irqchip/zevio: Use irq_data_get_chip_type() helper
[linux/fpc-iii.git] / kernel / rcu / tree.c
blobf07343b54fe5a29d4fcabe7e78b9c3ea79029414
1 /*
2 * Read-Copy Update mechanism for mutual exclusion
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, you can access it online at
16 * http://www.gnu.org/licenses/gpl-2.0.html.
18 * Copyright IBM Corporation, 2008
20 * Authors: Dipankar Sarma <dipankar@in.ibm.com>
21 * Manfred Spraul <manfred@colorfullife.com>
22 * Paul E. McKenney <paulmck@linux.vnet.ibm.com> Hierarchical version
24 * Based on the original work by Paul McKenney <paulmck@us.ibm.com>
25 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
27 * For detailed explanation of Read-Copy Update mechanism see -
28 * Documentation/RCU
30 #include <linux/types.h>
31 #include <linux/kernel.h>
32 #include <linux/init.h>
33 #include <linux/spinlock.h>
34 #include <linux/smp.h>
35 #include <linux/rcupdate.h>
36 #include <linux/interrupt.h>
37 #include <linux/sched.h>
38 #include <linux/nmi.h>
39 #include <linux/atomic.h>
40 #include <linux/bitops.h>
41 #include <linux/export.h>
42 #include <linux/completion.h>
43 #include <linux/moduleparam.h>
44 #include <linux/module.h>
45 #include <linux/percpu.h>
46 #include <linux/notifier.h>
47 #include <linux/cpu.h>
48 #include <linux/mutex.h>
49 #include <linux/time.h>
50 #include <linux/kernel_stat.h>
51 #include <linux/wait.h>
52 #include <linux/kthread.h>
53 #include <linux/prefetch.h>
54 #include <linux/delay.h>
55 #include <linux/stop_machine.h>
56 #include <linux/random.h>
57 #include <linux/trace_events.h>
58 #include <linux/suspend.h>
60 #include "tree.h"
61 #include "rcu.h"
63 MODULE_ALIAS("rcutree");
64 #ifdef MODULE_PARAM_PREFIX
65 #undef MODULE_PARAM_PREFIX
66 #endif
67 #define MODULE_PARAM_PREFIX "rcutree."
69 /* Data structures. */
71 static struct lock_class_key rcu_node_class[RCU_NUM_LVLS];
72 static struct lock_class_key rcu_fqs_class[RCU_NUM_LVLS];
73 static struct lock_class_key rcu_exp_class[RCU_NUM_LVLS];
76 * In order to export the rcu_state name to the tracing tools, it
77 * needs to be added in the __tracepoint_string section.
78 * This requires defining a separate variable tp_<sname>_varname
79 * that points to the string being used, and this will allow
80 * the tracing userspace tools to be able to decipher the string
81 * address to the matching string.
83 #ifdef CONFIG_TRACING
84 # define DEFINE_RCU_TPS(sname) \
85 static char sname##_varname[] = #sname; \
86 static const char *tp_##sname##_varname __used __tracepoint_string = sname##_varname;
87 # define RCU_STATE_NAME(sname) sname##_varname
88 #else
89 # define DEFINE_RCU_TPS(sname)
90 # define RCU_STATE_NAME(sname) __stringify(sname)
91 #endif
93 #define RCU_STATE_INITIALIZER(sname, sabbr, cr) \
94 DEFINE_RCU_TPS(sname) \
95 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rcu_data, sname##_data); \
96 struct rcu_state sname##_state = { \
97 .level = { &sname##_state.node[0] }, \
98 .rda = &sname##_data, \
99 .call = cr, \
100 .gp_state = RCU_GP_IDLE, \
101 .gpnum = 0UL - 300UL, \
102 .completed = 0UL - 300UL, \
103 .orphan_lock = __RAW_SPIN_LOCK_UNLOCKED(&sname##_state.orphan_lock), \
104 .orphan_nxttail = &sname##_state.orphan_nxtlist, \
105 .orphan_donetail = &sname##_state.orphan_donelist, \
106 .barrier_mutex = __MUTEX_INITIALIZER(sname##_state.barrier_mutex), \
107 .name = RCU_STATE_NAME(sname), \
108 .abbr = sabbr, \
111 RCU_STATE_INITIALIZER(rcu_sched, 's', call_rcu_sched);
112 RCU_STATE_INITIALIZER(rcu_bh, 'b', call_rcu_bh);
114 static struct rcu_state *const rcu_state_p;
115 static struct rcu_data __percpu *const rcu_data_p;
116 LIST_HEAD(rcu_struct_flavors);
118 /* Dump rcu_node combining tree at boot to verify correct setup. */
119 static bool dump_tree;
120 module_param(dump_tree, bool, 0444);
121 /* Control rcu_node-tree auto-balancing at boot time. */
122 static bool rcu_fanout_exact;
123 module_param(rcu_fanout_exact, bool, 0444);
124 /* Increase (but not decrease) the RCU_FANOUT_LEAF at boot time. */
125 static int rcu_fanout_leaf = RCU_FANOUT_LEAF;
126 module_param(rcu_fanout_leaf, int, 0444);
127 int rcu_num_lvls __read_mostly = RCU_NUM_LVLS;
128 /* Number of rcu_nodes at specified level. */
129 static int num_rcu_lvl[] = NUM_RCU_LVL_INIT;
130 int rcu_num_nodes __read_mostly = NUM_RCU_NODES; /* Total # rcu_nodes in use. */
133 * The rcu_scheduler_active variable transitions from zero to one just
134 * before the first task is spawned. So when this variable is zero, RCU
135 * can assume that there is but one task, allowing RCU to (for example)
136 * optimize synchronize_sched() to a simple barrier(). When this variable
137 * is one, RCU must actually do all the hard work required to detect real
138 * grace periods. This variable is also used to suppress boot-time false
139 * positives from lockdep-RCU error checking.
141 int rcu_scheduler_active __read_mostly;
142 EXPORT_SYMBOL_GPL(rcu_scheduler_active);
145 * The rcu_scheduler_fully_active variable transitions from zero to one
146 * during the early_initcall() processing, which is after the scheduler
147 * is capable of creating new tasks. So RCU processing (for example,
148 * creating tasks for RCU priority boosting) must be delayed until after
149 * rcu_scheduler_fully_active transitions from zero to one. We also
150 * currently delay invocation of any RCU callbacks until after this point.
152 * It might later prove better for people registering RCU callbacks during
153 * early boot to take responsibility for these callbacks, but one step at
154 * a time.
156 static int rcu_scheduler_fully_active __read_mostly;
158 static void rcu_init_new_rnp(struct rcu_node *rnp_leaf);
159 static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf);
160 static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu);
161 static void invoke_rcu_core(void);
162 static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp);
163 static void rcu_report_exp_rdp(struct rcu_state *rsp,
164 struct rcu_data *rdp, bool wake);
166 /* rcuc/rcub kthread realtime priority */
167 #ifdef CONFIG_RCU_KTHREAD_PRIO
168 static int kthread_prio = CONFIG_RCU_KTHREAD_PRIO;
169 #else /* #ifdef CONFIG_RCU_KTHREAD_PRIO */
170 static int kthread_prio = IS_ENABLED(CONFIG_RCU_BOOST) ? 1 : 0;
171 #endif /* #else #ifdef CONFIG_RCU_KTHREAD_PRIO */
172 module_param(kthread_prio, int, 0644);
174 /* Delay in jiffies for grace-period initialization delays, debug only. */
176 #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_PREINIT
177 static int gp_preinit_delay = CONFIG_RCU_TORTURE_TEST_SLOW_PREINIT_DELAY;
178 module_param(gp_preinit_delay, int, 0644);
179 #else /* #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_PREINIT */
180 static const int gp_preinit_delay;
181 #endif /* #else #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_PREINIT */
183 #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_INIT
184 static int gp_init_delay = CONFIG_RCU_TORTURE_TEST_SLOW_INIT_DELAY;
185 module_param(gp_init_delay, int, 0644);
186 #else /* #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_INIT */
187 static const int gp_init_delay;
188 #endif /* #else #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_INIT */
190 #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_CLEANUP
191 static int gp_cleanup_delay = CONFIG_RCU_TORTURE_TEST_SLOW_CLEANUP_DELAY;
192 module_param(gp_cleanup_delay, int, 0644);
193 #else /* #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_CLEANUP */
194 static const int gp_cleanup_delay;
195 #endif /* #else #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_CLEANUP */
198 * Number of grace periods between delays, normalized by the duration of
199 * the delay. The longer the the delay, the more the grace periods between
200 * each delay. The reason for this normalization is that it means that,
201 * for non-zero delays, the overall slowdown of grace periods is constant
202 * regardless of the duration of the delay. This arrangement balances
203 * the need for long delays to increase some race probabilities with the
204 * need for fast grace periods to increase other race probabilities.
206 #define PER_RCU_NODE_PERIOD 3 /* Number of grace periods between delays. */
209 * Track the rcutorture test sequence number and the update version
210 * number within a given test. The rcutorture_testseq is incremented
211 * on every rcutorture module load and unload, so has an odd value
212 * when a test is running. The rcutorture_vernum is set to zero
213 * when rcutorture starts and is incremented on each rcutorture update.
214 * These variables enable correlating rcutorture output with the
215 * RCU tracing information.
217 unsigned long rcutorture_testseq;
218 unsigned long rcutorture_vernum;
221 * Compute the mask of online CPUs for the specified rcu_node structure.
222 * This will not be stable unless the rcu_node structure's ->lock is
223 * held, but the bit corresponding to the current CPU will be stable
224 * in most contexts.
226 unsigned long rcu_rnp_online_cpus(struct rcu_node *rnp)
228 return READ_ONCE(rnp->qsmaskinitnext);
232 * Return true if an RCU grace period is in progress. The READ_ONCE()s
233 * permit this function to be invoked without holding the root rcu_node
234 * structure's ->lock, but of course results can be subject to change.
236 static int rcu_gp_in_progress(struct rcu_state *rsp)
238 return READ_ONCE(rsp->completed) != READ_ONCE(rsp->gpnum);
242 * Note a quiescent state. Because we do not need to know
243 * how many quiescent states passed, just if there was at least
244 * one since the start of the grace period, this just sets a flag.
245 * The caller must have disabled preemption.
247 void rcu_sched_qs(void)
249 unsigned long flags;
251 if (__this_cpu_read(rcu_sched_data.cpu_no_qs.s)) {
252 trace_rcu_grace_period(TPS("rcu_sched"),
253 __this_cpu_read(rcu_sched_data.gpnum),
254 TPS("cpuqs"));
255 __this_cpu_write(rcu_sched_data.cpu_no_qs.b.norm, false);
256 if (!__this_cpu_read(rcu_sched_data.cpu_no_qs.b.exp))
257 return;
258 local_irq_save(flags);
259 if (__this_cpu_read(rcu_sched_data.cpu_no_qs.b.exp)) {
260 __this_cpu_write(rcu_sched_data.cpu_no_qs.b.exp, false);
261 rcu_report_exp_rdp(&rcu_sched_state,
262 this_cpu_ptr(&rcu_sched_data),
263 true);
265 local_irq_restore(flags);
269 void rcu_bh_qs(void)
271 if (__this_cpu_read(rcu_bh_data.cpu_no_qs.s)) {
272 trace_rcu_grace_period(TPS("rcu_bh"),
273 __this_cpu_read(rcu_bh_data.gpnum),
274 TPS("cpuqs"));
275 __this_cpu_write(rcu_bh_data.cpu_no_qs.b.norm, false);
279 static DEFINE_PER_CPU(int, rcu_sched_qs_mask);
281 static DEFINE_PER_CPU(struct rcu_dynticks, rcu_dynticks) = {
282 .dynticks_nesting = DYNTICK_TASK_EXIT_IDLE,
283 .dynticks = ATOMIC_INIT(1),
284 #ifdef CONFIG_NO_HZ_FULL_SYSIDLE
285 .dynticks_idle_nesting = DYNTICK_TASK_NEST_VALUE,
286 .dynticks_idle = ATOMIC_INIT(1),
287 #endif /* #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
290 DEFINE_PER_CPU_SHARED_ALIGNED(unsigned long, rcu_qs_ctr);
291 EXPORT_PER_CPU_SYMBOL_GPL(rcu_qs_ctr);
294 * Let the RCU core know that this CPU has gone through the scheduler,
295 * which is a quiescent state. This is called when the need for a
296 * quiescent state is urgent, so we burn an atomic operation and full
297 * memory barriers to let the RCU core know about it, regardless of what
298 * this CPU might (or might not) do in the near future.
300 * We inform the RCU core by emulating a zero-duration dyntick-idle
301 * period, which we in turn do by incrementing the ->dynticks counter
302 * by two.
304 static void rcu_momentary_dyntick_idle(void)
306 unsigned long flags;
307 struct rcu_data *rdp;
308 struct rcu_dynticks *rdtp;
309 int resched_mask;
310 struct rcu_state *rsp;
312 local_irq_save(flags);
315 * Yes, we can lose flag-setting operations. This is OK, because
316 * the flag will be set again after some delay.
318 resched_mask = raw_cpu_read(rcu_sched_qs_mask);
319 raw_cpu_write(rcu_sched_qs_mask, 0);
321 /* Find the flavor that needs a quiescent state. */
322 for_each_rcu_flavor(rsp) {
323 rdp = raw_cpu_ptr(rsp->rda);
324 if (!(resched_mask & rsp->flavor_mask))
325 continue;
326 smp_mb(); /* rcu_sched_qs_mask before cond_resched_completed. */
327 if (READ_ONCE(rdp->mynode->completed) !=
328 READ_ONCE(rdp->cond_resched_completed))
329 continue;
332 * Pretend to be momentarily idle for the quiescent state.
333 * This allows the grace-period kthread to record the
334 * quiescent state, with no need for this CPU to do anything
335 * further.
337 rdtp = this_cpu_ptr(&rcu_dynticks);
338 smp_mb__before_atomic(); /* Earlier stuff before QS. */
339 atomic_add(2, &rdtp->dynticks); /* QS. */
340 smp_mb__after_atomic(); /* Later stuff after QS. */
341 break;
343 local_irq_restore(flags);
347 * Note a context switch. This is a quiescent state for RCU-sched,
348 * and requires special handling for preemptible RCU.
349 * The caller must have disabled preemption.
351 void rcu_note_context_switch(void)
353 barrier(); /* Avoid RCU read-side critical sections leaking down. */
354 trace_rcu_utilization(TPS("Start context switch"));
355 rcu_sched_qs();
356 rcu_preempt_note_context_switch();
357 if (unlikely(raw_cpu_read(rcu_sched_qs_mask)))
358 rcu_momentary_dyntick_idle();
359 trace_rcu_utilization(TPS("End context switch"));
360 barrier(); /* Avoid RCU read-side critical sections leaking up. */
362 EXPORT_SYMBOL_GPL(rcu_note_context_switch);
365 * Register a quiescent state for all RCU flavors. If there is an
366 * emergency, invoke rcu_momentary_dyntick_idle() to do a heavy-weight
367 * dyntick-idle quiescent state visible to other CPUs (but only for those
368 * RCU flavors in desperate need of a quiescent state, which will normally
369 * be none of them). Either way, do a lightweight quiescent state for
370 * all RCU flavors.
372 * The barrier() calls are redundant in the common case when this is
373 * called externally, but just in case this is called from within this
374 * file.
377 void rcu_all_qs(void)
379 barrier(); /* Avoid RCU read-side critical sections leaking down. */
380 if (unlikely(raw_cpu_read(rcu_sched_qs_mask)))
381 rcu_momentary_dyntick_idle();
382 this_cpu_inc(rcu_qs_ctr);
383 barrier(); /* Avoid RCU read-side critical sections leaking up. */
385 EXPORT_SYMBOL_GPL(rcu_all_qs);
387 static long blimit = 10; /* Maximum callbacks per rcu_do_batch. */
388 static long qhimark = 10000; /* If this many pending, ignore blimit. */
389 static long qlowmark = 100; /* Once only this many pending, use blimit. */
391 module_param(blimit, long, 0444);
392 module_param(qhimark, long, 0444);
393 module_param(qlowmark, long, 0444);
395 static ulong jiffies_till_first_fqs = ULONG_MAX;
396 static ulong jiffies_till_next_fqs = ULONG_MAX;
398 module_param(jiffies_till_first_fqs, ulong, 0644);
399 module_param(jiffies_till_next_fqs, ulong, 0644);
402 * How long the grace period must be before we start recruiting
403 * quiescent-state help from rcu_note_context_switch().
405 static ulong jiffies_till_sched_qs = HZ / 20;
406 module_param(jiffies_till_sched_qs, ulong, 0644);
408 static bool rcu_start_gp_advanced(struct rcu_state *rsp, struct rcu_node *rnp,
409 struct rcu_data *rdp);
410 static void force_qs_rnp(struct rcu_state *rsp,
411 int (*f)(struct rcu_data *rsp, bool *isidle,
412 unsigned long *maxj),
413 bool *isidle, unsigned long *maxj);
414 static void force_quiescent_state(struct rcu_state *rsp);
415 static int rcu_pending(void);
418 * Return the number of RCU batches started thus far for debug & stats.
420 unsigned long rcu_batches_started(void)
422 return rcu_state_p->gpnum;
424 EXPORT_SYMBOL_GPL(rcu_batches_started);
427 * Return the number of RCU-sched batches started thus far for debug & stats.
429 unsigned long rcu_batches_started_sched(void)
431 return rcu_sched_state.gpnum;
433 EXPORT_SYMBOL_GPL(rcu_batches_started_sched);
436 * Return the number of RCU BH batches started thus far for debug & stats.
438 unsigned long rcu_batches_started_bh(void)
440 return rcu_bh_state.gpnum;
442 EXPORT_SYMBOL_GPL(rcu_batches_started_bh);
445 * Return the number of RCU batches completed thus far for debug & stats.
447 unsigned long rcu_batches_completed(void)
449 return rcu_state_p->completed;
451 EXPORT_SYMBOL_GPL(rcu_batches_completed);
454 * Return the number of RCU-sched batches completed thus far for debug & stats.
456 unsigned long rcu_batches_completed_sched(void)
458 return rcu_sched_state.completed;
460 EXPORT_SYMBOL_GPL(rcu_batches_completed_sched);
463 * Return the number of RCU BH batches completed thus far for debug & stats.
465 unsigned long rcu_batches_completed_bh(void)
467 return rcu_bh_state.completed;
469 EXPORT_SYMBOL_GPL(rcu_batches_completed_bh);
472 * Force a quiescent state.
474 void rcu_force_quiescent_state(void)
476 force_quiescent_state(rcu_state_p);
478 EXPORT_SYMBOL_GPL(rcu_force_quiescent_state);
481 * Force a quiescent state for RCU BH.
483 void rcu_bh_force_quiescent_state(void)
485 force_quiescent_state(&rcu_bh_state);
487 EXPORT_SYMBOL_GPL(rcu_bh_force_quiescent_state);
490 * Force a quiescent state for RCU-sched.
492 void rcu_sched_force_quiescent_state(void)
494 force_quiescent_state(&rcu_sched_state);
496 EXPORT_SYMBOL_GPL(rcu_sched_force_quiescent_state);
499 * Show the state of the grace-period kthreads.
501 void show_rcu_gp_kthreads(void)
503 struct rcu_state *rsp;
505 for_each_rcu_flavor(rsp) {
506 pr_info("%s: wait state: %d ->state: %#lx\n",
507 rsp->name, rsp->gp_state, rsp->gp_kthread->state);
508 /* sched_show_task(rsp->gp_kthread); */
511 EXPORT_SYMBOL_GPL(show_rcu_gp_kthreads);
514 * Record the number of times rcutorture tests have been initiated and
515 * terminated. This information allows the debugfs tracing stats to be
516 * correlated to the rcutorture messages, even when the rcutorture module
517 * is being repeatedly loaded and unloaded. In other words, we cannot
518 * store this state in rcutorture itself.
520 void rcutorture_record_test_transition(void)
522 rcutorture_testseq++;
523 rcutorture_vernum = 0;
525 EXPORT_SYMBOL_GPL(rcutorture_record_test_transition);
528 * Send along grace-period-related data for rcutorture diagnostics.
530 void rcutorture_get_gp_data(enum rcutorture_type test_type, int *flags,
531 unsigned long *gpnum, unsigned long *completed)
533 struct rcu_state *rsp = NULL;
535 switch (test_type) {
536 case RCU_FLAVOR:
537 rsp = rcu_state_p;
538 break;
539 case RCU_BH_FLAVOR:
540 rsp = &rcu_bh_state;
541 break;
542 case RCU_SCHED_FLAVOR:
543 rsp = &rcu_sched_state;
544 break;
545 default:
546 break;
548 if (rsp != NULL) {
549 *flags = READ_ONCE(rsp->gp_flags);
550 *gpnum = READ_ONCE(rsp->gpnum);
551 *completed = READ_ONCE(rsp->completed);
552 return;
554 *flags = 0;
555 *gpnum = 0;
556 *completed = 0;
558 EXPORT_SYMBOL_GPL(rcutorture_get_gp_data);
561 * Record the number of writer passes through the current rcutorture test.
562 * This is also used to correlate debugfs tracing stats with the rcutorture
563 * messages.
565 void rcutorture_record_progress(unsigned long vernum)
567 rcutorture_vernum++;
569 EXPORT_SYMBOL_GPL(rcutorture_record_progress);
572 * Does the CPU have callbacks ready to be invoked?
574 static int
575 cpu_has_callbacks_ready_to_invoke(struct rcu_data *rdp)
577 return &rdp->nxtlist != rdp->nxttail[RCU_DONE_TAIL] &&
578 rdp->nxttail[RCU_DONE_TAIL] != NULL;
582 * Return the root node of the specified rcu_state structure.
584 static struct rcu_node *rcu_get_root(struct rcu_state *rsp)
586 return &rsp->node[0];
590 * Is there any need for future grace periods?
591 * Interrupts must be disabled. If the caller does not hold the root
592 * rnp_node structure's ->lock, the results are advisory only.
594 static int rcu_future_needs_gp(struct rcu_state *rsp)
596 struct rcu_node *rnp = rcu_get_root(rsp);
597 int idx = (READ_ONCE(rnp->completed) + 1) & 0x1;
598 int *fp = &rnp->need_future_gp[idx];
600 return READ_ONCE(*fp);
604 * Does the current CPU require a not-yet-started grace period?
