4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5 * http://www.samsung.com/
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
12 #include <linux/bio.h>
13 #include <linux/mpage.h>
14 #include <linux/writeback.h>
15 #include <linux/blkdev.h>
16 #include <linux/f2fs_fs.h>
17 #include <linux/pagevec.h>
18 #include <linux/swap.h>
24 #include <trace/events/f2fs.h>
26 static struct kmem_cache
*ino_entry_slab
;
27 struct kmem_cache
*inode_entry_slab
;
29 void f2fs_stop_checkpoint(struct f2fs_sb_info
*sbi
, bool end_io
)
31 set_ckpt_flags(sbi
, CP_ERROR_FLAG
);
32 sbi
->sb
->s_flags
|= MS_RDONLY
;
34 f2fs_flush_merged_writes(sbi
);
38 * We guarantee no failure on the returned page.
40 struct page
*grab_meta_page(struct f2fs_sb_info
*sbi
, pgoff_t index
)
42 struct address_space
*mapping
= META_MAPPING(sbi
);
43 struct page
*page
= NULL
;
45 page
= f2fs_grab_cache_page(mapping
, index
, false);
50 f2fs_wait_on_page_writeback(page
, META
, true);
51 if (!PageUptodate(page
))
52 SetPageUptodate(page
);
57 * We guarantee no failure on the returned page.
59 static struct page
*__get_meta_page(struct f2fs_sb_info
*sbi
, pgoff_t index
,
62 struct address_space
*mapping
= META_MAPPING(sbi
);
64 struct f2fs_io_info fio
= {
68 .op_flags
= REQ_META
| REQ_PRIO
,
71 .encrypted_page
= NULL
,
74 if (unlikely(!is_meta
))
75 fio
.op_flags
&= ~REQ_META
;
77 page
= f2fs_grab_cache_page(mapping
, index
, false);
82 if (PageUptodate(page
))
87 if (f2fs_submit_page_bio(&fio
)) {
88 f2fs_put_page(page
, 1);
93 if (unlikely(page
->mapping
!= mapping
)) {
94 f2fs_put_page(page
, 1);
99 * if there is any IO error when accessing device, make our filesystem
100 * readonly and make sure do not write checkpoint with non-uptodate
103 if (unlikely(!PageUptodate(page
)))
104 f2fs_stop_checkpoint(sbi
, false);
109 struct page
*get_meta_page(struct f2fs_sb_info
*sbi
, pgoff_t index
)
111 return __get_meta_page(sbi
, index
, true);
115 struct page
*get_tmp_page(struct f2fs_sb_info
*sbi
, pgoff_t index
)
117 return __get_meta_page(sbi
, index
, false);
120 bool is_valid_blkaddr(struct f2fs_sb_info
*sbi
, block_t blkaddr
, int type
)
126 if (unlikely(blkaddr
>= SIT_BLK_CNT(sbi
)))
130 if (unlikely(blkaddr
>= MAIN_BLKADDR(sbi
) ||
131 blkaddr
< SM_I(sbi
)->ssa_blkaddr
))
135 if (unlikely(blkaddr
>= SIT_I(sbi
)->sit_base_addr
||
136 blkaddr
< __start_cp_addr(sbi
)))
140 if (unlikely(blkaddr
>= MAX_BLKADDR(sbi
) ||
141 blkaddr
< MAIN_BLKADDR(sbi
)))
152 * Readahead CP/NAT/SIT/SSA pages
154 int ra_meta_pages(struct f2fs_sb_info
*sbi
, block_t start
, int nrpages
,
158 block_t blkno
= start
;
159 struct f2fs_io_info fio
= {
163 .op_flags
= sync
? (REQ_META
| REQ_PRIO
) : REQ_RAHEAD
,
164 .encrypted_page
= NULL
,
167 struct blk_plug plug
;
169 if (unlikely(type
== META_POR
))
170 fio
.op_flags
&= ~REQ_META
;
172 blk_start_plug(&plug
);
173 for (; nrpages
-- > 0; blkno
++) {
175 if (!is_valid_blkaddr(sbi
, blkno
, type
))
180 if (unlikely(blkno
>=
181 NAT_BLOCK_OFFSET(NM_I(sbi
)->max_nid
)))
183 /* get nat block addr */
184 fio
.new_blkaddr
= current_nat_addr(sbi
,
185 blkno
* NAT_ENTRY_PER_BLOCK
);
188 /* get sit block addr */
189 fio
.new_blkaddr
= current_sit_addr(sbi
,
190 blkno
* SIT_ENTRY_PER_BLOCK
);
195 fio
.new_blkaddr
= blkno
;
201 page
= f2fs_grab_cache_page(META_MAPPING(sbi
),
202 fio
.new_blkaddr
, false);
205 if (PageUptodate(page
)) {
206 f2fs_put_page(page
, 1);
211 f2fs_submit_page_bio(&fio
);
212 f2fs_put_page(page
, 0);
215 blk_finish_plug(&plug
);
216 return blkno
- start
;
219 void ra_meta_pages_cond(struct f2fs_sb_info
*sbi
, pgoff_t index
)
222 bool readahead
= false;
224 page
= find_get_page(META_MAPPING(sbi
), index
);
225 if (!page
|| !PageUptodate(page
))
227 f2fs_put_page(page
, 0);
230 ra_meta_pages(sbi
, index
, BIO_MAX_PAGES
, META_POR
, true);
233 static int __f2fs_write_meta_page(struct page
*page
,
234 struct writeback_control
*wbc
,
235 enum iostat_type io_type
)
237 struct f2fs_sb_info
*sbi
= F2FS_P_SB(page
);
239 trace_f2fs_writepage(page
, META
);
241 if (unlikely(is_sbi_flag_set(sbi
, SBI_POR_DOING
)))
243 if (wbc
->for_reclaim
&& page
->index
< GET_SUM_BLOCK(sbi
, 0))
245 if (unlikely(f2fs_cp_error(sbi
)))
248 write_meta_page(sbi
, page
, io_type
);
249 dec_page_count(sbi
, F2FS_DIRTY_META
);
251 if (wbc
->for_reclaim
)
252 f2fs_submit_merged_write_cond(sbi
, page
->mapping
->host
,
253 0, page
->index
, META
);
257 if (unlikely(f2fs_cp_error(sbi
)))
258 f2fs_submit_merged_write(sbi
, META
);
263 redirty_page_for_writepage(wbc
