xfs: fix type usage
[linux/fpc-iii.git] / fs / f2fs / checkpoint.c
blob04fe1df052b2b9e6a0c3f662797c3f46727ccdbe
1 /*
2 * fs/f2fs/checkpoint.c
4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5 * http://www.samsung.com/
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
11 #include <linux/fs.h>
12 #include <linux/bio.h>
13 #include <linux/mpage.h>
14 #include <linux/writeback.h>
15 #include <linux/blkdev.h>
16 #include <linux/f2fs_fs.h>
17 #include <linux/pagevec.h>
18 #include <linux/swap.h>
20 #include "f2fs.h"
21 #include "node.h"
22 #include "segment.h"
23 #include "trace.h"
24 #include <trace/events/f2fs.h>
26 static struct kmem_cache *ino_entry_slab;
27 struct kmem_cache *inode_entry_slab;
29 void f2fs_stop_checkpoint(struct f2fs_sb_info *sbi, bool end_io)
31 set_ckpt_flags(sbi, CP_ERROR_FLAG);
32 sbi->sb->s_flags |= MS_RDONLY;
33 if (!end_io)
34 f2fs_flush_merged_writes(sbi);
38 * We guarantee no failure on the returned page.
40 struct page *grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index)
42 struct address_space *mapping = META_MAPPING(sbi);
43 struct page *page = NULL;
44 repeat:
45 page = f2fs_grab_cache_page(mapping, index, false);
46 if (!page) {
47 cond_resched();
48 goto repeat;
50 f2fs_wait_on_page_writeback(page, META, true);
51 if (!PageUptodate(page))
52 SetPageUptodate(page);
53 return page;
57 * We guarantee no failure on the returned page.
59 static struct page *__get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index,
60 bool is_meta)
62 struct address_space *mapping = META_MAPPING(sbi);
63 struct page *page;
64 struct f2fs_io_info fio = {
65 .sbi = sbi,
66 .type = META,
67 .op = REQ_OP_READ,
68 .op_flags = REQ_META | REQ_PRIO,
69 .old_blkaddr = index,
70 .new_blkaddr = index,
71 .encrypted_page = NULL,
74 if (unlikely(!is_meta))
75 fio.op_flags &= ~REQ_META;
76 repeat:
77 page = f2fs_grab_cache_page(mapping, index, false);
78 if (!page) {
79 cond_resched();
80 goto repeat;
82 if (PageUptodate(page))
83 goto out;
85 fio.page = page;
87 if (f2fs_submit_page_bio(&fio)) {
88 f2fs_put_page(page, 1);
89 goto repeat;
92 lock_page(page);
93 if (unlikely(page->mapping != mapping)) {
94 f2fs_put_page(page, 1);
95 goto repeat;
99 * if there is any IO error when accessing device, make our filesystem
100 * readonly and make sure do not write checkpoint with non-uptodate
101 * meta page.
103 if (unlikely(!PageUptodate(page)))
104 f2fs_stop_checkpoint(sbi, false);
105 out:
106 return page;
109 struct page *get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index)
111 return __get_meta_page(sbi, index, true);
114 /* for POR only */
115 struct page *get_tmp_page(struct f2fs_sb_info *sbi, pgoff_t index)
117 return __get_meta_page(sbi, index, false);
120 bool is_valid_blkaddr(struct f2fs_sb_info *sbi, block_t blkaddr, int type)
122 switch (type) {
123 case META_NAT:
124 break;
125 case META_SIT:
126 if (unlikely(blkaddr >= SIT_BLK_CNT(sbi)))
127 return false;
128 break;
129 case META_SSA:
130 if (unlikely(blkaddr >= MAIN_BLKADDR(sbi) ||
131 blkaddr < SM_I(sbi)->ssa_blkaddr))
132 return false;
133 break;
134 case META_CP:
135 if (unlikely(blkaddr >= SIT_I(sbi)->sit_base_addr ||
136 blkaddr < __start_cp_addr(sbi)))
137 return false;
138 break;
139 case META_POR:
140 if (unlikely(blkaddr >= MAX_BLKADDR(sbi) ||
141 blkaddr < MAIN_BLKADDR(sbi)))
142 return false;
143 break;
144 default:
145 BUG();
148 return true;
152 * Readahead CP/NAT/SIT/SSA pages
154 int ra_meta_pages(struct f2fs_sb_info *sbi, block_t start, int nrpages,
155 int type, bool sync)
157 struct page *page;
158 block_t blkno = start;
159 struct f2fs_io_info fio = {
160 .sbi = sbi,
161 .type = META,
162 .op = REQ_OP_READ,
163 .op_flags = sync ? (REQ_META | REQ_PRIO) : REQ_RAHEAD,
164 .encrypted_page = NULL,
165 .in_list = false,
167 struct blk_plug plug;
169 if (unlikely(type == META_POR))
170 fio.op_flags &= ~REQ_META;
172 blk_start_plug(&plug);
173 for (; nrpages-- > 0; blkno++) {
175 if (!is_valid_blkaddr(sbi, blkno, type))
176 goto out;
178 switch (type) {
179 case META_NAT:
180 if (unlikely(blkno >=
181 NAT_BLOCK_OFFSET(NM_I(sbi)->max_nid)))
182 blkno = 0;
183 /* get nat block addr */
184 fio.new_blkaddr = current_nat_addr(sbi,
185 blkno * NAT_ENTRY_PER_BLOCK);
186 break;
187 case META_SIT:
188 /* get sit block addr */
189 fio.new_blkaddr = current_sit_addr(sbi,
190 blkno * SIT_ENTRY_PER_BLOCK);
191 break;
192 case META_SSA:
193 case META_CP:
194 case META_POR:
195 fio.new_blkaddr = blkno;