605 * The caller must have disabled interrupts to prevent races with
606 * normal callback registry.
608 static int
609 cpu_needs_another_gp(struct rcu_state *rsp, struct rcu_data *rdp)
611 int i;
613 if (rcu_gp_in_progress(rsp))
614 return 0; /* No, a grace period is already in progress. */
615 if (rcu_future_needs_gp(rsp))
616 return 1; /* Yes, a no-CBs CPU needs one. */
617 if (!rdp->nxttail[RCU_NEXT_TAIL])
618 return 0; /* No, this is a no-CBs (or offline) CPU. */
619 if (*rdp->nxttail[RCU_NEXT_READY_TAIL])
620 return 1; /* Yes, this CPU has newly registered callbacks. */
621 for (i = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++)
622 if (rdp->nxttail[i - 1] != rdp->nxttail[i] &&
623 ULONG_CMP_LT(READ_ONCE(rsp->completed),
624 rdp->nxtcompleted[i]))
625 return 1; /* Yes, CBs for future grace period. */
626 return 0; /* No grace period needed. */
630 * rcu_eqs_enter_common - current CPU is moving towards extended quiescent state
632 * If the new value of the ->dynticks_nesting counter now is zero,
633 * we really have entered idle, and must do the appropriate accounting.
634 * The caller must have disabled interrupts.
636 static void rcu_eqs_enter_common(long long oldval, bool user)
638 struct rcu_state *rsp;
639 struct rcu_data *rdp;
640 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
642 trace_rcu_dyntick(TPS("Start"), oldval, rdtp->dynticks_nesting);
643 if (IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
644 !user && !is_idle_task(current)) {
645 struct task_struct *idle __maybe_unused =
646 idle_task(smp_processor_id());
648 trace_rcu_dyntick(TPS("Error on entry: not idle task"), oldval, 0);
649 ftrace_dump(DUMP_ORIG);
650 WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
651 current->pid, current->comm,
652 idle->pid, idle->comm); /* must be idle task! */
654 for_each_rcu_flavor(rsp) {
655 rdp = this_cpu_ptr(rsp->rda);
656 do_nocb_deferred_wakeup(rdp);
658 rcu_prepare_for_idle();
659 /* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
660 smp_mb__before_atomic(); /* See above. */
661 atomic_inc(&rdtp->dynticks);
662 smp_mb__after_atomic(); /* Force ordering with next sojourn. */
663 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
664 atomic_read(&rdtp->dynticks) & 0x1);
665 rcu_dynticks_task_enter();
668 * It is illegal to enter an extended quiescent state while
669 * in an RCU read-side critical section.
671 RCU_LOCKDEP_WARN(lock_is_held(&rcu_lock_map),
672 "Illegal idle entry in RCU read-side critical section.");
673 RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map),
674 "Illegal idle entry in RCU-bh read-side critical section.");
675 RCU_LOCKDEP_WARN(lock_is_held(&rcu_sched_lock_map),
676 "Illegal idle entry in RCU-sched read-side critical section.");
680 * Enter an RCU extended quiescent state, which can be either the
681 * idle loop or adaptive-tickless usermode execution.
683 static void rcu_eqs_enter(bool user)
685 long long oldval;
686 struct rcu_dynticks *rdtp;
688 rdtp = this_cpu_ptr(&rcu_dynticks);
689 oldval = rdtp->dynticks_nesting;
690 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
691 (oldval & DYNTICK_TASK_NEST_MASK) == 0);
692 if ((oldval & DYNTICK_TASK_NEST_MASK) == DYNTICK_TASK_NEST_VALUE) {
693 rdtp->dynticks_nesting = 0;
694 rcu_eqs_enter_common(oldval, user);
695 } else {
696 rdtp->dynticks_nesting -= DYNTICK_TASK_NEST_VALUE;
701 * rcu_idle_enter - inform RCU that current CPU is entering idle
703 * Enter idle mode, in other words, -leave- the mode in which RCU
704 * read-side critical sections can occur. (Though RCU read-side
705 * critical sections can occur in irq handlers in idle, a possibility
706 * handled by irq_enter() and irq_exit().)
708 * We crowbar the ->dynticks_nesting field to zero to allow for
709 * the possibility of usermode upcalls having messed up our count
710 * of interrupt nesting level during the prior busy period.
712 void rcu_idle_enter(void)
714 unsigned long flags;
716 local_irq_save(flags);
717 rcu_eqs_enter(false);
718 rcu_sysidle_enter(0);
719 local_irq_restore(flags);
721 EXPORT_SYMBOL_GPL(rcu_idle_enter);
723 #ifdef CONFIG_NO_HZ_FULL
725 * rcu_user_enter - inform RCU that we are resuming userspace.
727 * Enter RCU idle mode right before resuming userspace. No use of RCU
728 * is permitted between this call and rcu_user_exit(). This way the
729 * CPU doesn't need to maintain the tick for RCU maintenance purposes
730 * when the CPU runs in userspace.
732 void rcu_user_enter(void)
734 rcu_eqs_enter(1);
736 #endif /* CONFIG_NO_HZ_FULL */
739 * rcu_irq_exit - inform RCU that current CPU is exiting irq towards idle
741 * Exit from an interrupt handler, which might possibly result in entering
742 * idle mode, in other words, leaving the mode in which read-side critical
743 * sections can occur.
745 * This code assumes that the idle loop never does anything that might
746 * result in unbalanced calls to irq_enter() and irq_exit(). If your
747 * architecture violates this assumption, RCU will give you what you
748 * deserve, good and hard. But very infrequently and irreproducibly.
750 * Use things like work queues to work around this limitation.
752 * You have been warned.
754 void rcu_irq_exit(void)
756 unsigned long flags;
757 long long oldval;
758 struct rcu_dynticks *rdtp;
760 local_irq_save(flags);
761 rdtp = this_cpu_ptr(&rcu_dynticks);
762 oldval = rdtp->dynticks_nesting;
763 rdtp->dynticks_nesting--;
764 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
765 rdtp->dynticks_nesting < 0);
766 if (rdtp->dynticks_nesting)
767 trace_rcu_dyntick(TPS("--="), oldval, rdtp->dynticks_nesting);
768 else
769 rcu_eqs_enter_common(oldval, true);
770 rcu_sysidle_enter(1);
771 local_irq_restore(flags);
775 * rcu_eqs_exit_common - current CPU moving away from extended quiescent state
777 * If the new value of the ->dynticks_nesting counter was previously zero,
778 * we really have exited idle, and must do the appropriate accounting.
779 * The caller must have disabled interrupts.
781 static void rcu_eqs_exit_common(long long oldval, int user)
783 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
785 rcu_dynticks_task_exit();
786 smp_mb__before_atomic(); /* Force ordering w/previous sojourn. */
787 atomic_inc(&rdtp->dynticks);
788 /* CPUs seeing atomic_inc() must see later RCU read-side crit sects */
789 smp_mb__after_atomic(); /* See above. */
790 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
791 !(atomic_read(&rdtp->dynticks) & 0x1));
792 rcu_cleanup_after_idle();
793 trace_rcu_dyntick(TPS("End"), oldval, rdtp->dynticks_nesting);
794 if (IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
795 !user && !is_idle_task(current)) {
796 struct task_struct *idle __maybe_unused =
797 idle_task(smp_processor_id());
799 trace_rcu_dyntick(TPS("Error on exit: not idle task"),
800 oldval, rdtp->dynticks_nesting);
801 ftrace_dump(DUMP_ORIG);
802 WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
803 current->pid, current->comm,
804 idle->pid, idle->comm); /* must be idle task! */
809 * Exit an RCU extended quiescent state, which can be either the
810 * idle loop or adaptive-tickless usermode execution.
812 static void rcu_eqs_exit(bool user)
814 struct rcu_dynticks *rdtp;
815 long long oldval;
817 rdtp = this_cpu_ptr(&rcu_dynticks);
818 oldval = rdtp->dynticks_nesting;
819 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && oldval < 0);
820 if (oldval & DYNTICK_TASK_NEST_MASK) {
821 rdtp->dynticks_nesting += DYNTICK_TASK_NEST_VALUE;
822 } else {
823 rdtp->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE;
824 rcu_eqs_exit_common(oldval, user);
829 * rcu_idle_exit - inform RCU that current CPU is leaving idle
831 * Exit idle mode, in other words, -enter- the mode in which RCU
832 * read-side critical sections can occur.
834 * We crowbar the ->dynticks_nesting field to DYNTICK_TASK_NEST to
835 * allow for the possibility of usermode upcalls messing up our count
836 * of interrupt nesting level during the busy period that is just
837 * now starting.
839 void rcu_idle_exit(void)
841 unsigned long flags;
843 local_irq_save(flags);
844 rcu_eqs_exit(false);
845 rcu_sysidle_exit(0);
846 local_irq_restore(flags);
848 EXPORT_SYMBOL_GPL(rcu_idle_exit);
850 #ifdef CONFIG_NO_HZ_FULL
852 * rcu_user_exit - inform RCU that we are exiting userspace.
854 * Exit RCU idle mode while entering the kernel because it can
855 * run a RCU read side critical section anytime.
857 void rcu_user_exit(void)
859 rcu_eqs_exit(1);
861 #endif /* CONFIG_NO_HZ_FULL */
864 * rcu_irq_enter - inform RCU that current CPU is entering irq away from idle
866 * Enter an interrupt handler, which might possibly result in exiting
867 * idle mode, in other words, entering the mode in which read-side critical
868 * sections can occur.
870 * Note that the Linux kernel is fully capable of entering an interrupt
871 * handler that it never exits, for example when doing upcalls to
872 * user mode! This code assumes that the idle loop never does upcalls to
873 * user mode. If your architecture does do upcalls from the idle loop (or
874 * does anything else that results in unbalanced calls to the irq_enter()
875 * and irq_exit() functions), RCU will give you what you deserve, good
876 * and hard. But very infrequently and irreproducibly.
878 * Use things like work queues to work around this limitation.
880 * You have been warned.
882 void rcu_irq_enter(void)
884 unsigned long flags;
885 struct rcu_dynticks *rdtp;
886 long long oldval;
888 local_irq_save(flags);
889 rdtp = this_cpu_ptr(&rcu_dynticks);
890 oldval = rdtp->dynticks_nesting;
891 rdtp->dynticks_nesting++;
892 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
893 rdtp->dynticks_nesting == 0);
894 if (oldval)
895 trace_rcu_dyntick(TPS("++="), oldval, rdtp->dynticks_nesting);
896 else
897 rcu_eqs_exit_common(oldval, true);
898 rcu_sysidle_exit(1);
899 local_irq_restore(flags);
903 * rcu_nmi_enter - inform RCU of entry to NMI context
905 * If the CPU was idle from RCU's viewpoint, update rdtp->dynticks and
906 * rdtp->dynticks_nmi_nesting to let the RCU grace-period handling know
907 * that the CPU is active. This implementation permits nested NMIs, as
908 * long as the nesting level does not overflow an int. (You will probably
909 * run out of stack space first.)
911 void rcu_nmi_enter(void)
913 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
914 int incby = 2;
916 /* Complain about underflow. */
917 WARN_ON_ONCE(rdtp->dynticks_nmi_nesting < 0);
920 * If idle from RCU viewpoint, atomically increment ->dynticks
921 * to mark non-idle and increment ->dynticks_nmi_nesting by one.
922 * Otherwise, increment ->dynticks_nmi_nesting by two. This means
923 * if ->dynticks_nmi_nesting is equal to one, we are guaranteed
924 * to be in the outermost NMI handler that interrupted an RCU-idle
925 * period (observation due to Andy Lutomirski).
927 if (!(atomic_read(&rdtp->dynticks) & 0x1)) {
928 smp_mb__before_atomic(); /* Force delay from prior write. */
929 atomic_inc(&rdtp->dynticks);
930 /* atomic_inc() before later RCU read-side crit sects */
931 smp_mb__after_atomic(); /* See above. */
932 WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));
933 incby = 1;
935 rdtp->dynticks_nmi_nesting += incby;
936 barrier();
940 * rcu_nmi_exit - inform RCU of exit from NMI context
942 * If we are returning from the outermost NMI handler that interrupted an
943 * RCU-idle period, update rdtp->dynticks and rdtp->dynticks_nmi_nesting
944 * to let the RCU grace-period handling know that the CPU is back to
945 * being RCU-idle.
947 void rcu_nmi_exit(void)
949 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
952 * Check for ->dynticks_nmi_nesting underflow and bad ->dynticks.
953 * (We are exiting an NMI handler, so RCU better be paying attention
954 * to us!)
956 WARN_ON_ONCE(rdtp->dynticks_nmi_nesting <= 0);
957 WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));
960 * If the nesting level is not 1, the CPU wasn't RCU-idle, so
961 * leave it in non-RCU-idle state.
963 if (rdtp->dynticks_nmi_nesting != 1) {
964 rdtp->dynticks_nmi_nesting -= 2;
965 return;
968 /* This NMI interrupted an RCU-idle CPU, restore RCU-idleness. */
969 rdtp->dynticks_nmi_nesting = 0;
970 /* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
971 smp_mb__before_atomic(); /* See above. */
972 atomic_inc(&rdtp->dynticks);
973 smp_mb__after_atomic(); /* Force delay to next write. */
974 WARN_ON_ONCE(atomic_read(&rdtp->dynticks) & 0x1);
978 * __rcu_is_watching - are RCU read-side critical sections safe?
980 * Return true if RCU is watching the running CPU, which means that
981 * this CPU can safely enter RCU read-side critical sections. Unlike
982 * rcu_is_watching(), the caller of __rcu_is_watching() must have at
983 * least disabled preemption.
985 bool notrace __rcu_is_watching(void)
987 return atomic_read(this_cpu_ptr(&rcu_dynticks.dynticks)) & 0x1;
991 * rcu_is_watching - see if RCU thinks that the current CPU is idle
993 * If the current CPU is in its idle loop and is neither in an interrupt
994 * or NMI handler, return true.
996 bool notrace rcu_is_watching(void)
998 bool ret;
1000 preempt_disable_notrace();
1001 ret = __rcu_is_watching();
1002 preempt_enable_notrace();
1003 return ret;
1005 EXPORT_SYMBOL_GPL(rcu_is_watching);
1007 #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU)
1010 * Is the current CPU online? Disable preemption to avoid false positives
1011 * that could otherwise happen due to the current CPU number being sampled,
1012 * this task being preempted, its old CPU being taken offline, resuming
1013 * on some other CPU, then determining that its old CPU is now offline.
1014 * It is OK to use RCU on an offline processor during initial boot, hence
1015 * the check for rcu_scheduler_fully_active. Note also that it is OK
1016 * for a CPU coming online to use RCU for one jiffy prior to marking itself
1017 * online in the cpu_online_mask. Similarly, it is OK for a CPU going
1018 * offline to continue to use RCU for one jiffy after marking itself
1019 * offline in the cpu_online_mask. This leniency is necessary given the
1020 * non-atomic nature of the online and offline processing, for example,
1021 * the fact that a CPU enters the scheduler after completing the CPU_DYING
1022 * notifiers.
1024 * This is also why RCU internally marks CPUs online during the
1025 * CPU_UP_PREPARE phase and offline during the CPU_DEAD phase.
1027 * Disable checking if in an NMI handler because we cannot safely report
1028 * errors from NMI handlers anyway.
1030 bool rcu_lockdep_current_cpu_online(void)
1032 struct rcu_data *rdp;
1033 struct rcu_node *rnp;
1034 bool ret;
1036 if (in_nmi())
1037 return true;
1038 preempt_disable();
1039 rdp = this_cpu_ptr(&rcu_sched_data);
1040 rnp = rdp->mynode;
1041 ret = (rdp->grpmask & rcu_rnp_online_cpus(rnp)) ||
1042 !rcu_scheduler_fully_active;
1043 preempt_enable();
1044 return ret;
1046 EXPORT_SYMBOL_GPL(rcu_lockdep_current_cpu_online);
1048 #endif /* #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU) */
1051 * rcu_is_cpu_rrupt_from_idle - see if idle or immediately interrupted from idle
1053 * If the current CPU is idle or running at a first-level (not nested)
1054 * interrupt from idle, return true. The caller must have at least
1055 * disabled preemption.
1057 static int rcu_is_cpu_rrupt_from_idle(void)
1059 return __this_cpu_read(rcu_dynticks.dynticks_nesting) <= 1;
1063 * Snapshot the specified CPU's dynticks counter so that we can later
1064 * credit them with an implicit quiescent state. Return 1 if this CPU
1065 * is in dynticks idle mode, which is an extended quiescent state.
1067 static int dyntick_save_progress_counter(struct rcu_data *rdp,
1068 bool *isidle, unsigned long *maxj)
1070 rdp->dynticks_snap = atomic_add_return(0, &rdp->dynticks->dynticks);
1071 rcu_sysidle_check_cpu(rdp, isidle, maxj);
1072 if ((rdp->dynticks_snap & 0x1) == 0) {
1073 trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("dti"));
1074 return 1;
1075 } else {
1076 if (ULONG_CMP_LT(READ_ONCE(rdp->gpnum) + ULONG_MAX / 4,
1077 rdp->mynode->gpnum))
1078 WRITE_ONCE(rdp->gpwrap, true);
1079 return 0;
1084 * Return true if the specified CPU has passed through a quiescent
1085 * state by virtue of being in or having passed through an dynticks
1086 * idle state since the last call to dyntick_save_progress_counter()
1087 * for this same CPU, or by virtue of having been offline.
1089 static int rcu_implicit_dynticks_qs(struct rcu_data *rdp,
1090 bool *isidle, unsigned long *maxj)
1092 unsigned int curr;
1093 int *rcrmp;
1094 unsigned int snap;
1096 curr = (unsigned int)atomic_add_return(0, &rdp->dynticks->dynticks);
1097 snap = (unsigned int)rdp->dynticks_snap;
1100 * If the CPU passed through or entered a dynticks idle phase with
1101 * no active irq/NMI handlers, then we can safely pretend that the CPU
1102 * already acknowledged the request to pass through a quiescent
1103 * state. Either way, that CPU cannot possibly be in an RCU
1104 * read-side critical section that started before the beginning
1105 * of the current RCU grace period.
1107 if ((curr & 0x1) == 0 || UINT_CMP_GE(curr, snap + 2)) {
1108 trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("dti"));
1109 rdp->dynticks_fqs++;
1110 return 1;
1114 * Check for the CPU being offline, but only if the grace period
1115 * is old enough. We don't need to worry about the CPU changing
1116 * state: If we see it offline even once, it has been through a
1117 * quiescent state.
1119 * The reason for insisting that the grace period be at least
1120 * one jiffy old is that CPUs that are not quite online and that
1121 * have just gone offline can still execute RCU read-side critical
1122 * sections.
1124 if (ULONG_CMP_GE(rdp->rsp->gp_start + 2, jiffies))
1125 return 0; /* Grace period is not old enough. */
1126 barrier();
1127 if (cpu_is_offline(rdp->cpu)) {
1128 trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("ofl"));
1129 rdp->offline_fqs++;
1130 return 1;
1134 * A CPU running for an extended time within the kernel can
1135 * delay RCU grace periods. When the CPU is in NO_HZ_FULL mode,
1136 * even context-switching back and forth between a pair of
1137 * in-kernel CPU-bound tasks cannot advance grace periods.
1138 * So if the grace period is old enough, make the CPU pay attention.
1139 * Note that the unsynchronized assignments to the per-CPU
1140 * rcu_sched_qs_mask variable are safe. Yes, setting of
1141 * bits can be lost, but they will be set again on the next
1142 * force-quiescent-state pass. So lost bit sets do not result
1143 * in incorrect behavior, merely in a grace period lasting
1144 * a few jiffies longer than it might otherwise. Because
1145 * there are at most four threads involved, and because the
1146 * updates are only once every few jiffies, the probability of
1147 * lossage (and thus of slight grace-period extension) is
1148 * quite low.
1150 * Note that if the jiffies_till_sched_qs boot/sysfs parameter
1151 * is set too high, we override with half of the RCU CPU stall
1152 * warning delay.
1154 rcrmp = &per_cpu(rcu_sched_qs_mask, rdp->cpu);
1155 if (ULONG_CMP_GE(jiffies,
1156 rdp->rsp->gp_start + jiffies_till_sched_qs) ||
1157 ULONG_CMP_GE(jiffies, rdp->rsp->jiffies_resched)) {
1158 if (!(READ_ONCE(*rcrmp) & rdp->rsp->flavor_mask)) {
1159 WRITE_ONCE(rdp->cond_resched_completed,
1160 READ_ONCE(rdp->mynode->completed));
1161 smp_mb(); /* ->cond_resched_completed before *rcrmp. */
1162 WRITE_ONCE(*rcrmp,
1163 READ_ONCE(*rcrmp) + rdp->rsp->flavor_mask);
1164 resched_cpu(rdp->cpu); /* Force CPU into scheduler. */
1165 rdp->rsp->jiffies_resched += 5; /* Enable beating. */
1166 } else if (ULONG_CMP_GE(jiffies, rdp->rsp->jiffies_resched)) {
1167 /* Time to beat on that CPU again! */
1168 resched_cpu(rdp->cpu); /* Force CPU into scheduler. */
1169 rdp->rsp->jiffies_resched += 5; /* Re-enable beating. */
1173 return 0;
1176 static void record_gp_stall_check_time(struct rcu_state *rsp)
1178 unsigned long j = jiffies;
1179 unsigned long j1;
1181 rsp->gp_start = j;
1182 smp_wmb(); /* Record start time before stall time. */
1183 j1 = rcu_jiffies_till_stall_check();
1184 WRITE_ONCE(rsp->jiffies_stall, j + j1);
1185 rsp->jiffies_resched = j + j1 / 2;
1186 rsp->n_force_qs_gpstart = READ_ONCE(rsp->n_force_qs);
1190 * Complain about starvation of grace-period kthread.