, page
);
264 return AOP_WRITEPAGE_ACTIVATE
;
267 static int f2fs_write_meta_page(struct page
*page
,
268 struct writeback_control
*wbc
)
270 return __f2fs_write_meta_page(page
, wbc
, FS_META_IO
);
273 static int f2fs_write_meta_pages(struct address_space
*mapping
,
274 struct writeback_control
*wbc
)
276 struct f2fs_sb_info
*sbi
= F2FS_M_SB(mapping
);
279 if (unlikely(is_sbi_flag_set(sbi
, SBI_POR_DOING
)))
282 /* collect a number of dirty meta pages and write together */
283 if (wbc
->for_kupdate
||
284 get_pages(sbi
, F2FS_DIRTY_META
) < nr_pages_to_skip(sbi
, META
))
287 /* if locked failed, cp will flush dirty pages instead */
288 if (!mutex_trylock(&sbi
->cp_mutex
))
291 trace_f2fs_writepages(mapping
->host
, wbc
, META
);
292 diff
= nr_pages_to_write(sbi
, META
, wbc
);
293 written
= sync_meta_pages(sbi
, META
, wbc
->nr_to_write
, FS_META_IO
);
294 mutex_unlock(&sbi
->cp_mutex
);
295 wbc
->nr_to_write
= max((long)0, wbc
->nr_to_write
- written
- diff
);
299 wbc
->pages_skipped
+= get_pages(sbi
, F2FS_DIRTY_META
);
300 trace_f2fs_writepages(mapping
->host
, wbc
, META
);
304 long sync_meta_pages(struct f2fs_sb_info
*sbi
, enum page_type type
,
305 long nr_to_write
, enum iostat_type io_type
)
307 struct address_space
*mapping
= META_MAPPING(sbi
);
308 pgoff_t index
= 0, end
= ULONG_MAX
, prev
= ULONG_MAX
;
311 struct writeback_control wbc
= {
314 struct blk_plug plug
;
316 pagevec_init(&pvec
, 0);
318 blk_start_plug(&plug
);
320 while (index
<= end
) {
322 nr_pages
= pagevec_lookup_tag(&pvec
, mapping
, &index
,
324 min(end
- index
, (pgoff_t
)PAGEVEC_SIZE
-1) + 1);
325 if (unlikely(nr_pages
== 0))
328 for (i
= 0; i
< nr_pages
; i
++) {
329 struct page
*page
= pvec
.pages
[i
];
331 if (prev
== ULONG_MAX
)
332 prev
= page
->index
- 1;
333 if (nr_to_write
!= LONG_MAX
&& page
->index
!= prev
+ 1) {
334 pagevec_release(&pvec
);
340 if (unlikely(page
->mapping
!= mapping
)) {
345 if (!PageDirty(page
)) {
346 /* someone wrote it for us */
347 goto continue_unlock
;
350 f2fs_wait_on_page_writeback(page
, META
, true);
352 BUG_ON(PageWriteback(page
));
353 if (!clear_page_dirty_for_io(page
))
354 goto continue_unlock
;
356 if (__f2fs_write_meta_page(page
, &wbc
, io_type
)) {
362 if (unlikely(nwritten
>= nr_to_write
))
365 pagevec_release(&pvec
);
370 f2fs_submit_merged_write(sbi
, type
);
372 blk_finish_plug(&plug
);
377 static int f2fs_set_meta_page_dirty(struct page
*page
)
379 trace_f2fs_set_page_dirty(page
, META
);
381 if (!PageUptodate(page
))
382 SetPageUptodate(page
);
383 if (!PageDirty(page
)) {
384 f2fs_set_page_dirty_nobuffers(page
);
385 inc_page_count(F2FS_P_SB(page
), F2FS_DIRTY_META
);
386 SetPagePrivate(page
);
387 f2fs_trace_pid(page
);
393 const struct address_space_operations f2fs_meta_aops
= {
394 .writepage
= f2fs_write_meta_page
,
395 .writepages
= f2fs_write_meta_pages
,
396 .set_page_dirty
= f2fs_set_meta_page_dirty
,
397 .invalidatepage
= f2fs_invalidate_page
,
398 .releasepage
= f2fs_release_page
,
399 #ifdef CONFIG_MIGRATION
400 .migratepage
= f2fs_migrate_page
,
404 static void __add_ino_entry(struct f2fs_sb_info
*sbi
, nid_t ino
, int type
)
406 struct inode_management
*im
= &sbi
->im
[type
];
407 struct ino_entry
*e
, *tmp
;
409 tmp
= f2fs_kmem_cache_alloc(ino_entry_slab
, GFP_NOFS
);
411 radix_tree_preload(GFP_NOFS
| __GFP_NOFAIL
);
413 spin_lock(&im
->ino_lock
);
414 e
= radix_tree_lookup(&im
->ino_root
, ino
);
417 if (radix_tree_insert(&im
->ino_root
, ino
, e
)) {
418 spin_unlock(&im
->ino_lock
);
419 radix_tree_preload_end();
422 memset(e
, 0, sizeof(struct ino_entry
));
425 list_add_tail(&e
->list
, &im
->ino_list
);
426 if (type
!= ORPHAN_INO
)
429 spin_unlock(&im
->ino_lock
);
430 radix_tree_preload_end();
433 kmem_cache_free(ino_entry_slab
, tmp
);
436 static void __remove_ino_entry(struct f2fs_sb_info
*sbi
, nid_t ino
, int type
)
438 struct inode_management
*im
= &sbi
->im
[type
];
441 spin_lock(&im
->ino_lock
);
442 e
= radix_tree_lookup(&im
->ino_root
, ino
);
445 radix_tree_delete(&im
->ino_root
, ino
);
447 spin_unlock(&im
->ino_lock
);
448 kmem_cache_free(ino_entry_slab
, e
);
451 spin_unlock(&im
->ino_lock
);
454 void add_ino_entry(struct f2fs_sb_info
*sbi
, nid_t ino
, int type
)
456 /* add new dirty ino entry into list */
457 __add_ino_entry(sbi
, ino
, type
);
460 void remove_ino_entry(struct f2fs_sb_info
*sbi
, nid_t ino
, int type
)
462 /* remove dirty ino entry from list */
463 __remove_ino_entry(sbi
, ino
, type
);
466 /* mode should be APPEND_INO or UPDATE_INO */