196 break;
197 default:
198 BUG();
201 page = f2fs_grab_cache_page(META_MAPPING(sbi),
202 fio.new_blkaddr, false);
203 if (!page)
204 continue;
205 if (PageUptodate(page)) {
206 f2fs_put_page(page, 1);
207 continue;
210 fio.page = page;
211 f2fs_submit_page_bio(&fio);
212 f2fs_put_page(page, 0);
214 out:
215 blk_finish_plug(&plug);
216 return blkno - start;
219 void ra_meta_pages_cond(struct f2fs_sb_info *sbi, pgoff_t index)
221 struct page *page;
222 bool readahead = false;
224 page = find_get_page(META_MAPPING(sbi), index);
225 if (!page || !PageUptodate(page))
226 readahead = true;
227 f2fs_put_page(page, 0);
229 if (readahead)
230 ra_meta_pages(sbi, index, BIO_MAX_PAGES, META_POR, true);
233 static int __f2fs_write_meta_page(struct page *page,
234 struct writeback_control *wbc,
235 enum iostat_type io_type)
237 struct f2fs_sb_info *sbi = F2FS_P_SB(page);
239 trace_f2fs_writepage(page, META);
241 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
242 goto redirty_out;
243 if (wbc->for_reclaim && page->index < GET_SUM_BLOCK(sbi, 0))
244 goto redirty_out;
245 if (unlikely(f2fs_cp_error(sbi)))
246 goto redirty_out;
248 write_meta_page(sbi, page, io_type);
249 dec_page_count(sbi, F2FS_DIRTY_META);
251 if (wbc->for_reclaim)
252 f2fs_submit_merged_write_cond(sbi, page->mapping->host,
253 0, page->index, META);
255 unlock_page(page);
257 if (unlikely(f2fs_cp_error(sbi)))
258 f2fs_submit_merged_write(sbi, META);
260 return 0;
262 redirty_out:
263 redirty_page_for_writepage(wbc, page);
264 return AOP_WRITEPAGE_ACTIVATE;
267 static int f2fs_write_meta_page(struct page *page,
268 struct writeback_control *wbc)
270 return __f2fs_write_meta_page(page, wbc, FS_META_IO);
273 static int f2fs_write_meta_pages(struct address_space *mapping,
274 struct writeback_control *wbc)
276 struct f2fs_sb_info *sbi = F2FS_M_SB(mapping);
277 long diff, written;
279 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
280 goto skip_write;
282 /* collect a number of dirty meta pages and write together */
283 if (wbc->for_kupdate ||
284 get_pages(sbi, F2FS_DIRTY_META) < nr_pages_to_skip(sbi, META))
285 goto skip_write;
287 /* if locked failed, cp will flush dirty pages instead */
288 if (!mutex_trylock(&sbi->cp_mutex))
289 goto skip_write;
291 trace_f2fs_writepages(mapping->host, wbc, META);
292 diff = nr_pages_to_write(sbi, META, wbc);
293 written = sync_meta_pages(sbi, META, wbc->nr_to_write, FS_META_IO);
294 mutex_unlock(&sbi->cp_mutex);
295 wbc->nr_to_write = max((long)0, wbc->nr_to_write - written - diff);
296 return 0;
298 skip_write:
299 wbc->pages_skipped += get_pages(sbi, F2FS_DIRTY_META);
300 trace_f2fs_writepages(mapping->host, wbc, META);
301 return 0;
304 long sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type,
305 long nr_to_write, enum iostat_type io_type)
307 struct address_space *mapping = META_MAPPING(sbi);
308 pgoff_t index = 0, end = ULONG_MAX, prev = ULONG_MAX;
309 struct pagevec pvec;
310 long nwritten = 0;
311 struct writeback_control wbc = {
312 .for_reclaim = 0,
314 struct blk_plug plug;
316 pagevec_init(&pvec, 0);
318 blk_start_plug(&plug);
320 while (index <= end) {
321 int i, nr_pages;
322 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
323 PAGECACHE_TAG_DIRTY,
324 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
325 if (unlikely(nr_pages == 0))
326 break;
328 for (i = 0; i < nr_pages; i++) {
329 struct page *page = pvec.pages[i];
331 if (prev == ULONG_MAX)
332 prev = page->index - 1;
333 if (nr_to_write != LONG_MAX && page->index != prev + 1) {
334 pagevec_release(&pvec);
335 goto stop;
338 lock_page(page);
340 if (unlikely(page->mapping != mapping)) {
341 continue_unlock:
342 unlock_page(page);
343 continue;
345 if (!PageDirty(page)) {
346 /* someone wrote it for us */
347 goto continue_unlock;
350 f2fs_wait_on_page_writeback(page, META, true);
352 BUG_ON(PageWriteback(page));
353 if (!clear_page_dirty_for_io(page))
354 goto continue_unlock;
356 if (__f2fs_write_meta_page(page, &wbc, io_type)) {
357 unlock_page(page);
358 break;
360 nwritten++;
361 prev = page->index;
362 if (unlikely(nwritten >= nr_to_write))
363 break;
365 pagevec_release(&pvec);
366 cond_resched();
368 stop:
369 if (nwritten)
370 f2fs_submit_merged_write(sbi, type);
372 blk_finish_plug(&plug);
374 return nwritten;
377 static int f2fs_set_meta_page_dirty(struct page *page)
379 trace_f2fs_set_page_dirty(page, META);
381 if (!PageUptodate(page))
382 SetPageUptodate(page);
383 if (!PageDirty(page)) {
