_for_each_entry(__sk, list, sk_node)
673 #define sk_for_each_rcu(__sk, list) \
674 hlist_for_each_entry_rcu(__sk, list, sk_node)
675 #define sk_nulls_for_each(__sk, node, list) \
676 hlist_nulls_for_each_entry(__sk, node, list, sk_nulls_node)
677 #define sk_nulls_for_each_rcu(__sk, node, list) \
678 hlist_nulls_for_each_entry_rcu(__sk, node, list, sk_nulls_node)
679 #define sk_for_each_from(__sk) \
680 hlist_for_each_entry_from(__sk, sk_node)
681 #define sk_nulls_for_each_from(__sk, node) \
682 if (__sk && ({ node = &(__sk)->sk_nulls_node; 1; })) \
683 hlist_nulls_for_each_entry_from(__sk, node, sk_nulls_node)
684 #define sk_for_each_safe(__sk, tmp, list) \
685 hlist_for_each_entry_safe(__sk, tmp, list, sk_node)
686 #define sk_for_each_bound(__sk, list) \
687 hlist_for_each_entry(__sk, list, sk_bind_node)
690 * sk_nulls_for_each_entry_offset - iterate over a list at a given struct offset
691 * @tpos: the type * to use as a loop cursor.
692 * @pos: the &struct hlist_node to use as a loop cursor.
693 * @head: the head for your list.
694 * @offset: offset of hlist_node within the struct.
697 #define sk_nulls_for_each_entry_offset(tpos, pos, head, offset) \
698 for (pos = (head)->first; \
699 (!is_a_nulls(pos)) && \
700 ({ tpos = (typeof(*tpos) *)((void *)pos - offset); 1;}); \
701 pos = pos->next)
703 static inline struct user_namespace *sk_user_ns(struct sock *sk)
705 /* Careful only use this in a context where these parameters
706 * can not change and must all be valid, such as recvmsg from
707 * userspace.
709 return sk->sk_socket->file->f_cred->user_ns;
712 /* Sock flags */
713 enum sock_flags {
714 SOCK_DEAD,
715 SOCK_DONE,
716 SOCK_URGINLINE,
717 SOCK_KEEPOPEN,
718 SOCK_LINGER,
719 SOCK_DESTROY,
720 SOCK_BROADCAST,
721 SOCK_TIMESTAMP,
722 SOCK_ZAPPED,
723 SOCK_USE_WRITE_QUEUE, /* whether to call sk->sk_write_space in sock_wfree */
724 SOCK_DBG, /* %SO_DEBUG setting */
725 SOCK_RCVTSTAMP, /* %SO_TIMESTAMP setting */
726 SOCK_RCVTSTAMPNS, /* %SO_TIMESTAMPNS setting */
727 SOCK_LOCALROUTE, /* route locally only, %SO_DONTROUTE setting */
728 SOCK_QUEUE_SHRUNK, /* write queue has been shrunk recently */
729 SOCK_MEMALLOC, /* VM depends on this socket for swapping */
730 SOCK_TIMESTAMPING_RX_SOFTWARE, /* %SOF_TIMESTAMPING_RX_SOFTWARE */
731 SOCK_FASYNC, /* fasync() active */
732 SOCK_RXQ_OVFL,
733 SOCK_ZEROCOPY, /* buffers from userspace */
734 SOCK_WIFI_STATUS, /* push wifi status to userspace */
735 SOCK_NOFCS, /* Tell NIC not to do the Ethernet FCS.
736 * Will use last 4 bytes of packet sent from
737 * user-space instead.
739 SOCK_FILTER_LOCKED, /* Filter cannot be changed anymore */
740 SOCK_SELECT_ERR_QUEUE, /* Wake select on error queue */
743 static inline void sock_copy_flags(struct sock *nsk, struct sock *osk)
745 nsk->sk_flags = osk->sk_flags;
748 static inline void sock_set_flag(struct sock *sk, enum sock_flags flag)
750 __set_bit(flag, &sk->sk_flags);
753 static inline void sock_reset_flag(struct sock *sk, enum sock_flags flag)
755 __clear_bit(flag, &sk->sk_flags);
758 static inline bool sock_flag(const struct sock *sk, enum sock_flags flag)
760 return test_bit(flag, &sk->sk_flags);
763 #ifdef CONFIG_NET
764 extern struct static_key memalloc_socks;
765 static inline int sk_memalloc_socks(void)
767 return static_key_false(&memalloc_socks);
769 #else
771 static inline int sk_memalloc_socks(void)
773 return 0;
776 #endif
778 static inline gfp_t sk_gfp_atomic(const struct sock *sk, gfp_t gfp_mask)
780 return GFP_ATOMIC | (sk->sk_allocation & __GFP_MEMALLOC);
783 static inline void sk_acceptq_removed(struct sock *sk)
785 sk->sk_ack_backlog--;
788 static inline void sk_acceptq_added(struct sock *sk)
790 sk->sk_ack_backlog++;
793 static inline bool sk_acceptq_is_full(const struct sock *sk)
795 return sk->sk_ack_backlog > sk->sk_max_ack_backlog;
799 * Compute minimal free write space needed to queue new packets.
801 static inline int sk_stream_min_wspace(const struct sock *sk)
803 return sk->sk_wmem_queued >> 1;
806 static inline int sk_stream_wspace(const struct sock *sk)
808 return sk->sk_sndbuf - sk->sk_wmem_queued;
811 void sk_stream_write_space(struct sock *sk);
813 /* OOB backlog add */
814 static inline void __sk_add_backlog(struct sock *sk, struct sk_buff *skb)
816 /* dont let skb dst not refcounted, we are going to leave rcu lock */
817 skb_dst_force(skb);
819 if (!sk->sk_backlog.tail)
820 sk->sk_backlog.head = skb;
821 else
822 sk->sk_backlog.tail->next = skb;
824 sk->sk_backlog.tail = skb;
825 skb->next = NULL;
829 * Take into account size of receive queue and backlog queue
830 * Do not take into account this skb truesize,
831 * to allow even a single big packet to come.