467 bool exist_written_data(struct f2fs_sb_info
*sbi
, nid_t ino
, int mode
)
469 struct inode_management
*im
= &sbi
->im
[mode
];
472 spin_lock(&im
->ino_lock
);
473 e
= radix_tree_lookup(&im
->ino_root
, ino
);
474 spin_unlock(&im
->ino_lock
);
475 return e
? true : false;
478 void release_ino_entry(struct f2fs_sb_info
*sbi
, bool all
)
480 struct ino_entry
*e
, *tmp
;
483 for (i
= all
? ORPHAN_INO
: APPEND_INO
; i
<= UPDATE_INO
; i
++) {
484 struct inode_management
*im
= &sbi
->im
[i
];
486 spin_lock(&im
->ino_lock
);
487 list_for_each_entry_safe(e
, tmp
, &im
->ino_list
, list
) {
489 radix_tree_delete(&im
->ino_root
, e
->ino
);
490 kmem_cache_free(ino_entry_slab
, e
);
493 spin_unlock(&im
->ino_lock
);
497 int acquire_orphan_inode(struct f2fs_sb_info
*sbi
)
499 struct inode_management
*im
= &sbi
->im
[ORPHAN_INO
];
502 spin_lock(&im
->ino_lock
);
504 #ifdef CONFIG_F2FS_FAULT_INJECTION
505 if (time_to_inject(sbi
, FAULT_ORPHAN
)) {
506 spin_unlock(&im
->ino_lock
);
507 f2fs_show_injection_info(FAULT_ORPHAN
);
511 if (unlikely(im
->ino_num
>= sbi
->max_orphans
))
515 spin_unlock(&im
->ino_lock
);
520 void release_orphan_inode(struct f2fs_sb_info
*sbi
)
522 struct inode_management
*im
= &sbi
->im
[ORPHAN_INO
];
524 spin_lock(&im
->ino_lock
);
525 f2fs_bug_on(sbi
, im
->ino_num
== 0);
527 spin_unlock(&im
->ino_lock
);
530 void add_orphan_inode(struct inode
*inode
)
532 /* add new orphan ino entry into list */
533 __add_ino_entry(F2FS_I_SB(inode
), inode
->i_ino
, ORPHAN_INO
);
534 update_inode_page(inode
);
537 void remove_orphan_inode(struct f2fs_sb_info
*sbi
, nid_t ino
)
539 /* remove orphan entry from orphan list */
540 __remove_ino_entry(sbi
, ino
, ORPHAN_INO
);
543 static int recover_orphan_inode(struct f2fs_sb_info
*sbi
, nid_t ino
)
547 int err
= acquire_orphan_inode(sbi
);
550 set_sbi_flag(sbi
, SBI_NEED_FSCK
);
551 f2fs_msg(sbi
->sb
, KERN_WARNING
,
552 "%s: orphan failed (ino=%x), run fsck to fix.",
557 __add_ino_entry(sbi
, ino
, ORPHAN_INO
);
559 inode
= f2fs_iget_retry(sbi
->sb
, ino
);
562 * there should be a bug that we can't find the entry
565 f2fs_bug_on(sbi
, PTR_ERR(inode
) == -ENOENT
);
566 return PTR_ERR(inode
);
571 /* truncate all the data during iput */
574 get_node_info(sbi
, ino
, &ni
);
576 /* ENOMEM was fully retried in f2fs_evict_inode. */
577 if (ni
.blk_addr
!= NULL_ADDR
) {
578 set_sbi_flag(sbi
, SBI_NEED_FSCK
);
579 f2fs_msg(sbi
->sb
, KERN_WARNING
,
580 "%s: orphan failed (ino=%x) by kernel, retry mount.",
584 __remove_ino_entry(sbi
, ino
, ORPHAN_INO
);
588 int recover_orphan_inodes(struct f2fs_sb_info
*sbi
)
590 block_t start_blk
, orphan_blocks
, i
, j
;
591 unsigned int s_flags
= sbi
->sb
->s_flags
;
594 if (!is_set_ckpt_flags(sbi
, CP_ORPHAN_PRESENT_FLAG
))
597 if (s_flags
& MS_RDONLY
) {
598 f2fs_msg(sbi
->sb
, KERN_INFO
, "orphan cleanup on readonly fs");
599 sbi
->sb
->s_flags
&= ~MS_RDONLY
;
603 /* Needed for iput() to work correctly and not trash data */
604 sbi
->sb
->s_flags
|= MS_ACTIVE
;
605 /* Turn on quotas so that they are updated correctly */
606 f2fs_enable_quota_files(sbi
);
609 start_blk
= __start_cp_addr(sbi
) + 1 + __cp_payload(sbi
);
610 orphan_blocks
= __start_sum_addr(sbi
) - 1 - __cp_payload(sbi
);
612 ra_meta_pages(sbi
, start_blk
, orphan_blocks
, META_CP
, true);
614 for (i
= 0; i
< orphan_blocks
; i
++) {
615 struct page
*page
= get_meta_page(sbi
, start_blk
+ i
);
616 struct f2fs_orphan_block
*orphan_blk
;
618 orphan_blk
= (struct f2fs_orphan_block
*)page_address(page
);
619 for (j
= 0; j
< le32_to_cpu(orphan_blk
->entry_count
); j
++) {
620 nid_t ino
= le32_to_cpu(orphan_blk
->ino
[j
]);
621 err
= recover_orphan_inode(sbi
, ino
);
623 f2fs_put_page(page
, 1);
627 f2fs_put_page(page
, 1);
629 /* clear Orphan Flag */
630 clear_ckpt_flags(sbi
, CP_ORPHAN_PRESENT_FLAG
);
633 /* Turn quotas off */
634 f2fs_quota_off_umount(sbi
->sb
);
636 sbi
->sb
->s_flags
= s_flags
; /* Restore MS_RDONLY status */
641 static void write_orphan_inodes(struct f2fs_sb_info
*sbi
, block_t start_blk
)
643 struct list_head
*head
;
644 struct f2fs_orphan_block
*orphan_blk
= NULL
;
645 unsigned int nentries
= 0;
646 unsigned short index
= 1;
647 unsigned short orphan_blocks
;
648 struct page
*page
= NULL
;
649 struct ino_entry
*orphan
= NULL
;
650 struct inode_management
*im
= &sbi
->im
[ORPHAN_INO
];
652 orphan_blocks
= GET_ORPHAN_BLOCKS(im
->ino_num
);
655 * we don't need to do spin_lock(&im->ino_lock) here, since all the
656 * orphan inode operations are covered under f2fs_lock_op().