384 f2fs_set_page_dirty_nobuffers(page);
385 inc_page_count(F2FS_P_SB(page), F2FS_DIRTY_META);
386 SetPagePrivate(page);
387 f2fs_trace_pid(page);
388 return 1;
390 return 0;
393 const struct address_space_operations f2fs_meta_aops = {
394 .writepage = f2fs_write_meta_page,
395 .writepages = f2fs_write_meta_pages,
396 .set_page_dirty = f2fs_set_meta_page_dirty,
397 .invalidatepage = f2fs_invalidate_page,
398 .releasepage = f2fs_release_page,
399 #ifdef CONFIG_MIGRATION
400 .migratepage = f2fs_migrate_page,
401 #endif
404 static void __add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type)
406 struct inode_management *im = &sbi->im[type];
407 struct ino_entry *e, *tmp;
409 tmp = f2fs_kmem_cache_alloc(ino_entry_slab, GFP_NOFS);
410 retry:
411 radix_tree_preload(GFP_NOFS | __GFP_NOFAIL);
413 spin_lock(&im->ino_lock);
414 e = radix_tree_lookup(&im->ino_root, ino);
415 if (!e) {
416 e = tmp;
417 if (radix_tree_insert(&im->ino_root, ino, e)) {
418 spin_unlock(&im->ino_lock);
419 radix_tree_preload_end();
420 goto retry;
422 memset(e, 0, sizeof(struct ino_entry));
423 e->ino = ino;
425 list_add_tail(&e->list, &im->ino_list);
426 if (type != ORPHAN_INO)
427 im->ino_num++;
429 spin_unlock(&im->ino_lock);
430 radix_tree_preload_end();
432 if (e != tmp)
433 kmem_cache_free(ino_entry_slab, tmp);
436 static void __remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type)
438 struct inode_management *im = &sbi->im[type];
439 struct ino_entry *e;
441 spin_lock(&im->ino_lock);
442 e = radix_tree_lookup(&im->ino_root, ino);
443 if (e) {
444 list_del(&e->list);
445 radix_tree_delete(&im->ino_root, ino);
446 im->ino_num--;
447 spin_unlock(&im->ino_lock);
448 kmem_cache_free(ino_entry_slab, e);
449 return;
451 spin_unlock(&im->ino_lock);
454 void add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type)
456 /* add new dirty ino entry into list */
457 __add_ino_entry(sbi, ino, type);
460 void remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type)
462 /* remove dirty ino entry from list */
463 __remove_ino_entry(sbi, ino, type);
466 /* mode should be APPEND_INO or UPDATE_INO */
467 bool exist_written_data(struct f2fs_sb_info *sbi, nid_t ino, int mode)
469 struct inode_management *im = &sbi->im[mode];
470 struct ino_entry *e;
472 spin_lock(&im->ino_lock);
473 e = radix_tree_lookup(&im->ino_root, ino);
474 spin_unlock(&im->ino_lock);
475 return e ? true : false;
478 void release_ino_entry(struct f2fs_sb_info *sbi, bool all)
480 struct ino_entry *e, *tmp;
481 int i;
483 for (i = all ? ORPHAN_INO: APPEND_INO; i <= UPDATE_INO; i++) {
484 struct inode_management *im = &sbi->im[i];
486 spin_lock(&im->ino_lock);
487 list_for_each_entry_safe(e, tmp, &im->ino_list, list) {
488 list_del(&e->list);
489 radix_tree_delete(&im->ino_root, e->ino);
490 kmem_cache_free(ino_entry_slab, e);
491 im->ino_num--;
493 spin_unlock(&im->ino_lock);
497 int acquire_orphan_inode(struct f2fs_sb_info *sbi)
499 struct inode_management *im = &sbi->im[ORPHAN_INO];
500 int err = 0;
502 spin_lock(&im->ino_lock);
504 #ifdef CONFIG_F2FS_FAULT_INJECTION
505 if (time_to_inject(sbi, FAULT_ORPHAN)) {
506 spin_unlock(&im->ino_lock);
507 f2fs_show_injection_info(FAULT_ORPHAN);
508 return -ENOSPC;
510 #endif
511 if (unlikely(im->ino_num >= sbi->max_orphans))
512 err = -ENOSPC;
513 else
514 im->ino_num++;
515 spin_unlock(&im->ino_lock);
517 return err;
520 void release_orphan_inode(struct f2fs_sb_info *sbi)
522 struct inode_management *im = &sbi->im[ORPHAN_INO];
524 spin_lock(&im->ino_lock);
525 f2fs_bug_on(sbi, im->ino_num == 0);
526 im->ino_num--;
527 spin_unlock(&im->ino_lock);
530 void add_orphan_inode(struct inode *inode)
532 /* add new orphan ino entry into list */
533 __add_ino_entry(F2FS_I_SB(inode), inode->i_ino, ORPHAN_INO);
534 update_inode_page(inode);
537 void remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
539 /* remove orphan entry from orphan list */
540 __remove_ino_entry(sbi, ino, ORPHAN_INO);
543 static int recover_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
545 struct inode *inode;
546 struct node_info ni;
547 int err = acquire_orphan_inode(sbi);
549 if (err) {
550 set_sbi_flag(sbi, SBI_NEED_FSCK);
551 f2fs_msg(sbi->sb, KERN_WARNING,
552 "%s: orphan failed (ino=%x), run fsck to fix.",
553 __func__, ino);
554 return err;
557 __add_ino_entry(sbi, ino, ORPHAN_INO);
559 inode = f2fs_iget_retry(sbi->sb, ino);
560 if (IS_ERR(inode)) {
562 * there should be a bug that we can't find the entry
563 * to orphan inode.