1192 static void rcu_check_gp_kthread_starvation(struct rcu_state *rsp)
1194 unsigned long gpa;
1195 unsigned long j;
1197 j = jiffies;
1198 gpa = READ_ONCE(rsp->gp_activity);
1199 if (j - gpa > 2 * HZ)
1200 pr_err("%s kthread starved for %ld jiffies! g%lu c%lu f%#x s%d ->state=%#lx\n",
1201 rsp->name, j - gpa,
1202 rsp->gpnum, rsp->completed,
1203 rsp->gp_flags, rsp->gp_state,
1204 rsp->gp_kthread ? rsp->gp_kthread->state : 0);
1208 * Dump stacks of all tasks running on stalled CPUs.
1210 static void rcu_dump_cpu_stacks(struct rcu_state *rsp)
1212 int cpu;
1213 unsigned long flags;
1214 struct rcu_node *rnp;
1216 rcu_for_each_leaf_node(rsp, rnp) {
1217 raw_spin_lock_irqsave(&rnp->lock, flags);
1218 if (rnp->qsmask != 0) {
1219 for (cpu = 0; cpu <= rnp->grphi - rnp->grplo; cpu++)
1220 if (rnp->qsmask & (1UL << cpu))
1221 dump_cpu_task(rnp->grplo + cpu);
1223 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1227 static void print_other_cpu_stall(struct rcu_state *rsp, unsigned long gpnum)
1229 int cpu;
1230 long delta;
1231 unsigned long flags;
1232 unsigned long gpa;
1233 unsigned long j;
1234 int ndetected = 0;
1235 struct rcu_node *rnp = rcu_get_root(rsp);
1236 long totqlen = 0;
1238 /* Only let one CPU complain about others per time interval. */
1240 raw_spin_lock_irqsave(&rnp->lock, flags);
1241 delta = jiffies - READ_ONCE(rsp->jiffies_stall);
1242 if (delta < RCU_STALL_RAT_DELAY || !rcu_gp_in_progress(rsp)) {
1243 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1244 return;
1246 WRITE_ONCE(rsp->jiffies_stall,
1247 jiffies + 3 * rcu_jiffies_till_stall_check() + 3);
1248 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1251 * OK, time to rat on our buddy...
1252 * See Documentation/RCU/stallwarn.txt for info on how to debug
1253 * RCU CPU stall warnings.
1255 pr_err("INFO: %s detected stalls on CPUs/tasks:",
1256 rsp->name);
1257 print_cpu_stall_info_begin();
1258 rcu_for_each_leaf_node(rsp, rnp) {
1259 raw_spin_lock_irqsave(&rnp->lock, flags);
1260 ndetected += rcu_print_task_stall(rnp);
1261 if (rnp->qsmask != 0) {
1262 for (cpu = 0; cpu <= rnp->grphi - rnp->grplo; cpu++)
1263 if (rnp->qsmask & (1UL << cpu)) {
1264 print_cpu_stall_info(rsp,
1265 rnp->grplo + cpu);
1266 ndetected++;
1269 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1272 print_cpu_stall_info_end();
1273 for_each_possible_cpu(cpu)
1274 totqlen += per_cpu_ptr(rsp->rda, cpu)->qlen;
1275 pr_cont("(detected by %d, t=%ld jiffies, g=%ld, c=%ld, q=%lu)\n",
1276 smp_processor_id(), (long)(jiffies - rsp->gp_start),
1277 (long)rsp->gpnum, (long)rsp->completed, totqlen);
1278 if (ndetected) {
1279 rcu_dump_cpu_stacks(rsp);
1280 } else {
1281 if (READ_ONCE(rsp->gpnum) != gpnum ||
1282 READ_ONCE(rsp->completed) == gpnum) {
1283 pr_err("INFO: Stall ended before state dump start\n");
1284 } else {
1285 j = jiffies;
1286 gpa = READ_ONCE(rsp->gp_activity);
1287 pr_err("All QSes seen, last %s kthread activity %ld (%ld-%ld), jiffies_till_next_fqs=%ld, root ->qsmask %#lx\n",
1288 rsp->name, j - gpa, j, gpa,
1289 jiffies_till_next_fqs,
1290 rcu_get_root(rsp)->qsmask);
1291 /* In this case, the current CPU might be at fault. */
1292 sched_show_task(current);
1296 /* Complain about tasks blocking the grace period. */
1297 rcu_print_detail_task_stall(rsp);
1299 rcu_check_gp_kthread_starvation(rsp);
1301 force_quiescent_state(rsp); /* Kick them all. */
1304 static void print_cpu_stall(struct rcu_state *rsp)
1306 int cpu;
1307 unsigned long flags;
1308 struct rcu_node *rnp = rcu_get_root(rsp);
1309 long totqlen = 0;
1312 * OK, time to rat on ourselves...
1313 * See Documentation/RCU/stallwarn.txt for info on how to debug
1314 * RCU CPU stall warnings.
1316 pr_err("INFO: %s self-detected stall on CPU", rsp->name);
1317 print_cpu_stall_info_begin();
1318 print_cpu_stall_info(rsp, smp_processor_id());
1319 print_cpu_stall_info_end();
1320 for_each_possible_cpu(cpu)
1321 totqlen += per_cpu_ptr(rsp->rda, cpu)->qlen;
1322 pr_cont(" (t=%lu jiffies g=%ld c=%ld q=%lu)\n",
1323 jiffies - rsp->gp_start,
1324 (long)rsp->gpnum, (long)rsp->completed, totqlen);
1326 rcu_check_gp_kthread_starvation(rsp);
1328 rcu_dump_cpu_stacks(rsp);
1330 raw_spin_lock_irqsave(&rnp->lock, flags);
1331 if (ULONG_CMP_GE(jiffies, READ_ONCE(rsp->jiffies_stall)))
1332 WRITE_ONCE(rsp->jiffies_stall,
1333 jiffies + 3 * rcu_jiffies_till_stall_check() + 3);
1334 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1337 * Attempt to revive the RCU machinery by forcing a context switch.
1339 * A context switch would normally allow the RCU state machine to make
1340 * progress and it could be we're stuck in kernel space without context
1341 * switches for an entirely unreasonable amount of time.
1343 resched_cpu(smp_processor_id());
1346 static void check_cpu_stall(struct rcu_state *rsp, struct rcu_data *rdp)
1348 unsigned long completed;
1349 unsigned long gpnum;
1350 unsigned long gps;
1351 unsigned long j;
1352 unsigned long js;
1353 struct rcu_node *rnp;
1355 if (rcu_cpu_stall_suppress || !rcu_gp_in_progress(rsp))
1356 return;
1357 j = jiffies;
1360 * Lots of memory barriers to reject false positives.
1362 * The idea is to pick up rsp->gpnum, then rsp->jiffies_stall,
1363 * then rsp->gp_start, and finally rsp->completed. These values
1364 * are updated in the opposite order with memory barriers (or
1365 * equivalent) during grace-period initialization and cleanup.
1366 * Now, a false positive can occur if we get an new value of
1367 * rsp->gp_start and a old value of rsp->jiffies_stall. But given
1368 * the memory barriers, the only way that this can happen is if one
1369 * grace period ends and another starts between these two fetches.
1370 * Detect this by comparing rsp->completed with the previous fetch
1371 * from rsp->gpnum.
1373 * Given this check, comparisons of jiffies, rsp->jiffies_stall,
1374 * and rsp->gp_start suffice to forestall false positives.
1376 gpnum = READ_ONCE(rsp->gpnum);
1377 smp_rmb(); /* Pick up ->gpnum first... */
1378 js = READ_ONCE(rsp->jiffies_stall);
1379 smp_rmb(); /* ...then ->jiffies_stall before the rest... */
1380 gps = READ_ONCE(rsp->gp_start);
1381 smp_rmb(); /* ...and finally ->gp_start before ->completed. */
1382 completed = READ_ONCE(rsp->completed);
1383 if (ULONG_CMP_GE(completed, gpnum) ||
1384 ULONG_CMP_LT(j, js) ||
1385 ULONG_CMP_GE(gps, js))
1386 return; /* No stall or GP completed since entering function. */
1387 rnp = rdp->mynode;
1388 if (rcu_gp_in_progress(rsp) &&
1389 (READ_ONCE(rnp->qsmask) & rdp->grpmask)) {
1391 /* We haven't checked in, so go dump stack. */
1392 print_cpu_stall(rsp);
1394 } else if (rcu_gp_in_progress(rsp) &&
1395 ULONG_CMP_GE(j, js + RCU_STALL_RAT_DELAY)) {
1397 /* They had a few time units to dump stack, so complain. */
1398 print_other_cpu_stall(rsp, gpnum);
1403 * rcu_cpu_stall_reset - prevent further stall warnings in current grace period
1405 * Set the stall-warning timeout way off into the future, thus preventing
1406 * any RCU CPU stall-warning messages from appearing in the current set of
1407 * RCU grace periods.
1409 * The caller must disable hard irqs.
1411 void rcu_cpu_stall_reset(void)
1413 struct rcu_state *rsp;
1415 for_each_rcu_flavor(rsp)
1416 WRITE_ONCE(rsp->jiffies_stall, jiffies + ULONG_MAX / 2);
1420 * Initialize the specified rcu_data structure's default callback list
1421 * to empty. The default callback list is the one that is not used by
1422 * no-callbacks CPUs.
1424 static void init_default_callback_list(struct rcu_data *rdp)
1426 int i;
1428 rdp->nxtlist = NULL;
1429 for (i = 0; i < RCU_NEXT_SIZE; i++)
1430 rdp->nxttail[i] = &rdp->nxtlist;
1434 * Initialize the specified rcu_data structure's callback list to empty.
1436 static void init_callback_list(struct rcu_data *rdp)
1438 if (init_nocb_callback_list(rdp))
1439 return;
1440 init_default_callback_list(rdp);
1444 * Determine the value that ->completed will have at the end of the
1445 * next subsequent grace period. This is used to tag callbacks so that
1446 * a CPU can invoke callbacks in a timely fashion even if that CPU has
1447 * been dyntick-idle for an extended period with callbacks under the
1448 * influence of RCU_FAST_NO_HZ.
1450 * The caller must hold rnp->lock with interrupts disabled.
1452 static unsigned long rcu_cbs_completed(struct rcu_state *rsp,
1453 struct rcu_node *rnp)
1456 * If RCU is idle, we just wait for the next grace period.
1457 * But we can only be sure that RCU is idle if we are looking
1458 * at the root rcu_node structure -- otherwise, a new grace
1459 * period might have started, but just not yet gotten around
1460 * to initializing the current non-root rcu_node structure.
1462 if (rcu_get_root(rsp) == rnp && rnp->gpnum == rnp->completed)
1463 return rnp->completed + 1;
1466 * Otherwise, wait for a possible partial grace period and
1467 * then the subsequent full grace period.
1469 return rnp->completed + 2;
1473 * Trace-event helper function for rcu_start_future_gp() and
1474 * rcu_nocb_wait_gp().
1476 static void trace_rcu_future_gp(struct rcu_node *rnp, struct rcu_data *rdp,
1477 unsigned long c, const char *s)
1479 trace_rcu_future_grace_period(rdp->rsp->name, rnp->gpnum,
1480 rnp->completed, c, rnp->level,
1481 rnp->grplo, rnp->grphi, s);
1485 * Start some future grace period, as needed to handle newly arrived
1486 * callbacks. The required future grace periods are recorded in each
1487 * rcu_node structure's ->need_future_gp field. Returns true if there
1488 * is reason to awaken the grace-period kthread.
1490 * The caller must hold the specified rcu_node structure's ->lock.
1492 static bool __maybe_unused
1493 rcu_start_future_gp(struct rcu_node *rnp, struct rcu_data *rdp,
1494 unsigned long *c_out)
1496 unsigned long c;
1497 int i;
1498 bool ret = false;
1499 struct rcu_node *rnp_root = rcu_get_root(rdp->rsp);
1502 * Pick up grace-period number for new callbacks. If this
1503 * grace period is already marked as needed, return to the caller.
1505 c = rcu_cbs_completed(rdp->rsp, rnp);
1506 trace_rcu_future_gp(rnp, rdp, c, TPS("Startleaf"));
1507 if (rnp->need_future_gp[c & 0x1]) {
1508 trace_rcu_future_gp(rnp, rdp, c, TPS("Prestartleaf"));
1509 goto out;
1513 * If either this rcu_node structure or the root rcu_node structure
1514 * believe that a grace period is in progress, then we must wait
1515 * for the one following, which is in "c". Because our request
1516 * will be noticed at the end of the current grace period, we don't
1517 * need to explicitly start one. We only do the lockless check
1518 * of rnp_root's fields if the current rcu_node structure thinks
1519 * there is no grace period in flight, and because we hold rnp->lock,
1520 * the only possible change is when rnp_root's two fields are
1521 * equal, in which case rnp_root->gpnum might be concurrently
1522 * incremented. But that is OK, as it will just result in our
1523 * doing some extra useless work.
1525 if (rnp->gpnum != rnp->completed ||
1526 READ_ONCE(rnp_root->gpnum) != READ_ONCE(rnp_root->completed)) {
1527 rnp->need_future_gp[c & 0x1]++;
1528 trace_rcu_future_gp(rnp, rdp, c, TPS("Startedleaf"));
1529 goto out;
1533 * There might be no grace period in progress. If we don't already
1534 * hold it, acquire the root rcu_node structure's lock in order to
1535 * start one (if needed).
1537 if (rnp != rnp_root) {
1538 raw_spin_lock(&rnp_root->lock);
1539 smp_mb__after_unlock_lock();
1543 * Get a new grace-period number. If there really is no grace
1544 * period in progress, it will be smaller than the one we obtained
1545 * earlier. Adjust callbacks as needed. Note that even no-CBs
1546 * CPUs have a ->nxtcompleted[] array, so no no-CBs checks needed.
1548 c = rcu_cbs_completed(rdp->rsp, rnp_root);
1549 for (i = RCU_DONE_TAIL; i < RCU_NEXT_TAIL; i++)
1550 if (ULONG_CMP_LT(c, rdp->nxtcompleted[i]))
1551 rdp->nxtcompleted[i] = c;
1554 * If the needed for the required grace period is already
1555 * recorded, trace and leave.
1557 if (rnp_root->need_future_gp[c & 0x1]) {
1558 trace_rcu_future_gp(rnp, rdp, c, TPS("Prestartedroot"));
1559 goto unlock_out;
1562 /* Record the need for the future grace period. */
1563 rnp_root->need_future_gp[c & 0x1]++;
1565 /* If a grace period is not already in progress, start one. */
1566 if (rnp_root->gpnum != rnp_root->completed) {
1567 trace_rcu_future_gp(rnp, rdp, c, TPS("Startedleafroot"));
1568 } else {
1569 trace_rcu_future_gp(rnp, rdp, c, TPS("Startedroot"));
1570 ret = rcu_start_gp_advanced(rdp->rsp, rnp_root, rdp);
1572 unlock_out:
1573 if (rnp != rnp_root)
1574 raw_spin_unlock(&rnp_root->lock);
1575 out:
1576 if (c_out != NULL)
1577 *c_out = c;
1578 return ret;
1582 * Clean up any old requests for the just-ended grace period. Also return
1583 * whether any additional grace periods have been requested. Also invoke
1584 * rcu_nocb_gp_cleanup() in order to wake up any no-callbacks kthreads
1585 * waiting for this grace period to complete.
1587 static int rcu_future_gp_cleanup(struct rcu_state *rsp, struct rcu_node *rnp)
1589 int c = rnp->completed;
1590 int needmore;
1591 struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
1593 rcu_nocb_gp_cleanup(rsp, rnp);
1594 rnp->need_future_gp[c & 0x1] = 0;
1595 needmore = rnp->need_future_gp[(c + 1) & 0x1];
1596 trace_rcu_future_gp(rnp, rdp, c,
1597 needmore ? TPS("CleanupMore") : TPS("Cleanup"));
1598 return needmore;
1602 * Awaken the grace-period kthread for the specified flavor of RCU.
1603 * Don't do a self-awaken, and don't bother awakening when there is
1604 * nothing for the grace-period kthread to do (as in several CPUs
1605 * raced to awaken, and we lost), and finally don't try to awaken
1606 * a kthread that has not yet been created.
1608 static void rcu_gp_kthread_wake(struct rcu_state *rsp)
1610 if (current == rsp->gp_kthread ||
1611 !READ_ONCE(rsp->gp_flags) ||
1612 !rsp->gp_kthread)
1613 return;
1614 wake_up(&rsp->gp_wq);
1618 * If there is room, assign a ->completed number to any callbacks on
1619 * this CPU that have not already been assigned. Also accelerate any
1620 * callbacks that were previously assigned a ->completed number that has
1621 * since proven to be too conservative, which can happen if callbacks get
1622 * assigned a ->completed number while RCU is idle, but with reference to
1623 * a non-root rcu_node structure. This function is idempotent, so it does
1624 * not hurt to call it repeatedly. Returns an flag saying that we should
1625 * awaken the RCU grace-period kthread.
1627 * The caller must hold rnp->lock with interrupts disabled.
1629 static bool rcu_accelerate_cbs(struct rcu_state *rsp, struct rcu_node *rnp,
1630 struct rcu_data *rdp)
1632 unsigned long c;
1633 int i;
1634 bool ret;
1636 /* If the CPU has no callbacks, nothing to do. */
1637 if (!rdp->nxttail[RCU_NEXT_TAIL] || !*rdp->nxttail[RCU_DONE_TAIL])
1638 return false;
1641 * Starting from the sublist containing the callbacks most
1642 * recently assigned a ->completed number and working down, find the
1643 * first sublist that is not assignable to an upcoming grace period.
1644 * Such a sublist has something in it (first two tests) and has
1645 * a ->completed number assigned that will complete sooner than
1646 * the ->completed number for newly arrived callbacks (last test).
1648 * The key point is that any later sublist can be assigned the
1649 * same ->completed number as the newly arrived callbacks, which
1650 * means that the callbacks in any of these later sublist can be
1651 * grouped into a single sublist, whether or not they have already
1652 * been assigned a ->completed number.
1654 c = rcu_cbs_completed(rsp, rnp);
1655 for (i = RCU_NEXT_TAIL - 1; i > RCU_DONE_TAIL; i--)
1656 if (rdp->nxttail[i] != rdp->nxttail[i - 1] &&
1657 !ULONG_CMP_GE(rdp->nxtcompleted[i], c))
1658 break;
1661 * If there are no sublist for unassigned callbacks, leave.
1662 * At the same time, advance "i" one sublist, so that "i" will
1663 * index into the sublist where all the remaining callbacks should
1664 * be grouped into.
1666 if (++i >= RCU_NEXT_TAIL)
1667 return false;
1670 * Assign all subsequent callbacks' ->completed number to the next
1671 * full grace period and group them all in the sublist initially
1672 * indexed by "i".
1674 for (; i <= RCU_NEXT_TAIL; i++) {
1675 rdp->nxttail[i] = rdp->nxttail[RCU_NEXT_TAIL];
1676 rdp->nxtcompleted[i] = c;
1678 /* Record any needed additional grace periods. */
1679 ret = rcu_start_future_gp(rnp, rdp, NULL);
1681 /* Trace depending on how much we were able to accelerate. */
1682 if (!*rdp->nxttail[RCU_WAIT_TAIL])
1683 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("AccWaitCB"));
1684 else
1685 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("AccReadyCB"));
1686 return ret;
1690 * Move any callbacks whose grace period has completed to the
1691 * RCU_DONE_TAIL sublist, then compact the remaining sublists and
1692 * assign ->completed numbers to any callbacks in the RCU_NEXT_TAIL
1693 * sublist. This function is idempotent, so it does not hurt to
1694 * invoke it repeatedly. As long as it is not invoked -too- often...
1695 * Returns true if the RCU grace-period kthread needs to be awakened.
1697 * The caller must hold rnp->lock with interrupts disabled.
1699 static bool rcu_advance_cbs(struct rcu_state *rsp, struct rcu_node *rnp,
1700 struct rcu_data *rdp)
1702 int i, j;
1704 /* If the CPU has no callbacks, nothing to do. */
1705 if (!rdp->nxttail[RCU_NEXT_TAIL] || !*rdp->nxttail[RCU_DONE_TAIL])
1706 return false;
1709 * Find all callbacks whose ->completed numbers indicate that they
1710 * are ready to invoke, and put them into the RCU_DONE_TAIL sublist.
1712 for (i = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++) {
1713 if (ULONG_CMP_LT(rnp->completed, rdp->nxtcompleted[i]))
1714 break;
1715 rdp->nxttail[RCU_DONE_TAIL] = rdp->nxttail[i];
1717 /* Clean up any sublist tail pointers that were misordered above. */
1718 for (j = RCU_WAIT_TAIL; j < i; j++)
1719 rdp->nxttail[j] = rdp->nxttail[RCU_DONE_TAIL];
1721 /* Copy down callbacks to fill in empty sublists. */
1722 for (j = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++, j++) {
1723 if (rdp->nxttail[j] == rdp->nxttail[RCU_NEXT_TAIL])
1724 break;
1725 rdp->nxttail[j] = rdp->nxttail[i];
1726 rdp->nxtcompleted[j] = rdp->nxtcompleted[i];
1729 /* Classify any remaining callbacks. */
1730 return rcu_accelerate_cbs(rsp, rnp, rdp);
1734 * Update CPU-local rcu_data state to record the beginnings and ends of
1735 * grace periods. The caller must hold the ->lock of the leaf rcu_node
1736 * structure corresponding to the current CPU, and must have irqs disabled.
1737 * Returns true if the grace-period kthread needs to be awakened.
1739 static bool __note_gp_changes(struct rcu_state *rsp, struct rcu_node *rnp,
1740 struct rcu_data *rdp)
1742 bool ret;
1744 /* Handle the ends of any preceding grace periods first. */
1745 if (rdp->completed == rnp->completed &&
1746 !unlikely(READ_ONCE(rdp->gpwrap))) {
1748 /* No grace period end, so just accelerate recent callbacks. */
1749 ret = rcu_accelerate_cbs(rsp, rnp, rdp);
1751 } else {
1753 /* Advance callbacks. */
1754 ret = rcu_advance_cbs(rsp, rnp, rdp);
1756 /* Remember that we saw this grace-period completion. */
1757 rdp->completed = rnp->completed;
1758 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpuend"));
1761 if (rdp->gpnum != rnp->gpnum || unlikely(READ_ONCE(rdp->gpwrap))) {
1763 * If the current grace period is waiting for this CPU,
1764 * set up to detect a quiescent state, otherwise don't
1765 * go looking for one.
