4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5 * http://www.samsung.com/
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
11 #include <linux/module.h>
12 #include <linux/init.h>
14 #include <linux/statfs.h>
15 #include <linux/buffer_head.h>
16 #include <linux/backing-dev.h>
17 #include <linux/kthread.h>
18 #include <linux/parser.h>
19 #include <linux/mount.h>
20 #include <linux/seq_file.h>
21 #include <linux/proc_fs.h>
22 #include <linux/random.h>
23 #include <linux/exportfs.h>
24 #include <linux/blkdev.h>
25 #include <linux/quotaops.h>
26 #include <linux/f2fs_fs.h>
27 #include <linux/sysfs.h>
28 #include <linux/quota.h>
37 #define CREATE_TRACE_POINTS
38 #include <trace/events/f2fs.h>
40 static struct kmem_cache
*f2fs_inode_cachep
;
42 #ifdef CONFIG_F2FS_FAULT_INJECTION
44 char *fault_name
[FAULT_MAX
] = {
45 [FAULT_KMALLOC
] = "kmalloc",
46 [FAULT_PAGE_ALLOC
] = "page alloc",
47 [FAULT_ALLOC_NID
] = "alloc nid",
48 [FAULT_ORPHAN
] = "orphan",
49 [FAULT_BLOCK
] = "no more block",
50 [FAULT_DIR_DEPTH
] = "too big dir depth",
51 [FAULT_EVICT_INODE
] = "evict_inode fail",
52 [FAULT_TRUNCATE
] = "truncate fail",
53 [FAULT_IO
] = "IO error",
54 [FAULT_CHECKPOINT
] = "checkpoint error",
57 static void f2fs_build_fault_attr(struct f2fs_sb_info
*sbi
,
60 struct f2fs_fault_info
*ffi
= &sbi
->fault_info
;
63 atomic_set(&ffi
->inject_ops
, 0);
64 ffi
->inject_rate
= rate
;
65 ffi
->inject_type
= (1 << FAULT_MAX
) - 1;
67 memset(ffi
, 0, sizeof(struct f2fs_fault_info
));
72 /* f2fs-wide shrinker description */
73 static struct shrinker f2fs_shrinker_info
= {
74 .scan_objects
= f2fs_shrink_scan
,
75 .count_objects
= f2fs_shrink_count
,
76 .seeks
= DEFAULT_SEEKS
,
81 Opt_disable_roll_forward
,
92 Opt_disable_ext_identify
,
128 static match_table_t f2fs_tokens
= {
129 {Opt_gc_background
, "background_gc=%s"},
130 {Opt_disable_roll_forward
, "disable_roll_forward"},
131 {Opt_norecovery
, "norecovery"},
132 {Opt_discard
, "discard"},
133 {Opt_nodiscard
, "nodiscard"},
134 {Opt_noheap
, "no_heap"},
136 {Opt_user_xattr
, "user_xattr"},
137 {Opt_nouser_xattr
, "nouser_xattr"},
139 {Opt_noacl
, "noacl"},
140 {Opt_active_logs
, "active_logs=%u"},
141 {Opt_disable_ext_identify
, "disable_ext_identify"},
142 {Opt_inline_xattr
, "inline_xattr"},
143 {Opt_noinline_xattr
, "noinline_xattr"},
144 {Opt_inline_data
, "inline_data"},
145 {Opt_inline_dentry
, "inline_dentry"},
146 {Opt_noinline_dentry
, "noinline_dentry"},
147 {Opt_flush_merge
, "flush_merge"},
148 {Opt_noflush_merge
, "noflush_merge"},
149 {Opt_nobarrier
, "nobarrier"},
150 {Opt_fastboot
, "fastboot"},
151 {Opt_extent_cache
, "extent_cache"},
152 {Opt_noextent_cache
, "noextent_cache"},
153 {Opt_noinline_data
, "noinline_data"},
154 {Opt_data_flush
, "data_flush"},
155 {Opt_mode
, "mode=%s"},
156 {Opt_io_size_bits
, "io_bits=%u"},
157 {Opt_fault_injection
, "fault_injection=%u"},
158 {Opt_lazytime
, "lazytime"},
159 {Opt_nolazytime
, "nolazytime"},
160 {Opt_quota
, "quota"},
161 {Opt_noquota
, "noquota"},
162 {Opt_usrquota
, "usrquota"},
163 {Opt_grpquota
, "grpquota"},
164 {Opt_prjquota
, "prjquota"},
165 {Opt_usrjquota
, "usrjquota=%s"},
166 {Opt_grpjquota
, "grpjquota=%s"},
167 {Opt_prjjquota
, "prjjquota=%s"},
168 {Opt_offusrjquota
, "usrjquota="},
169 {Opt_offgrpjquota
, "grpjquota="},
170 {Opt_offprjjquota
, "prjjquota="},
171 {Opt_jqfmt_vfsold
, "jqfmt=vfsold"},
172 {Opt_jqfmt_vfsv0
, "jqfmt=vfsv0"},
173 {Opt_jqfmt_vfsv1
, "jqfmt=vfsv1"},
177 void f2fs_msg(struct super_block
*sb
, const char *level
, const char *fmt
, ...)