833 static inline bool sk_rcvqueues_full(const struct sock *sk, unsigned int limit)
835 unsigned int qsize = sk->sk_backlog.len + atomic_read(&sk->sk_rmem_alloc);
837 return qsize > limit;
840 /* The per-socket spinlock must be held here. */
841 static inline __must_check int sk_add_backlog(struct sock *sk, struct sk_buff *skb,
842 unsigned int limit)
844 if (sk_rcvqueues_full(sk, limit))
845 return -ENOBUFS;
848 * If the skb was allocated from pfmemalloc reserves, only
849 * allow SOCK_MEMALLOC sockets to use it as this socket is
850 * helping free memory
852 if (skb_pfmemalloc(skb) && !sock_flag(sk, SOCK_MEMALLOC))
853 return -ENOMEM;
855 __sk_add_backlog(sk, skb);
856 sk->sk_backlog.len += skb->truesize;
857 return 0;
860 int __sk_backlog_rcv(struct sock *sk, struct sk_buff *skb);
862 static inline int sk_backlog_rcv(struct sock *sk, struct sk_buff *skb)
864 if (sk_memalloc_socks() && skb_pfmemalloc(skb))
865 return __sk_backlog_rcv(sk, skb);
867 return sk->sk_backlog_rcv(sk, skb);
870 static inline void sk_incoming_cpu_update(struct sock *sk)
872 sk->sk_incoming_cpu = raw_smp_processor_id();
875 static inline void sock_rps_record_flow_hash(__u32 hash)
877 #ifdef CONFIG_RPS
878 struct rps_sock_flow_table *sock_flow_table;
880 rcu_read_lock();
881 sock_flow_table = rcu_dereference(rps_sock_flow_table);
882 rps_record_sock_flow(sock_flow_table, hash);
883 rcu_read_unlock();
884 #endif
887 static inline void sock_rps_record_flow(const struct sock *sk)
889 #ifdef CONFIG_RPS
890 sock_rps_record_flow_hash(sk->sk_rxhash);
891 #endif
894 static inline void sock_rps_save_rxhash(struct sock *sk,
895 const struct sk_buff *skb)
897 #ifdef CONFIG_RPS
898 if (unlikely(sk->sk_rxhash != skb->hash))
899 sk->sk_rxhash = skb->hash;
900 #endif
903 static inline void sock_rps_reset_rxhash(struct sock *sk)
905 #ifdef CONFIG_RPS
906 sk->sk_rxhash = 0;
907 #endif
910 #define sk_wait_event(__sk, __timeo, __condition) \
911 ({ int __rc; \
912 release_sock(__sk); \
913 __rc = __condition; \
914 if (!__rc) { \
915 *(__timeo) = schedule_timeout(*(__timeo)); \
917 sched_annotate_sleep(); \
918 lock_sock(__sk); \
919 __rc = __condition; \
920 __rc; \
923 int sk_stream_wait_connect(struct sock *sk, long *timeo_p);
924 int sk_stream_wait_memory(struct sock *sk, long *timeo_p);
925 void sk_stream_wait_close(struct sock *sk, long timeo_p);
926 int sk_stream_error(struct sock *sk, int flags, int err);
927 void sk_stream_kill_queues(struct sock *sk);
928 void sk_set_memalloc(struct sock *sk);
929 void sk_clear_memalloc(struct sock *sk);
931 int sk_wait_data(struct sock *sk, long *timeo, const struct sk_buff *skb);
933 struct request_sock_ops;
934 struct timewait_sock_ops;
935 struct inet_hashinfo;
936 struct raw_hashinfo;
937 struct module;
940 * caches using SLAB_DESTROY_BY_RCU should let .next pointer from nulls nodes
941 * un-modified. Special care is taken when initializing object to zero.
943 static inline void sk_prot_clear_nulls(struct sock *sk, int size)
945 if (offsetof(struct sock, sk_node.next) != 0)
946 memset(sk, 0, offsetof(struct sock, sk_node.next));
947 memset(&sk->sk_node.pprev, 0,
948 size - offsetof(struct sock, sk_node.pprev));
951 /* Networking protocol blocks we attach to sockets.
952 * socket layer -> transport layer interface
954 struct proto {
955 void (*close)(struct sock *sk,
956 long timeout);
957 int (*connect)(struct sock *sk,
958 struct sockaddr *uaddr,
959 int addr_len);
960 int (*disconnect)(struct sock *sk, int flags);
962 struct sock * (*accept)(struct sock *sk, int flags, int *err);
964 int (*ioctl)(struct sock *sk, int cmd,
965 unsigned long arg);
966 int (*init)(struct sock *sk);
967 void (*destroy)(struct sock *sk);
968 void (*shutdown)(struct sock *sk, int how);
969 int (*setsockopt)(struct sock *sk, int level,
970 int optname, char __user *optval,
971 unsigned int optlen);
972 int (*getsockopt)(struct sock *sk, int level,
973 int optname, char __user *optval,
974 int __user *option);
975 #ifdef CONFIG_COMPAT
976 int (*compat_setsockopt)(struct sock *sk,
977 int level,
978 int optname, char __user *optval,
979 unsigned int optlen);
980 int (*compat_getsockopt)(struct sock *sk,
981 int level,
982 int optname, char __user *optval,
983 int __user *option);
984 int (*compat_ioctl)(struct sock *sk,
985 unsigned int cmd, unsigned long arg);
986 #endif
987 int (*sendmsg)(struct sock *sk, struct msghdr *msg,
988 size_t len);
989 int (*recvmsg)(struct sock *sk, struct msghdr *msg,
990 size_t len, int noblock, int flags,
991 int *addr_len);
992 int (*sendpage)(struct sock *sk, struct page *page,
993 int offset, size_t size, int flags);
994 int (*bind)(struct sock *sk,
995 struct sockaddr *uaddr, int addr_len);
997 int (*backlog_rcv) (struct sock *sk,
998 struct sk_buff *skb);
1000 void (*release_cb)(struct sock *sk);
1002 /* Keeping track of sk's, looking them up, and port selection methods. */
1003 void (*hash)(struct sock *sk);
1004 void (*unhash)(struct sock *sk);
1005 void (*rehash)(struct sock *sk);
1006 int (*get_port)(struct sock *sk, unsigned short snum);
1007 void (*clear_sk)(struct sock *sk, int size);
1009 /* Keeping track of sockets in use */
1010 #ifdef CONFIG_PROC_FS
1011 unsigned int inuse_idx;
1012 #endif
1014 bool (*stream_memory_free)(const struct sock *sk);
1015 /* Memory pressure */
1016 void (*enter_memory_pressure)(struct sock *sk);
1017 atomic_long_t *memory_allocated; /* Current allocated memory. */
1018 struct percpu_counter *sockets_allocated; /* Current number of sockets. */
1020 * Pressure flag: try to collapse.
1021 * Technical note: it is used by multiple contexts non atomically.
1022 * All the __sk_mem_schedule() is of this nature: accounting
1023 * is strict, actions are advisory and have some latency.
1025 int *memory_pressure;
1026 long *sysctl_mem;
1027 int *sysctl_wmem;
1028 int *sysctl_rmem;
1029 int max_header;
1030 bool no_autobind;
1032 struct kmem_cache *slab;
1033 unsigned int obj_size;
1034 int slab_flags;
1036 struct percpu_counter *orphan_count;
1038 struct request_sock_ops *rsk_prot;
1039 struct timewait_sock_ops *twsk_prot;
1041 union {
1042 struct inet_hashinfo *hashinfo;
1043 struct udp_table *udp_table;
1044 struct raw_hashinfo *raw_hash;
1045 } h;
1047 struct module *owner;
1049 char name[32];
1051 struct list_head node;
1052 #ifdef SOCK_REFCNT_DEBUG
1053 atomic_t socks;
1054 #endif
1055 #ifdef CONFIG_MEMCG_KMEM
1057 * cgroup specific init/deinit functions. Called once for all
1058 * protocols that implement it, from cgroups populate function.
1059 * This function has to setup any files the protocol want to
1060 * appear in the kmem cgroup filesystem.