1767 rdp->gpnum = rnp->gpnum;
1768 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpustart"));
1769 rdp->cpu_no_qs.b.norm = true;
1770 rdp->rcu_qs_ctr_snap = __this_cpu_read(rcu_qs_ctr);
1771 rdp->core_needs_qs = !!(rnp->qsmask & rdp->grpmask);
1772 zero_cpu_stall_ticks(rdp);
1773 WRITE_ONCE(rdp->gpwrap, false);
1775 return ret;
1778 static void note_gp_changes(struct rcu_state *rsp, struct rcu_data *rdp)
1780 unsigned long flags;
1781 bool needwake;
1782 struct rcu_node *rnp;
1784 local_irq_save(flags);
1785 rnp = rdp->mynode;
1786 if ((rdp->gpnum == READ_ONCE(rnp->gpnum) &&
1787 rdp->completed == READ_ONCE(rnp->completed) &&
1788 !unlikely(READ_ONCE(rdp->gpwrap))) || /* w/out lock. */
1789 !raw_spin_trylock(&rnp->lock)) { /* irqs already off, so later. */
1790 local_irq_restore(flags);
1791 return;
1793 smp_mb__after_unlock_lock();
1794 needwake = __note_gp_changes(rsp, rnp, rdp);
1795 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1796 if (needwake)
1797 rcu_gp_kthread_wake(rsp);
1800 static void rcu_gp_slow(struct rcu_state *rsp, int delay)
1802 if (delay > 0 &&
1803 !(rsp->gpnum % (rcu_num_nodes * PER_RCU_NODE_PERIOD * delay)))
1804 schedule_timeout_uninterruptible(delay);
1808 * Initialize a new grace period. Return 0 if no grace period required.
1810 static int rcu_gp_init(struct rcu_state *rsp)
1812 unsigned long oldmask;
1813 struct rcu_data *rdp;
1814 struct rcu_node *rnp = rcu_get_root(rsp);
1816 WRITE_ONCE(rsp->gp_activity, jiffies);
1817 raw_spin_lock_irq(&rnp->lock);
1818 smp_mb__after_unlock_lock();
1819 if (!READ_ONCE(rsp->gp_flags)) {
1820 /* Spurious wakeup, tell caller to go back to sleep. */
1821 raw_spin_unlock_irq(&rnp->lock);
1822 return 0;
1824 WRITE_ONCE(rsp->gp_flags, 0); /* Clear all flags: New grace period. */
1826 if (WARN_ON_ONCE(rcu_gp_in_progress(rsp))) {
1828 * Grace period already in progress, don't start another.
1829 * Not supposed to be able to happen.
1831 raw_spin_unlock_irq(&rnp->lock);
1832 return 0;
1835 /* Advance to a new grace period and initialize state. */
1836 record_gp_stall_check_time(rsp);
1837 /* Record GP times before starting GP, hence smp_store_release(). */
1838 smp_store_release(&rsp->gpnum, rsp->gpnum + 1);
1839 trace_rcu_grace_period(rsp->name, rsp->gpnum, TPS("start"));
1840 raw_spin_unlock_irq(&rnp->lock);
1843 * Apply per-leaf buffered online and offline operations to the
1844 * rcu_node tree. Note that this new grace period need not wait
1845 * for subsequent online CPUs, and that quiescent-state forcing
1846 * will handle subsequent offline CPUs.
1848 rcu_for_each_leaf_node(rsp, rnp) {
1849 rcu_gp_slow(rsp, gp_preinit_delay);
1850 raw_spin_lock_irq(&rnp->lock);
1851 smp_mb__after_unlock_lock();
1852 if (rnp->qsmaskinit == rnp->qsmaskinitnext &&
1853 !rnp->wait_blkd_tasks) {
1854 /* Nothing to do on this leaf rcu_node structure. */
1855 raw_spin_unlock_irq(&rnp->lock);
1856 continue;
1859 /* Record old state, apply changes to ->qsmaskinit field. */
1860 oldmask = rnp->qsmaskinit;
1861 rnp->qsmaskinit = rnp->qsmaskinitnext;
1863 /* If zero-ness of ->qsmaskinit changed, propagate up tree. */
1864 if (!oldmask != !rnp->qsmaskinit) {
1865 if (!oldmask) /* First online CPU for this rcu_node. */
1866 rcu_init_new_rnp(rnp);
1867 else if (rcu_preempt_has_tasks(rnp)) /* blocked tasks */
1868 rnp->wait_blkd_tasks = true;
1869 else /* Last offline CPU and can propagate. */
1870 rcu_cleanup_dead_rnp(rnp);
1874 * If all waited-on tasks from prior grace period are
1875 * done, and if all this rcu_node structure's CPUs are
1876 * still offline, propagate up the rcu_node tree and
1877 * clear ->wait_blkd_tasks. Otherwise, if one of this
1878 * rcu_node structure's CPUs has since come back online,
1879 * simply clear ->wait_blkd_tasks (but rcu_cleanup_dead_rnp()
1880 * checks for this, so just call it unconditionally).
1882 if (rnp->wait_blkd_tasks &&
1883 (!rcu_preempt_has_tasks(rnp) ||
1884 rnp->qsmaskinit)) {
1885 rnp->wait_blkd_tasks = false;
1886 rcu_cleanup_dead_rnp(rnp);
1889 raw_spin_unlock_irq(&rnp->lock);
1893 * Set the quiescent-state-needed bits in all the rcu_node
1894 * structures for all currently online CPUs in breadth-first order,
1895 * starting from the root rcu_node structure, relying on the layout
1896 * of the tree within the rsp->node[] array. Note that other CPUs
1897 * will access only the leaves of the hierarchy, thus seeing that no
1898 * grace period is in progress, at least until the corresponding
1899 * leaf node has been initialized. In addition, we have excluded
1900 * CPU-hotplug operations.
1902 * The grace period cannot complete until the initialization
1903 * process finishes, because this kthread handles both.
1905 rcu_for_each_node_breadth_first(rsp, rnp) {
1906 rcu_gp_slow(rsp, gp_init_delay);
1907 raw_spin_lock_irq(&rnp->lock);
1908 smp_mb__after_unlock_lock();
1909 rdp = this_cpu_ptr(rsp->rda);
1910 rcu_preempt_check_blocked_tasks(rnp);
1911 rnp->qsmask = rnp->qsmaskinit;
1912 WRITE_ONCE(rnp->gpnum, rsp->gpnum);
1913 if (WARN_ON_ONCE(rnp->completed != rsp->completed))
1914 WRITE_ONCE(rnp->completed, rsp->completed);
1915 if (rnp == rdp->mynode)
1916 (void)__note_gp_changes(rsp, rnp, rdp);
1917 rcu_preempt_boost_start_gp(rnp);
1918 trace_rcu_grace_period_init(rsp->name, rnp->gpnum,
1919 rnp->level, rnp->grplo,
1920 rnp->grphi, rnp->qsmask);
1921 raw_spin_unlock_irq(&rnp->lock);
1922 cond_resched_rcu_qs();
1923 WRITE_ONCE(rsp->gp_activity, jiffies);
1926 return 1;
1930 * Helper function for wait_event_interruptible_timeout() wakeup
1931 * at force-quiescent-state time.
1933 static bool rcu_gp_fqs_check_wake(struct rcu_state *rsp, int *gfp)
1935 struct rcu_node *rnp = rcu_get_root(rsp);
1937 /* Someone like call_rcu() requested a force-quiescent-state scan. */
1938 *gfp = READ_ONCE(rsp->gp_flags);
1939 if (*gfp & RCU_GP_FLAG_FQS)
1940 return true;
1942 /* The current grace period has completed. */
1943 if (!READ_ONCE(rnp->qsmask) && !rcu_preempt_blocked_readers_cgp(rnp))
1944 return true;
1946 return false;
1950 * Do one round of quiescent-state forcing.
1952 static void rcu_gp_fqs(struct rcu_state *rsp, bool first_time)
1954 bool isidle = false;
1955 unsigned long maxj;
1956 struct rcu_node *rnp = rcu_get_root(rsp);
1958 WRITE_ONCE(rsp->gp_activity, jiffies);
1959 rsp->n_force_qs++;
1960 if (first_time) {
1961 /* Collect dyntick-idle snapshots. */
1962 if (is_sysidle_rcu_state(rsp)) {
1963 isidle = true;
1964 maxj = jiffies - ULONG_MAX / 4;
1966 force_qs_rnp(rsp, dyntick_save_progress_counter,
1967 &isidle, &maxj);
1968 rcu_sysidle_report_gp(rsp, isidle, maxj);
1969 } else {
1970 /* Handle dyntick-idle and offline CPUs. */
1971 isidle = true;
1972 force_qs_rnp(rsp, rcu_implicit_dynticks_qs, &isidle, &maxj);
1974 /* Clear flag to prevent immediate re-entry. */
1975 if (READ_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) {
1976 raw_spin_lock_irq(&rnp->lock);
1977 smp_mb__after_unlock_lock();
1978 WRITE_ONCE(rsp->gp_flags,
1979 READ_ONCE(rsp->gp_flags) & ~RCU_GP_FLAG_FQS);
1980 raw_spin_unlock_irq(&rnp->lock);
1985 * Clean up after the old grace period.
1987 static void rcu_gp_cleanup(struct rcu_state *rsp)
1989 unsigned long gp_duration;
1990 bool needgp = false;
1991 int nocb = 0;
1992 struct rcu_data *rdp;
1993 struct rcu_node *rnp = rcu_get_root(rsp);
1995 WRITE_ONCE(rsp->gp_activity, jiffies);
1996 raw_spin_lock_irq(&rnp->lock);
1997 smp_mb__after_unlock_lock();
1998 gp_duration = jiffies - rsp->gp_start;
1999 if (gp_duration > rsp->gp_max)
2000 rsp->gp_max = gp_duration;
2003 * We know the grace period is complete, but to everyone else
2004 * it appears to still be ongoing. But it is also the case
2005 * that to everyone else it looks like there is nothing that
2006 * they can do to advance the grace period. It is therefore
2007 * safe for us to drop the lock in order to mark the grace
2008 * period as completed in all of the rcu_node structures.
2010 raw_spin_unlock_irq(&rnp->lock);
2013 * Propagate new ->completed value to rcu_node structures so
2014 * that other CPUs don't have to wait until the start of the next
2015 * grace period to process their callbacks. This also avoids
2016 * some nasty RCU grace-period initialization races by forcing
2017 * the end of the current grace period to be completely recorded in
2018 * all of the rcu_node structures before the beginning of the next
2019 * grace period is recorded in any of the rcu_node structures.
2021 rcu_for_each_node_breadth_first(rsp, rnp) {
2022 raw_spin_lock_irq(&rnp->lock);
2023 smp_mb__after_unlock_lock();
2024 WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp));
2025 WARN_ON_ONCE(rnp->qsmask);
2026 WRITE_ONCE(rnp->completed, rsp->gpnum);
2027 rdp = this_cpu_ptr(rsp->rda);
2028 if (rnp == rdp->mynode)
2029 needgp = __note_gp_changes(rsp, rnp, rdp) || needgp;
2030 /* smp_mb() provided by prior unlock-lock pair. */
2031 nocb += rcu_future_gp_cleanup(rsp, rnp);
2032 raw_spin_unlock_irq(&rnp->lock);
2033 cond_resched_rcu_qs();
2034 WRITE_ONCE(rsp->gp_activity, jiffies);
2035 rcu_gp_slow(rsp, gp_cleanup_delay);
2037 rnp = rcu_get_root(rsp);
2038 raw_spin_lock_irq(&rnp->lock);
2039 smp_mb__after_unlock_lock(); /* Order GP before ->completed update. */
2040 rcu_nocb_gp_set(rnp, nocb);
2042 /* Declare grace period done. */
2043 WRITE_ONCE(rsp->completed, rsp->gpnum);
2044 trace_rcu_grace_period(rsp->name, rsp->completed, TPS("end"));
2045 rsp->gp_state = RCU_GP_IDLE;
2046 rdp = this_cpu_ptr(rsp->rda);
2047 /* Advance CBs to reduce false positives below. */
2048 needgp = rcu_advance_cbs(rsp, rnp, rdp) || needgp;
2049 if (needgp || cpu_needs_another_gp(rsp, rdp)) {
2050 WRITE_ONCE(rsp->gp_flags, RCU_GP_FLAG_INIT);
2051 trace_rcu_grace_period(rsp->name,
2052 READ_ONCE(rsp->gpnum),
2053 TPS("newreq"));
2055 raw_spin_unlock_irq(&rnp->lock);
2059 * Body of kthread that handles grace periods.
2061 static int __noreturn rcu_gp_kthread(void *arg)
2063 bool first_gp_fqs;
2064 int gf;
2065 unsigned long j;
2066 int ret;
2067 struct rcu_state *rsp = arg;
2068 struct rcu_node *rnp = rcu_get_root(rsp);
2070 rcu_bind_gp_kthread();
2071 for (;;) {
2073 /* Handle grace-period start. */
2074 for (;;) {
2075 trace_rcu_grace_period(rsp->name,
2076 READ_ONCE(rsp->gpnum),
2077 TPS("reqwait"));
2078 rsp->gp_state = RCU_GP_WAIT_GPS;
2079 wait_event_interruptible(rsp->gp_wq,
2080 READ_ONCE(rsp->gp_flags) &
2081 RCU_GP_FLAG_INIT);
2082 rsp->gp_state = RCU_GP_DONE_GPS;
2083 /* Locking provides needed memory barrier. */
2084 if (rcu_gp_init(rsp))
2085 break;
2086 cond_resched_rcu_qs();
2087 WRITE_ONCE(rsp->gp_activity, jiffies);
2088 WARN_ON(signal_pending(current));
2089 trace_rcu_grace_period(rsp->name,
2090 READ_ONCE(rsp->gpnum),
2091 TPS("reqwaitsig"));
2094 /* Handle quiescent-state forcing. */
2095 first_gp_fqs = true;
2096 j = jiffies_till_first_fqs;
2097 if (j > HZ) {
2098 j = HZ;
2099 jiffies_till_first_fqs = HZ;
2101 ret = 0;
2102 for (;;) {
2103 if (!ret)
2104 rsp->jiffies_force_qs = jiffies + j;
2105 trace_rcu_grace_period(rsp->name,
2106 READ_ONCE(rsp->gpnum),
2107 TPS("fqswait"));
2108 rsp->gp_state = RCU_GP_WAIT_FQS;
2109 ret = wait_event_interruptible_timeout(rsp->gp_wq,
2110 rcu_gp_fqs_check_wake(rsp, &gf), j);
2111 rsp->gp_state = RCU_GP_DOING_FQS;
2112 /* Locking provides needed memory barriers. */
2113 /* If grace period done, leave loop. */
2114 if (!READ_ONCE(rnp->qsmask) &&
2115 !rcu_preempt_blocked_readers_cgp(rnp))
2116 break;
2117 /* If time for quiescent-state forcing, do it. */
2118 if (ULONG_CMP_GE(jiffies, rsp->jiffies_force_qs) ||
2119 (gf & RCU_GP_FLAG_FQS)) {
2120 trace_rcu_grace_period(rsp->name,
2121 READ_ONCE(rsp->gpnum),
2122 TPS("fqsstart"));
2123 rcu_gp_fqs(rsp, first_gp_fqs);
2124 first_gp_fqs = false;
2125 trace_rcu_grace_period(rsp->name,
2126 READ_ONCE(rsp->gpnum),
2127 TPS("fqsend"));
2128 cond_resched_rcu_qs();
2129 WRITE_ONCE(rsp->gp_activity, jiffies);
2130 } else {
2131 /* Deal with stray signal. */
2132 cond_resched_rcu_qs();
2133 WRITE_ONCE(rsp->gp_activity, jiffies);
2134 WARN_ON(signal_pending(current));
2135 trace_rcu_grace_period(rsp->name,
2136 READ_ONCE(rsp->gpnum),
2137 TPS("fqswaitsig"));
2139 j = jiffies_till_next_fqs;
2140 if (j > HZ) {
2141 j = HZ;
2142 jiffies_till_next_fqs = HZ;
2143 } else if (j < 1) {
2144 j = 1;
2145 jiffies_till_next_fqs = 1;
2149 /* Handle grace-period end. */
2150 rsp->gp_state = RCU_GP_CLEANUP;
2151 rcu_gp_cleanup(rsp);
2152 rsp->gp_state = RCU_GP_CLEANED;
2157 * Start a new RCU grace period if warranted, re-initializing the hierarchy
2158 * in preparation for detecting the next grace period. The caller must hold
2159 * the root node's ->lock and hard irqs must be disabled.
2161 * Note that it is legal for a dying CPU (which is marked as offline) to
2162 * invoke this function. This can happen when the dying CPU reports its
2163 * quiescent state.
2165 * Returns true if the grace-period kthread must be awakened.
2167 static bool
2168 rcu_start_gp_advanced(struct rcu_state *rsp, struct rcu_node *rnp,
2169 struct rcu_data *rdp)
2171 if (!rsp->gp_kthread || !cpu_needs_another_gp(rsp, rdp)) {
2173 * Either we have not yet spawned the grace-period
2174 * task, this CPU does not need another grace period,
2175 * or a grace period is already in progress.
2176 * Either way, don't start a new grace period.
2178 return false;
2180 WRITE_ONCE(rsp->gp_flags, RCU_GP_FLAG_INIT);
2181 trace_rcu_grace_period(rsp->name, READ_ONCE(rsp->gpnum),
2182 TPS("newreq"));
2185 * We can't do wakeups while holding the rnp->lock, as that
2186 * could cause possible deadlocks with the rq->lock. Defer
2187 * the wakeup to our caller.
2189 return true;
2193 * Similar to rcu_start_gp_advanced(), but also advance the calling CPU's
2194 * callbacks. Note that rcu_start_gp_advanced() cannot do this because it
2195 * is invoked indirectly from rcu_advance_cbs(), which would result in
2196 * endless recursion -- or would do so if it wasn't for the self-deadlock
2197 * that is encountered beforehand.
2199 * Returns true if the grace-period kthread needs to be awakened.
2201 static bool rcu_start_gp(struct rcu_state *rsp)
2203 struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
2204 struct rcu_node *rnp = rcu_get_root(rsp);
2205 bool ret = false;
2208 * If there is no grace period in progress right now, any
2209 * callbacks we have up to this point will be satisfied by the
2210 * next grace period. Also, advancing the callbacks reduces the
2211 * probability of false positives from cpu_needs_another_gp()
2212 * resulting in pointless grace periods. So, advance callbacks
2213 * then start the grace period!
2215 ret = rcu_advance_cbs(rsp, rnp, rdp) || ret;
2216 ret = rcu_start_gp_advanced(rsp, rnp, rdp) || ret;
2217 return ret;
2221 * Report a full set of quiescent states to the specified rcu_state
2222 * data structure. This involves cleaning up after the prior grace
2223 * period and letting rcu_start_gp() start up the next grace period
2224 * if one is needed. Note that the caller must hold rnp->lock, which
2225 * is released before return.
2227 static void rcu_report_qs_rsp(struct rcu_state *rsp, unsigned long flags)
2228 __releases(rcu_get_root(rsp)->lock)
2230 WARN_ON_ONCE(!rcu_gp_in_progress(rsp));
2231 WRITE_ONCE(rsp->gp_flags, READ_ONCE(rsp->gp_flags) | RCU_GP_FLAG_FQS);
2232 raw_spin_unlock_irqrestore(&rcu_get_root(rsp)->lock, flags);
2233 rcu_gp_kthread_wake(rsp);
2237 * Similar to rcu_report_qs_rdp(), for which it is a helper function.
2238 * Allows quiescent states for a group of CPUs to be reported at one go
2239 * to the specified rcu_node structure, though all the CPUs in the group
2240 * must be represented by the same rcu_node structure (which need not be a
2241 * leaf rcu_node structure, though it often will be). The gps parameter
2242 * is the grace-period snapshot, which means that the quiescent states
2243 * are valid only if rnp->gpnum is equal to gps. That structure's lock
2244 * must be held upon entry, and it is released before return.
2246 static void
2247 rcu_report_qs_rnp(unsigned long mask, struct rcu_state *rsp,
2248 struct rcu_node *rnp, unsigned long gps, unsigned long flags)
2249 __releases(rnp->lock)
2251 unsigned long oldmask = 0;
2252 struct rcu_node *rnp_c;
2254 /* Walk up the rcu_node hierarchy. */
2255 for (;;) {
2256 if (!(rnp->qsmask & mask) || rnp->gpnum != gps) {
2259 * Our bit has already been cleared, or the
2260 * relevant grace period is already over, so done.
2262 raw_spin_unlock_irqrestore(&rnp->lock, flags);
2263 return;
2265 WARN_ON_ONCE(oldmask); /* Any child must be all zeroed! */
2266 rnp->qsmask &= ~mask;
2267 trace_rcu_quiescent_state_report(rsp->name, rnp->gpnum,
2268 mask, rnp->qsmask, rnp->level,
2269 rnp->grplo, rnp->grphi,
2270 !!rnp->gp_tasks);
2271 if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
2273 /* Other bits still set at this level, so done. */
2274 raw_spin_unlock_irqrestore(&rnp->lock, flags);
2275 return;
2277 mask = rnp->grpmask;
2278 if (rnp->parent == NULL) {
2280 /* No more levels. Exit loop holding root lock. */
2282 break;
2284 raw_spin_unlock_irqrestore(&rnp->lock, flags);
2285 rnp_c = rnp;
2286 rnp = rnp->parent;
2287 raw_spin_lock_irqsave(&rnp->lock, flags);
2288 smp_mb__after_unlock_lock();
2289 oldmask = rnp_c->qsmask;
2293 * Get here if we are the last CPU to pass through a quiescent
2294 * state for this grace period. Invoke rcu_report_qs_rsp()
2295 * to clean up and start the next grace period if one is needed.
2297 rcu_report_qs_rsp(rsp, flags); /* releases rnp->lock. */
2301 * Record a quiescent state for all tasks that were previously queued
2302 * on the specified rcu_node structure and that were blocking the current
2303 * RCU grace period. The caller must hold the specified rnp->lock with
2304 * irqs disabled, and this lock is released upon return, but irqs remain
2305 * disabled.