179 struct va_format vaf
;
185 printk_ratelimited("%sF2FS-fs (%s): %pV\n", level
, sb
->s_id
, &vaf
);
189 static void init_once(void *foo
)
191 struct f2fs_inode_info
*fi
= (struct f2fs_inode_info
*) foo
;
193 inode_init_once(&fi
->vfs_inode
);
197 static const char * const quotatypes
[] = INITQFNAMES
;
198 #define QTYPE2NAME(t) (quotatypes[t])
199 static int f2fs_set_qf_name(struct super_block
*sb
, int qtype
,
202 struct f2fs_sb_info
*sbi
= F2FS_SB(sb
);
206 if (sb_any_quota_loaded(sb
) && !sbi
->s_qf_names
[qtype
]) {
207 f2fs_msg(sb
, KERN_ERR
,
208 "Cannot change journaled "
209 "quota options when quota turned on");
212 qname
= match_strdup(args
);
214 f2fs_msg(sb
, KERN_ERR
,
215 "Not enough memory for storing quotafile name");
218 if (sbi
->s_qf_names
[qtype
]) {
219 if (strcmp(sbi
->s_qf_names
[qtype
], qname
) == 0)
222 f2fs_msg(sb
, KERN_ERR
,
223 "%s quota file already specified",
227 if (strchr(qname
, '/')) {
228 f2fs_msg(sb
, KERN_ERR
,
229 "quotafile must be on filesystem root");
232 sbi
->s_qf_names
[qtype
] = qname
;
240 static int f2fs_clear_qf_name(struct super_block
*sb
, int qtype
)
242 struct f2fs_sb_info
*sbi
= F2FS_SB(sb
);
244 if (sb_any_quota_loaded(sb
) && sbi
->s_qf_names
[qtype
]) {
245 f2fs_msg(sb
, KERN_ERR
, "Cannot change journaled quota options"
246 " when quota turned on");
249 kfree(sbi
->s_qf_names
[qtype
]);
250 sbi
->s_qf_names
[qtype
] = NULL
;
254 static int f2fs_check_quota_options(struct f2fs_sb_info
*sbi
)
257 * We do the test below only for project quotas. 'usrquota' and
258 * 'grpquota' mount options are allowed even without quota feature
259 * to support legacy quotas in quota files.
261 if (test_opt(sbi
, PRJQUOTA
) && !f2fs_sb_has_project_quota(sbi
->sb
)) {
262 f2fs_msg(sbi
->sb
, KERN_ERR
, "Project quota feature not enabled. "
263 "Cannot enable project quota enforcement.");
266 if (sbi
->s_qf_names
[USRQUOTA
] || sbi
->s_qf_names
[GRPQUOTA
] ||
267 sbi
->s_qf_names
[PRJQUOTA
]) {
268 if (test_opt(sbi
, USRQUOTA
) && sbi
->s_qf_names
[USRQUOTA
])
269 clear_opt(sbi
, USRQUOTA
);
271 if (test_opt(sbi
, GRPQUOTA
) && sbi
->s_qf_names
[GRPQUOTA
])
272 clear_opt(sbi
, GRPQUOTA
);
274 if (test_opt(sbi
, PRJQUOTA
) && sbi
->s_qf_names
[PRJQUOTA
])
275 clear_opt(sbi
, PRJQUOTA
);
277 if (test_opt(sbi
, GRPQUOTA
) || test_opt(sbi
, USRQUOTA
) ||
278 test_opt(sbi
, PRJQUOTA
)) {
279 f2fs_msg(sbi
->sb
, KERN_ERR
, "old and new quota "
284 if (!sbi
->s_jquota_fmt
) {
285 f2fs_msg(sbi
->sb
, KERN_ERR
, "journaled quota format "
294 static int parse_options(struct super_block
*sb
, char *options
)
296 struct f2fs_sb_info
*sbi
= F2FS_SB(sb
);
297 struct request_queue
*q
;
298 substring_t args
[MAX_OPT_ARGS
];
308 while ((p
= strsep(&options
, ",")) != NULL
) {
313 * Initialize args struct so we know whether arg was
314 * found; some options take optional arguments.