657 * And, spin_lock should be avoided due to page operations below.
659 head
= &im
->ino_list
;
661 /* loop for each orphan inode entry and write them in Jornal block */
662 list_for_each_entry(orphan
, head
, list
) {
664 page
= grab_meta_page(sbi
, start_blk
++);
666 (struct f2fs_orphan_block
*)page_address(page
);
667 memset(orphan_blk
, 0, sizeof(*orphan_blk
));
670 orphan_blk
->ino
[nentries
++] = cpu_to_le32(orphan
->ino
);
672 if (nentries
== F2FS_ORPHANS_PER_BLOCK
) {
674 * an orphan block is full of 1020 entries,
675 * then we need to flush current orphan blocks
676 * and bring another one in memory
678 orphan_blk
->blk_addr
= cpu_to_le16(index
);
679 orphan_blk
->blk_count
= cpu_to_le16(orphan_blocks
);
680 orphan_blk
->entry_count
= cpu_to_le32(nentries
);
681 set_page_dirty(page
);
682 f2fs_put_page(page
, 1);
690 orphan_blk
->blk_addr
= cpu_to_le16(index
);
691 orphan_blk
->blk_count
= cpu_to_le16(orphan_blocks
);
692 orphan_blk
->entry_count
= cpu_to_le32(nentries
);
693 set_page_dirty(page
);
694 f2fs_put_page(page
, 1);
698 static int get_checkpoint_version(struct f2fs_sb_info
*sbi
, block_t cp_addr
,
699 struct f2fs_checkpoint
**cp_block
, struct page
**cp_page
,
700 unsigned long long *version
)
702 unsigned long blk_size
= sbi
->blocksize
;
703 size_t crc_offset
= 0;
706 *cp_page
= get_meta_page(sbi
, cp_addr
);
707 *cp_block
= (struct f2fs_checkpoint
*)page_address(*cp_page
);
709 crc_offset
= le32_to_cpu((*cp_block
)->checksum_offset
);
710 if (crc_offset
> (blk_size
- sizeof(__le32
))) {
711 f2fs_msg(sbi
->sb
, KERN_WARNING
,
712 "invalid crc_offset: %zu", crc_offset
);
716 crc
= cur_cp_crc(*cp_block
);
717 if (!f2fs_crc_valid(sbi
, crc
, *cp_block
, crc_offset
)) {
718 f2fs_msg(sbi
->sb
, KERN_WARNING
, "invalid crc value");
722 *version
= cur_cp_version(*cp_block
);
726 static struct page
*validate_checkpoint(struct f2fs_sb_info
*sbi
,
727 block_t cp_addr
, unsigned long long *version
)
729 struct page
*cp_page_1
= NULL
, *cp_page_2
= NULL
;
730 struct f2fs_checkpoint
*cp_block
= NULL
;
731 unsigned long long cur_version
= 0, pre_version
= 0;
734 err
= get_checkpoint_version(sbi
, cp_addr
, &cp_block
,
735 &cp_page_1
, version
);
738 pre_version
= *version
;
740 cp_addr
+= le32_to_cpu(cp_block
->cp_pack_total_block_count
) - 1;
741 err
= get_checkpoint_version(sbi
, cp_addr
, &cp_block
,
742 &cp_page_2
, version
);
745 cur_version
= *version
;
747 if (cur_version
== pre_version
) {
748 *version
= cur_version
;
749 f2fs_put_page(cp_page_2
, 1);
753 f2fs_put_page(cp_page_2
, 1);
755 f2fs_put_page(cp_page_1
, 1);
759 int get_valid_checkpoint(struct f2fs_sb_info
*sbi
)
761 struct f2fs_checkpoint
*cp_block
;
762 struct f2fs_super_block
*fsb
= sbi
->raw_super
;
763 struct page
*cp1
, *cp2
, *cur_page
;
764 unsigned long blk_size
= sbi
->blocksize
;
765 unsigned long long cp1_version
= 0, cp2_version
= 0;
766 unsigned long long cp_start_blk_no
;
767 unsigned int cp_blks
= 1 + __cp_payload(sbi
);
771 sbi
->ckpt
= kzalloc(cp_blks
* blk_size
, GFP_KERNEL
);
775 * Finding out valid cp block involves read both
776 * sets( cp pack1 and cp pack 2)
778 cp_start_blk_no
= le32_to_cpu(fsb
->cp_blkaddr
);
779 cp1
= validate_checkpoint(sbi
, cp_start_blk_no
, &cp1_version
);
781 /* The second checkpoint pack should start at the next segment */
782 cp_start_blk_no
+= ((unsigned long long)1) <<
783 le32_to_cpu(fsb
->log_blocks_per_seg
);
784 cp2
= validate_checkpoint(sbi
, cp_start_blk_no
, &cp2_version
);
787 if (ver_after(cp2_version
, cp1_version
))
799 cp_block
= (struct f2fs_checkpoint
*)page_address(cur_page
);
800 memcpy(sbi
->ckpt
, cp_block
, blk_size
);
802 /* Sanity checking of checkpoint */