2307 static void rcu_report_unblock_qs_rnp(struct rcu_state *rsp,
2308 struct rcu_node *rnp, unsigned long flags)
2309 __releases(rnp->lock)
2311 unsigned long gps;
2312 unsigned long mask;
2313 struct rcu_node *rnp_p;
2315 if (rcu_state_p == &rcu_sched_state || rsp != rcu_state_p ||
2316 rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
2317 raw_spin_unlock_irqrestore(&rnp->lock, flags);
2318 return; /* Still need more quiescent states! */
2321 rnp_p = rnp->parent;
2322 if (rnp_p == NULL) {
2324 * Only one rcu_node structure in the tree, so don't
2325 * try to report up to its nonexistent parent!
2327 rcu_report_qs_rsp(rsp, flags);
2328 return;
2331 /* Report up the rest of the hierarchy, tracking current ->gpnum. */
2332 gps = rnp->gpnum;
2333 mask = rnp->grpmask;
2334 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
2335 raw_spin_lock(&rnp_p->lock); /* irqs already disabled. */
2336 smp_mb__after_unlock_lock();
2337 rcu_report_qs_rnp(mask, rsp, rnp_p, gps, flags);
2341 * Record a quiescent state for the specified CPU to that CPU's rcu_data
2342 * structure. This must be either called from the specified CPU, or
2343 * called when the specified CPU is known to be offline (and when it is
2344 * also known that no other CPU is concurrently trying to help the offline
2345 * CPU). The lastcomp argument is used to make sure we are still in the
2346 * grace period of interest. We don't want to end the current grace period
2347 * based on quiescent states detected in an earlier grace period!
2349 static void
2350 rcu_report_qs_rdp(int cpu, struct rcu_state *rsp, struct rcu_data *rdp)
2352 unsigned long flags;
2353 unsigned long mask;
2354 bool needwake;
2355 struct rcu_node *rnp;
2357 rnp = rdp->mynode;
2358 raw_spin_lock_irqsave(&rnp->lock, flags);
2359 smp_mb__after_unlock_lock();
2360 if ((rdp->cpu_no_qs.b.norm &&
2361 rdp->rcu_qs_ctr_snap == __this_cpu_read(rcu_qs_ctr)) ||
2362 rdp->gpnum != rnp->gpnum || rnp->completed == rnp->gpnum ||
2363 rdp->gpwrap) {
2366 * The grace period in which this quiescent state was
2367 * recorded has ended, so don't report it upwards.
2368 * We will instead need a new quiescent state that lies
2369 * within the current grace period.
2371 rdp->cpu_no_qs.b.norm = true; /* need qs for new gp. */
2372 rdp->rcu_qs_ctr_snap = __this_cpu_read(rcu_qs_ctr);
2373 raw_spin_unlock_irqrestore(&rnp->lock, flags);
2374 return;
2376 mask = rdp->grpmask;
2377 if ((rnp->qsmask & mask) == 0) {
2378 raw_spin_unlock_irqrestore(&rnp->lock, flags);
2379 } else {
2380 rdp->core_needs_qs = 0;
2383 * This GP can't end until cpu checks in, so all of our
2384 * callbacks can be processed during the next GP.
2386 needwake = rcu_accelerate_cbs(rsp, rnp, rdp);
2388 rcu_report_qs_rnp(mask, rsp, rnp, rnp->gpnum, flags);
2389 /* ^^^ Released rnp->lock */
2390 if (needwake)
2391 rcu_gp_kthread_wake(rsp);
2396 * Check to see if there is a new grace period of which this CPU
2397 * is not yet aware, and if so, set up local rcu_data state for it.
2398 * Otherwise, see if this CPU has just passed through its first
2399 * quiescent state for this grace period, and record that fact if so.
2401 static void
2402 rcu_check_quiescent_state(struct rcu_state *rsp, struct rcu_data *rdp)
2404 /* Check for grace-period ends and beginnings. */
2405 note_gp_changes(rsp, rdp);
2408 * Does this CPU still need to do its part for current grace period?
2409 * If no, return and let the other CPUs do their part as well.
2411 if (!rdp->core_needs_qs)
2412 return;
2415 * Was there a quiescent state since the beginning of the grace
2416 * period? If no, then exit and wait for the next call.
2418 if (rdp->cpu_no_qs.b.norm &&
2419 rdp->rcu_qs_ctr_snap == __this_cpu_read(rcu_qs_ctr))
2420 return;
2423 * Tell RCU we are done (but rcu_report_qs_rdp() will be the
2424 * judge of that).
2426 rcu_report_qs_rdp(rdp->cpu, rsp, rdp);
2430 * Send the specified CPU's RCU callbacks to the orphanage. The
2431 * specified CPU must be offline, and the caller must hold the
2432 * ->orphan_lock.
2434 static void
2435 rcu_send_cbs_to_orphanage(int cpu, struct rcu_state *rsp,
2436 struct rcu_node *rnp, struct rcu_data *rdp)
2438 /* No-CBs CPUs do not have orphanable callbacks. */
2439 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU) || rcu_is_nocb_cpu(rdp->cpu))
2440 return;
2443 * Orphan the callbacks. First adjust the counts. This is safe
2444 * because _rcu_barrier() excludes CPU-hotplug operations, so it
2445 * cannot be running now. Thus no memory barrier is required.
2447 if (rdp->nxtlist != NULL) {
2448 rsp->qlen_lazy += rdp->qlen_lazy;
2449 rsp->qlen += rdp->qlen;
2450 rdp->n_cbs_orphaned += rdp->qlen;
2451 rdp->qlen_lazy = 0;
2452 WRITE_ONCE(rdp->qlen, 0);
2456 * Next, move those callbacks still needing a grace period to
2457 * the orphanage, where some other CPU will pick them up.
2458 * Some of the callbacks might have gone partway through a grace
2459 * period, but that is too bad. They get to start over because we
2460 * cannot assume that grace periods are synchronized across CPUs.
2461 * We don't bother updating the ->nxttail[] array yet, instead
2462 * we just reset the whole thing later on.
2464 if (*rdp->nxttail[RCU_DONE_TAIL] != NULL) {
2465 *rsp->orphan_nxttail = *rdp->nxttail[RCU_DONE_TAIL];
2466 rsp->orphan_nxttail = rdp->nxttail[RCU_NEXT_TAIL];
2467 *rdp->nxttail[RCU_DONE_TAIL] = NULL;
2471 * Then move the ready-to-invoke callbacks to the orphanage,
2472 * where some other CPU will pick them up. These will not be
2473 * required to pass though another grace period: They are done.
2475 if (rdp->nxtlist != NULL) {
2476 *rsp->orphan_donetail = rdp->nxtlist;
2477 rsp->orphan_donetail = rdp->nxttail[RCU_DONE_TAIL];
2481 * Finally, initialize the rcu_data structure's list to empty and
2482 * disallow further callbacks on this CPU.
2484 init_callback_list(rdp);
2485 rdp->nxttail[RCU_NEXT_TAIL] = NULL;
2489 * Adopt the RCU callbacks from the specified rcu_state structure's
2490 * orphanage. The caller must hold the ->orphan_lock.
2492 static void rcu_adopt_orphan_cbs(struct rcu_state *rsp, unsigned long flags)
2494 int i;
2495 struct rcu_data *rdp = raw_cpu_ptr(rsp->rda);
2497 /* No-CBs CPUs are handled specially. */
2498 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU) ||
2499 rcu_nocb_adopt_orphan_cbs(rsp, rdp, flags))
2500 return;
2502 /* Do the accounting first. */
2503 rdp->qlen_lazy += rsp->qlen_lazy;
2504 rdp->qlen += rsp->qlen;
2505 rdp->n_cbs_adopted += rsp->qlen;
2506 if (rsp->qlen_lazy != rsp->qlen)
2507 rcu_idle_count_callbacks_posted();
2508 rsp->qlen_lazy = 0;
2509 rsp->qlen = 0;
2512 * We do not need a memory barrier here because the only way we
2513 * can get here if there is an rcu_barrier() in flight is if
2514 * we are the task doing the rcu_barrier().
2517 /* First adopt the ready-to-invoke callbacks. */
2518 if (rsp->orphan_donelist != NULL) {
2519 *rsp->orphan_donetail = *rdp->nxttail[RCU_DONE_TAIL];
2520 *rdp->nxttail[RCU_DONE_TAIL] = rsp->orphan_donelist;
2521 for (i = RCU_NEXT_SIZE - 1; i >= RCU_DONE_TAIL; i--)
2522 if (rdp->nxttail[i] == rdp->nxttail[RCU_DONE_TAIL])
2523 rdp->nxttail[i] = rsp->orphan_donetail;
2524 rsp->orphan_donelist = NULL;
2525 rsp->orphan_donetail = &rsp->orphan_donelist;
2528 /* And then adopt the callbacks that still need a grace period. */
2529 if (rsp->orphan_nxtlist != NULL) {
2530 *rdp->nxttail[RCU_NEXT_TAIL] = rsp->orphan_nxtlist;
2531 rdp->nxttail[RCU_NEXT_TAIL] = rsp->orphan_nxttail;
2532 rsp->orphan_nxtlist = NULL;
2533 rsp->orphan_nxttail = &rsp->orphan_nxtlist;
2538 * Trace the fact that this CPU is going offline.
2540 static void rcu_cleanup_dying_cpu(struct rcu_state *rsp)
2542 RCU_TRACE(unsigned long mask);
2543 RCU_TRACE(struct rcu_data *rdp = this_cpu_ptr(rsp->rda));
2544 RCU_TRACE(struct rcu_node *rnp = rdp->mynode);
2546 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU))
2547 return;
2549 RCU_TRACE(mask = rdp->grpmask);
2550 trace_rcu_grace_period(rsp->name,
2551 rnp->gpnum + 1 - !!(rnp->qsmask & mask),
2552 TPS("cpuofl"));
2556 * All CPUs for the specified rcu_node structure have gone offline,
2557 * and all tasks that were preempted within an RCU read-side critical
2558 * section while running on one of those CPUs have since exited their RCU
2559 * read-side critical section. Some other CPU is reporting this fact with
2560 * the specified rcu_node structure's ->lock held and interrupts disabled.
2561 * This function therefore goes up the tree of rcu_node structures,
2562 * clearing the corresponding bits in the ->qsmaskinit fields. Note that
2563 * the leaf rcu_node structure's ->qsmaskinit field has already been
2564 * updated
2566 * This function does check that the specified rcu_node structure has
2567 * all CPUs offline and no blocked tasks, so it is OK to invoke it
2568 * prematurely. That said, invoking it after the fact will cost you
2569 * a needless lock acquisition. So once it has done its work, don't
2570 * invoke it again.
2572 static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf)
2574 long mask;
2575 struct rcu_node *rnp = rnp_leaf;
2577 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU) ||
2578 rnp->qsmaskinit || rcu_preempt_has_tasks(rnp))
2579 return;
2580 for (;;) {
2581 mask = rnp->grpmask;
2582 rnp = rnp->parent;
2583 if (!rnp)
2584 break;
2585 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
2586 smp_mb__after_unlock_lock(); /* GP memory ordering. */
2587 rnp->qsmaskinit &= ~mask;
2588 rnp->qsmask &= ~mask;
2589 if (rnp->qsmaskinit) {
2590 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
2591 return;
2593 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
2598 * The CPU is exiting the idle loop into the arch_cpu_idle_dead()
2599 * function. We now remove it from the rcu_node tree's ->qsmaskinit
2600 * bit masks.
2602 static void rcu_cleanup_dying_idle_cpu(int cpu, struct rcu_state *rsp)
2604 unsigned long flags;
2605 unsigned long mask;
2606 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
2607 struct rcu_node *rnp = rdp->mynode; /* Outgoing CPU's rdp & rnp. */
2609 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU))
2610 return;
2612 /* Remove outgoing CPU from mask in the leaf rcu_node structure. */
2613 mask = rdp->grpmask;
2614 raw_spin_lock_irqsave(&rnp->lock, flags);
2615 smp_mb__after_unlock_lock(); /* Enforce GP memory-order guarantee. */
2616 rnp->qsmaskinitnext &= ~mask;
2617 raw_spin_unlock_irqrestore(&rnp->lock, flags);
2621 * The CPU has been completely removed, and some other CPU is reporting
2622 * this fact from process context. Do the remainder of the cleanup,
2623 * including orphaning the outgoing CPU's RCU callbacks, and also
2624 * adopting them. There can only be one CPU hotplug operation at a time,
2625 * so no other CPU can be attempting to update rcu_cpu_kthread_task.
2627 static void rcu_cleanup_dead_cpu(int cpu, struct rcu_state *rsp)
2629 unsigned long flags;
2630 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
2631 struct rcu_node *rnp = rdp->mynode; /* Outgoing CPU's rdp & rnp. */
2633 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU))
2634 return;
2636 /* Adjust any no-longer-needed kthreads. */
2637 rcu_boost_kthread_setaffinity(rnp, -1);
2639 /* Orphan the dead CPU's callbacks, and adopt them if appropriate. */
2640 raw_spin_lock_irqsave(&rsp->orphan_lock, flags);
2641 rcu_send_cbs_to_orphanage(cpu, rsp, rnp, rdp);
2642 rcu_adopt_orphan_cbs(rsp, flags);
2643 raw_spin_unlock_irqrestore(&rsp->orphan_lock, flags);
2645 WARN_ONCE(rdp->qlen != 0 || rdp->nxtlist != NULL,
2646 "rcu_cleanup_dead_cpu: Callbacks on offline CPU %d: qlen=%lu, nxtlist=%p\n",
2647 cpu, rdp->qlen, rdp->nxtlist);
2651 * Invoke any RCU callbacks that have made it to the end of their grace
2652 * period. Thottle as specified by rdp->blimit.
2654 static void rcu_do_batch(struct rcu_state *rsp, struct rcu_data *rdp)
2656 unsigned long flags;
2657 struct rcu_head *next, *list, **tail;
2658 long bl, count, count_lazy;
2659 int i;
2661 /* If no callbacks are ready, just return. */
2662 if (!cpu_has_callbacks_ready_to_invoke(rdp)) {
2663 trace_rcu_batch_start(rsp->name, rdp->qlen_lazy, rdp->qlen, 0);
2664 trace_rcu_batch_end(rsp->name, 0, !!READ_ONCE(rdp->nxtlist),
2665 need_resched(), is_idle_task(current),
2666 rcu_is_callbacks_kthread());
2667 return;
2671 * Extract the list of ready callbacks, disabling to prevent
2672 * races with call_rcu() from interrupt handlers.
2674 local_irq_save(flags);
2675 WARN_ON_ONCE(cpu_is_offline(smp_processor_id()));
2676 bl = rdp->blimit;
2677 trace_rcu_batch_start(rsp->name, rdp->qlen_lazy, rdp->qlen, bl);
2678 list = rdp->nxtlist;
2679 rdp->nxtlist = *rdp->nxttail[RCU_DONE_TAIL];
2680 *rdp->nxttail[RCU_DONE_TAIL] = NULL;
2681 tail = rdp->nxttail[RCU_DONE_TAIL];
2682 for (i = RCU_NEXT_SIZE - 1; i >= 0; i--)
2683 if (rdp->nxttail[i] == rdp->nxttail[RCU_DONE_TAIL])
2684 rdp->nxttail[i] = &rdp->nxtlist;
2685 local_irq_restore(flags);
2687 /* Invoke callbacks. */
2688 count = count_lazy = 0;
2689 while (list) {
2690 next = list->next;
2691 prefetch(next);
2692 debug_rcu_head_unqueue(list);
2693 if (__rcu_reclaim(rsp->name, list))
2694 count_lazy++;
2695 list = next;
2696 /* Stop only if limit reached and CPU has something to do. */
2697 if (++count >= bl &&
2698 (need_resched() ||
2699 (!is_idle_task(current) && !rcu_is_callbacks_kthread())))
2700 break;
2703 local_irq_save(flags);
2704 trace_rcu_batch_end(rsp->name, count, !!list, need_resched(),
2705 is_idle_task(current),
2706 rcu_is_callbacks_kthread());
2708 /* Update count, and requeue any remaining callbacks. */
2709 if (list != NULL) {
2710 *tail = rdp->nxtlist;
2711 rdp->nxtlist = list;
2712 for (i = 0; i < RCU_NEXT_SIZE; i++)
2713 if (&rdp->nxtlist == rdp->nxttail[i])
2714 rdp->nxttail[i] = tail;
2715 else
2716 break;
2718 smp_mb(); /* List handling before counting for rcu_barrier(). */
2719 rdp->qlen_lazy -= count_lazy;
2720 WRITE_ONCE(rdp->qlen, rdp->qlen - count);
2721 rdp->n_cbs_invoked += count;
2723 /* Reinstate batch limit if we have worked down the excess. */
2724 if (rdp->blimit == LONG_MAX && rdp->qlen <= qlowmark)
2725 rdp->blimit = blimit;
2727 /* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */
2728 if (rdp->qlen == 0 && rdp->qlen_last_fqs_check != 0) {
2729 rdp->qlen_last_fqs_check = 0;
2730 rdp->n_force_qs_snap = rsp->n_force_qs;
2731 } else if (rdp->qlen < rdp->qlen_last_fqs_check - qhimark)
2732 rdp->qlen_last_fqs_check = rdp->qlen;
2733 WARN_ON_ONCE((rdp->nxtlist == NULL) != (rdp->qlen == 0));
2735 local_irq_restore(flags);
2737 /* Re-invoke RCU core processing if there are callbacks remaining. */
2738 if (cpu_has_callbacks_ready_to_invoke(rdp))
2739 invoke_rcu_core();
2743 * Check to see if this CPU is in a non-context-switch quiescent state
2744 * (user mode or idle loop for rcu, non-softirq execution for rcu_bh).
2745 * Also schedule RCU core processing.
2747 * This function must be called from hardirq context. It is normally
2748 * invoked from the scheduling-clock interrupt. If rcu_pending returns
2749 * false, there is no point in invoking rcu_check_callbacks().
2751 void rcu_check_callbacks(int user)
2753 trace_rcu_utilization(TPS("Start scheduler-tick"));
2754 increment_cpu_stall_ticks();
2755 if (user || rcu_is_cpu_rrupt_from_idle()) {
2758 * Get here if this CPU took its interrupt from user
2759 * mode or from the idle loop, and if this is not a
2760 * nested interrupt. In this case, the CPU is in
2761 * a quiescent state, so note it.
2763 * No memory barrier is required here because both
2764 * rcu_sched_qs() and rcu_bh_qs() reference only CPU-local
2765 * variables that other CPUs neither access nor modify,
2766 * at least not while the corresponding CPU is online.
2769 rcu_sched_qs();
2770 rcu_bh_qs();
2772 } else if (!in_softirq()) {
2775 * Get here if this CPU did not take its interrupt from
2776 * softirq, in other words, if it is not interrupting
2777 * a rcu_bh read-side critical section. This is an _bh
2778 * critical section, so note it.
2781 rcu_bh_qs();
2783 rcu_preempt_check_callbacks();
2784 if (rcu_pending())
2785 invoke_rcu_core();
2786 if (user)
2787 rcu_note_voluntary_context_switch(current);
2788 trace_rcu_utilization(TPS("End scheduler-tick"));
2792 * Scan the leaf rcu_node structures, processing dyntick state for any that
2793 * have not yet encountered a quiescent state, using the function specified.
2794 * Also initiate boosting for any threads blocked on the root rcu_node.
2796 * The caller must have suppressed start of new grace periods.
2798 static void force_qs_rnp(struct rcu_state *rsp,
2799 int (*f)(struct rcu_data *rsp, bool *isidle,
2800 unsigned long *maxj),
2801 bool *isidle, unsigned long *maxj)
2803 unsigned long bit;
2804 int cpu;
2805 unsigned long flags;
2806 unsigned long mask;
2807 struct rcu_node *rnp;
2809 rcu_for_each_leaf_node(rsp, rnp) {
2810 cond_resched_rcu_qs();
2811 mask = 0;
2812 raw_spin_lock_irqsave(&rnp->lock, flags);
2813 smp_mb__after_unlock_lock();
2814 if (rnp->qsmask == 0) {
2815 if (rcu_state_p == &rcu_sched_state ||
2816 rsp != rcu_state_p ||
2817 rcu_preempt_blocked_readers_cgp(rnp)) {
2819 * No point in scanning bits because they
2820 * are all zero. But we might need to
2821 * priority-boost blocked readers.
2823 rcu_initiate_boost(rnp, flags);
2824 /* rcu_initiate_boost() releases rnp->lock */
2825 continue;
2827 if (rnp->parent &&
2828 (rnp->parent->qsmask & rnp->grpmask)) {
2830 * Race between grace-period
2831 * initialization and task exiting RCU
2832 * read-side critical section: Report.
2834 rcu_report_unblock_qs_rnp(rsp, rnp, flags);
2835 /* rcu_report_unblock_qs_rnp() rlses ->lock */
2836 continue;
2839 cpu = rnp->grplo;
2840 bit = 1;
2841 for (; cpu <= rnp->grphi; cpu++, bit <<= 1) {
2842 if ((rnp->qsmask & bit) != 0) {
2843 if (f(per_cpu_ptr(rsp->rda, cpu), isidle, maxj))
2844 mask |= bit;
2847 if (mask != 0) {
2848 /* Idle/offline CPUs, report (releases rnp->lock. */
2849 rcu_report_qs_rnp(mask, rsp, rnp, rnp->gpnum, flags);
2850 } else {
2851 /* Nothing to do here, so just drop the lock. */
2852 raw_spin_unlock_irqrestore(&rnp->lock, flags);
2858 * Force quiescent states on reluctant CPUs, and also detect which
2859 * CPUs are in dyntick-idle mode.