316 args
[0].to
= args
[0].from
= NULL
;
317 token
= match_token(p
, f2fs_tokens
, args
);
320 case Opt_gc_background
:
321 name
= match_strdup(&args
[0]);
325 if (strlen(name
) == 2 && !strncmp(name
, "on", 2)) {
327 clear_opt(sbi
, FORCE_FG_GC
);
328 } else if (strlen(name
) == 3 && !strncmp(name
, "off", 3)) {
329 clear_opt(sbi
, BG_GC
);
330 clear_opt(sbi
, FORCE_FG_GC
);
331 } else if (strlen(name
) == 4 && !strncmp(name
, "sync", 4)) {
333 set_opt(sbi
, FORCE_FG_GC
);
340 case Opt_disable_roll_forward
:
341 set_opt(sbi
, DISABLE_ROLL_FORWARD
);
344 /* this option mounts f2fs with ro */
345 set_opt(sbi
, DISABLE_ROLL_FORWARD
);
346 if (!f2fs_readonly(sb
))
350 q
= bdev_get_queue(sb
->s_bdev
);
351 if (blk_queue_discard(q
)) {
352 set_opt(sbi
, DISCARD
);
353 } else if (!f2fs_sb_mounted_blkzoned(sb
)) {
354 f2fs_msg(sb
, KERN_WARNING
,
355 "mounting with \"discard\" option, but "
356 "the device does not support discard");
360 if (f2fs_sb_mounted_blkzoned(sb
)) {
361 f2fs_msg(sb
, KERN_WARNING
,
362 "discard is required for zoned block devices");
365 clear_opt(sbi
, DISCARD
);
368 set_opt(sbi
, NOHEAP
);
371 clear_opt(sbi
, NOHEAP
);
373 #ifdef CONFIG_F2FS_FS_XATTR
375 set_opt(sbi
, XATTR_USER
);
377 case Opt_nouser_xattr
:
378 clear_opt(sbi
, XATTR_USER
);
380 case Opt_inline_xattr
:
381 set_opt(sbi
, INLINE_XATTR
);
383 case Opt_noinline_xattr
:
384 clear_opt(sbi
, INLINE_XATTR
);
388 f2fs_msg(sb
, KERN_INFO
,
389 "user_xattr options not supported");
391 case Opt_nouser_xattr
:
392 f2fs_msg(sb
, KERN_INFO
,
393 "nouser_xattr options not supported");
395 case Opt_inline_xattr
:
396 f2fs_msg(sb
, KERN_INFO
,
397 "inline_xattr options not supported");
399 case Opt_noinline_xattr
:
400 f2fs_msg(sb
, KERN_INFO
,
401 "noinline_xattr options not supported");
404 #ifdef CONFIG_F2FS_FS_POSIX_ACL
406 set_opt(sbi
, POSIX_ACL
);
409 clear_opt(sbi
, POSIX_ACL
);
413 f2fs_msg(sb
, KERN_INFO
, "acl options not supported");
416 f2fs_msg(sb
, KERN_INFO
, "noacl options not supported");
419 case Opt_active_logs
:
420 if (args
->from
&& match_int(args
, &arg
))
422 if (arg
!= 2 && arg
!= 4 && arg
!= NR_CURSEG_TYPE
)
424 sbi
->active_logs
= arg
;
426 case Opt_disable_ext_identify
:
427 set_opt(sbi
, DISABLE_EXT_IDENTIFY
);
429 case Opt_inline_data
:
430 set_opt(sbi
, INLINE_DATA
);
432 case Opt_inline_dentry
:
433 set_opt(sbi
, INLINE_DENTRY
);
435 case Opt_noinline_dentry
:
436 clear_opt(sbi
, INLINE_DENTRY
);
438 case Opt_flush_merge
:
439 set_opt(sbi
, FLUSH_MERGE
);
441 case Opt_noflush_merge
:
442 clear_opt(sbi
, FLUSH_MERGE
);
445 set_opt(sbi
, NOBARRIER
);
448 set_opt(sbi
, FASTBOOT
);
450 case Opt_extent_cache
:
451 set_opt(sbi
, EXTENT_CACHE
);
453 case Opt_noextent_cache
:
454 clear_opt(sbi
, EXTENT_CACHE
);
456 case Opt_noinline_data
:
457 clear_opt(sbi
, INLINE_DATA
);
460 set_opt(sbi
, DATA_FLUSH
);
463 name
= match_strdup(&args
[0]);
467 if (strlen(name
) == 8 &&
468 !strncmp(name
, "adaptive", 8)) {
469 if (f2fs_sb_mounted_blkzoned(sb
)) {
470 f2fs_msg(sb
, KERN_WARNING
,
471 "adaptive mode is not allowed with "
472 "zoned block device feature");