565 f2fs_bug_on(sbi, PTR_ERR(inode) == -ENOENT);
566 return PTR_ERR(inode);
569 clear_nlink(inode);
571 /* truncate all the data during iput */
572 iput(inode);
574 get_node_info(sbi, ino, &ni);
576 /* ENOMEM was fully retried in f2fs_evict_inode. */
577 if (ni.blk_addr != NULL_ADDR) {
578 set_sbi_flag(sbi, SBI_NEED_FSCK);
579 f2fs_msg(sbi->sb, KERN_WARNING,
580 "%s: orphan failed (ino=%x) by kernel, retry mount.",
581 __func__, ino);
582 return -EIO;
584 __remove_ino_entry(sbi, ino, ORPHAN_INO);
585 return 0;
588 int recover_orphan_inodes(struct f2fs_sb_info *sbi)
590 block_t start_blk, orphan_blocks, i, j;
591 unsigned int s_flags = sbi->sb->s_flags;
592 int err = 0;
594 if (!is_set_ckpt_flags(sbi, CP_ORPHAN_PRESENT_FLAG))
595 return 0;
597 if (s_flags & MS_RDONLY) {
598 f2fs_msg(sbi->sb, KERN_INFO, "orphan cleanup on readonly fs");
599 sbi->sb->s_flags &= ~MS_RDONLY;
602 #ifdef CONFIG_QUOTA
603 /* Needed for iput() to work correctly and not trash data */
604 sbi->sb->s_flags |= MS_ACTIVE;
605 /* Turn on quotas so that they are updated correctly */
606 f2fs_enable_quota_files(sbi);
607 #endif
609 start_blk = __start_cp_addr(sbi) + 1 + __cp_payload(sbi);
610 orphan_blocks = __start_sum_addr(sbi) - 1 - __cp_payload(sbi);
612 ra_meta_pages(sbi, start_blk, orphan_blocks, META_CP, true);
614 for (i = 0; i < orphan_blocks; i++) {
615 struct page *page = get_meta_page(sbi, start_blk + i);
616 struct f2fs_orphan_block *orphan_blk;
618 orphan_blk = (struct f2fs_orphan_block *)page_address(page);
619 for (j = 0; j < le32_to_cpu(orphan_blk->entry_count); j++) {
620 nid_t ino = le32_to_cpu(orphan_blk->ino[j]);
621 err = recover_orphan_inode(sbi, ino);
622 if (err) {
623 f2fs_put_page(page, 1);
624 goto out;
627 f2fs_put_page(page, 1);
629 /* clear Orphan Flag */
630 clear_ckpt_flags(sbi, CP_ORPHAN_PRESENT_FLAG);
631 out:
632 #ifdef CONFIG_QUOTA
633 /* Turn quotas off */
634 f2fs_quota_off_umount(sbi->sb);
635 #endif
636 sbi->sb->s_flags = s_flags; /* Restore MS_RDONLY status */
638 return err;
641 static void write_orphan_inodes(struct f2fs_sb_info *sbi, block_t start_blk)
643 struct list_head *head;
644 struct f2fs_orphan_block *orphan_blk = NULL;
645 unsigned int nentries = 0;
646 unsigned short index = 1;
647 unsigned short orphan_blocks;
648 struct page *page = NULL;
649 struct ino_entry *orphan = NULL;
650 struct inode_management *im = &sbi->im[ORPHAN_INO];
652 orphan_blocks = GET_ORPHAN_BLOCKS(im->ino_num);
655 * we don't need to do spin_lock(&im->ino_lock) here, since all the
656 * orphan inode operations are covered under f2fs_lock_op().
657 * And, spin_lock should be avoided due to page operations below.
659 head = &im->ino_list;
661 /* loop for each orphan inode entry and write them in Jornal block */
662 list_for_each_entry(orphan, head, list) {
663 if (!page) {
664 page = grab_meta_page(sbi, start_blk++);
665 orphan_blk =
666 (struct f2fs_orphan_block *)page_address(page);
667 memset(orphan_blk, 0, sizeof(*orphan_blk));
670 orphan_blk->ino[nentries++] = cpu_to_le32(orphan->ino);
672 if (nentries == F2FS_ORPHANS_PER_BLOCK) {
674 * an orphan block is full of 1020 entries,
675 * then we need to flush current orphan blocks
676 * and bring another one in memory
678 orphan_blk->blk_addr = cpu_to_le16(index);
679 orphan_blk->blk_count = cpu_to_le16(orphan_blocks);
680 orphan_blk->entry_count = cpu_to_le32(nentries);
681 set_page_dirty(page);
682 f2fs_put_page(page, 1);
683 index++;
684 nentries = 0;
685 page = NULL;
689 if (page) {
690 orphan_blk->blk_addr = cpu_to_le16(index);
691 orphan_blk->blk_count = cpu_to_le16(orphan_blocks);
692 orphan_blk->entry_count = cpu_to_le32(nentries);
693 set_page_dirty(page);
694 f2fs_put_page(page, 1);
698 static int get_checkpoint_version(struct f2fs_sb_info *sbi, block_t cp_addr,
699 struct f2fs_checkpoint **cp_block, struct page **cp_page,
700 unsigned long long *version)
702 unsigned long blk_size = sbi->blocksize;
703 size_t crc_offset = 0;
704 __u32 crc = 0;
706 *cp_page = get_meta_page(sbi, cp_addr);
707 *cp_block = (struct f2fs_checkpoint *)page_address(*cp_page);
709 crc_offset = le32_to_cpu((*cp_block)->checksum_offset);
710 if (crc_offset > (blk_size - sizeof(__le32))) {
711 f2fs_msg(sbi->sb, KERN_WARNING,
712 "invalid crc_offset: %zu", crc_offset);
713 return -EINVAL;
716 crc = cur_cp_crc(*cp_block);
717 if (!f2fs_crc_valid(sbi, crc, *cp_block, crc_offset)) {
718 f2fs_msg(sbi->sb, KERN_WARNING, "invalid crc value");
719 return -EINVAL;
722 *version = cur_cp_version(*cp_block);
723 return 0;
726 static struct page *validate_checkpoint(struct f2fs_sb_info *sbi,
727 block_t cp_addr, unsigned long long *version)
729 struct page *cp_page_1 = NULL, *cp_page_2 = NULL;
730 struct f2fs_checkpoint *cp_block = NULL;
731 unsigned long long cur_version = 0, pre_version = 0;
732 int err;
734 err = get_checkpoint_version(sbi, cp_addr, &cp_block,
735 &cp_page_1, version);
736 if (err)
737 goto invalid_cp1;
738 pre_version = *version;
740 cp_addr += le32_to_cpu(cp_block->cp_pack_total_block_count) - 1;
741 err = get_checkpoint_version(sbi, cp_addr, &cp_block,
742 &cp_page_2, version);
743 if (err)
744 goto invalid_cp2;
745 cur_version = *version;
747 if (cur_version == pre_version) {
748 *version = cur_version;
749 f2fs_put_page(cp_page_2, 1);
750 return cp_page_1;
752 invalid_cp2:
753 f2fs_put_page(cp_page_2, 1);
754 invalid_cp1:
755 f2fs_put_page(cp_page_1, 1);