1062 int (*init_cgroup)(struct mem_cgroup *memcg,
1063 struct cgroup_subsys *ss);
1064 void (*destroy_cgroup)(struct mem_cgroup *memcg);
1065 struct cg_proto *(*proto_cgroup)(struct mem_cgroup *memcg);
1066 #endif
1069 int proto_register(struct proto *prot, int alloc_slab);
1070 void proto_unregister(struct proto *prot);
1072 #ifdef SOCK_REFCNT_DEBUG
1073 static inline void sk_refcnt_debug_inc(struct sock *sk)
1075 atomic_inc(&sk->sk_prot->socks);
1078 static inline void sk_refcnt_debug_dec(struct sock *sk)
1080 atomic_dec(&sk->sk_prot->socks);
1081 printk(KERN_DEBUG "%s socket %p released, %d are still alive\n",
1082 sk->sk_prot->name, sk, atomic_read(&sk->sk_prot->socks));
1085 static inline void sk_refcnt_debug_release(const struct sock *sk)
1087 if (atomic_read(&sk->sk_refcnt) != 1)
1088 printk(KERN_DEBUG "Destruction of the %s socket %p delayed, refcnt=%d\n",
1089 sk->sk_prot->name, sk, atomic_read(&sk->sk_refcnt));
1091 #else /* SOCK_REFCNT_DEBUG */
1092 #define sk_refcnt_debug_inc(sk) do { } while (0)
1093 #define sk_refcnt_debug_dec(sk) do { } while (0)
1094 #define sk_refcnt_debug_release(sk) do { } while (0)
1095 #endif /* SOCK_REFCNT_DEBUG */
1097 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_NET)
1098 extern struct static_key memcg_socket_limit_enabled;
1099 static inline struct cg_proto *parent_cg_proto(struct proto *proto,
1100 struct cg_proto *cg_proto)
1102 return proto->proto_cgroup(parent_mem_cgroup(cg_proto->memcg));
1104 #define mem_cgroup_sockets_enabled static_key_false(&memcg_socket_limit_enabled)
1105 #else
1106 #define mem_cgroup_sockets_enabled 0
1107 static inline struct cg_proto *parent_cg_proto(struct proto *proto,
1108 struct cg_proto *cg_proto)
1110 return NULL;
1112 #endif
1114 static inline bool sk_stream_memory_free(const struct sock *sk)
1116 if (sk->sk_wmem_queued >= sk->sk_sndbuf)
1117 return false;
1119 return sk->sk_prot->stream_memory_free ?
1120 sk->sk_prot->stream_memory_free(sk) : true;
1123 static inline bool sk_stream_is_writeable(const struct sock *sk)
1125 return sk_stream_wspace(sk) >= sk_stream_min_wspace(sk) &&
1126 sk_stream_memory_free(sk);
1130 static inline bool sk_has_memory_pressure(const struct sock *sk)
1132 return sk->sk_prot->memory_pressure != NULL;
1135 static inline bool sk_under_memory_pressure(const struct sock *sk)
1137 if (!sk->sk_prot->memory_pressure)
1138 return false;
1140 if (mem_cgroup_sockets_enabled && sk->sk_cgrp)
1141 return !!sk->sk_cgrp->memory_pressure;
1143 return !!*sk->sk_prot->memory_pressure;
1146 static inline void sk_leave_memory_pressure(struct sock *sk)
1148 int *memory_pressure = sk->sk_prot->memory_pressure;
1150 if (!memory_pressure)
1151 return;
1153 if (*memory_pressure)
1154 *memory_pressure = 0;
1156 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
1157 struct cg_proto *cg_proto = sk->sk_cgrp;
1158 struct proto *prot = sk->sk_prot;
1160 for (; cg_proto; cg_proto = parent_cg_proto(prot, cg_proto))
1161 cg_proto->memory_pressure = 0;
1166 static inline void sk_enter_memory_pressure(struct sock *sk)
1168 if (!sk->sk_prot->enter_memory_pressure)
1169 return;
1171 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
1172 struct cg_proto *cg_proto = sk->sk_cgrp;
1173 struct proto *prot = sk->sk_prot;
1175 for (; cg_proto; cg_proto = parent_cg_proto(prot, cg_proto))
1176 cg_proto->memory_pressure = 1;
1179 sk->sk_prot->enter_memory_pressure(sk);
1182 static inline long sk_prot_mem_limits(const struct sock *sk, int index)
1184 long *prot = sk->sk_prot->sysctl_mem;
1185 if (mem_cgroup_sockets_enabled && sk->sk_cgrp)
1186 prot = sk->sk_cgrp->sysctl_mem;
1187 return prot[index];
1190 static inline void memcg_memory_allocated_add(struct cg_proto *prot,
1191 unsigned long amt,
1192 int *parent_status)
1194 page_counter_charge(&prot->memory_allocated, amt);
1196 if (page_counter_read(&prot->memory_allocated) >
1197 prot->memory_allocated.limit)
1198 *parent_status = OVER_LIMIT;
1201 static inline void memcg_memory_allocated_sub(struct cg_proto *prot,
1202 unsigned long amt)
1204 page_counter_uncharge(&prot->memory_allocated, amt);
1207 static inline long
1208 sk_memory_allocated(const struct sock *sk)
1210 struct proto *prot = sk->sk_prot;
1212 if (mem_cgroup_sockets_enabled && sk->sk_cgrp)
1213 return page_counter_read(&sk->sk_cgrp->memory_allocated);
1215 return atomic_long_read(prot->memory_allocated);
1218 static inline long
1219 sk_memory_allocated_add(struct sock *sk, int amt, int *parent_status)
1221 struct proto *prot = sk->sk_prot;
1223 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
1224 memcg_memory_allocated_add(sk->sk_cgrp, amt, parent_status);
1225 /* update the root cgroup regardless */
1226 atomic_long_add_return(amt, prot->memory_allocated);
1227 return page_counter_read(&sk->sk_cgrp->memory_allocated);
1230 return atomic_long_add_return(amt, prot->memory_allocated);
1233 static inline void
1234 sk_memory_allocated_sub(struct sock *sk, int amt)
1236 struct proto *prot = sk->sk_prot;
1238 if (mem_cgroup_sockets_enabled && sk->sk_cgrp)
1239 memcg_memory_allocated_sub(sk->sk_cgrp, amt);
1241 atomic_long_sub(amt, prot->memory_allocated);
1244 static inline void sk_sockets_allocated_dec(struct sock *sk)
1246 struct proto *prot = sk->sk_prot;
1248 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
1249 struct cg_proto *cg_proto = sk->sk_cgrp;
1251 for (; cg_proto; cg_proto = parent_cg_proto(prot, cg_proto))
1252 percpu_counter_dec(&cg_proto->sockets_allocated);
1255 percpu_counter_dec(prot->sockets_allocated);
1258 static inline void sk_sockets_allocated_inc(struct sock *sk)
1260 struct proto *prot = sk->sk_prot;
1262 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
1263 struct cg_proto *cg_proto = sk->sk_cgrp;
1265 for (; cg_proto; cg_proto = parent_cg_proto(prot, cg_proto))
1266 percpu_counter_inc(&cg_proto->sockets_allocated);
1269 percpu_counter_inc(prot->sockets_allocated);
1272 static inline int
1273 sk_sockets_allocated_read_positive(struct sock *sk)
1275 struct proto *prot = sk->sk_prot;
1277 if (mem_cgroup_sockets_enabled && sk->sk_cgrp)
1278 return percpu_counter_read_positive(&sk->sk_cgrp->sockets_allocated);
1280 return percpu_counter_read_positive(prot->sockets_allocated);
1283 static inline int
1284 proto_sockets_allocated_sum_positive(struct proto *prot)
1286 return percpu_counter_sum_positive(prot->sockets_allocated);
1289 static inline long
1290 proto_memory_allocated(struct proto *prot)
1292 return atomic_long_read(prot->memory_allocated);
1295 static inline bool
1296 proto_memory_pressure(struct proto *prot)
1298 if (!prot->memory_pressure)
1299 return false;
1300 return !!*prot->memory_pressure;
1304 #ifdef CONFIG_PROC_FS
1305 /* Called with local bh disabled */
1306 void sock_prot_inuse_add(struct net *net, struct proto *prot, int inc);
1307 int sock_prot_inuse_get(struct net *net, struct proto *proto);
1308 #else
1309 static inline void sock_prot_inuse_add(struct net *net, struct proto *prot,
1310 int inc)
1313 #endif
1316 /* With per-bucket locks this operation is not-atomic, so that
1317 * this version is not worse.