476 set_opt_mode(sbi
, F2FS_MOUNT_ADAPTIVE
);
477 } else if (strlen(name
) == 3 &&
478 !strncmp(name
, "lfs", 3)) {
479 set_opt_mode(sbi
, F2FS_MOUNT_LFS
);
486 case Opt_io_size_bits
:
487 if (args
->from
&& match_int(args
, &arg
))
489 if (arg
> __ilog2_u32(BIO_MAX_PAGES
)) {
490 f2fs_msg(sb
, KERN_WARNING
,
491 "Not support %d, larger than %d",
492 1 << arg
, BIO_MAX_PAGES
);
495 sbi
->write_io_size_bits
= arg
;
497 case Opt_fault_injection
:
498 if (args
->from
&& match_int(args
, &arg
))
500 #ifdef CONFIG_F2FS_FAULT_INJECTION
501 f2fs_build_fault_attr(sbi
, arg
);
502 set_opt(sbi
, FAULT_INJECTION
);
504 f2fs_msg(sb
, KERN_INFO
,
505 "FAULT_INJECTION was not selected");
509 sb
->s_flags
|= MS_LAZYTIME
;
512 sb
->s_flags
&= ~MS_LAZYTIME
;
517 set_opt(sbi
, USRQUOTA
);
520 set_opt(sbi
, GRPQUOTA
);
523 set_opt(sbi
, PRJQUOTA
);
526 ret
= f2fs_set_qf_name(sb
, USRQUOTA
, &args
[0]);
531 ret
= f2fs_set_qf_name(sb
, GRPQUOTA
, &args
[0]);
536 ret
= f2fs_set_qf_name(sb
, PRJQUOTA
, &args
[0]);
540 case Opt_offusrjquota
:
541 ret
= f2fs_clear_qf_name(sb
, USRQUOTA
);
545 case Opt_offgrpjquota
:
546 ret
= f2fs_clear_qf_name(sb
, GRPQUOTA
);
550 case Opt_offprjjquota
:
551 ret
= f2fs_clear_qf_name(sb
, PRJQUOTA
);
555 case Opt_jqfmt_vfsold
:
556 sbi
->s_jquota_fmt
= QFMT_VFS_OLD
;
558 case Opt_jqfmt_vfsv0
:
559 sbi
->s_jquota_fmt
= QFMT_VFS_V0
;
561 case Opt_jqfmt_vfsv1
:
562 sbi
->s_jquota_fmt
= QFMT_VFS_V1
;
565 clear_opt(sbi
, QUOTA
);
566 clear_opt(sbi
, USRQUOTA
);
567 clear_opt(sbi
, GRPQUOTA
);
568 clear_opt(sbi
, PRJQUOTA
);
578 case Opt_offusrjquota
:
579 case Opt_offgrpjquota
:
580 case Opt_offprjjquota
:
581 case Opt_jqfmt_vfsold
:
582 case Opt_jqfmt_vfsv0
:
583 case Opt_jqfmt_vfsv1
:
585 f2fs_msg(sb
, KERN_INFO
,
586 "quota operations not supported");
590 f2fs_msg(sb
, KERN_ERR
,
591 "Unrecognized mount option \"%s\" or missing value",
597 if (f2fs_check_quota_options(sbi
))
601 if (F2FS_IO_SIZE_BITS(sbi
) && !test_opt(sbi
, LFS
)) {
602 f2fs_msg(sb
, KERN_ERR
,
603 "Should set mode=lfs with %uKB-sized IO",
604 F2FS_IO_SIZE_KB(sbi
));
610 static struct inode
*f2fs_alloc_inode(struct super_block
*sb
)
612 struct f2fs_inode_info
*fi
;
614 fi
= kmem_cache_alloc(f2fs_inode_cachep
, GFP_F2FS_ZERO
);
618 init_once((void *) fi
);
620 /* Initialize f2fs-specific inode info */
621 fi
->vfs_inode
.i_version
= 1;
622 atomic_set(&fi
->dirty_pages
, 0);
623 fi
->i_current_depth
= 1;
625 init_rwsem(&fi
->i_sem
);
626 INIT_LIST_HEAD(&fi
->dirty_list
);
627 INIT_LIST_HEAD(&fi
->gdirty_list
);
628 INIT_LIST_HEAD(&fi
->inmem_pages
);
629 mutex_init(&fi
->inmem_lock
);
630 init_rwsem(&fi
->dio_rwsem
[READ
]);
631 init_rwsem(&fi
->dio_rwsem
[WRITE
]);
632 init_rwsem(&fi
->i_mmap_sem
);
633 init_rwsem(&fi
->i_xattr_sem
);
636 memset(&fi
->i_dquot
, 0, sizeof(fi
->i_dquot
));
637 fi
->i_reserved_quota
= 0;
639 /* Will be used by directory only */
640 fi
->i_dir_level
= F2FS_SB(sb
)->dir_level
;
642 return &fi
->vfs_inode
;
645 static int f2fs_drop_inode(struct inode
*inode
)
649 * This is to avoid a deadlock condition like below.