756 return NULL;
759 int get_valid_checkpoint(struct f2fs_sb_info *sbi)
761 struct f2fs_checkpoint *cp_block;
762 struct f2fs_super_block *fsb = sbi->raw_super;
763 struct page *cp1, *cp2, *cur_page;
764 unsigned long blk_size = sbi->blocksize;
765 unsigned long long cp1_version = 0, cp2_version = 0;
766 unsigned long long cp_start_blk_no;
767 unsigned int cp_blks = 1 + __cp_payload(sbi);
768 block_t cp_blk_no;
769 int i;
771 sbi->ckpt = kzalloc(cp_blks * blk_size, GFP_KERNEL);
772 if (!sbi->ckpt)
773 return -ENOMEM;
775 * Finding out valid cp block involves read both
776 * sets( cp pack1 and cp pack 2)
778 cp_start_blk_no = le32_to_cpu(fsb->cp_blkaddr);
779 cp1 = validate_checkpoint(sbi, cp_start_blk_no, &cp1_version);
781 /* The second checkpoint pack should start at the next segment */
782 cp_start_blk_no += ((unsigned long long)1) <<
783 le32_to_cpu(fsb->log_blocks_per_seg);
784 cp2 = validate_checkpoint(sbi, cp_start_blk_no, &cp2_version);
786 if (cp1 && cp2) {
787 if (ver_after(cp2_version, cp1_version))
788 cur_page = cp2;
789 else
790 cur_page = cp1;
791 } else if (cp1) {
792 cur_page = cp1;
793 } else if (cp2) {
794 cur_page = cp2;
795 } else {
796 goto fail_no_cp;
799 cp_block = (struct f2fs_checkpoint *)page_address(cur_page);
800 memcpy(sbi->ckpt, cp_block, blk_size);
802 /* Sanity checking of checkpoint */
803 if (sanity_check_ckpt(sbi))
804 goto free_fail_no_cp;
806 if (cur_page == cp1)
807 sbi->cur_cp_pack = 1;
808 else
809 sbi->cur_cp_pack = 2;
811 if (cp_blks <= 1)
812 goto done;
814 cp_blk_no = le32_to_cpu(fsb->cp_blkaddr);
815 if (cur_page == cp2)
816 cp_blk_no += 1 << le32_to_cpu(fsb->log_blocks_per_seg);
818 for (i = 1; i < cp_blks; i++) {
819 void *sit_bitmap_ptr;
820 unsigned char *ckpt = (unsigned char *)sbi->ckpt;
822 cur_page = get_meta_page(sbi, cp_blk_no + i);
823 sit_bitmap_ptr = page_address(cur_page);
824 memcpy(ckpt + i * blk_size, sit_bitmap_ptr, blk_size);
825 f2fs_put_page(cur_page, 1);
827 done:
828 f2fs_put_page(cp1, 1);
829 f2fs_put_page(cp2, 1);
830 return 0;
832 free_fail_no_cp:
833 f2fs_put_page(cp1, 1);
834 f2fs_put_page(cp2, 1);
835 fail_no_cp:
836 kfree(sbi->ckpt);
837 return -EINVAL;
840 static void __add_dirty_inode(struct inode *inode, enum inode_type type)
842 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
843 int flag = (type == DIR_INODE) ? FI_DIRTY_DIR : FI_DIRTY_FILE;
845 if (is_inode_flag_set(inode, flag))
846 return;
848 set_inode_flag(inode, flag);
849 if (!f2fs_is_volatile_file(inode))
850 list_add_tail(&F2FS_I(inode)->dirty_list,
851 &sbi->inode_list[type]);
852 stat_inc_dirty_inode(sbi, type);
855 static void __remove_dirty_inode(struct inode *inode, enum inode_type type)
857 int flag = (type == DIR_INODE) ? FI_DIRTY_DIR : FI_DIRTY_FILE;
859 if (get_dirty_pages(inode) || !is_inode_flag_set(inode, flag))
860 return;
862 list_del_init(&F2FS_I(inode)->dirty_list);
863 clear_inode_flag(inode, flag);
864 stat_dec_dirty_inode(F2FS_I_SB(inode), type);
867 void update_dirty_page(struct inode *inode, struct page *page)
869 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
870 enum inode_type type = S_ISDIR(inode->i_mode) ? DIR_INODE : FILE_INODE;
872 if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) &&
873 !S_ISLNK(inode->i_mode))
874 return;
876 spin_lock(&sbi->inode_lock[type]);
877 if (type != FILE_INODE || test_opt(sbi, DATA_FLUSH))
878 __add_dirty_inode(inode, type);
879 inode_inc_dirty_pages(inode);
880 spin_unlock(&sbi->inode_lock[type]);
882 SetPagePrivate(page);
883 f2fs_trace_pid(page);
886 void remove_dirty_inode(struct inode *inode)
888 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
889 enum inode_type type = S_ISDIR(inode->i_mode) ? DIR_INODE : FILE_INODE;
891 if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) &&
892 !S_ISLNK(inode->i_mode))
893 return;
895 if (type == FILE_INODE && !test_opt(sbi, DATA_FLUSH))
896 return;
898 spin_lock(&sbi->inode_lock[type]);
899 __remove_dirty_inode(inode, type);
900 spin_unlock(&sbi->inode_lock[type]);
903 int sync_dirty_inodes(struct f2fs_sb_info *sbi, enum inode_type type)
905 struct list_head *head;
906 struct inode *inode;
907 struct f2fs_inode_info *fi;
908 bool is_dir = (type == DIR_INODE);
909 unsigned long ino = 0;
911 trace_f2fs_sync_dirty_inodes_enter(sbi->sb, is_dir,
912 get_pages(sbi, is_dir ?
913 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA));
914 retry:
915 if (unlikely(f2fs_cp_error(sbi)))
916 return -EIO;
918 spin_lock(&sbi->inode_lock[type]);
920 head = &sbi->inode_list[type];
921 if (list_empty(head)) {
922 spin_unlock(&sbi->inode_lock[type]);
923 trace_f2fs_sync_dirty_inodes_exit(sbi->sb, is_dir,
924 get_pages(sbi, is_dir ?
925 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA));
926 return 0;
928 fi = list_first_entry(head, struct f2fs_inode_info, dirty_list);
929 inode = igrab(&fi->vfs_inode);
930 spin_unlock(&sbi->inode_lock[type]);
931 if (inode) {
932 unsigned long cur_ino = inode->i_ino;
934 if (is_dir)
935 F2FS_I(inode)->cp_task = current;
937 filemap_fdatawrite(inode->i_mapping);
939 if (is_dir)
940 F2FS_I(inode)->cp_task = NULL;
942 iput(inode);
943 /* We need to give cpu to another writers. */
944 if (ino == cur_ino) {
945 congestion_wait(BLK_RW_ASYNC, HZ/50);
946 cond_resched();
947 } else {
948 ino = cur_ino;
950 } else {
952 * We should submit bio, since it exists several
953 * wribacking dentry pages in the freeing inode.