1319 static inline void __sk_prot_rehash(struct sock *sk)
1321 sk->sk_prot->unhash(sk);
1322 sk->sk_prot->hash(sk);
1325 void sk_prot_clear_portaddr_nulls(struct sock *sk, int size);
1327 /* About 10 seconds */
1328 #define SOCK_DESTROY_TIME (10*HZ)
1330 /* Sockets 0-1023 can't be bound to unless you are superuser */
1331 #define PROT_SOCK 1024
1333 #define SHUTDOWN_MASK 3
1334 #define RCV_SHUTDOWN 1
1335 #define SEND_SHUTDOWN 2
1337 #define SOCK_SNDBUF_LOCK 1
1338 #define SOCK_RCVBUF_LOCK 2
1339 #define SOCK_BINDADDR_LOCK 4
1340 #define SOCK_BINDPORT_LOCK 8
1342 struct socket_alloc {
1343 struct socket socket;
1344 struct inode vfs_inode;
1347 static inline struct socket *SOCKET_I(struct inode *inode)
1349 return &container_of(inode, struct socket_alloc, vfs_inode)->socket;
1352 static inline struct inode *SOCK_INODE(struct socket *socket)
1354 return &container_of(socket, struct socket_alloc, socket)->vfs_inode;
1358 * Functions for memory accounting
1360 int __sk_mem_schedule(struct sock *sk, int size, int kind);
1361 void __sk_mem_reclaim(struct sock *sk, int amount);
1363 #define SK_MEM_QUANTUM ((int)PAGE_SIZE)
1364 #define SK_MEM_QUANTUM_SHIFT ilog2(SK_MEM_QUANTUM)
1365 #define SK_MEM_SEND 0
1366 #define SK_MEM_RECV 1
1368 static inline int sk_mem_pages(int amt)
1370 return (amt + SK_MEM_QUANTUM - 1) >> SK_MEM_QUANTUM_SHIFT;
1373 static inline bool sk_has_account(struct sock *sk)
1375 /* return true if protocol supports memory accounting */
1376 return !!sk->sk_prot->memory_allocated;
1379 static inline bool sk_wmem_schedule(struct sock *sk, int size)
1381 if (!sk_has_account(sk))
1382 return true;
1383 return size <= sk->sk_forward_alloc ||
1384 __sk_mem_schedule(sk, size, SK_MEM_SEND);
1387 static inline bool
1388 sk_rmem_schedule(struct sock *sk, struct sk_buff *skb, int size)
1390 if (!sk_has_account(sk))
1391 return true;
1392 return size<= sk->sk_forward_alloc ||
1393 __sk_mem_schedule(sk, size, SK_MEM_RECV) ||
1394 skb_pfmemalloc(skb);
1397 static inline void sk_mem_reclaim(struct sock *sk)
1399 if (!sk_has_account(sk))
1400 return;
1401 if (sk->sk_forward_alloc >= SK_MEM_QUANTUM)
1402 __sk_mem_reclaim(sk, sk->sk_forward_alloc);
1405 static inline void sk_mem_reclaim_partial(struct sock *sk)
1407 if (!sk_has_account(sk))
1408 return;
1409 if (sk->sk_forward_alloc > SK_MEM_QUANTUM)
1410 __sk_mem_reclaim(sk, sk->sk_forward_alloc - 1);
1413 static inline void sk_mem_charge(struct sock *sk, int size)
1415 if (!sk_has_account(sk))
1416 return;
1417 sk->sk_forward_alloc -= size;
1420 static inline void sk_mem_uncharge(struct sock *sk, int size)
1422 if (!sk_has_account(sk))
1423 return;
1424 sk->sk_forward_alloc += size;
1427 static inline void sk_wmem_free_skb(struct sock *sk, struct sk_buff *skb)
1429 sock_set_flag(sk, SOCK_QUEUE_SHRUNK);
1430 sk->sk_wmem_queued -= skb->truesize;
1431 sk_mem_uncharge(sk, skb->truesize);
1432 __kfree_skb(skb);
1435 /* Used by processes to "lock" a socket state, so that
1436 * interrupts and bottom half handlers won't change it
1437 * from under us. It essentially blocks any incoming
1438 * packets, so that we won't get any new data or any
1439 * packets that change the state of the socket.
1441 * While locked, BH processing will add new packets to
1442 * the backlog queue. This queue is processed by the
1443 * owner of the socket lock right before it is released.
1445 * Since ~2.3.5 it is also exclusive sleep lock serializing
1446 * accesses from user process context.
1448 #define sock_owned_by_user(sk) ((sk)->sk_lock.owned)
1450 static inline void sock_release_ownership(struct sock *sk)
1452 sk->sk_lock.owned = 0;
1456 * Macro so as to not evaluate some arguments when
1457 * lockdep is not enabled.
1459 * Mark both the sk_lock and the sk_lock.slock as a
1460 * per-address-family lock class.
1462 #define sock_lock_init_class_and_name(sk, sname, skey, name, key) \
1463 do { \
1464 sk->sk_lock.owned = 0; \
1465 init_waitqueue_head(&sk->sk_lock.wq); \
1466 spin_lock_init(&(sk)->sk_lock.slock); \
1467 debug_check_no_locks_freed((void *)&(sk)->sk_lock, \
1468 sizeof((sk)->sk_lock)); \
1469 lockdep_set_class_and_name(&(sk)->sk_lock.slock, \
1470 (skey), (sname)); \
1471 lockdep_init_map(&(sk)->sk_lock.dep_map, (name), (key), 0); \
1472 } while (0)
1474 void lock_sock_nested(struct sock *sk, int subclass);
1476 static inline void lock_sock(struct sock *sk)
1478 lock_sock_nested(sk, 0);
1481 void release_sock(struct sock *sk);
1483 /* BH context may only use the following locking interface. */
1484 #define bh_lock_sock(__sk) spin_lock(&((__sk)->sk_lock.slock))
1485 #define bh_lock_sock_nested(__sk) \
1486 spin_lock_nested(&((__sk)->sk_lock.slock), \
1487 SINGLE_DEPTH_NESTING)
1488 #define bh_unlock_sock(__sk) spin_unlock(&((__sk)->sk_lock.slock))
1490 bool lock_sock_fast(struct sock *sk);
1492 * unlock_sock_fast - complement of lock_sock_fast
1493 * @sk: socket
1494 * @slow: slow mode
1496 * fast unlock socket for user context.