803 if (sanity_check_ckpt(sbi
))
804 goto free_fail_no_cp
;
807 sbi
->cur_cp_pack
= 1;
809 sbi
->cur_cp_pack
= 2;
814 cp_blk_no
= le32_to_cpu(fsb
->cp_blkaddr
);
816 cp_blk_no
+= 1 << le32_to_cpu(fsb
->log_blocks_per_seg
);
818 for (i
= 1; i
< cp_blks
; i
++) {
819 void *sit_bitmap_ptr
;
820 unsigned char *ckpt
= (unsigned char *)sbi
->ckpt
;
822 cur_page
= get_meta_page(sbi
, cp_blk_no
+ i
);
823 sit_bitmap_ptr
= page_address(cur_page
);
824 memcpy(ckpt
+ i
* blk_size
, sit_bitmap_ptr
, blk_size
);
825 f2fs_put_page(cur_page
, 1);
828 f2fs_put_page(cp1
, 1);
829 f2fs_put_page(cp2
, 1);
833 f2fs_put_page(cp1
, 1);
834 f2fs_put_page(cp2
, 1);
840 static void __add_dirty_inode(struct inode
*inode
, enum inode_type type
)
842 struct f2fs_sb_info
*sbi
= F2FS_I_SB(inode
);
843 int flag
= (type
== DIR_INODE
) ? FI_DIRTY_DIR
: FI_DIRTY_FILE
;
845 if (is_inode_flag_set(inode
, flag
))
848 set_inode_flag(inode
, flag
);
849 if (!f2fs_is_volatile_file(inode
))
850 list_add_tail(&F2FS_I(inode
)->dirty_list
,
851 &sbi
->inode_list
[type
]);
852 stat_inc_dirty_inode(sbi
, type
);
855 static void __remove_dirty_inode(struct inode
*inode
, enum inode_type type
)
857 int flag
= (type
== DIR_INODE
) ? FI_DIRTY_DIR
: FI_DIRTY_FILE
;
859 if (get_dirty_pages(inode
) || !is_inode_flag_set(inode
, flag
))
862 list_del_init(&F2FS_I(inode
)->dirty_list
);
863 clear_inode_flag(inode
, flag
);
864 stat_dec_dirty_inode(F2FS_I_SB(inode
), type
);
867 void update_dirty_page(struct inode
*inode
, struct page
*page
)
869 struct f2fs_sb_info
*sbi
= F2FS_I_SB(inode
);
870 enum inode_type type
= S_ISDIR(inode
->i_mode
) ? DIR_INODE
: FILE_INODE
;
872 if (!S_ISDIR(inode
->i_mode
) && !S_ISREG(inode
->i_mode
) &&
873 !S_ISLNK(inode
->i_mode
))
876 spin_lock(&sbi
->inode_lock
[type
]);
877 if (type
!= FILE_INODE
|| test_opt(sbi
, DATA_FLUSH
))
878 __add_dirty_inode(inode
, type
);
879 inode_inc_dirty_pages(inode
);
880 spin_unlock(&sbi
->inode_lock
[type
]);
882 SetPagePrivate(page
);
883 f2fs_trace_pid(page
);
886 void remove_dirty_inode(struct inode
*inode
)
888 struct f2fs_sb_info
*sbi
= F2FS_I_SB(inode
);
889 enum inode_type type
= S_ISDIR(inode
->i_mode
) ? DIR_INODE
: FILE_INODE
;
891 if (!S_ISDIR(inode
->i_mode
) && !S_ISREG(inode
->i_mode
) &&
892 !S_ISLNK(inode
->i_mode
))
895 if (type
== FILE_INODE
&& !test_opt(sbi
, DATA_FLUSH
))
898 spin_lock(&sbi
->inode_lock
[type
]);
899 __remove_dirty_inode(inode
, type
);
900 spin_unlock(&sbi
->inode_lock
[type
]);
903 int sync_dirty_inodes(struct f2fs_sb_info
*sbi
, enum inode_type type
)
905 struct list_head
*head
;
907 struct f2fs_inode_info
*fi
;
908 bool is_dir
= (type
== DIR_INODE
);
909 unsigned long ino
= 0;
911 trace_f2fs_sync_dirty_inodes_enter(sbi
->sb
, is_dir
,
912 get_pages(sbi
, is_dir
?
913 F2FS_DIRTY_DENTS
: F2FS_DIRTY_DATA
));
915 if (unlikely(f2fs_cp_error(sbi
)))
918 spin_lock(&sbi
->inode_lock
[type
]);
920 head
= &sbi
->inode_list
[type
];
921 if (list_empty(head
)) {
922 spin_unlock(&sbi
->inode_lock
[type
]);
923 trace_f2fs_sync_dirty_inodes_exit(sbi
->sb
, is_dir
,
924 get_pages(sbi
, is_dir
?
925 F2FS_DIRTY_DENTS
: F2FS_DIRTY_DATA
));
928 fi
= list_first_entry(head
, struct f2fs_inode_info
, dirty_list
);
929 inode
= igrab(&fi
->vfs_inode
);
930 spin_unlock(&sbi
->inode_lock
[type
]);
932 unsigned long cur_ino
= inode
->i_ino
;
935 F2FS_I(inode
)->cp_task
= current
;
937 filemap_fdatawrite(inode
->i_mapping
);
940 F2FS_I(inode
)->cp_task
= NULL
;
943 /* We need to give cpu to another writers. */
944 if (ino
== cur_ino
) {
945 congestion_wait(BLK_RW_ASYNC
, HZ
/50);
952 * We should submit bio, since it exists several
953 * wribacking dentry pages in the freeing inode.