955 f2fs_submit_merged_write(sbi, DATA);
956 cond_resched();
958 goto retry;
961 int f2fs_sync_inode_meta(struct f2fs_sb_info *sbi)
963 struct list_head *head = &sbi->inode_list[DIRTY_META];
964 struct inode *inode;
965 struct f2fs_inode_info *fi;
966 s64 total = get_pages(sbi, F2FS_DIRTY_IMETA);
968 while (total--) {
969 if (unlikely(f2fs_cp_error(sbi)))
970 return -EIO;
972 spin_lock(&sbi->inode_lock[DIRTY_META]);
973 if (list_empty(head)) {
974 spin_unlock(&sbi->inode_lock[DIRTY_META]);
975 return 0;
977 fi = list_first_entry(head, struct f2fs_inode_info,
978 gdirty_list);
979 inode = igrab(&fi->vfs_inode);
980 spin_unlock(&sbi->inode_lock[DIRTY_META]);
981 if (inode) {
982 sync_inode_metadata(inode, 0);
984 /* it's on eviction */
985 if (is_inode_flag_set(inode, FI_DIRTY_INODE))
986 update_inode_page(inode);
987 iput(inode);
990 return 0;
993 static void __prepare_cp_block(struct f2fs_sb_info *sbi)
995 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
996 struct f2fs_nm_info *nm_i = NM_I(sbi);
997 nid_t last_nid = nm_i->next_scan_nid;
999 next_free_nid(sbi, &last_nid);
1000 ckpt->valid_block_count = cpu_to_le64(valid_user_blocks(sbi));
1001 ckpt->valid_node_count = cpu_to_le32(valid_node_count(sbi));
1002 ckpt->valid_inode_count = cpu_to_le32(valid_inode_count(sbi));
1003 ckpt->next_free_nid = cpu_to_le32(last_nid);
1007 * Freeze all the FS-operations for checkpoint.
1009 static int block_operations(struct f2fs_sb_info *sbi)
1011 struct writeback_control wbc = {
1012 .sync_mode = WB_SYNC_ALL,
1013 .nr_to_write = LONG_MAX,
1014 .for_reclaim = 0,
1016 struct blk_plug plug;
1017 int err = 0;
1019 blk_start_plug(&plug);
1021 retry_flush_dents:
1022 f2fs_lock_all(sbi);
1023 /* write all the dirty dentry pages */
1024 if (get_pages(sbi, F2FS_DIRTY_DENTS)) {
1025 f2fs_unlock_all(sbi);
1026 err = sync_dirty_inodes(sbi, DIR_INODE);
1027 if (err)
1028 goto out;
1029 cond_resched();
1030 goto retry_flush_dents;
1034 * POR: we should ensure that there are no dirty node pages
1035 * until finishing nat/sit flush. inode->i_blocks can be updated.
1037 down_write(&sbi->node_change);
1039 if (get_pages(sbi, F2FS_DIRTY_IMETA)) {
1040 up_write(&sbi->node_change);
1041 f2fs_unlock_all(sbi);
1042 err = f2fs_sync_inode_meta(sbi);
1043 if (err)
1044 goto out;
1045 cond_resched();
1046 goto retry_flush_dents;
1049 retry_flush_nodes:
1050 down_write(&sbi->node_write);
1052 if (get_pages(sbi, F2FS_DIRTY_NODES)) {
1053 up_write(&sbi->node_write);
1054 err = sync_node_pages(sbi, &wbc, false, FS_CP_NODE_IO);
1055 if (err) {
1056 up_write(&sbi->node_change);
1057 f2fs_unlock_all(sbi);
1058 goto out;
1060 cond_resched();
1061 goto retry_flush_nodes;
1065 * sbi->node_change is used only for AIO write_begin path which produces
1066 * dirty node blocks and some checkpoint values by block allocation.
1068 __prepare_cp_block(sbi);
1069 up_write(&sbi->node_change);
1070 out:
1071 blk_finish_plug(&plug);
1072 return err;
1075 static void unblock_operations(struct f2fs_sb_info *sbi)
1077 up_write(&sbi->node_write);
1078 f2fs_unlock_all(sbi);
1081 static void wait_on_all_pages_writeback(struct f2fs_sb_info *sbi)
1083 DEFINE_WAIT(wait);
1085 for (;;) {
1086 prepare_to_wait(&sbi->cp_wait, &wait, TASK_UNINTERRUPTIBLE);
1088 if (!get_pages(sbi, F2FS_WB_CP_DATA))
1089 break;
1091 io_schedule_timeout(5*HZ);
1093 finish_wait(&sbi->cp_wait, &wait);
1096 static void update_ckpt_flags(struct f2fs_sb_info *sbi, struct cp_control *cpc)
1098 unsigned long orphan_num = sbi->im[ORPHAN_INO].ino_num;
1099 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1100 unsigned long flags;
1102 spin_lock_irqsave(&sbi->cp_lock, flags);
1104 if ((cpc->reason & CP_UMOUNT) &&
1105 le32_to_cpu(ckpt->cp_pack_total_block_count) >
1106 sbi->blocks_per_seg - NM_I(sbi)->nat_bits_blocks)
1107 disable_nat_bits(sbi, false);
1109 if (cpc->reason & CP_TRIMMED)
1110 __set_ckpt_flags(ckpt, CP_TRIMMED_FLAG);
1112 if (cpc->reason & CP_UMOUNT)
1113 __set_ckpt_flags(ckpt, CP_UMOUNT_FLAG);
1114 else
1115 __clear_ckpt_flags(ckpt, CP_UMOUNT_FLAG);
1117 if (cpc->reason & CP_FASTBOOT)
1118 __set_ckpt_flags(ckpt, CP_FASTBOOT_FLAG);
1119 else
1120 __clear_ckpt_flags(ckpt, CP_FASTBOOT_FLAG);
1122 if (orphan_num)
1123 __set_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG);
1124 else
1125 __clear_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG);
1127 if (is_sbi_flag_set(sbi, SBI_NEED_FSCK))
1128 __set_ckpt_flags(ckpt, CP_FSCK_FLAG);
1130 /* set this flag to activate crc|cp_ver for recovery */
1131 __set_ckpt_flags(ckpt, CP_CRC_RECOVERY_FLAG);
1133 spin_unlock_irqrestore(&sbi->cp_lock, flags);
1136 static int do_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc)
1138 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1139 struct f2fs_nm_info *nm_i = NM_I(sbi);
1140 unsigned long orphan_num = sbi->im[ORPHAN_INO].ino_num, flags;
1141 block_t start_blk;
1142 unsigned int data_sum_blocks, orphan_blocks;
1143 __u32 crc32 = 0;
1144 int i;
1145 int cp_payload_blks = __cp_payload(sbi);
1146 struct super_block *sb = sbi->sb;