650 * writeback_single_inode(inode)
651 * - f2fs_write_data_page
652 * - f2fs_gc -> iput -> evict
653 * - inode_wait_for_writeback(inode)
655 if ((!inode_unhashed(inode
) && inode
->i_state
& I_SYNC
)) {
656 if (!inode
->i_nlink
&& !is_bad_inode(inode
)) {
657 /* to avoid evict_inode call simultaneously */
658 atomic_inc(&inode
->i_count
);
659 spin_unlock(&inode
->i_lock
);
661 /* some remained atomic pages should discarded */
662 if (f2fs_is_atomic_file(inode
))
663 drop_inmem_pages(inode
);
665 /* should remain fi->extent_tree for writepage */
666 f2fs_destroy_extent_node(inode
);
668 sb_start_intwrite(inode
->i_sb
);
669 f2fs_i_size_write(inode
, 0);
671 if (F2FS_HAS_BLOCKS(inode
))
672 f2fs_truncate(inode
);
674 sb_end_intwrite(inode
->i_sb
);
676 fscrypt_put_encryption_info(inode
, NULL
);
677 spin_lock(&inode
->i_lock
);
678 atomic_dec(&inode
->i_count
);
680 trace_f2fs_drop_inode(inode
, 0);
683 ret
= generic_drop_inode(inode
);
684 trace_f2fs_drop_inode(inode
, ret
);
688 int f2fs_inode_dirtied(struct inode
*inode
, bool sync
)
690 struct f2fs_sb_info
*sbi
= F2FS_I_SB(inode
);
693 spin_lock(&sbi
->inode_lock
[DIRTY_META
]);
694 if (is_inode_flag_set(inode
, FI_DIRTY_INODE
)) {
697 set_inode_flag(inode
, FI_DIRTY_INODE
);
698 stat_inc_dirty_inode(sbi
, DIRTY_META
);
700 if (sync
&& list_empty(&F2FS_I(inode
)->gdirty_list
)) {
701 list_add_tail(&F2FS_I(inode
)->gdirty_list
,
702 &sbi
->inode_list
[DIRTY_META
]);
703 inc_page_count(sbi
, F2FS_DIRTY_IMETA
);
705 spin_unlock(&sbi
->inode_lock
[DIRTY_META
]);
709 void f2fs_inode_synced(struct inode
*inode
)
711 struct f2fs_sb_info
*sbi
= F2FS_I_SB(inode
);
713 spin_lock(&sbi
->inode_lock
[DIRTY_META
]);
714 if (!is_inode_flag_set(inode
, FI_DIRTY_INODE
)) {
715 spin_unlock(&sbi
->inode_lock
[DIRTY_META
]);
718 if (!list_empty(&F2FS_I(inode
)->gdirty_list
)) {
719 list_del_init(&F2FS_I(inode
)->gdirty_list
);
720 dec_page_count(sbi
, F2FS_DIRTY_IMETA
);
722 clear_inode_flag(inode
, FI_DIRTY_INODE
);
723 clear_inode_flag(inode
, FI_AUTO_RECOVER
);
724 stat_dec_dirty_inode(F2FS_I_SB(inode
), DIRTY_META
);
725 spin_unlock(&sbi
->inode_lock
[DIRTY_META
]);
729 * f2fs_dirty_inode() is called from __mark_inode_dirty()
731 * We should call set_dirty_inode to write the dirty inode through write_inode.