1497 * If slow mode is on, we call regular release_sock()
1499 static inline void unlock_sock_fast(struct sock *sk, bool slow)
1501 if (slow)
1502 release_sock(sk);
1503 else
1504 spin_unlock_bh(&sk->sk_lock.slock);
1508 struct sock *sk_alloc(struct net *net, int family, gfp_t priority,
1509 struct proto *prot, int kern);
1510 void sk_free(struct sock *sk);
1511 void sk_destruct(struct sock *sk);
1512 struct sock *sk_clone_lock(const struct sock *sk, const gfp_t priority);
1514 struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force,
1515 gfp_t priority);
1516 void sock_wfree(struct sk_buff *skb);
1517 void skb_orphan_partial(struct sk_buff *skb);
1518 void sock_rfree(struct sk_buff *skb);
1519 void sock_efree(struct sk_buff *skb);
1520 #ifdef CONFIG_INET
1521 void sock_edemux(struct sk_buff *skb);
1522 #else
1523 #define sock_edemux(skb) sock_efree(skb)
1524 #endif
1526 int sock_setsockopt(struct socket *sock, int level, int op,
1527 char __user *optval, unsigned int optlen);
1529 int sock_getsockopt(struct socket *sock, int level, int op,
1530 char __user *optval, int __user *optlen);
1531 struct sk_buff *sock_alloc_send_skb(struct sock *sk, unsigned long size,
1532 int noblock, int *errcode);
1533 struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len,
1534 unsigned long data_len, int noblock,
1535 int *errcode, int max_page_order);
1536 void *sock_kmalloc(struct sock *sk, int size, gfp_t priority);
1537 void sock_kfree_s(struct sock *sk, void *mem, int size);
1538 void sock_kzfree_s(struct sock *sk, void *mem, int size);
1539 void sk_send_sigurg(struct sock *sk);
1541 struct sockcm_cookie {
1542 u32 mark;
1545 int sock_cmsg_send(struct sock *sk, struct msghdr *msg,
1546 struct sockcm_cookie *sockc);
1549 * Functions to fill in entries in struct proto_ops when a protocol
1550 * does not implement a particular function.
1552 int sock_no_bind(struct socket *, struct sockaddr *, int);
1553 int sock_no_connect(struct socket *, struct sockaddr *, int, int);
1554 int sock_no_socketpair(struct socket *, struct socket *);
1555 int sock_no_accept(struct socket *, struct socket *, int);
1556 int sock_no_getname(struct socket *, struct sockaddr *, int *, int);
1557 unsigned int sock_no_poll(struct file *, struct socket *,
1558 struct poll_table_struct *);
1559 int sock_no_ioctl(struct socket *, unsigned int, unsigned long);
1560 int sock_no_listen(struct socket *, int);
1561 int sock_no_shutdown(struct socket *, int);
1562 int sock_no_getsockopt(struct socket *, int , int, char __user *, int __user *);
1563 int sock_no_setsockopt(struct socket *, int, int, char __user *, unsigned int);
1564 int sock_no_sendmsg(struct socket *, struct msghdr *, size_t);
1565 int sock_no_recvmsg(struct socket *, struct msghdr *, size_t, int);
1566 int sock_no_mmap(struct file *file, struct socket *sock,
1567 struct vm_area_struct *vma);
1568 ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset,
1569 size_t size, int flags);
1572 * Functions to fill in entries in struct proto_ops when a protocol
1573 * uses the inet style.
1575 int sock_common_getsockopt(struct socket *sock, int level, int optname,
1576 char __user *optval, int __user *optlen);
1577 int sock_common_recvmsg(struct socket *sock, struct msghdr *msg, size_t size,
1578 int flags);
1579 int sock_common_setsockopt(struct socket *sock, int level, int optname,
1580 char __user *optval, unsigned int optlen);
1581 int compat_sock_common_getsockopt(struct socket *sock, int level,
1582 int optname, char __user *optval, int __user *optlen);
1583 int compat_sock_common_setsockopt(struct socket *sock, int level,
1584 int optname, char __user *optval, unsigned int optlen);
1586 void sk_common_release(struct sock *sk);
1589 * Default socket callbacks and setup code
1592 /* Initialise core socket variables */
1593 void sock_init_data(struct socket *sock, struct sock *sk);
1596 * Socket reference counting postulates.
1598 * * Each user of socket SHOULD hold a reference count.
1599 * * Each access point to socket (an hash table bucket, reference from a list,
1600 * running timer, skb in flight MUST hold a reference count.
1601 * * When reference count hits 0, it means it will never increase back.
1602 * * When reference count hits 0, it means that no references from
1603 * outside exist to this socket and current process on current CPU
1604 * is last user and may/should destroy this socket.
1605 * * sk_free is called from any context: process, BH, IRQ. When
1606 * it is called, socket has no references from outside -> sk_free
1607 * may release descendant resources allocated by the socket, but
1608 * to the time when it is called, socket is NOT referenced by any
1609 * hash tables, lists etc.
1610 * * Packets, delivered from outside (from network or from another process)
1611 * and enqueued on receive/error queues SHOULD NOT grab reference count,
1612 * when they sit in queue. Otherwise, packets will leak to hole, when
1613 * socket is looked up by one cpu and unhasing is made by another CPU.
1614 * It is true for udp/raw, netlink (leak to receive and error queues), tcp
1615 * (leak to backlog). Packet socket does all the processing inside
1616 * BR_NETPROTO_LOCK, so that it has not this race condition. UNIX sockets
1617 * use separate SMP lock, so that they are prone too.
1620 /* Ungrab socket and destroy it, if it was the last reference. */
1621 static inline void sock_put(struct sock *sk)
1623 if (atomic_dec_and_test(&sk->sk_refcnt))
1624 sk_free(sk);
1626 /* Generic version of sock_put(), dealing with all sockets
1627 * (TCP_TIMEWAIT, TCP_NEW_SYN_RECV, ESTABLISHED...)
1629 void sock_gen_put(struct sock *sk);
1631 int sk_receive_skb(struct sock *sk, struct sk_buff *skb, const int nested);
1633 static inline void sk_tx_queue_set(struct sock *sk, int tx_queue)
1635 sk->sk_tx_queue_mapping = tx_queue;
1638 static inline void sk_tx_queue_clear(struct sock *sk)
1640 sk->sk_tx_queue_mapping = -1;
1643 static inline int sk_tx_queue_get(const struct sock *sk)
1645 return sk ? sk->sk_tx_queue_mapping : -1;
1648 static inline void sk_set_socket(struct sock *sk, struct socket *sock)
1650 sk_tx_queue_clear(sk);
1651 sk->sk_socket = sock;
1654 static inline wait_queue_head_t *sk_sleep(struct sock *sk)
1656 BUILD_BUG_ON(offsetof(struct socket_wq, wait) != 0);
1657 return &rcu_dereference_raw(sk->sk_wq)->wait;
1659 /* Detach socket from process context.