2861 static void force_quiescent_state(struct rcu_state *rsp)
2863 unsigned long flags;
2864 bool ret;
2865 struct rcu_node *rnp;
2866 struct rcu_node *rnp_old = NULL;
2868 /* Funnel through hierarchy to reduce memory contention. */
2869 rnp = __this_cpu_read(rsp->rda->mynode);
2870 for (; rnp != NULL; rnp = rnp->parent) {
2871 ret = (READ_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) ||
2872 !raw_spin_trylock(&rnp->fqslock);
2873 if (rnp_old != NULL)
2874 raw_spin_unlock(&rnp_old->fqslock);
2875 if (ret) {
2876 rsp->n_force_qs_lh++;
2877 return;
2879 rnp_old = rnp;
2881 /* rnp_old == rcu_get_root(rsp), rnp == NULL. */
2883 /* Reached the root of the rcu_node tree, acquire lock. */
2884 raw_spin_lock_irqsave(&rnp_old->lock, flags);
2885 smp_mb__after_unlock_lock();
2886 raw_spin_unlock(&rnp_old->fqslock);
2887 if (READ_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) {
2888 rsp->n_force_qs_lh++;
2889 raw_spin_unlock_irqrestore(&rnp_old->lock, flags);
2890 return; /* Someone beat us to it. */
2892 WRITE_ONCE(rsp->gp_flags, READ_ONCE(rsp->gp_flags) | RCU_GP_FLAG_FQS);
2893 raw_spin_unlock_irqrestore(&rnp_old->lock, flags);
2894 rcu_gp_kthread_wake(rsp);
2898 * This does the RCU core processing work for the specified rcu_state
2899 * and rcu_data structures. This may be called only from the CPU to
2900 * whom the rdp belongs.
2902 static void
2903 __rcu_process_callbacks(struct rcu_state *rsp)
2905 unsigned long flags;
2906 bool needwake;
2907 struct rcu_data *rdp = raw_cpu_ptr(rsp->rda);
2909 WARN_ON_ONCE(rdp->beenonline == 0);
2911 /* Update RCU state based on any recent quiescent states. */
2912 rcu_check_quiescent_state(rsp, rdp);
2914 /* Does this CPU require a not-yet-started grace period? */
2915 local_irq_save(flags);
2916 if (cpu_needs_another_gp(rsp, rdp)) {
2917 raw_spin_lock(&rcu_get_root(rsp)->lock); /* irqs disabled. */
2918 needwake = rcu_start_gp(rsp);
2919 raw_spin_unlock_irqrestore(&rcu_get_root(rsp)->lock, flags);
2920 if (needwake)
2921 rcu_gp_kthread_wake(rsp);
2922 } else {
2923 local_irq_restore(flags);
2926 /* If there are callbacks ready, invoke them. */
2927 if (cpu_has_callbacks_ready_to_invoke(rdp))
2928 invoke_rcu_callbacks(rsp, rdp);
2930 /* Do any needed deferred wakeups of rcuo kthreads. */
2931 do_nocb_deferred_wakeup(rdp);
2935 * Do RCU core processing for the current CPU.
2937 static void rcu_process_callbacks(struct softirq_action *unused)
2939 struct rcu_state *rsp;
2941 if (cpu_is_offline(smp_processor_id()))
2942 return;
2943 trace_rcu_utilization(TPS("Start RCU core"));
2944 for_each_rcu_flavor(rsp)
2945 __rcu_process_callbacks(rsp);
2946 trace_rcu_utilization(TPS("End RCU core"));
2950 * Schedule RCU callback invocation. If the specified type of RCU
2951 * does not support RCU priority boosting, just do a direct call,
2952 * otherwise wake up the per-CPU kernel kthread. Note that because we
2953 * are running on the current CPU with softirqs disabled, the
2954 * rcu_cpu_kthread_task cannot disappear out from under us.
2956 static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp)
2958 if (unlikely(!READ_ONCE(rcu_scheduler_fully_active)))
2959 return;
2960 if (likely(!rsp->boost)) {
2961 rcu_do_batch(rsp, rdp);
2962 return;
2964 invoke_rcu_callbacks_kthread();
2967 static void invoke_rcu_core(void)
2969 if (cpu_online(smp_processor_id()))
2970 raise_softirq(RCU_SOFTIRQ);
2974 * Handle any core-RCU processing required by a call_rcu() invocation.
2976 static void __call_rcu_core(struct rcu_state *rsp, struct rcu_data *rdp,
2977 struct rcu_head *head, unsigned long flags)
2979 bool needwake;
2982 * If called from an extended quiescent state, invoke the RCU
2983 * core in order to force a re-evaluation of RCU's idleness.
2985 if (!rcu_is_watching())
2986 invoke_rcu_core();
2988 /* If interrupts were disabled or CPU offline, don't invoke RCU core. */
2989 if (irqs_disabled_flags(flags) || cpu_is_offline(smp_processor_id()))
2990 return;
2993 * Force the grace period if too many callbacks or too long waiting.
2994 * Enforce hysteresis, and don't invoke force_quiescent_state()
2995 * if some other CPU has recently done so. Also, don't bother
2996 * invoking force_quiescent_state() if the newly enqueued callback
2997 * is the only one waiting for a grace period to complete.
2999 if (unlikely(rdp->qlen > rdp->qlen_last_fqs_check + qhimark)) {
3001 /* Are we ignoring a completed grace period? */
3002 note_gp_changes(rsp, rdp);
3004 /* Start a new grace period if one not already started. */
3005 if (!rcu_gp_in_progress(rsp)) {
3006 struct rcu_node *rnp_root = rcu_get_root(rsp);
3008 raw_spin_lock(&rnp_root->lock);
3009 smp_mb__after_unlock_lock();
3010 needwake = rcu_start_gp(rsp);
3011 raw_spin_unlock(&rnp_root->lock);
3012 if (needwake)
3013 rcu_gp_kthread_wake(rsp);
3014 } else {
3015 /* Give the grace period a kick. */
3016 rdp->blimit = LONG_MAX;
3017 if (rsp->n_force_qs == rdp->n_force_qs_snap &&
3018 *rdp->nxttail[RCU_DONE_TAIL] != head)
3019 force_quiescent_state(rsp);
3020 rdp->n_force_qs_snap = rsp->n_force_qs;
3021 rdp->qlen_last_fqs_check = rdp->qlen;
3027 * RCU callback function to leak a callback.
3029 static void rcu_leak_callback(struct rcu_head *rhp)
3034 * Helper function for call_rcu() and friends. The cpu argument will
3035 * normally be -1, indicating "currently running CPU". It may specify
3036 * a CPU only if that CPU is a no-CBs CPU. Currently, only _rcu_barrier()
3037 * is expected to specify a CPU.
3039 static void
3040 __call_rcu(struct rcu_head *head, rcu_callback_t func,
3041 struct rcu_state *rsp, int cpu, bool lazy)
3043 unsigned long flags;
3044 struct rcu_data *rdp;
3046 WARN_ON_ONCE((unsigned long)head & 0x1); /* Misaligned rcu_head! */
3047 if (debug_rcu_head_queue(head)) {
3048 /* Probable double call_rcu(), so leak the callback. */
3049 WRITE_ONCE(head->func, rcu_leak_callback);
3050 WARN_ONCE(1, "__call_rcu(): Leaked duplicate callback\n");
3051 return;
3053 head->func = func;
3054 head->next = NULL;
3057 * Opportunistically note grace-period endings and beginnings.
3058 * Note that we might see a beginning right after we see an
3059 * end, but never vice versa, since this CPU has to pass through
3060 * a quiescent state betweentimes.
3062 local_irq_save(flags);
3063 rdp = this_cpu_ptr(rsp->rda);
3065 /* Add the callback to our list. */
3066 if (unlikely(rdp->nxttail[RCU_NEXT_TAIL] == NULL) || cpu != -1) {
3067 int offline;
3069 if (cpu != -1)
3070 rdp = per_cpu_ptr(rsp->rda, cpu);
3071 if (likely(rdp->mynode)) {
3072 /* Post-boot, so this should be for a no-CBs CPU. */
3073 offline = !__call_rcu_nocb(rdp, head, lazy, flags);
3074 WARN_ON_ONCE(offline);
3075 /* Offline CPU, _call_rcu() illegal, leak callback. */
3076 local_irq_restore(flags);
3077 return;
3080 * Very early boot, before rcu_init(). Initialize if needed
3081 * and then drop through to queue the callback.
3083 BUG_ON(cpu != -1);
3084 WARN_ON_ONCE(!rcu_is_watching());
3085 if (!likely(rdp->nxtlist))
3086 init_default_callback_list(rdp);
3088 WRITE_ONCE(rdp->qlen, rdp->qlen + 1);
3089 if (lazy)
3090 rdp->qlen_lazy++;
3091 else
3092 rcu_idle_count_callbacks_posted();
3093 smp_mb(); /* Count before adding callback for rcu_barrier(). */
3094 *rdp->nxttail[RCU_NEXT_TAIL] = head;
3095 rdp->nxttail[RCU_NEXT_TAIL] = &head->next;
3097 if (__is_kfree_rcu_offset((unsigned long)func))
3098 trace_rcu_kfree_callback(rsp->name, head, (unsigned long)func,
3099 rdp->qlen_lazy, rdp->qlen);
3100 else
3101 trace_rcu_callback(rsp->name, head, rdp->qlen_lazy, rdp->qlen);
3103 /* Go handle any RCU core processing required. */
3104 __call_rcu_core(rsp, rdp, head, flags);
3105 local_irq_restore(flags);
3109 * Queue an RCU-sched callback for invocation after a grace period.
3111 void call_rcu_sched(struct rcu_head *head, rcu_callback_t func)
3113 __call_rcu(head, func, &rcu_sched_state, -1, 0);
3115 EXPORT_SYMBOL_GPL(call_rcu_sched);
3118 * Queue an RCU callback for invocation after a quicker grace period.
3120 void call_rcu_bh(struct rcu_head *head, rcu_callback_t func)
3122 __call_rcu(head, func, &rcu_bh_state, -1, 0);
3124 EXPORT_SYMBOL_GPL(call_rcu_bh);
3127 * Queue an RCU callback for lazy invocation after a grace period.
3128 * This will likely be later named something like "call_rcu_lazy()",
3129 * but this change will require some way of tagging the lazy RCU
3130 * callbacks in the list of pending callbacks. Until then, this
3131 * function may only be called from __kfree_rcu().
3133 void kfree_call_rcu(struct rcu_head *head,
3134 rcu_callback_t func)
3136 __call_rcu(head, func, rcu_state_p, -1, 1);
3138 EXPORT_SYMBOL_GPL(kfree_call_rcu);
3141 * Because a context switch is a grace period for RCU-sched and RCU-bh,
3142 * any blocking grace-period wait automatically implies a grace period
3143 * if there is only one CPU online at any point time during execution
3144 * of either synchronize_sched() or synchronize_rcu_bh(). It is OK to
3145 * occasionally incorrectly indicate that there are multiple CPUs online
3146 * when there was in fact only one the whole time, as this just adds
3147 * some overhead: RCU still operates correctly.
3149 static inline int rcu_blocking_is_gp(void)
3151 int ret;
3153 might_sleep(); /* Check for RCU read-side critical section. */
3154 preempt_disable();
3155 ret = num_online_cpus() <= 1;
3156 preempt_enable();
3157 return ret;
3161 * synchronize_sched - wait until an rcu-sched grace period has elapsed.
3163 * Control will return to the caller some time after a full rcu-sched
3164 * grace period has elapsed, in other words after all currently executing
3165 * rcu-sched read-side critical sections have completed. These read-side
3166 * critical sections are delimited by rcu_read_lock_sched() and
3167 * rcu_read_unlock_sched(), and may be nested. Note that preempt_disable(),
3168 * local_irq_disable(), and so on may be used in place of
3169 * rcu_read_lock_sched().
3171 * This means that all preempt_disable code sequences, including NMI and
3172 * non-threaded hardware-interrupt handlers, in progress on entry will
3173 * have completed before this primitive returns. However, this does not
3174 * guarantee that softirq handlers will have completed, since in some
3175 * kernels, these handlers can run in process context, and can block.
3177 * Note that this guarantee implies further memory-ordering guarantees.
3178 * On systems with more than one CPU, when synchronize_sched() returns,
3179 * each CPU is guaranteed to have executed a full memory barrier since the
3180 * end of its last RCU-sched read-side critical section whose beginning
3181 * preceded the call to synchronize_sched(). In addition, each CPU having
3182 * an RCU read-side critical section that extends beyond the return from
3183 * synchronize_sched() is guaranteed to have executed a full memory barrier
3184 * after the beginning of synchronize_sched() and before the beginning of
3185 * that RCU read-side critical section. Note that these guarantees include
3186 * CPUs that are offline, idle, or executing in user mode, as well as CPUs
3187 * that are executing in the kernel.
3189 * Furthermore, if CPU A invoked synchronize_sched(), which returned
3190 * to its caller on CPU B, then both CPU A and CPU B are guaranteed
3191 * to have executed a full memory barrier during the execution of
3192 * synchronize_sched() -- even if CPU A and CPU B are the same CPU (but
3193 * again only if the system has more than one CPU).
3195 * This primitive provides the guarantees made by the (now removed)
3196 * synchronize_kernel() API. In contrast, synchronize_rcu() only
3197 * guarantees that rcu_read_lock() sections will have completed.
3198 * In "classic RCU", these two guarantees happen to be one and
3199 * the same, but can differ in realtime RCU implementations.
3201 void synchronize_sched(void)
3203 RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map) ||
3204 lock_is_held(&rcu_lock_map) ||
3205 lock_is_held(&rcu_sched_lock_map),
3206 "Illegal synchronize_sched() in RCU-sched read-side critical section");
3207 if (rcu_blocking_is_gp())
3208 return;
3209 if (rcu_gp_is_expedited())
3210 synchronize_sched_expedited();
3211 else
3212 wait_rcu_gp(call_rcu_sched);
3214 EXPORT_SYMBOL_GPL(synchronize_sched);
3217 * synchronize_rcu_bh - wait until an rcu_bh grace period has elapsed.
3219 * Control will return to the caller some time after a full rcu_bh grace
3220 * period has elapsed, in other words after all currently executing rcu_bh
3221 * read-side critical sections have completed. RCU read-side critical
3222 * sections are delimited by rcu_read_lock_bh() and rcu_read_unlock_bh(),
3223 * and may be nested.
3225 * See the description of synchronize_sched() for more detailed information
3226 * on memory ordering guarantees.
3228 void synchronize_rcu_bh(void)
3230 RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map) ||
3231 lock_is_held(&rcu_lock_map) ||
3232 lock_is_held(&rcu_sched_lock_map),
3233 "Illegal synchronize_rcu_bh() in RCU-bh read-side critical section");
3234 if (rcu_blocking_is_gp())
3235 return;
3236 if (rcu_gp_is_expedited())
3237 synchronize_rcu_bh_expedited();
3238 else
3239 wait_rcu_gp(call_rcu_bh);
3241 EXPORT_SYMBOL_GPL(synchronize_rcu_bh);
3244 * get_state_synchronize_rcu - Snapshot current RCU state
3246 * Returns a cookie that is used by a later call to cond_synchronize_rcu()
3247 * to determine whether or not a full grace period has elapsed in the
3248 * meantime.
3250 unsigned long get_state_synchronize_rcu(void)
3253 * Any prior manipulation of RCU-protected data must happen
3254 * before the load from ->gpnum.
3256 smp_mb(); /* ^^^ */
3259 * Make sure this load happens before the purportedly
3260 * time-consuming work between get_state_synchronize_rcu()
3261 * and cond_synchronize_rcu().
3263 return smp_load_acquire(&rcu_state_p->gpnum);
3265 EXPORT_SYMBOL_GPL(get_state_synchronize_rcu);
3268 * cond_synchronize_rcu - Conditionally wait for an RCU grace period
3270 * @oldstate: return value from earlier call to get_state_synchronize_rcu()
3272 * If a full RCU grace period has elapsed since the earlier call to
3273 * get_state_synchronize_rcu(), just return. Otherwise, invoke
3274 * synchronize_rcu() to wait for a full grace period.
3276 * Yes, this function does not take counter wrap into account. But
3277 * counter wrap is harmless. If the counter wraps, we have waited for
3278 * more than 2 billion grace periods (and way more on a 64-bit system!),
3279 * so waiting for one additional grace period should be just fine.
3281 void cond_synchronize_rcu(unsigned long oldstate)
3283 unsigned long newstate;
3286 * Ensure that this load happens before any RCU-destructive
3287 * actions the caller might carry out after we return.
3289 newstate = smp_load_acquire(&rcu_state_p->completed);
3290 if (ULONG_CMP_GE(oldstate, newstate))
3291 synchronize_rcu();
3293 EXPORT_SYMBOL_GPL(cond_synchronize_rcu);
3296 * get_state_synchronize_sched - Snapshot current RCU-sched state
3298 * Returns a cookie that is used by a later call to cond_synchronize_sched()
3299 * to determine whether or not a full grace period has elapsed in the
3300 * meantime.
3302 unsigned long get_state_synchronize_sched(void)
3305 * Any prior manipulation of RCU-protected data must happen
3306 * before the load from ->gpnum.
3308 smp_mb(); /* ^^^ */
3311 * Make sure this load happens before the purportedly
3312 * time-consuming work between get_state_synchronize_sched()
3313 * and cond_synchronize_sched().
3315 return smp_load_acquire(&rcu_sched_state.gpnum);
3317 EXPORT_SYMBOL_GPL(get_state_synchronize_sched);
3320 * cond_synchronize_sched - Conditionally wait for an RCU-sched grace period
3322 * @oldstate: return value from earlier call to get_state_synchronize_sched()
3324 * If a full RCU-sched grace period has elapsed since the earlier call to
3325 * get_state_synchronize_sched(), just return. Otherwise, invoke
3326 * synchronize_sched() to wait for a full grace period.
3328 * Yes, this function does not take counter wrap into account. But
3329 * counter wrap is harmless. If the counter wraps, we have waited for
3330 * more than 2 billion grace periods (and way more on a 64-bit system!),
3331 * so waiting for one additional grace period should be just fine.
3333 void cond_synchronize_sched(unsigned long oldstate)
3335 unsigned long newstate;
3338 * Ensure that this load happens before any RCU-destructive
3339 * actions the caller might carry out after we return.
3341 newstate = smp_load_acquire(&rcu_sched_state.completed);
3342 if (ULONG_CMP_GE(oldstate, newstate))
3343 synchronize_sched();
3345 EXPORT_SYMBOL_GPL(cond_synchronize_sched);
3347 /* Adjust sequence number for start of update-side operation. */
3348 static void rcu_seq_start(unsigned long *sp)
3350 WRITE_ONCE(*sp, *sp + 1);
3351 smp_mb(); /* Ensure update-side operation after counter increment. */
3352 WARN_ON_ONCE(!(*sp & 0x1));
3355 /* Adjust sequence number for end of update-side operation. */
3356 static void rcu_seq_end(unsigned long *sp)
3358 smp_mb(); /* Ensure update-side operation before counter increment. */
3359 WRITE_ONCE(*sp, *sp + 1);
3360 WARN_ON_ONCE(*sp & 0x1);
3363 /* Take a snapshot of the update side's sequence number. */
3364 static unsigned long rcu_seq_snap(unsigned long *sp)
3366 unsigned long s;
3368 smp_mb(); /* Caller's modifications seen first by other CPUs. */
3369 s = (READ_ONCE(*sp) + 3) & ~0x1;
3370 smp_mb(); /* Above access must not bleed into critical section. */
3371 return s;
3375 * Given a snapshot from rcu_seq_snap(), determine whether or not a
3376 * full update-side operation has occurred.
3378 static bool rcu_seq_done(unsigned long *sp, unsigned long s)
3380 return ULONG_CMP_GE(READ_ONCE(*sp), s);
3383 /* Wrapper functions for expedited grace periods. */
3384 static void rcu_exp_gp_seq_start(struct rcu_state *rsp)
3386 rcu_seq_start(&rsp->expedited_sequence);
3388 static void rcu_exp_gp_seq_end(struct rcu_state *rsp)
3390 rcu_seq_end(&rsp->expedited_sequence);
3391 smp_mb(); /* Ensure that consecutive grace periods serialize. */
3393 static unsigned long rcu_exp_gp_seq_snap(struct rcu_state *rsp)
3395 return rcu_seq_snap(&rsp->expedited_sequence);
3397 static bool rcu_exp_gp_seq_done(struct rcu_state *rsp, unsigned long s)
3399 return rcu_seq_done(&rsp->expedited_sequence, s);
3403 * Reset the ->expmaskinit values in the rcu_node tree to reflect any
3404 * recent CPU-online activity. Note that these masks are not cleared
3405 * when CPUs go offline, so they reflect the union of all CPUs that have
3406 * ever been online. This means that this function normally takes its
3407 * no-work-to-do fastpath.
3409 static void sync_exp_reset_tree_hotplug(struct rcu_state *rsp)
3411 bool done;
3412 unsigned long flags;
3413 unsigned long mask;
3414 unsigned long oldmask;
3415 int ncpus = READ_ONCE(rsp->ncpus);
3416 struct rcu_node *rnp;
3417 struct rcu_node *rnp_up;
3419 /* If no new CPUs onlined since last time, nothing to do. */
3420 if (likely(ncpus == rsp->ncpus_snap))
3421 return;
3422 rsp->ncpus_snap = ncpus;
3425 * Each pass through the following loop propagates newly onlined
3426 * CPUs for the current rcu_node structure up the rcu_node tree.
3428 rcu_for_each_leaf_node(rsp, rnp) {
3429 raw_spin_lock_irqsave(&rnp->lock, flags);
3430 smp_mb__after_unlock_lock();
3431 if (rnp->expmaskinit == rnp->expmaskinitnext) {
3432 raw_spin_unlock_irqrestore(&rnp->lock, flags);
3433 continue; /* No new CPUs, nothing to do. */
3436 /* Update this node's mask, track old value for propagation. */
3437 oldmask = rnp->expmaskinit;
3438 rnp->expmaskinit = rnp->expmaskinitnext;
3439 raw_spin_unlock_irqrestore(&rnp->lock, flags);
3441 /* If was already nonzero, nothing to propagate. */
3442 if (oldmask)
3443 continue;
3445 /* Propagate the new CPU up the tree. */
3446 mask = rnp->grpmask;
3447 rnp_up = rnp->parent;
3448 done = false;
3449 while (rnp_up) {
3450 raw_spin_lock_irqsave(&rnp_up->lock, flags);
3451 smp_mb__after_unlock_lock();
3452 if (rnp_up->expmaskinit)
3453 done = true;
3454 rnp_up->expmaskinit |= mask;
3455 raw_spin_unlock_irqrestore(&rnp_up->lock, flags);
3456 if (done)
3457 break;
3458 mask = rnp_up->grpmask;
3459 rnp_up = rnp_up->parent;
3465 * Reset the ->expmask values in the rcu_node tree in preparation for
3466 * a new expedited grace period.