955 f2fs_submit_merged_write(sbi
, DATA
);
961 int f2fs_sync_inode_meta(struct f2fs_sb_info
*sbi
)
963 struct list_head
*head
= &sbi
->inode_list
[DIRTY_META
];
965 struct f2fs_inode_info
*fi
;
966 s64 total
= get_pages(sbi
, F2FS_DIRTY_IMETA
);
969 if (unlikely(f2fs_cp_error(sbi
)))
972 spin_lock(&sbi
->inode_lock
[DIRTY_META
]);
973 if (list_empty(head
)) {
974 spin_unlock(&sbi
->inode_lock
[DIRTY_META
]);
977 fi
= list_first_entry(head
, struct f2fs_inode_info
,
979 inode
= igrab(&fi
->vfs_inode
);
980 spin_unlock(&sbi
->inode_lock
[DIRTY_META
]);
982 sync_inode_metadata(inode
, 0);
984 /* it's on eviction */
985 if (is_inode_flag_set(inode
, FI_DIRTY_INODE
))
986 update_inode_page(inode
);
993 static void __prepare_cp_block(struct f2fs_sb_info
*sbi
)
995 struct f2fs_checkpoint
*ckpt
= F2FS_CKPT(sbi
);
996 struct f2fs_nm_info
*nm_i
= NM_I(sbi
);
997 nid_t last_nid
= nm_i
->next_scan_nid
;
999 next_free_nid(sbi
, &last_nid
);
1000 ckpt
->valid_block_count
= cpu_to_le64(valid_user_blocks(sbi
));
1001 ckpt
->valid_node_count
= cpu_to_le32(valid_node_count(sbi
));
1002 ckpt
->valid_inode_count
= cpu_to_le32(valid_inode_count(sbi
));
1003 ckpt
->next_free_nid
= cpu_to_le32(last_nid
);
1007 * Freeze all the FS-operations for checkpoint.
1009 static int block_operations(struct f2fs_sb_info
*sbi
)
1011 struct writeback_control wbc
= {
1012 .sync_mode
= WB_SYNC_ALL
,
1013 .nr_to_write
= LONG_MAX
,
1016 struct blk_plug plug
;
1019 blk_start_plug(&plug
);
1023 /* write all the dirty dentry pages */
1024 if (get_pages(sbi
, F2FS_DIRTY_DENTS
)) {
1025 f2fs_unlock_all(sbi
);
1026 err
= sync_dirty_inodes(sbi
, DIR_INODE
);
1030 goto retry_flush_dents
;
1034 * POR: we should ensure that there are no dirty node pages
1035 * until finishing nat/sit flush. inode->i_blocks can be updated.
1037 down_write(&sbi
->node_change
);
1039 if (get_pages(sbi
, F2FS_DIRTY_IMETA
)) {
1040 up_write(&sbi
->node_change
);
1041 f2fs_unlock_all(sbi
);
1042 err
= f2fs_sync_inode_meta(sbi
);
1046 goto retry_flush_dents
;
1050 down_write(&sbi
->node_write
);
1052 if (get_pages(sbi
, F2FS_DIRTY_NODES
)) {
1053 up_write(&sbi
->node_write
);
1054 err
= sync_node_pages(sbi
, &wbc
, false, FS_CP_NODE_IO
);
1056 up_write(&sbi
->node_change
);
1057 f2fs_unlock_all(sbi
);
1061 goto retry_flush_nodes
;
1065 * sbi->node_change is used only for AIO write_begin path which produces
1066 * dirty node blocks and some checkpoint values by block allocation.
1068 __prepare_cp_block(sbi
);
1069 up_write(&sbi
->node_change
);
1071 blk_finish_plug(&plug
);
1075 static void unblock_operations(struct f2fs_sb_info
*sbi
)
1077 up_write(&sbi
->node_write
);
1078 f2fs_unlock_all(sbi
);
1081 static void wait_on_all_pages_writeback(struct f2fs_sb_info
*sbi
)
1086 prepare_to_wait(&sbi
->cp_wait
, &wait
, TASK_UNINTERRUPTIBLE
);
1088 if (!get_pages(sbi
, F2FS_WB_CP_DATA
))
1091 io_schedule_timeout(5*HZ
);
1093 finish_wait(&sbi
->cp_wait
, &wait
);
1096 static void update_ckpt_flags(struct f2fs_sb_info
*sbi
, struct cp_control
*cpc
)
1098 unsigned long orphan_num
= sbi
->im
[ORPHAN_INO
].ino_num
;
1099 struct f2fs_checkpoint
*ckpt
= F2FS_CKPT(sbi
);
1100 unsigned long flags
;
1102 spin_lock_irqsave(&sbi
->cp_lock
, flags
);
1104 if ((cpc
->reason
& CP_UMOUNT
) &&
1105 le32_to_cpu(ckpt
->cp_pack_total_block_count
) >
1106 sbi
->blocks_per_seg
- NM_I(sbi
)->nat_bits_blocks
)
1107 disable_nat_bits(sbi
, false);
1109 if (cpc
->reason
& CP_TRIMMED
)
1110 __set_ckpt_flags(ckpt
, CP_TRIMMED_FLAG
);
1112 if (cpc
->reason
& CP_UMOUNT
)
1113 __set_ckpt_flags(ckpt
, CP_UMOUNT_FLAG
);
1115 __clear_ckpt_flags(ckpt
, CP_UMOUNT_FLAG
);
1117 if (cpc
->reason
& CP_FASTBOOT
)
1118 __set_ckpt_flags(ckpt
, CP_FASTBOOT_FLAG
);
1120 __clear_ckpt_flags(ckpt
, CP_FASTBOOT_FLAG
);
1123 __set_ckpt_flags(ckpt
, CP_ORPHAN_PRESENT_FLAG
);
1125 __clear_ckpt_flags(ckpt
, CP_ORPHAN_PRESENT_FLAG
);
1127 if (is_sbi_flag_set(sbi
, SBI_NEED_FSCK
))
1128 __set_ckpt_flags(ckpt
, CP_FSCK_FLAG
);
1130 /* set this flag to activate crc|cp_ver for recovery */
1131 __set_ckpt_flags(ckpt
, CP_CRC_RECOVERY_FLAG
);
1133 spin_unlock_irqrestore(&sbi
->cp_lock
, flags
);
1136 static int do_checkpoint(struct f2fs_sb_info
*sbi
, struct cp_control
*cpc
)
1138 struct f2fs_checkpoint
*ckpt
= F2FS_CKPT(sbi
);
1139 struct f2fs_nm_info
*nm_i
= NM_I(sbi
);
1140 unsigned long orphan_num
= sbi
->im
[ORPHAN_INO
].ino_num
, flags
;
1142 unsigned int data_sum_blocks
, orphan_blocks
;
1145 int cp_payload_blks
= __cp_payload(sbi
);
1146 struct super_block
*sb
= sbi
->sb
;
1147 struct curseg_info
*seg_i
= CURSEG_I(sbi
, CURSEG_HOT_NODE
);
1150 /* Flush all the NAT/SIT pages */
1151 while (get_pages(sbi
, F2FS_DIRTY_META
)) {
1152 sync_meta_pages(sbi
, META
, LONG_MAX