1660 * Announce socket dead, detach it from wait queue and inode.
1661 * Note that parent inode held reference count on this struct sock,
1662 * we do not release it in this function, because protocol
1663 * probably wants some additional cleanups or even continuing
1664 * to work with this socket (TCP).
1666 static inline void sock_orphan(struct sock *sk)
1668 write_lock_bh(&sk->sk_callback_lock);
1669 sock_set_flag(sk, SOCK_DEAD);
1670 sk_set_socket(sk, NULL);
1671 sk->sk_wq = NULL;
1672 write_unlock_bh(&sk->sk_callback_lock);
1675 static inline void sock_graft(struct sock *sk, struct socket *parent)
1677 write_lock_bh(&sk->sk_callback_lock);
1678 sk->sk_wq = parent->wq;
1679 parent->sk = sk;
1680 sk_set_socket(sk, parent);
1681 security_sock_graft(sk, parent);
1682 write_unlock_bh(&sk->sk_callback_lock);
1685 kuid_t sock_i_uid(struct sock *sk);
1686 unsigned long sock_i_ino(struct sock *sk);
1688 static inline u32 net_tx_rndhash(void)
1690 u32 v = prandom_u32();
1692 return v ?: 1;
1695 static inline void sk_set_txhash(struct sock *sk)
1697 sk->sk_txhash = net_tx_rndhash();
1700 static inline void sk_rethink_txhash(struct sock *sk)
1702 if (sk->sk_txhash)
1703 sk_set_txhash(sk);
1706 static inline struct dst_entry *
1707 __sk_dst_get(struct sock *sk)
1709 return rcu_dereference_check(sk->sk_dst_cache, sock_owned_by_user(sk) ||
1710 lockdep_is_held(&sk->sk_lock.slock));
1713 static inline struct dst_entry *
1714 sk_dst_get(struct sock *sk)
1716 struct dst_entry *dst;
1718 rcu_read_lock();
1719 dst = rcu_dereference(sk->sk_dst_cache);
1720 if (dst && !atomic_inc_not_zero(&dst->__refcnt))
1721 dst = NULL;
1722 rcu_read_unlock();
1723 return dst;
1726 static inline void dst_negative_advice(struct sock *sk)
1728 struct dst_entry *ndst, *dst = __sk_dst_get(sk);
1730 sk_rethink_txhash(sk);
1732 if (dst && dst->ops->negative_advice) {
1733 ndst = dst->ops->negative_advice(dst);
1735 if (ndst != dst) {
1736 rcu_assign_pointer(sk->sk_dst_cache, ndst);
1737 sk_tx_queue_clear(sk);
1742 static inline void
1743 __sk_dst_set(struct sock *sk, struct dst_entry *dst)
1745 struct dst_entry *old_dst;
1747 sk_tx_queue_clear(sk);
1749 * This can be called while sk is owned by the caller only,
1750 * with no state that can be checked in a rcu_dereference_check() cond
1752 old_dst = rcu_dereference_raw(sk->sk_dst_cache);
1753 rcu_assign_pointer(sk->sk_dst_cache, dst);
1754 dst_release(old_dst);
1757 static inline void
1758 sk_dst_set(struct sock *sk, struct dst_entry *dst)
1760 struct dst_entry *old_dst;
1762 sk_tx_queue_clear(sk);
1763 old_dst = xchg((__force struct dst_entry **)&sk->sk_dst_cache, dst);
1764 dst_release(old_dst);
1767 static inline void
1768 __sk_dst_reset(struct sock *sk)
1770 __sk_dst_set(sk, NULL);
1773 static inline void
1774 sk_dst_reset(struct sock *sk)
1776 sk_dst_set(sk, NULL);
1779 struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie);
1781 struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie);
1783 bool sk_mc_loop(struct sock *sk);
1785 static inline bool sk_can_gso(const struct sock *sk)
1787 return net_gso_ok(sk->sk_route_caps, sk->sk_gso_type);
1790 void sk_setup_caps(struct sock *sk, struct dst_entry *dst);
1792 static inline void sk_nocaps_add(struct sock *sk, netdev_features_t flags)
1794 sk->sk_route_nocaps |= flags;
1795 sk->sk_route_caps &= ~flags;
1798 static inline int skb_do_copy_data_nocache(struct sock *sk, struct sk_buff *skb,
1799 struct iov_iter *from, char *to,
1800 int copy, int offset)
1802 if (skb->ip_summed == CHECKSUM_NONE) {
1803 __wsum csum = 0;
1804 if (csum_and_copy_from_iter(to, copy, &csum, from) != copy)
1805 return -EFAULT;
1806 skb->csum = csum_block_add(skb->csum, csum, offset);
1807 } else if (sk->sk_route_caps & NETIF_F_NOCACHE_COPY) {
1808 if (copy_from_iter_nocache(to, copy, from) != copy)
1809 return -EFAULT;
1810 } else if (copy_from_iter(to, copy, from) != copy)
1811 return -EFAULT;
1813 return 0;
1816 static inline int skb_add_data_nocache(struct sock *sk, struct sk_buff *skb,
1817 struct iov_iter *from, int copy)
1819 int err, offset = skb->len;
1821 err = skb_do_copy_data_nocache(sk, skb, from, skb_put(skb, copy),
1822 copy, offset);
1823 if (err)
1824 __skb_trim(skb, offset);
1826 return err;
1829 static inline int skb_copy_to_page_nocache(struct sock *sk, struct iov_iter *from,
1830 struct sk_buff *skb,
1831 struct page *page,
1832 int off, int copy)
1834 int err;
1836 err = skb_do_copy_data_nocache(sk, skb, from, page_address(page) + off,
1837 copy, skb->len);
1838 if (err)
1839 return err;
1841 skb->len += copy;
1842 skb->data_len += copy;
1843 skb->truesize += copy;
1844 sk->sk_wmem_queued += copy;
1845 sk_mem_charge(sk, copy);
1846 return 0;
1850 * sk_wmem_alloc_get - returns write allocations
1851 * @sk: socket
1853 * Returns sk_wmem_alloc minus initial offset of one
1855 static inline int sk_wmem_alloc_get(const struct sock *sk)
1857 return atomic_read(&sk->sk_wmem_alloc) - 1;
1861 * sk_rmem_alloc_get - returns read allocations
1862 * @sk: socket
1864 * Returns sk_rmem_alloc
1866 static inline int sk_rmem_alloc_get(const struct sock *sk)
1868 return atomic_read(&sk->sk_rmem_alloc);
1872 * sk_has_allocations - check if allocations are outstanding
1873 * @sk: socket
1875 * Returns true if socket has write or read allocations
1877 static inline bool sk_has_allocations(const struct sock *sk)
1879 return sk_wmem_alloc_get(sk) || sk_rmem_alloc_get(sk);
1883 * wq_has_sleeper - check if there are any waiting processes
1884 * @wq: struct socket_wq
1886 * Returns true if socket_wq has waiting processes
1888 * The purpose of the wq_has_sleeper and sock_poll_wait is to wrap the memory
1889 * barrier call. They were added due to the race found within the tcp code.