3468 static void __maybe_unused sync_exp_reset_tree(struct rcu_state *rsp)
3470 unsigned long flags;
3471 struct rcu_node *rnp;
3473 sync_exp_reset_tree_hotplug(rsp);
3474 rcu_for_each_node_breadth_first(rsp, rnp) {
3475 raw_spin_lock_irqsave(&rnp->lock, flags);
3476 smp_mb__after_unlock_lock();
3477 WARN_ON_ONCE(rnp->expmask);
3478 rnp->expmask = rnp->expmaskinit;
3479 raw_spin_unlock_irqrestore(&rnp->lock, flags);
3484 * Return non-zero if there is no RCU expedited grace period in progress
3485 * for the specified rcu_node structure, in other words, if all CPUs and
3486 * tasks covered by the specified rcu_node structure have done their bit
3487 * for the current expedited grace period. Works only for preemptible
3488 * RCU -- other RCU implementation use other means.
3490 * Caller must hold the root rcu_node's exp_funnel_mutex.
3492 static int sync_rcu_preempt_exp_done(struct rcu_node *rnp)
3494 return rnp->exp_tasks == NULL &&
3495 READ_ONCE(rnp->expmask) == 0;
3499 * Report the exit from RCU read-side critical section for the last task
3500 * that queued itself during or before the current expedited preemptible-RCU
3501 * grace period. This event is reported either to the rcu_node structure on
3502 * which the task was queued or to one of that rcu_node structure's ancestors,
3503 * recursively up the tree. (Calm down, calm down, we do the recursion
3504 * iteratively!)
3506 * Caller must hold the root rcu_node's exp_funnel_mutex and the
3507 * specified rcu_node structure's ->lock.
3509 static void __rcu_report_exp_rnp(struct rcu_state *rsp, struct rcu_node *rnp,
3510 bool wake, unsigned long flags)
3511 __releases(rnp->lock)
3513 unsigned long mask;
3515 for (;;) {
3516 if (!sync_rcu_preempt_exp_done(rnp)) {
3517 if (!rnp->expmask)
3518 rcu_initiate_boost(rnp, flags);
3519 else
3520 raw_spin_unlock_irqrestore(&rnp->lock, flags);
3521 break;
3523 if (rnp->parent == NULL) {
3524 raw_spin_unlock_irqrestore(&rnp->lock, flags);
3525 if (wake) {
3526 smp_mb(); /* EGP done before wake_up(). */
3527 wake_up(&rsp->expedited_wq);
3529 break;
3531 mask = rnp->grpmask;
3532 raw_spin_unlock(&rnp->lock); /* irqs remain disabled */
3533 rnp = rnp->parent;
3534 raw_spin_lock(&rnp->lock); /* irqs already disabled */
3535 smp_mb__after_unlock_lock();
3536 WARN_ON_ONCE(!(rnp->expmask & mask));
3537 rnp->expmask &= ~mask;
3542 * Report expedited quiescent state for specified node. This is a
3543 * lock-acquisition wrapper function for __rcu_report_exp_rnp().
3545 * Caller must hold the root rcu_node's exp_funnel_mutex.
3547 static void __maybe_unused rcu_report_exp_rnp(struct rcu_state *rsp,
3548 struct rcu_node *rnp, bool wake)
3550 unsigned long flags;
3552 raw_spin_lock_irqsave(&rnp->lock, flags);
3553 smp_mb__after_unlock_lock();
3554 __rcu_report_exp_rnp(rsp, rnp, wake, flags);
3558 * Report expedited quiescent state for multiple CPUs, all covered by the
3559 * specified leaf rcu_node structure. Caller must hold the root
3560 * rcu_node's exp_funnel_mutex.
3562 static void rcu_report_exp_cpu_mult(struct rcu_state *rsp, struct rcu_node *rnp,
3563 unsigned long mask, bool wake)
3565 unsigned long flags;
3567 raw_spin_lock_irqsave(&rnp->lock, flags);
3568 smp_mb__after_unlock_lock();
3569 if (!(rnp->expmask & mask)) {
3570 raw_spin_unlock_irqrestore(&rnp->lock, flags);
3571 return;
3573 rnp->expmask &= ~mask;
3574 __rcu_report_exp_rnp(rsp, rnp, wake, flags); /* Releases rnp->lock. */
3578 * Report expedited quiescent state for specified rcu_data (CPU).
3579 * Caller must hold the root rcu_node's exp_funnel_mutex.
3581 static void rcu_report_exp_rdp(struct rcu_state *rsp, struct rcu_data *rdp,
3582 bool wake)
3584 rcu_report_exp_cpu_mult(rsp, rdp->mynode, rdp->grpmask, wake);
3587 /* Common code for synchronize_{rcu,sched}_expedited() work-done checking. */
3588 static bool sync_exp_work_done(struct rcu_state *rsp, struct rcu_node *rnp,
3589 struct rcu_data *rdp,
3590 atomic_long_t *stat, unsigned long s)
3592 if (rcu_exp_gp_seq_done(rsp, s)) {
3593 if (rnp)
3594 mutex_unlock(&rnp->exp_funnel_mutex);
3595 else if (rdp)
3596 mutex_unlock(&rdp->exp_funnel_mutex);
3597 /* Ensure test happens before caller kfree(). */
3598 smp_mb__before_atomic(); /* ^^^ */
3599 atomic_long_inc(stat);
3600 return true;
3602 return false;
3606 * Funnel-lock acquisition for expedited grace periods. Returns a
3607 * pointer to the root rcu_node structure, or NULL if some other
3608 * task did the expedited grace period for us.
3610 static struct rcu_node *exp_funnel_lock(struct rcu_state *rsp, unsigned long s)
3612 struct rcu_data *rdp;
3613 struct rcu_node *rnp0;
3614 struct rcu_node *rnp1 = NULL;
3617 * First try directly acquiring the root lock in order to reduce
3618 * latency in the common case where expedited grace periods are
3619 * rare. We check mutex_is_locked() to avoid pathological levels of
3620 * memory contention on ->exp_funnel_mutex in the heavy-load case.
3622 rnp0 = rcu_get_root(rsp);
3623 if (!mutex_is_locked(&rnp0->exp_funnel_mutex)) {
3624 if (mutex_trylock(&rnp0->exp_funnel_mutex)) {
3625 if (sync_exp_work_done(rsp, rnp0, NULL,
3626 &rsp->expedited_workdone0, s))
3627 return NULL;
3628 return rnp0;
3633 * Each pass through the following loop works its way
3634 * up the rcu_node tree, returning if others have done the
3635 * work or otherwise falls through holding the root rnp's
3636 * ->exp_funnel_mutex. The mapping from CPU to rcu_node structure
3637 * can be inexact, as it is just promoting locality and is not
3638 * strictly needed for correctness.
3640 rdp = per_cpu_ptr(rsp->rda, raw_smp_processor_id());
3641 if (sync_exp_work_done(rsp, NULL, NULL, &rsp->expedited_workdone1, s))
3642 return NULL;
3643 mutex_lock(&rdp->exp_funnel_mutex);
3644 rnp0 = rdp->mynode;
3645 for (; rnp0 != NULL; rnp0 = rnp0->parent) {
3646 if (sync_exp_work_done(rsp, rnp1, rdp,
3647 &rsp->expedited_workdone2, s))
3648 return NULL;
3649 mutex_lock(&rnp0->exp_funnel_mutex);
3650 if (rnp1)
3651 mutex_unlock(&rnp1->exp_funnel_mutex);
3652 else
3653 mutex_unlock(&rdp->exp_funnel_mutex);
3654 rnp1 = rnp0;
3656 if (sync_exp_work_done(rsp, rnp1, rdp,
3657 &rsp->expedited_workdone3, s))
3658 return NULL;
3659 return rnp1;
3662 /* Invoked on each online non-idle CPU for expedited quiescent state. */
3663 static void sync_sched_exp_handler(void *data)
3665 struct rcu_data *rdp;
3666 struct rcu_node *rnp;
3667 struct rcu_state *rsp = data;
3669 rdp = this_cpu_ptr(rsp->rda);
3670 rnp = rdp->mynode;
3671 if (!(READ_ONCE(rnp->expmask) & rdp->grpmask) ||
3672 __this_cpu_read(rcu_sched_data.cpu_no_qs.b.exp))
3673 return;
3674 __this_cpu_write(rcu_sched_data.cpu_no_qs.b.exp, true);
3675 resched_cpu(smp_processor_id());
3678 /* Send IPI for expedited cleanup if needed at end of CPU-hotplug operation. */
3679 static void sync_sched_exp_online_cleanup(int cpu)
3681 struct rcu_data *rdp;
3682 int ret;
3683 struct rcu_node *rnp;
3684 struct rcu_state *rsp = &rcu_sched_state;
3686 rdp = per_cpu_ptr(rsp->rda, cpu);
3687 rnp = rdp->mynode;
3688 if (!(READ_ONCE(rnp->expmask) & rdp->grpmask))
3689 return;
3690 ret = smp_call_function_single(cpu, sync_sched_exp_handler, rsp, 0);
3691 WARN_ON_ONCE(ret);
3695 * Select the nodes that the upcoming expedited grace period needs
3696 * to wait for.
3698 static void sync_rcu_exp_select_cpus(struct rcu_state *rsp,
3699 smp_call_func_t func)
3701 int cpu;
3702 unsigned long flags;
3703 unsigned long mask;
3704 unsigned long mask_ofl_test;
3705 unsigned long mask_ofl_ipi;
3706 int ret;
3707 struct rcu_node *rnp;
3709 sync_exp_reset_tree(rsp);
3710 rcu_for_each_leaf_node(rsp, rnp) {
3711 raw_spin_lock_irqsave(&rnp->lock, flags);
3712 smp_mb__after_unlock_lock();
3714 /* Each pass checks a CPU for identity, offline, and idle. */
3715 mask_ofl_test = 0;
3716 for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++) {
3717 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
3718 struct rcu_dynticks *rdtp = &per_cpu(rcu_dynticks, cpu);
3720 if (raw_smp_processor_id() == cpu ||
3721 !(atomic_add_return(0, &rdtp->dynticks) & 0x1))
3722 mask_ofl_test |= rdp->grpmask;
3724 mask_ofl_ipi = rnp->expmask & ~mask_ofl_test;
3727 * Need to wait for any blocked tasks as well. Note that
3728 * additional blocking tasks will also block the expedited
3729 * GP until such time as the ->expmask bits are cleared.
3731 if (rcu_preempt_has_tasks(rnp))
3732 rnp->exp_tasks = rnp->blkd_tasks.next;
3733 raw_spin_unlock_irqrestore(&rnp->lock, flags);
3735 /* IPI the remaining CPUs for expedited quiescent state. */
3736 mask = 1;
3737 for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++, mask <<= 1) {
3738 if (!(mask_ofl_ipi & mask))
3739 continue;
3740 retry_ipi:
3741 ret = smp_call_function_single(cpu, func, rsp, 0);
3742 if (!ret) {
3743 mask_ofl_ipi &= ~mask;
3744 } else {
3745 /* Failed, raced with offline. */
3746 raw_spin_lock_irqsave(&rnp->lock, flags);
3747 if (cpu_online(cpu) &&
3748 (rnp->expmask & mask)) {
3749 raw_spin_unlock_irqrestore(&rnp->lock,
3750 flags);
3751 schedule_timeout_uninterruptible(1);
3752 if (cpu_online(cpu) &&
3753 (rnp->expmask & mask))
3754 goto retry_ipi;
3755 raw_spin_lock_irqsave(&rnp->lock,
3756 flags);
3758 if (!(rnp->expmask & mask))
3759 mask_ofl_ipi &= ~mask;
3760 raw_spin_unlock_irqrestore(&rnp->lock, flags);
3763 /* Report quiescent states for those that went offline. */
3764 mask_ofl_test |= mask_ofl_ipi;
3765 if (mask_ofl_test)
3766 rcu_report_exp_cpu_mult(rsp, rnp, mask_ofl_test, false);
3770 static void synchronize_sched_expedited_wait(struct rcu_state *rsp)
3772 int cpu;
3773 unsigned long jiffies_stall;
3774 unsigned long jiffies_start;
3775 unsigned long mask;
3776 struct rcu_node *rnp;
3777 struct rcu_node *rnp_root = rcu_get_root(rsp);
3778 int ret;
3780 jiffies_stall = rcu_jiffies_till_stall_check();
3781 jiffies_start = jiffies;
3783 for (;;) {
3784 ret = wait_event_interruptible_timeout(
3785 rsp->expedited_wq,
3786 sync_rcu_preempt_exp_done(rnp_root),
3787 jiffies_stall);
3788 if (ret > 0)
3789 return;
3790 if (ret < 0) {
3791 /* Hit a signal, disable CPU stall warnings. */
3792 wait_event(rsp->expedited_wq,
3793 sync_rcu_preempt_exp_done(rnp_root));
3794 return;
3796 pr_err("INFO: %s detected expedited stalls on CPUs/tasks: {",
3797 rsp->name);
3798 rcu_for_each_leaf_node(rsp, rnp) {
3799 (void)rcu_print_task_exp_stall(rnp);
3800 mask = 1;
3801 for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++, mask <<= 1) {
3802 struct rcu_data *rdp;
3804 if (!(rnp->expmask & mask))
3805 continue;
3806 rdp = per_cpu_ptr(rsp->rda, cpu);
3807 pr_cont(" %d-%c%c%c", cpu,
3808 "O."[cpu_online(cpu)],
3809 "o."[!!(rdp->grpmask & rnp->expmaskinit)],
3810 "N."[!!(rdp->grpmask & rnp->expmaskinitnext)]);
3812 mask <<= 1;
3814 pr_cont(" } %lu jiffies s: %lu\n",
3815 jiffies - jiffies_start, rsp->expedited_sequence);
3816 rcu_for_each_leaf_node(rsp, rnp) {
3817 mask = 1;
3818 for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++, mask <<= 1) {
3819 if (!(rnp->expmask & mask))
3820 continue;
3821 dump_cpu_task(cpu);
3824 jiffies_stall = 3 * rcu_jiffies_till_stall_check() + 3;
3829 * synchronize_sched_expedited - Brute-force RCU-sched grace period
3831 * Wait for an RCU-sched grace period to elapse, but use a "big hammer"
3832 * approach to force the grace period to end quickly. This consumes
3833 * significant time on all CPUs and is unfriendly to real-time workloads,
3834 * so is thus not recommended for any sort of common-case code. In fact,
3835 * if you are using synchronize_sched_expedited() in a loop, please
3836 * restructure your code to batch your updates, and then use a single
3837 * synchronize_sched() instead.
3839 * This implementation can be thought of as an application of sequence
3840 * locking to expedited grace periods, but using the sequence counter to
3841 * determine when someone else has already done the work instead of for
3842 * retrying readers.
3844 void synchronize_sched_expedited(void)
3846 unsigned long s;
3847 struct rcu_node *rnp;
3848 struct rcu_state *rsp = &rcu_sched_state;
3850 /* Take a snapshot of the sequence number. */
3851 s = rcu_exp_gp_seq_snap(rsp);
3853 rnp = exp_funnel_lock(rsp, s);
3854 if (rnp == NULL)
3855 return; /* Someone else did our work for us. */
3857 rcu_exp_gp_seq_start(rsp);
3858 sync_rcu_exp_select_cpus(rsp, sync_sched_exp_handler);
3859 synchronize_sched_expedited_wait(rsp);
3861 rcu_exp_gp_seq_end(rsp);
3862 mutex_unlock(&rnp->exp_funnel_mutex);
3864 EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
3867 * Check to see if there is any immediate RCU-related work to be done
3868 * by the current CPU, for the specified type of RCU, returning 1 if so.
3869 * The checks are in order of increasing expense: checks that can be
3870 * carried out against CPU-local state are performed first. However,
3871 * we must check for CPU stalls first, else we might not get a chance.
3873 static int __rcu_pending(struct rcu_state *rsp, struct rcu_data *rdp)
3875 struct rcu_node *rnp = rdp->mynode;
3877 rdp->n_rcu_pending++;
3879 /* Check for CPU stalls, if enabled. */
3880 check_cpu_stall(rsp, rdp);
3882 /* Is this CPU a NO_HZ_FULL CPU that should ignore RCU? */
3883 if (rcu_nohz_full_cpu(rsp))
3884 return 0;
3886 /* Is the RCU core waiting for a quiescent state from this CPU? */
3887 if (rcu_scheduler_fully_active &&
3888 rdp->core_needs_qs && rdp->cpu_no_qs.b.norm &&
3889 rdp->rcu_qs_ctr_snap == __this_cpu_read(rcu_qs_ctr)) {
3890 rdp->n_rp_core_needs_qs++;
3891 } else if (rdp->core_needs_qs &&
3892 (!rdp->cpu_no_qs.b.norm ||
3893 rdp->rcu_qs_ctr_snap != __this_cpu_read(rcu_qs_ctr))) {
3894 rdp->n_rp_report_qs++;
3895 return 1;
3898 /* Does this CPU have callbacks ready to invoke? */
3899 if (cpu_has_callbacks_ready_to_invoke(rdp)) {
3900 rdp->n_rp_cb_ready++;
3901 return 1;
3904 /* Has RCU gone idle with this CPU needing another grace period? */
3905 if (cpu_needs_another_gp(rsp, rdp)) {
3906 rdp->n_rp_cpu_needs_gp++;
3907 return 1;
3910 /* Has another RCU grace period completed? */
3911 if (READ_ONCE(rnp->completed) != rdp->completed) { /* outside lock */
3912 rdp->n_rp_gp_completed++;
3913 return 1;
3916 /* Has a new RCU grace period started? */
3917 if (READ_ONCE(rnp->gpnum) != rdp->gpnum ||
3918 unlikely(READ_ONCE(rdp->gpwrap))) { /* outside lock */
3919 rdp->n_rp_gp_started++;
3920 return 1;
3923 /* Does this CPU need a deferred NOCB wakeup? */
3924 if (rcu_nocb_need_deferred_wakeup(rdp)) {
3925 rdp->n_rp_nocb_defer_wakeup++;
3926 return 1;
3929 /* nothing to do */
3930 rdp->n_rp_need_nothing++;
3931 return 0;
3935 * Check to see if there is any immediate RCU-related work to be done
3936 * by the current CPU, returning 1 if so. This function is part of the
3937 * RCU implementation; it is -not- an exported member of the RCU API.
3939 static int rcu_pending(void)
3941 struct rcu_state *rsp;
3943 for_each_rcu_flavor(rsp)
3944 if (__rcu_pending(rsp, this_cpu_ptr(rsp->rda)))
3945 return 1;
3946 return 0;
3950 * Return true if the specified CPU has any callback. If all_lazy is
3951 * non-NULL, store an indication of whether all callbacks are lazy.
3952 * (If there are no callbacks, all of them are deemed to be lazy.)
3954 static bool __maybe_unused rcu_cpu_has_callbacks(bool *all_lazy)
3956 bool al = true;
3957 bool hc = false;
3958 struct rcu_data *rdp;
3959 struct rcu_state *rsp;
3961 for_each_rcu_flavor(rsp) {
3962 rdp = this_cpu_ptr(rsp->rda);
3963 if (!rdp->nxtlist)
3964 continue;
3965 hc = true;
3966 if (rdp->qlen != rdp->qlen_lazy || !all_lazy) {
3967 al = false;
3968 break;
3971 if (all_lazy)
3972 *all_lazy = al;
3973 return hc;
3977 * Helper function for _rcu_barrier() tracing. If tracing is disabled,
3978 * the compiler is expected to optimize this away.
3980 static void _rcu_barrier_trace(struct rcu_state *rsp, const char *s,
3981 int cpu, unsigned long done)
3983 trace_rcu_barrier(rsp->name, s, cpu,
3984 atomic_read(&rsp->barrier_cpu_count), done);
3988 * RCU callback function for _rcu_barrier(). If we are last, wake
3989 * up the task executing _rcu_barrier().
3991 static void rcu_barrier_callback(struct rcu_head *rhp)
3993 struct rcu_data *rdp = container_of(rhp, struct rcu_data, barrier_head);
3994 struct rcu_state *rsp = rdp->rsp;
3996 if (atomic_dec_and_test(&rsp->barrier_cpu_count)) {
3997 _rcu_barrier_trace(rsp, "LastCB", -1, rsp->barrier_sequence);
3998 complete(&rsp->barrier_completion);
3999 } else {
4000 _rcu_barrier_trace(rsp, "CB", -1, rsp->barrier_sequence);
4005 * Called with preemption disabled, and from cross-cpu IRQ context.
4007 static void rcu_barrier_func(void *type)
4009 struct rcu_state *rsp = type;
4010 struct rcu_data *rdp = raw_cpu_ptr(rsp->rda);
4012 _rcu_barrier_trace(rsp, "IRQ", -1, rsp->barrier_sequence);
4013 atomic_inc(&rsp->barrier_cpu_count);
4014 rsp->call(&rdp->barrier_head, rcu_barrier_callback);
4018 * Orchestrate the specified type of RCU barrier, waiting for all
4019 * RCU callbacks of the specified type to complete.
4021 static void _rcu_barrier(struct rcu_state *rsp)
4023 int cpu;
4024 struct rcu_data *rdp;
4025 unsigned long s = rcu_seq_snap(&rsp->barrier_sequence);
4027 _rcu_barrier_trace(rsp, "Begin", -1, s);
4029 /* Take mutex to serialize concurrent rcu_barrier() requests. */
4030 mutex_lock(&rsp->barrier_mutex);
4032 /* Did someone else do our work for us? */
4033 if (rcu_seq_done(&rsp->barrier_sequence, s)) {
4034 _rcu_barrier_trace(rsp, "EarlyExit", -1, rsp->barrier_sequence);
4035 smp_mb(); /* caller's subsequent code after above check. */
4036 mutex_unlock(&rsp->barrier_mutex);
4037 return;
4040 /* Mark the start of the barrier operation. */
4041 rcu_seq_start(&rsp->barrier_sequence);
4042 _rcu_barrier_trace(rsp, "Inc1", -1, rsp->barrier_sequence);
4045 * Initialize the count to one rather than to zero in order to
4046 * avoid a too-soon return to zero in case of a short grace period
4047 * (or preemption of this task). Exclude CPU-hotplug operations
4048 * to ensure that no offline CPU has callbacks queued.