, FS_CP_META_IO
);
1153 if (unlikely(f2fs_cp_error(sbi
)))
1159 * version number is already updated
1161 ckpt
->elapsed_time
= cpu_to_le64(get_mtime(sbi
));
1162 ckpt
->free_segment_count
= cpu_to_le32(free_segments(sbi
));
1163 for (i
= 0; i
< NR_CURSEG_NODE_TYPE
; i
++) {
1164 ckpt
->cur_node_segno
[i
] =
1165 cpu_to_le32(curseg_segno(sbi
, i
+ CURSEG_HOT_NODE
));
1166 ckpt
->cur_node_blkoff
[i
] =
1167 cpu_to_le16(curseg_blkoff(sbi
, i
+ CURSEG_HOT_NODE
));
1168 ckpt
->alloc_type
[i
+ CURSEG_HOT_NODE
] =
1169 curseg_alloc_type(sbi
, i
+ CURSEG_HOT_NODE
);
1171 for (i
= 0; i
< NR_CURSEG_DATA_TYPE
; i
++) {
1172 ckpt
->cur_data_segno
[i
] =
1173 cpu_to_le32(curseg_segno(sbi
, i
+ CURSEG_HOT_DATA
));
1174 ckpt
->cur_data_blkoff
[i
] =
1175 cpu_to_le16(curseg_blkoff(sbi
, i
+ CURSEG_HOT_DATA
));
1176 ckpt
->alloc_type
[i
+ CURSEG_HOT_DATA
] =
1177 curseg_alloc_type(sbi
, i
+ CURSEG_HOT_DATA
);
1180 /* 2 cp + n data seg summary + orphan inode blocks */
1181 data_sum_blocks
= npages_for_summary_flush(sbi
, false);
1182 spin_lock_irqsave(&sbi
->cp_lock
, flags
);
1183 if (data_sum_blocks
< NR_CURSEG_DATA_TYPE
)
1184 __set_ckpt_flags(ckpt
, CP_COMPACT_SUM_FLAG
);
1186 __clear_ckpt_flags(ckpt
, CP_COMPACT_SUM_FLAG
);
1187 spin_unlock_irqrestore(&sbi
->cp_lock
, flags
);
1189 orphan_blocks
= GET_ORPHAN_BLOCKS(orphan_num
);
1190 ckpt
->cp_pack_start_sum
= cpu_to_le32(1 + cp_payload_blks
+
1193 if (__remain_node_summaries(cpc
->reason
))
1194 ckpt
->cp_pack_total_block_count
= cpu_to_le32(F2FS_CP_PACKS
+
1195 cp_payload_blks
+ data_sum_blocks
+
1196 orphan_blocks
+ NR_CURSEG_NODE_TYPE
);
1198 ckpt
->cp_pack_total_block_count
= cpu_to_le32(F2FS_CP_PACKS
+
1199 cp_payload_blks
+ data_sum_blocks
+
1202 /* update ckpt flag for checkpoint */
1203 update_ckpt_flags(sbi
, cpc
);
1205 /* update SIT/NAT bitmap */
1206 get_sit_bitmap(sbi
, __bitmap_ptr(sbi
, SIT_BITMAP
));
1207 get_nat_bitmap(sbi
, __bitmap_ptr(sbi
, NAT_BITMAP
));
1209 crc32
= f2fs_crc32(sbi
, ckpt
, le32_to_cpu(ckpt
->checksum_offset
));
1210 *((__le32
*)((unsigned char *)ckpt
+
1211 le32_to_cpu(ckpt
->checksum_offset
)))
1212 = cpu_to_le32(crc32
);
1214 start_blk
= __start_cp_next_addr(sbi
);
1216 /* write nat bits */
1217 if (enabled_nat_bits(sbi
, cpc
)) {
1218 __u64 cp_ver
= cur_cp_version(ckpt
);
1221 cp_ver
|= ((__u64
)crc32
<< 32);
1222 *(__le64
*)nm_i
->nat_bits
= cpu_to_le64(cp_ver
);
1224 blk
= start_blk
+ sbi
->blocks_per_seg
- nm_i
->nat_bits_blocks
;
1225 for (i
= 0; i
< nm_i
->nat_bits_blocks
; i
++)
1226 update_meta_page(sbi
, nm_i
->nat_bits
+
1227 (i
<< F2FS_BLKSIZE_BITS
), blk
+ i
);
1229 /* Flush all the NAT BITS pages */
1230 while (get_pages(sbi
, F2FS_DIRTY_META
)) {
1231 sync_meta_pages(sbi
, META
, LONG_MAX
, FS_CP_META_IO
);
1232 if (unlikely(f2fs_cp_error(sbi
)))
1237 /* need to wait for end_io results */
1238 wait_on_all_pages_writeback(sbi
);
1239 if (unlikely(f2fs_cp_error(sbi
)))
1242 /* write out checkpoint buffer at block 0 */
1243 update_meta_page(sbi
, ckpt
, start_blk
++);
1245 for (i
= 1; i
< 1 + cp_payload_blks
; i
++)
1246 update_meta_page(sbi
, (char *)ckpt
+ i
* F2FS_BLKSIZE
,
1250 write_orphan_inodes(sbi
, start_blk
);
1251 start_blk
+= orphan_blocks
;
1254 write_data_summaries(sbi
, start_blk
);
1255 start_blk
+= data_sum_blocks
;
1257 /* Record write statistics in the hot node summary */
1258 kbytes_written
= sbi
->kbytes_written
;
1259 if (sb
->s_bdev
->bd_part
)
1260 kbytes_written
+= BD_PART_WRITTEN(sbi
);
1262 seg_i
->journal
->info
.kbytes_written
= cpu_to_le64(kbytes_written
);
1264 if (__remain_node_summaries(cpc
->reason
)) {
1265 write_node_summaries(sbi
, start_blk
);
1266 start_blk
+= NR_CURSEG_NODE_TYPE
;
1269 /* writeout checkpoint block */
1270 update_meta_page(sbi
, ckpt
, start_blk
);
1272 /* wait for previous submitted node/meta pages writeback */
1273 wait_on_all_pages_writeback(sbi
);
1275 if (unlikely(f2fs_cp_error(sbi
)))
1278 filemap_fdatawait_range(NODE_MAPPING(sbi
), 0, LLONG_MAX
);
1279 filemap_fdatawait_range(META_MAPPING(sbi
), 0, LLONG_MAX
);
1281 /* update user_block_counts */
1282 sbi
->last_valid_block_count
= sbi
->total_valid_block_count
;
1283 percpu_counter_set(&sbi
->alloc_valid_block_count
, 0);
1285 /* Here, we only have one bio having CP pack */
1286 sync_meta_pages(sbi
, META_FLUSH
, LONG_MAX
, FS_CP_META_IO
);
1288 /* wait for previous submitted meta pages writeback */
1289 wait_on_all_pages_writeback(sbi
);
1291 release_ino_entry(sbi
, false);
1293 if (unlikely(f2fs_cp_error(sbi
)))
1296 clear_sbi_flag(sbi
, SBI_IS_DIRTY
);
1297 clear_sbi_flag(sbi
, SBI_NEED_CP
);
1298 __set_cp_next_pack(sbi
);
1301 * redirty superblock if metadata like node page or inode cache is
1302 * updated during writing checkpoint.