1147 struct curseg_info *seg_i = CURSEG_I(sbi, CURSEG_HOT_NODE);
1148 u64 kbytes_written;
1150 /* Flush all the NAT/SIT pages */
1151 while (get_pages(sbi, F2FS_DIRTY_META)) {
1152 sync_meta_pages(sbi, META, LONG_MAX, FS_CP_META_IO);
1153 if (unlikely(f2fs_cp_error(sbi)))
1154 return -EIO;
1158 * modify checkpoint
1159 * version number is already updated
1161 ckpt->elapsed_time = cpu_to_le64(get_mtime(sbi));
1162 ckpt->free_segment_count = cpu_to_le32(free_segments(sbi));
1163 for (i = 0; i < NR_CURSEG_NODE_TYPE; i++) {
1164 ckpt->cur_node_segno[i] =
1165 cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_NODE));
1166 ckpt->cur_node_blkoff[i] =
1167 cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_NODE));
1168 ckpt->alloc_type[i + CURSEG_HOT_NODE] =
1169 curseg_alloc_type(sbi, i + CURSEG_HOT_NODE);
1171 for (i = 0; i < NR_CURSEG_DATA_TYPE; i++) {
1172 ckpt->cur_data_segno[i] =
1173 cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_DATA));
1174 ckpt->cur_data_blkoff[i] =
1175 cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_DATA));
1176 ckpt->alloc_type[i + CURSEG_HOT_DATA] =
1177 curseg_alloc_type(sbi, i + CURSEG_HOT_DATA);
1180 /* 2 cp + n data seg summary + orphan inode blocks */
1181 data_sum_blocks = npages_for_summary_flush(sbi, false);
1182 spin_lock_irqsave(&sbi->cp_lock, flags);
1183 if (data_sum_blocks < NR_CURSEG_DATA_TYPE)
1184 __set_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG);
1185 else
1186 __clear_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG);
1187 spin_unlock_irqrestore(&sbi->cp_lock, flags);
1189 orphan_blocks = GET_ORPHAN_BLOCKS(orphan_num);
1190 ckpt->cp_pack_start_sum = cpu_to_le32(1 + cp_payload_blks +
1191 orphan_blocks);
1193 if (__remain_node_summaries(cpc->reason))
1194 ckpt->cp_pack_total_block_count = cpu_to_le32(F2FS_CP_PACKS+
1195 cp_payload_blks + data_sum_blocks +
1196 orphan_blocks + NR_CURSEG_NODE_TYPE);
1197 else
1198 ckpt->cp_pack_total_block_count = cpu_to_le32(F2FS_CP_PACKS +
1199 cp_payload_blks + data_sum_blocks +
1200 orphan_blocks);
1202 /* update ckpt flag for checkpoint */
1203 update_ckpt_flags(sbi, cpc);
1205 /* update SIT/NAT bitmap */
1206 get_sit_bitmap(sbi, __bitmap_ptr(sbi, SIT_BITMAP));
1207 get_nat_bitmap(sbi, __bitmap_ptr(sbi, NAT_BITMAP));
1209 crc32 = f2fs_crc32(sbi, ckpt, le32_to_cpu(ckpt->checksum_offset));
1210 *((__le32 *)((unsigned char *)ckpt +
1211 le32_to_cpu(ckpt->checksum_offset)))
1212 = cpu_to_le32(crc32);
1214 start_blk = __start_cp_next_addr(sbi);
1216 /* write nat bits */
1217 if (enabled_nat_bits(sbi, cpc)) {
1218 __u64 cp_ver = cur_cp_version(ckpt);
1219 block_t blk;
1221 cp_ver |= ((__u64)crc32 << 32);
1222 *(__le64 *)nm_i->nat_bits = cpu_to_le64(cp_ver);
1224 blk = start_blk + sbi->blocks_per_seg - nm_i->nat_bits_blocks;
1225 for (i = 0; i < nm_i->nat_bits_blocks; i++)
1226 update_meta_page(sbi, nm_i->nat_bits +
1227 (i << F2FS_BLKSIZE_BITS), blk + i);
1229 /* Flush all the NAT BITS pages */
1230 while (get_pages(sbi, F2FS_DIRTY_META)) {
1231 sync_meta_pages(sbi, META, LONG_MAX, FS_CP_META_IO);
1232 if (unlikely(f2fs_cp_error(sbi)))
1233 return -EIO;
1237 /* need to wait for end_io results */
1238 wait_on_all_pages_writeback(sbi);
1239 if (unlikely(f2fs_cp_error(sbi)))
1240 return -EIO;
1242 /* write out checkpoint buffer at block 0 */
1243 update_meta_page(sbi, ckpt, start_blk++);
1245 for (i = 1; i < 1 + cp_payload_blks; i++)
1246 update_meta_page(sbi, (char *)ckpt + i * F2FS_BLKSIZE,
1247 start_blk++);
1249 if (orphan_num) {
1250 write_orphan_inodes(sbi, start_blk);
1251 start_blk += orphan_blocks;
1254 write_data_summaries(sbi, start_blk);
1255 start_blk += data_sum_blocks;
1257 /* Record write statistics in the hot node summary */
1258 kbytes_written = sbi->kbytes_written;
1259 if (sb->s_bdev->bd_part)
1260 kbytes_written += BD_PART_WRITTEN(sbi);
1262 seg_i->journal->info.kbytes_written = cpu_to_le64(kbytes_written);
1264 if (__remain_node_summaries(cpc->reason)) {
1265 write_node_summaries(sbi, start_blk);
1266 start_blk += NR_CURSEG_NODE_TYPE;
1269 /* writeout checkpoint block */
1270 update_meta_page(sbi, ckpt, start_blk);
1272 /* wait for previous submitted node/meta pages writeback */
1273 wait_on_all_pages_writeback(sbi);
1275 if (unlikely(f2fs_cp_error(sbi)))
1276 return -EIO;
1278 filemap_fdatawait_range(NODE_MAPPING(sbi), 0, LLONG_MAX);
1279 filemap_fdatawait_range(META_MAPPING(sbi), 0, LLONG_MAX);
1281 /* update user_block_counts */
1282 sbi->last_valid_block_count = sbi->total_valid_block_count;
1283 percpu_counter_set(&sbi->alloc_valid_block_count, 0);
1285 /* Here, we only have one bio having CP pack */
1286 sync_meta_pages(sbi, META_FLUSH, LONG_MAX, FS_CP_META_IO);
1288 /* wait for previous submitted meta pages writeback */
1289 wait_on_all_pages_writeback(sbi);
1291 release_ino_entry(sbi, false);
1293 if (unlikely(f2fs_cp_error(sbi)))
1294 return -EIO;
1296 clear_sbi_flag(sbi, SBI_IS_DIRTY);
1297 clear_sbi_flag(sbi, SBI_NEED_CP);
1298 __set_cp_next_pack(sbi);
1301 * redirty superblock if metadata like node page or inode cache is
1302 * updated during writing checkpoint.