4050 init_completion(&rsp->barrier_completion);
4051 atomic_set(&rsp->barrier_cpu_count, 1);
4052 get_online_cpus();
4055 * Force each CPU with callbacks to register a new callback.
4056 * When that callback is invoked, we will know that all of the
4057 * corresponding CPU's preceding callbacks have been invoked.
4059 for_each_possible_cpu(cpu) {
4060 if (!cpu_online(cpu) && !rcu_is_nocb_cpu(cpu))
4061 continue;
4062 rdp = per_cpu_ptr(rsp->rda, cpu);
4063 if (rcu_is_nocb_cpu(cpu)) {
4064 if (!rcu_nocb_cpu_needs_barrier(rsp, cpu)) {
4065 _rcu_barrier_trace(rsp, "OfflineNoCB", cpu,
4066 rsp->barrier_sequence);
4067 } else {
4068 _rcu_barrier_trace(rsp, "OnlineNoCB", cpu,
4069 rsp->barrier_sequence);
4070 smp_mb__before_atomic();
4071 atomic_inc(&rsp->barrier_cpu_count);
4072 __call_rcu(&rdp->barrier_head,
4073 rcu_barrier_callback, rsp, cpu, 0);
4075 } else if (READ_ONCE(rdp->qlen)) {
4076 _rcu_barrier_trace(rsp, "OnlineQ", cpu,
4077 rsp->barrier_sequence);
4078 smp_call_function_single(cpu, rcu_barrier_func, rsp, 1);
4079 } else {
4080 _rcu_barrier_trace(rsp, "OnlineNQ", cpu,
4081 rsp->barrier_sequence);
4084 put_online_cpus();
4087 * Now that we have an rcu_barrier_callback() callback on each
4088 * CPU, and thus each counted, remove the initial count.
4090 if (atomic_dec_and_test(&rsp->barrier_cpu_count))
4091 complete(&rsp->barrier_completion);
4093 /* Wait for all rcu_barrier_callback() callbacks to be invoked. */
4094 wait_for_completion(&rsp->barrier_completion);
4096 /* Mark the end of the barrier operation. */
4097 _rcu_barrier_trace(rsp, "Inc2", -1, rsp->barrier_sequence);
4098 rcu_seq_end(&rsp->barrier_sequence);
4100 /* Other rcu_barrier() invocations can now safely proceed. */
4101 mutex_unlock(&rsp->barrier_mutex);
4105 * rcu_barrier_bh - Wait until all in-flight call_rcu_bh() callbacks complete.
4107 void rcu_barrier_bh(void)
4109 _rcu_barrier(&rcu_bh_state);
4111 EXPORT_SYMBOL_GPL(rcu_barrier_bh);
4114 * rcu_barrier_sched - Wait for in-flight call_rcu_sched() callbacks.
4116 void rcu_barrier_sched(void)
4118 _rcu_barrier(&rcu_sched_state);
4120 EXPORT_SYMBOL_GPL(rcu_barrier_sched);
4123 * Propagate ->qsinitmask bits up the rcu_node tree to account for the
4124 * first CPU in a given leaf rcu_node structure coming online. The caller
4125 * must hold the corresponding leaf rcu_node ->lock with interrrupts
4126 * disabled.
4128 static void rcu_init_new_rnp(struct rcu_node *rnp_leaf)
4130 long mask;
4131 struct rcu_node *rnp = rnp_leaf;
4133 for (;;) {
4134 mask = rnp->grpmask;
4135 rnp = rnp->parent;
4136 if (rnp == NULL)
4137 return;
4138 raw_spin_lock(&rnp->lock); /* Interrupts already disabled. */
4139 rnp->qsmaskinit |= mask;
4140 raw_spin_unlock(&rnp->lock); /* Interrupts remain disabled. */
4145 * Do boot-time initialization of a CPU's per-CPU RCU data.
4147 static void __init
4148 rcu_boot_init_percpu_data(int cpu, struct rcu_state *rsp)
4150 unsigned long flags;
4151 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
4152 struct rcu_node *rnp = rcu_get_root(rsp);
4154 /* Set up local state, ensuring consistent view of global state. */
4155 raw_spin_lock_irqsave(&rnp->lock, flags);
4156 rdp->grpmask = 1UL << (cpu - rdp->mynode->grplo);
4157 rdp->dynticks = &per_cpu(rcu_dynticks, cpu);
4158 WARN_ON_ONCE(rdp->dynticks->dynticks_nesting != DYNTICK_TASK_EXIT_IDLE);
4159 WARN_ON_ONCE(atomic_read(&rdp->dynticks->dynticks) != 1);
4160 rdp->cpu = cpu;
4161 rdp->rsp = rsp;
4162 mutex_init(&rdp->exp_funnel_mutex);
4163 rcu_boot_init_nocb_percpu_data(rdp);
4164 raw_spin_unlock_irqrestore(&rnp->lock, flags);
4168 * Initialize a CPU's per-CPU RCU data. Note that only one online or
4169 * offline event can be happening at a given time. Note also that we
4170 * can accept some slop in the rsp->completed access due to the fact
4171 * that this CPU cannot possibly have any RCU callbacks in flight yet.
4173 static void
4174 rcu_init_percpu_data(int cpu, struct rcu_state *rsp)
4176 unsigned long flags;
4177 unsigned long mask;
4178 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
4179 struct rcu_node *rnp = rcu_get_root(rsp);
4181 /* Set up local state, ensuring consistent view of global state. */
4182 raw_spin_lock_irqsave(&rnp->lock, flags);
4183 rdp->qlen_last_fqs_check = 0;
4184 rdp->n_force_qs_snap = rsp->n_force_qs;
4185 rdp->blimit = blimit;
4186 if (!rdp->nxtlist)
4187 init_callback_list(rdp); /* Re-enable callbacks on this CPU. */
4188 rdp->dynticks->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE;
4189 rcu_sysidle_init_percpu_data(rdp->dynticks);
4190 atomic_set(&rdp->dynticks->dynticks,
4191 (atomic_read(&rdp->dynticks->dynticks) & ~0x1) + 1);
4192 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
4195 * Add CPU to leaf rcu_node pending-online bitmask. Any needed
4196 * propagation up the rcu_node tree will happen at the beginning
4197 * of the next grace period.
4199 rnp = rdp->mynode;
4200 mask = rdp->grpmask;
4201 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
4202 smp_mb__after_unlock_lock();
4203 rnp->qsmaskinitnext |= mask;
4204 rnp->expmaskinitnext |= mask;
4205 if (!rdp->beenonline)
4206 WRITE_ONCE(rsp->ncpus, READ_ONCE(rsp->ncpus) + 1);
4207 rdp->beenonline = true; /* We have now been online. */
4208 rdp->gpnum = rnp->completed; /* Make CPU later note any new GP. */
4209 rdp->completed = rnp->completed;
4210 rdp->cpu_no_qs.b.norm = true;
4211 rdp->rcu_qs_ctr_snap = per_cpu(rcu_qs_ctr, cpu);
4212 rdp->core_needs_qs = false;
4213 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpuonl"));
4214 raw_spin_unlock_irqrestore(&rnp->lock, flags);
4217 static void rcu_prepare_cpu(int cpu)
4219 struct rcu_state *rsp;
4221 for_each_rcu_flavor(rsp)
4222 rcu_init_percpu_data(cpu, rsp);
4226 * Handle CPU online/offline notification events.
4228 int rcu_cpu_notify(struct notifier_block *self,
4229 unsigned long action, void *hcpu)
4231 long cpu = (long)hcpu;
4232 struct rcu_data *rdp = per_cpu_ptr(rcu_state_p->rda, cpu);
4233 struct rcu_node *rnp = rdp->mynode;
4234 struct rcu_state *rsp;
4236 switch (action) {
4237 case CPU_UP_PREPARE:
4238 case CPU_UP_PREPARE_FROZEN:
4239 rcu_prepare_cpu(cpu);
4240 rcu_prepare_kthreads(cpu);
4241 rcu_spawn_all_nocb_kthreads(cpu);
4242 break;
4243 case CPU_ONLINE:
4244 case CPU_DOWN_FAILED:
4245 sync_sched_exp_online_cleanup(cpu);
4246 rcu_boost_kthread_setaffinity(rnp, -1);
4247 break;
4248 case CPU_DOWN_PREPARE:
4249 rcu_boost_kthread_setaffinity(rnp, cpu);
4250 break;
4251 case CPU_DYING:
4252 case CPU_DYING_FROZEN:
4253 for_each_rcu_flavor(rsp)
4254 rcu_cleanup_dying_cpu(rsp);
4255 break;
4256 case CPU_DYING_IDLE:
4257 /* QS for any half-done expedited RCU-sched GP. */
4258 preempt_disable();
4259 rcu_report_exp_rdp(&rcu_sched_state,
4260 this_cpu_ptr(rcu_sched_state.rda), true);
4261 preempt_enable();
4263 for_each_rcu_flavor(rsp) {
4264 rcu_cleanup_dying_idle_cpu(cpu, rsp);
4266 break;
4267 case CPU_DEAD:
4268 case CPU_DEAD_FROZEN:
4269 case CPU_UP_CANCELED:
4270 case CPU_UP_CANCELED_FROZEN:
4271 for_each_rcu_flavor(rsp) {
4272 rcu_cleanup_dead_cpu(cpu, rsp);
4273 do_nocb_deferred_wakeup(per_cpu_ptr(rsp->rda, cpu));
4275 break;
4276 default:
4277 break;
4279 return NOTIFY_OK;
4282 static int rcu_pm_notify(struct notifier_block *self,
4283 unsigned long action, void *hcpu)
4285 switch (action) {
4286 case PM_HIBERNATION_PREPARE:
4287 case PM_SUSPEND_PREPARE:
4288 if (nr_cpu_ids <= 256) /* Expediting bad for large systems. */
4289 rcu_expedite_gp();
4290 break;
4291 case PM_POST_HIBERNATION:
4292 case PM_POST_SUSPEND:
4293 if (nr_cpu_ids <= 256) /* Expediting bad for large systems. */
4294 rcu_unexpedite_gp();
4295 break;
4296 default:
4297 break;
4299 return NOTIFY_OK;
4303 * Spawn the kthreads that handle each RCU flavor's grace periods.
4305 static int __init rcu_spawn_gp_kthread(void)
4307 unsigned long flags;
4308 int kthread_prio_in = kthread_prio;
4309 struct rcu_node *rnp;
4310 struct rcu_state *rsp;
4311 struct sched_param sp;
4312 struct task_struct *t;
4314 /* Force priority into range. */
4315 if (IS_ENABLED(CONFIG_RCU_BOOST) && kthread_prio < 1)
4316 kthread_prio = 1;
4317 else if (kthread_prio < 0)
4318 kthread_prio = 0;
4319 else if (kthread_prio > 99)
4320 kthread_prio = 99;
4321 if (kthread_prio != kthread_prio_in)
4322 pr_alert("rcu_spawn_gp_kthread(): Limited prio to %d from %d\n",
4323 kthread_prio, kthread_prio_in);
4325 rcu_scheduler_fully_active = 1;
4326 for_each_rcu_flavor(rsp) {
4327 t = kthread_create(rcu_gp_kthread, rsp, "%s", rsp->name);
4328 BUG_ON(IS_ERR(t));
4329 rnp = rcu_get_root(rsp);
4330 raw_spin_lock_irqsave(&rnp->lock, flags);
4331 rsp->gp_kthread = t;
4332 if (kthread_prio) {
4333 sp.sched_priority = kthread_prio;
4334 sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
4336 wake_up_process(t);
4337 raw_spin_unlock_irqrestore(&rnp->lock, flags);
4339 rcu_spawn_nocb_kthreads();
4340 rcu_spawn_boost_kthreads();
4341 return 0;
4343 early_initcall(rcu_spawn_gp_kthread);
4346 * This function is invoked towards the end of the scheduler's initialization
4347 * process. Before this is called, the idle task might contain
4348 * RCU read-side critical sections (during which time, this idle
4349 * task is booting the system). After this function is called, the
4350 * idle tasks are prohibited from containing RCU read-side critical
4351 * sections. This function also enables RCU lockdep checking.
4353 void rcu_scheduler_starting(void)
4355 WARN_ON(num_online_cpus() != 1);
4356 WARN_ON(nr_context_switches() > 0);
4357 rcu_scheduler_active = 1;
4361 * Compute the per-level fanout, either using the exact fanout specified
4362 * or balancing the tree, depending on the rcu_fanout_exact boot parameter.
4364 static void __init rcu_init_levelspread(int *levelspread, const int *levelcnt)
4366 int i;
4368 if (rcu_fanout_exact) {
4369 levelspread[rcu_num_lvls - 1] = rcu_fanout_leaf;
4370 for (i = rcu_num_lvls - 2; i >= 0; i--)
4371 levelspread[i] = RCU_FANOUT;
4372 } else {
4373 int ccur;
4374 int cprv;
4376 cprv = nr_cpu_ids;
4377 for (i = rcu_num_lvls - 1; i >= 0; i--) {
4378 ccur = levelcnt[i];
4379 levelspread[i] = (cprv + ccur - 1) / ccur;
4380 cprv = ccur;
4386 * Helper function for rcu_init() that initializes one rcu_state structure.
4388 static void __init rcu_init_one(struct rcu_state *rsp,
4389 struct rcu_data __percpu *rda)
4391 static const char * const buf[] = RCU_NODE_NAME_INIT;
4392 static const char * const fqs[] = RCU_FQS_NAME_INIT;
4393 static const char * const exp[] = RCU_EXP_NAME_INIT;
4394 static u8 fl_mask = 0x1;
4396 int levelcnt[RCU_NUM_LVLS]; /* # nodes in each level. */
4397 int levelspread[RCU_NUM_LVLS]; /* kids/node in each level. */
4398 int cpustride = 1;
4399 int i;
4400 int j;
4401 struct rcu_node *rnp;
4403 BUILD_BUG_ON(RCU_NUM_LVLS > ARRAY_SIZE(buf)); /* Fix buf[] init! */
4405 /* Silence gcc 4.8 false positive about array index out of range. */
4406 if (rcu_num_lvls <= 0 || rcu_num_lvls > RCU_NUM_LVLS)
4407 panic("rcu_init_one: rcu_num_lvls out of range");
4409 /* Initialize the level-tracking arrays. */
4411 for (i = 0; i < rcu_num_lvls; i++)
4412 levelcnt[i] = num_rcu_lvl[i];
4413 for (i = 1; i < rcu_num_lvls; i++)
4414 rsp->level[i] = rsp->level[i - 1] + levelcnt[i - 1];
4415 rcu_init_levelspread(levelspread, levelcnt);
4416 rsp->flavor_mask = fl_mask;
4417 fl_mask <<= 1;
4419 /* Initialize the elements themselves, starting from the leaves. */
4421 for (i = rcu_num_lvls - 1; i >= 0; i--) {
4422 cpustride *= levelspread[i];
4423 rnp = rsp->level[i];
4424 for (j = 0; j < levelcnt[i]; j++, rnp++) {
4425 raw_spin_lock_init(&rnp->lock);
4426 lockdep_set_class_and_name(&rnp->lock,
4427 &rcu_node_class[i], buf[i]);
4428 raw_spin_lock_init(&rnp->fqslock);
4429 lockdep_set_class_and_name(&rnp->fqslock,
4430 &rcu_fqs_class[i], fqs[i]);
4431 rnp->gpnum = rsp->gpnum;
4432 rnp->completed = rsp->completed;
4433 rnp->qsmask = 0;
4434 rnp->qsmaskinit = 0;
4435 rnp->grplo = j * cpustride;
4436 rnp->grphi = (j + 1) * cpustride - 1;
4437 if (rnp->grphi >= nr_cpu_ids)
4438 rnp->grphi = nr_cpu_ids - 1;
4439 if (i == 0) {
4440 rnp->grpnum = 0;
4441 rnp->grpmask = 0;
4442 rnp->parent = NULL;
4443 } else {
4444 rnp->grpnum = j % levelspread[i - 1];
4445 rnp->grpmask = 1UL << rnp->grpnum;
4446 rnp->parent = rsp->level[i - 1] +
4447 j / levelspread[i - 1];
4449 rnp->level = i;
4450 INIT_LIST_HEAD(&rnp->blkd_tasks);
4451 rcu_init_one_nocb(rnp);
4452 mutex_init(&rnp->exp_funnel_mutex);
4453 lockdep_set_class_and_name(&rnp->exp_funnel_mutex,
4454 &rcu_exp_class[i], exp[i]);
4458 init_waitqueue_head(&rsp->gp_wq);
4459 init_waitqueue_head(&rsp->expedited_wq);
4460 rnp = rsp->level[rcu_num_lvls - 1];
4461 for_each_possible_cpu(i) {
4462 while (i > rnp->grphi)
4463 rnp++;
4464 per_cpu_ptr(rsp->rda, i)->mynode = rnp;
4465 rcu_boot_init_percpu_data(i, rsp);
4467 list_add(&rsp->flavors, &rcu_struct_flavors);
4471 * Compute the rcu_node tree geometry from kernel parameters. This cannot
4472 * replace the definitions in tree.h because those are needed to size
4473 * the ->node array in the rcu_state structure.
4475 static void __init rcu_init_geometry(void)
4477 ulong d;
4478 int i;
4479 int rcu_capacity[RCU_NUM_LVLS];
4482 * Initialize any unspecified boot parameters.
4483 * The default values of jiffies_till_first_fqs and
4484 * jiffies_till_next_fqs are set to the RCU_JIFFIES_TILL_FORCE_QS
4485 * value, which is a function of HZ, then adding one for each
4486 * RCU_JIFFIES_FQS_DIV CPUs that might be on the system.
4488 d = RCU_JIFFIES_TILL_FORCE_QS + nr_cpu_ids / RCU_JIFFIES_FQS_DIV;
4489 if (jiffies_till_first_fqs == ULONG_MAX)
4490 jiffies_till_first_fqs = d;
4491 if (jiffies_till_next_fqs == ULONG_MAX)
4492 jiffies_till_next_fqs = d;
4494 /* If the compile-time values are accurate, just leave. */
4495 if (rcu_fanout_leaf == RCU_FANOUT_LEAF &&
4496 nr_cpu_ids == NR_CPUS)
4497 return;
4498 pr_info("RCU: Adjusting geometry for rcu_fanout_leaf=%d, nr_cpu_ids=%d\n",
4499 rcu_fanout_leaf, nr_cpu_ids);
4502 * The boot-time rcu_fanout_leaf parameter must be at least two
4503 * and cannot exceed the number of bits in the rcu_node masks.
4504 * Complain and fall back to the compile-time values if this
4505 * limit is exceeded.
4507 if (rcu_fanout_leaf < 2 ||
4508 rcu_fanout_leaf > sizeof(unsigned long) * 8) {
4509 rcu_fanout_leaf = RCU_FANOUT_LEAF;
4510 WARN_ON(1);
4511 return;
4515 * Compute number of nodes that can be handled an rcu_node tree
4516 * with the given number of levels.
4518 rcu_capacity[0] = rcu_fanout_leaf;
4519 for (i = 1; i < RCU_NUM_LVLS; i++)
4520 rcu_capacity[i] = rcu_capacity[i - 1] * RCU_FANOUT;
4523 * The tree must be able to accommodate the configured number of CPUs.
4524 * If this limit is exceeded, fall back to the compile-time values.
4526 if (nr_cpu_ids > rcu_capacity[RCU_NUM_LVLS - 1]) {
4527 rcu_fanout_leaf = RCU_FANOUT_LEAF;
4528 WARN_ON(1);
4529 return;
4532 /* Calculate the number of levels in the tree. */
4533 for (i = 0; nr_cpu_ids > rcu_capacity[i]; i++) {
4535 rcu_num_lvls = i + 1;
4537 /* Calculate the number of rcu_nodes at each level of the tree. */
4538 for (i = 0; i < rcu_num_lvls; i++) {
4539 int cap = rcu_capacity[(rcu_num_lvls - 1) - i];
4540 num_rcu_lvl[i] = DIV_ROUND_UP(nr_cpu_ids, cap);
4543 /* Calculate the total number of rcu_node structures. */
4544 rcu_num_nodes = 0;
4545 for (i = 0; i < rcu_num_lvls; i++)
4546 rcu_num_nodes += num_rcu_lvl[i];
4550 * Dump out the structure of the rcu_node combining tree associated
4551 * with the rcu_state structure referenced by rsp.
4553 static void __init rcu_dump_rcu_node_tree(struct rcu_state *rsp)
4555 int level = 0;
4556 struct rcu_node *rnp;
4558 pr_info("rcu_node tree layout dump\n");
4559 pr_info(" ");
4560 rcu_for_each_node_breadth_first(rsp, rnp) {
4561 if (rnp->level != level) {
4562 pr_cont("\n");
4563 pr_info(" ");
4564 level = rnp->level;
4566 pr_cont("%d:%d ^%d ", rnp->grplo, rnp->grphi, rnp->grpnum);
4568 pr_cont("\n");
4571 void __init rcu_init(void)
4573 int cpu;
4575 rcu_early_boot_tests();
4577 rcu_bootup_announce();
4578 rcu_init_geometry();
4579 rcu_init_one(&rcu_bh_state, &rcu_bh_data);
4580 rcu_init_one(&rcu_sched_state, &rcu_sched_data);
4581 if (dump_tree)
4582 rcu_dump_rcu_node_tree(&rcu_sched_state);
4583 __rcu_init_preempt();
4584 open_softirq(RCU_SOFTIRQ, rcu_process_callbacks);
4587 * We don't need protection against CPU-hotplug here because
4588 * this is called early in boot, before either interrupts
4589 * or the scheduler are operational.
4591 cpu_notifier(rcu_cpu_notify, 0);
4592 pm_notifier(rcu_pm_notify, 0);
4593 for_each_online_cpu(cpu)
4594 rcu_cpu_notify(NULL, CPU_UP_PREPARE, (void *)(long)cpu);
4597 #include "tree_plugin.h"