1891 * Consider following tcp code paths:
1893 * CPU1 CPU2
1895 * sys_select receive packet
1896 * ... ...
1897 * __add_wait_queue update tp->rcv_nxt
1898 * ... ...
1899 * tp->rcv_nxt check sock_def_readable
1900 * ... {
1901 * schedule rcu_read_lock();
1902 * wq = rcu_dereference(sk->sk_wq);
1903 * if (wq && waitqueue_active(&wq->wait))
1904 * wake_up_interruptible(&wq->wait)
1905 * ...
1908 * The race for tcp fires when the __add_wait_queue changes done by CPU1 stay
1909 * in its cache, and so does the tp->rcv_nxt update on CPU2 side. The CPU1
1910 * could then endup calling schedule and sleep forever if there are no more
1911 * data on the socket.
1914 static inline bool wq_has_sleeper(struct socket_wq *wq)
1916 /* We need to be sure we are in sync with the
1917 * add_wait_queue modifications to the wait queue.
1919 * This memory barrier is paired in the sock_poll_wait.
1921 smp_mb();
1922 return wq && waitqueue_active(&wq->wait);
1926 * sock_poll_wait - place memory barrier behind the poll_wait call.
1927 * @filp: file
1928 * @wait_address: socket wait queue
1929 * @p: poll_table
1931 * See the comments in the wq_has_sleeper function.
1933 static inline void sock_poll_wait(struct file *filp,
1934 wait_queue_head_t *wait_address, poll_table *p)
1936 if (!poll_does_not_wait(p) && wait_address) {
1937 poll_wait(filp, wait_address, p);
1938 /* We need to be sure we are in sync with the
1939 * socket flags modification.
1941 * This memory barrier is paired in the wq_has_sleeper.
1943 smp_mb();
1947 static inline void skb_set_hash_from_sk(struct sk_buff *skb, struct sock *sk)
1949 if (sk->sk_txhash) {
1950 skb->l4_hash = 1;
1951 skb->hash = sk->sk_txhash;
1955 void skb_set_owner_w(struct sk_buff *skb, struct sock *sk);
1958 * Queue a received datagram if it will fit. Stream and sequenced
1959 * protocols can't normally use this as they need to fit buffers in
1960 * and play with them.
1962 * Inlined as it's very short and called for pretty much every
1963 * packet ever received.
1965 static inline void skb_set_owner_r(struct sk_buff *skb, struct sock *sk)
1967 skb_orphan(skb);
1968 skb->sk = sk;
1969 skb->destructor = sock_rfree;
1970 atomic_add(skb->truesize, &sk->sk_rmem_alloc);
1971 sk_mem_charge(sk, skb->truesize);
1974 void sk_reset_timer(struct sock *sk, struct timer_list *timer,
1975 unsigned long expires);
1977 void sk_stop_timer(struct sock *sk, struct timer_list *timer);
1979 int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb);
1981 int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb);
1982 struct sk_buff *sock_dequeue_err_skb(struct sock *sk);
1985 * Recover an error report and clear atomically
1988 static inline int sock_error(struct sock *sk)
1990 int err;
1991 if (likely(!sk->sk_err))
1992 return 0;
1993 err = xchg(&sk->sk_err, 0);
1994 return -err;
1997 static inline unsigned long sock_wspace(struct sock *sk)
1999 int amt = 0;
2001 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
2002 amt = sk->sk_sndbuf - atomic_read(&sk->sk_wmem_alloc);
2003 if (amt < 0)
2004 amt = 0;
2006 return amt;
2009 /* Note:
2010 * We use sk->sk_wq_raw, from contexts knowing this
2011 * pointer is not NULL and cannot disappear/change.
2013 static inline void sk_set_bit(int nr, struct sock *sk)
2015 set_bit(nr, &sk->sk_wq_raw->flags);
2018 static inline void sk_clear_bit(int nr, struct sock *sk)
2020 clear_bit(nr, &sk->sk_wq_raw->flags);
2023 static inline void sk_wake_async(const struct sock *sk, int how, int band)
2025 if (sock_flag(sk, SOCK_FASYNC)) {
2026 rcu_read_lock();
2027 sock_wake_async(rcu_dereference(sk->sk_wq), how, band);
2028 rcu_read_unlock();
2032 /* Since sk_{r,w}mem_alloc sums skb->truesize, even a small frame might
2033 * need sizeof(sk_buff) + MTU + padding, unless net driver perform copybreak.
2034 * Note: for send buffers, TCP works better if we can build two skbs at
2035 * minimum.
2037 #define TCP_SKB_MIN_TRUESIZE (2048 + SKB_DATA_ALIGN(sizeof(struct sk_buff)))
2039 #define SOCK_MIN_SNDBUF (TCP_SKB_MIN_TRUESIZE * 2)
2040 #define SOCK_MIN_RCVBUF TCP_SKB_MIN_TRUESIZE
2042 static inline void sk_stream_moderate_sndbuf(struct sock *sk)
2044 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK)) {
2045 sk->sk_sndbuf = min(sk->sk_sndbuf, sk->sk_wmem_queued >> 1);
2046 sk->sk_sndbuf = max_t(u32, sk->sk_sndbuf, SOCK_MIN_SNDBUF);
2050 struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp,
2051 bool force_schedule);
2054 * sk_page_frag - return an appropriate page_frag
2055 * @sk: socket
2057 * If socket allocation mode allows current thread to sleep, it means its
2058 * safe to use the per task page_frag instead of the per socket one.
2060 static inline struct page_frag *sk_page_frag(struct sock *sk)
2062 if (gfpflags_allow_blocking(sk->sk_allocation))
2063 return &current->task_frag;
2065 return &sk->sk_frag;
2068 bool sk_page_frag_refill(struct sock *sk, struct page_frag *pfrag);
2071 * Default write policy as shown to user space via poll/select/SIGIO
2073 static inline bool sock_writeable(const struct sock *sk)
2075 return atomic_read(&sk->sk_wmem_alloc) < (sk->sk_sndbuf >> 1);
2078 static inline gfp_t gfp_any(void)
2080 return in_softirq() ? GFP_ATOMIC : GFP_KERNEL;
2083 static inline long sock_rcvtimeo(const struct sock *sk, bool noblock)
2085 return noblock ? 0 : sk->sk_rcvtimeo;
2088 static inline long sock_sndtimeo(const struct sock *sk, bool noblock)
2090 return noblock ? 0 : sk->sk_sndtimeo;
2093 static inline int sock_rcvlowat(const struct sock *sk, int waitall, int len)
2095 return (waitall ? len : min_t(int, sk->sk_rcvlowat, len)) ? : 1;
2098 /* Alas, with timeout socket operations are not restartable.