1304 if (get_pages(sbi, F2FS_DIRTY_NODES) ||
1305 get_pages(sbi, F2FS_DIRTY_IMETA))
1306 set_sbi_flag(sbi, SBI_IS_DIRTY);
1308 f2fs_bug_on(sbi, get_pages(sbi, F2FS_DIRTY_DENTS));
1310 return 0;
1314 * We guarantee that this checkpoint procedure will not fail.
1316 int write_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc)
1318 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1319 unsigned long long ckpt_ver;
1320 int err = 0;
1322 mutex_lock(&sbi->cp_mutex);
1324 if (!is_sbi_flag_set(sbi, SBI_IS_DIRTY) &&
1325 ((cpc->reason & CP_FASTBOOT) || (cpc->reason & CP_SYNC) ||
1326 ((cpc->reason & CP_DISCARD) && !sbi->discard_blks)))
1327 goto out;
1328 if (unlikely(f2fs_cp_error(sbi))) {
1329 err = -EIO;
1330 goto out;
1332 if (f2fs_readonly(sbi->sb)) {
1333 err = -EROFS;
1334 goto out;
1337 trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "start block_ops");
1339 err = block_operations(sbi);
1340 if (err)
1341 goto out;
1343 trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "finish block_ops");
1345 f2fs_flush_merged_writes(sbi);
1347 /* this is the case of multiple fstrims without any changes */
1348 if (cpc->reason & CP_DISCARD) {
1349 if (!exist_trim_candidates(sbi, cpc)) {
1350 unblock_operations(sbi);
1351 goto out;
1354 if (NM_I(sbi)->dirty_nat_cnt == 0 &&
1355 SIT_I(sbi)->dirty_sentries == 0 &&
1356 prefree_segments(sbi) == 0) {
1357 flush_sit_entries(sbi, cpc);
1358 clear_prefree_segments(sbi, cpc);
1359 unblock_operations(sbi);
1360 goto out;
1365 * update checkpoint pack index
1366 * Increase the version number so that
1367 * SIT entries and seg summaries are written at correct place
1369 ckpt_ver = cur_cp_version(ckpt);
1370 ckpt->checkpoint_ver = cpu_to_le64(++ckpt_ver);
1372 /* write cached NAT/SIT entries to NAT/SIT area */
1373 flush_nat_entries(sbi, cpc);
1374 flush_sit_entries(sbi, cpc);
1376 /* unlock all the fs_lock[] in do_checkpoint() */
1377 err = do_checkpoint(sbi, cpc);
1378 if (err)
1379 release_discard_addrs(sbi);
1380 else
1381 clear_prefree_segments(sbi, cpc);
1383 unblock_operations(sbi);
1384 stat_inc_cp_count(sbi->stat_info);
1386 if (cpc->reason & CP_RECOVERY)
1387 f2fs_msg(sbi->sb, KERN_NOTICE,
1388 "checkpoint: version = %llx", ckpt_ver);
1390 /* do checkpoint periodically */
1391 f2fs_update_time(sbi, CP_TIME);
1392 trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "finish checkpoint");
1393 out:
1394 mutex_unlock(&sbi->cp_mutex);
1395 return err;
1398 void init_ino_entry_info(struct f2fs_sb_info *sbi)
1400 int i;
1402 for (i = 0; i < MAX_INO_ENTRY; i++) {
1403 struct inode_management *im = &sbi->im[i];
1405 INIT_RADIX_TREE(&im->ino_root, GFP_ATOMIC);
1406 spin_lock_init(&im->ino_lock);
1407 INIT_LIST_HEAD(&im->ino_list);
1408 im->ino_num = 0;
1411 sbi->max_orphans = (sbi->blocks_per_seg - F2FS_CP_PACKS -
1412 NR_CURSEG_TYPE - __cp_payload(sbi)) *
1413 F2FS_ORPHANS_PER_BLOCK;
1416 int __init create_checkpoint_caches(void)
1418 ino_entry_slab = f2fs_kmem_cache_create("f2fs_ino_entry",
1419 sizeof(struct ino_entry));
1420 if (!ino_entry_slab)
1421 return -ENOMEM;
1422 inode_entry_slab = f2fs_kmem_cache_create("f2fs_inode_entry",
1423 sizeof(struct inode_entry));
1424 if (!inode_entry_slab) {
1425 kmem_cache_destroy(ino_entry_slab);
1426 return -ENOMEM;
1428 return 0;
1431 void destroy_checkpoint_caches(void)
1433 kmem_cache_destroy(ino_entry_slab);
1434 kmem_cache_destroy(inode_entry_slab);