1304 if (get_pages(sbi
, F2FS_DIRTY_NODES
) ||
1305 get_pages(sbi
, F2FS_DIRTY_IMETA
))
1306 set_sbi_flag(sbi
, SBI_IS_DIRTY
);
1308 f2fs_bug_on(sbi
, get_pages(sbi
, F2FS_DIRTY_DENTS
));
1314 * We guarantee that this checkpoint procedure will not fail.
1316 int write_checkpoint(struct f2fs_sb_info
*sbi
, struct cp_control
*cpc
)
1318 struct f2fs_checkpoint
*ckpt
= F2FS_CKPT(sbi
);
1319 unsigned long long ckpt_ver
;
1322 mutex_lock(&sbi
->cp_mutex
);
1324 if (!is_sbi_flag_set(sbi
, SBI_IS_DIRTY
) &&
1325 ((cpc
->reason
& CP_FASTBOOT
) || (cpc
->reason
& CP_SYNC
) ||
1326 ((cpc
->reason
& CP_DISCARD
) && !sbi
->discard_blks
)))
1328 if (unlikely(f2fs_cp_error(sbi
))) {
1332 if (f2fs_readonly(sbi
->sb
)) {
1337 trace_f2fs_write_checkpoint(sbi
->sb
, cpc
->reason
, "start block_ops");
1339 err
= block_operations(sbi
);
1343 trace_f2fs_write_checkpoint(sbi
->sb
, cpc
->reason
, "finish block_ops");
1345 f2fs_flush_merged_writes(sbi
);
1347 /* this is the case of multiple fstrims without any changes */
1348 if (cpc
->reason
& CP_DISCARD
) {
1349 if (!exist_trim_candidates(sbi
, cpc
)) {
1350 unblock_operations(sbi
);
1354 if (NM_I(sbi
)->dirty_nat_cnt
== 0 &&
1355 SIT_I(sbi
)->dirty_sentries
== 0 &&
1356 prefree_segments(sbi
) == 0) {
1357 flush_sit_entries(sbi
, cpc
);
1358 clear_prefree_segments(sbi
, cpc
);
1359 unblock_operations(sbi
);
1365 * update checkpoint pack index
1366 * Increase the version number so that
1367 * SIT entries and seg summaries are written at correct place
1369 ckpt_ver
= cur_cp_version(ckpt
);
1370 ckpt
->checkpoint_ver
= cpu_to_le64(++ckpt_ver
);
1372 /* write cached NAT/SIT entries to NAT/SIT area */
1373 flush_nat_entries(sbi
, cpc
);
1374 flush_sit_entries(sbi
, cpc
);
1376 /* unlock all the fs_lock[] in do_checkpoint() */
1377 err
= do_checkpoint(sbi
, cpc
);
1379 release_discard_addrs(sbi
);
1381 clear_prefree_segments(sbi
, cpc
);
1383 unblock_operations(sbi
);
1384 stat_inc_cp_count(sbi
->stat_info
);
1386 if (cpc
->reason
& CP_RECOVERY
)
1387 f2fs_msg(sbi
->sb
, KERN_NOTICE
,
1388 "checkpoint: version = %llx", ckpt_ver
);
1390 /* do checkpoint periodically */
1391 f2fs_update_time(sbi
, CP_TIME
);
1392 trace_f2fs_write_checkpoint(sbi
->sb
, cpc
->reason
, "finish checkpoint");
1394 mutex_unlock(&sbi
->cp_mutex
);
1398 void init_ino_entry_info(struct f2fs_sb_info
*sbi
)
1402 for (i
= 0; i
< MAX_INO_ENTRY
; i
++) {
1403 struct inode_management
*im
= &sbi
->im
[i
];
1405 INIT_RADIX_TREE(&im
->ino_root
, GFP_ATOMIC
);
1406 spin_lock_init(&im
->ino_lock
);
1407 INIT_LIST_HEAD(&im
->ino_list
);
1411 sbi
->max_orphans
= (sbi
->blocks_per_seg
- F2FS_CP_PACKS
-
1412 NR_CURSEG_TYPE
- __cp_payload(sbi
)) *
1413 F2FS_ORPHANS_PER_BLOCK
;
1416 int __init
create_checkpoint_caches(void)
1418 ino_entry_slab
= f2fs_kmem_cache_create("f2fs_ino_entry",
1419 sizeof(struct ino_entry
));
1420 if (!ino_entry_slab
)
1422 inode_entry_slab
= f2fs_kmem_cache_create("f2fs_inode_entry",
1423 sizeof(struct inode_entry
));
1424 if (!inode_entry_slab
) {
1425 kmem_cache_destroy(ino_entry_slab
);
1431 void destroy_checkpoint_caches(void)
1433 kmem_cache_destroy(ino_entry_slab
);
1434 kmem_cache_destroy(inode_entry_slab
);