2099 * Compare this to poll().
2101 static inline int sock_intr_errno(long timeo)
2103 return timeo == MAX_SCHEDULE_TIMEOUT ? -ERESTARTSYS : -EINTR;
2106 struct sock_skb_cb {
2107 u32 dropcount;
2110 /* Store sock_skb_cb at the end of skb->cb[] so protocol families
2111 * using skb->cb[] would keep using it directly and utilize its
2112 * alignement guarantee.
2114 #define SOCK_SKB_CB_OFFSET ((FIELD_SIZEOF(struct sk_buff, cb) - \
2115 sizeof(struct sock_skb_cb)))
2117 #define SOCK_SKB_CB(__skb) ((struct sock_skb_cb *)((__skb)->cb + \
2118 SOCK_SKB_CB_OFFSET))
2120 #define sock_skb_cb_check_size(size) \
2121 BUILD_BUG_ON((size) > SOCK_SKB_CB_OFFSET)
2123 static inline void
2124 sock_skb_set_dropcount(const struct sock *sk, struct sk_buff *skb)
2126 SOCK_SKB_CB(skb)->dropcount = atomic_read(&sk->sk_drops);
2129 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
2130 struct sk_buff *skb);
2131 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
2132 struct sk_buff *skb);
2134 static inline void
2135 sock_recv_timestamp(struct msghdr *msg, struct sock *sk, struct sk_buff *skb)
2137 ktime_t kt = skb->tstamp;
2138 struct skb_shared_hwtstamps *hwtstamps = skb_hwtstamps(skb);
2141 * generate control messages if
2142 * - receive time stamping in software requested
2143 * - software time stamp available and wanted
2144 * - hardware time stamps available and wanted
2146 if (sock_flag(sk, SOCK_RCVTSTAMP) ||
2147 (sk->sk_tsflags & SOF_TIMESTAMPING_RX_SOFTWARE) ||
2148 (kt.tv64 && sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) ||
2149 (hwtstamps->hwtstamp.tv64 &&
2150 (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE)))
2151 __sock_recv_timestamp(msg, sk, skb);
2152 else
2153 sk->sk_stamp = kt;
2155 if (sock_flag(sk, SOCK_WIFI_STATUS) && skb->wifi_acked_valid)
2156 __sock_recv_wifi_status(msg, sk, skb);
2159 void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
2160 struct sk_buff *skb);
2162 static inline void sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
2163 struct sk_buff *skb)
2165 #define FLAGS_TS_OR_DROPS ((1UL << SOCK_RXQ_OVFL) | \
2166 (1UL << SOCK_RCVTSTAMP))
2167 #define TSFLAGS_ANY (SOF_TIMESTAMPING_SOFTWARE | \
2168 SOF_TIMESTAMPING_RAW_HARDWARE)
2170 if (sk->sk_flags & FLAGS_TS_OR_DROPS || sk->sk_tsflags & TSFLAGS_ANY)
2171 __sock_recv_ts_and_drops(msg, sk, skb);
2172 else
2173 sk->sk_stamp = skb->tstamp;
2176 void __sock_tx_timestamp(const struct sock *sk, __u8 *tx_flags);
2179 * sock_tx_timestamp - checks whether the outgoing packet is to be time stamped
2180 * @sk: socket sending this packet
2181 * @tx_flags: completed with instructions for time stamping
2183 * Note : callers should take care of initial *tx_flags value (usually 0)
2185 static inline void sock_tx_timestamp(const struct sock *sk, __u8 *tx_flags)
2187 if (unlikely(sk->sk_tsflags))
2188 __sock_tx_timestamp(sk, tx_flags);
2189 if (unlikely(sock_flag(sk, SOCK_WIFI_STATUS)))
2190 *tx_flags |= SKBTX_WIFI_STATUS;
2194 * sk_eat_skb - Release a skb if it is no longer needed
2195 * @sk: socket to eat this skb from
2196 * @skb: socket buffer to eat
2198 * This routine must be called with interrupts disabled or with the socket
2199 * locked so that the sk_buff queue operation is ok.
2201 static inline void sk_eat_skb(struct sock *sk, struct sk_buff *skb)
2203 __skb_unlink(skb, &sk->sk_receive_queue);
2204 __kfree_skb(skb);
2207 static inline
2208 struct net *sock_net(const struct sock *sk)
2210 return read_pnet(&sk->sk_net);
2213 static inline
2214 void sock_net_set(struct sock *sk, struct net *net)
2216 write_pnet(&sk->sk_net, net);
2219 static inline struct sock *skb_steal_sock(struct sk_buff *skb)
2221 if (skb->sk) {
2222 struct sock *sk = skb->sk;
2224 skb->destructor = NULL;
2225 skb->sk = NULL;
2226 return sk;
2228 return NULL;
2231 /* This helper checks if a socket is a full socket,
2232 * ie _not_ a timewait or request socket.
2234 static inline bool sk_fullsock(const struct sock *sk)
2236 return (1 << sk->sk_state) & ~(TCPF_TIME_WAIT | TCPF_NEW_SYN_RECV);
2239 /* This helper checks if a socket is a LISTEN or NEW_SYN_RECV
2240 * SYNACK messages can be attached to either ones (depending on SYNCOOKIE)
2242 static inline bool sk_listener(const struct sock *sk)
2244 return (1 << sk->sk_state) & (TCPF_LISTEN | TCPF_NEW_SYN_RECV);
2248 * sk_state_load - read sk->sk_state for lockless contexts
2249 * @sk: socket pointer
2251 * Paired with sk_state_store(). Used in places we do not hold socket lock :
2252 * tcp_diag_get_info(), tcp_get_info(), tcp_poll(), get_tcp4_sock() ...
2254 static inline int sk_state_load(const struct sock *sk)
2256 return smp_load_acquire(&sk->sk_state);
2260 * sk_state_store - update sk->sk_state
2261 * @sk: socket pointer
2262 * @newstate: new state
2264 * Paired with sk_state_load(). Should be used in contexts where
2265 * state change might impact lockless readers.
2267 static inline void sk_state_store(struct sock *sk, int newstate)
2269 smp_store_release(&sk->sk_state, newstate);
2272 void sock_enable_timestamp(struct sock *sk, int flag);
2273 int sock_get_timestamp(struct sock *, struct timeval __user *);
2274 int sock_get_timestampns(struct sock *, struct timespec __user *);
2275 int sock_recv_errqueue(struct sock *sk, struct msghdr *msg, int len, int level,
2276 int type);
2278 bool sk_ns_capable(const struct sock *sk,
2279 struct user_namespace *user_ns, int cap);
2280 bool sk_capable(const struct sock *sk, int cap);
2281 bool sk_net_capable(const struct sock *sk, int cap);
2283 extern __u32 sysctl_wmem_max;
2284 extern __u32 sysctl_rmem_max;
2286 extern int sysctl_tstamp_allow_data;
2287 extern int sysctl_optmem_max;
2289 extern __u32 sysctl_wmem_default;
2290 extern __u32 sysctl_rmem_default;
2292 #endif /* _SOCK_H */