733 static void f2fs_dirty_inode(struct inode
*inode
, int flags
)
735 struct f2fs_sb_info
*sbi
= F2FS_I_SB(inode
);
737 if (inode
->i_ino
== F2FS_NODE_INO(sbi
) ||
738 inode
->i_ino
== F2FS_META_INO(sbi
))
741 if (flags
== I_DIRTY_TIME
)
744 if (is_inode_flag_set(inode
, FI_AUTO_RECOVER
))
745 clear_inode_flag(inode
, FI_AUTO_RECOVER
);
747 f2fs_inode_dirtied(inode
, false);
750 static void f2fs_i_callback(struct rcu_head
*head
)
752 struct inode
*inode
= container_of(head
, struct inode
, i_rcu
);
753 kmem_cache_free(f2fs_inode_cachep
, F2FS_I(inode
));
756 static void f2fs_destroy_inode(struct inode
*inode
)
758 call_rcu(&inode
->i_rcu
, f2fs_i_callback
);
761 static void destroy_percpu_info(struct f2fs_sb_info
*sbi
)
763 percpu_counter_destroy(&sbi
->alloc_valid_block_count
);
764 percpu_counter_destroy(&sbi
->total_valid_inode_count
);
767 static void destroy_device_list(struct f2fs_sb_info
*sbi
)
771 for (i
= 0; i
< sbi
->s_ndevs
; i
++) {
772 blkdev_put(FDEV(i
).bdev
, FMODE_EXCL
);
773 #ifdef CONFIG_BLK_DEV_ZONED
774 kfree(FDEV(i
).blkz_type
);
780 static void f2fs_put_super(struct super_block
*sb
)
782 struct f2fs_sb_info
*sbi
= F2FS_SB(sb
);
785 f2fs_quota_off_umount(sb
);
787 /* prevent remaining shrinker jobs */
788 mutex_lock(&sbi
->umount_mutex
);
791 * We don't need to do checkpoint when superblock is clean.
792 * But, the previous checkpoint was not done by umount, it needs to do
793 * clean checkpoint again.
795 if (is_sbi_flag_set(sbi
, SBI_IS_DIRTY
) ||
796 !is_set_ckpt_flags(sbi
, CP_UMOUNT_FLAG
)) {
797 struct cp_control cpc
= {
800 write_checkpoint(sbi
, &cpc
);
803 /* be sure to wait for any on-going discard commands */
804 f2fs_wait_discard_bios(sbi
, true);
806 if (f2fs_discard_en(sbi
) && !sbi
->discard_blks
) {
807 struct cp_control cpc
= {
808 .reason
= CP_UMOUNT
| CP_TRIMMED
,
810 write_checkpoint(sbi
, &cpc
);
813 /* write_checkpoint can update stat informaion */
814 f2fs_destroy_stats(sbi
);
817 * normally superblock is clean, so we need to release this.
818 * In addition, EIO will skip do checkpoint, we need this as well.
820 release_ino_entry(sbi
, true);
822 f2fs_leave_shrinker(sbi
);
823 mutex_unlock(&sbi
->umount_mutex
);
825 /* our cp_error case, we can wait for any writeback page */
826 f2fs_flush_merged_writes(sbi
);
828 iput(sbi
->node_inode
);
829 iput(sbi
->meta_inode
);
831 /* destroy f2fs internal modules */
832 destroy_node_manager(sbi
);
833 destroy_segment_manager(sbi
);
837 f2fs_unregister_sysfs(sbi
);
839 sb
->s_fs_info
= NULL
;
840 if (sbi
->s_chksum_driver
)
841 crypto_free_shash(sbi
->s_chksum_driver
);
842 kfree(sbi
->raw_super
);
844 destroy_device_list(sbi
);
845 mempool_destroy(sbi
->write_io_dummy
);
847 for (i
= 0; i
< MAXQUOTAS
; i
++)
848 kfree(sbi
->s_qf_names
[i
]);
850 destroy_percpu_info(sbi
);
851 for (i
= 0; i
< NR_PAGE_TYPE
; i
++)
852 kfree(sbi
->write_io
[i
]);
856 int f2fs_sync_fs(struct super_block
*sb
, int sync
)
858 struct f2fs_sb_info
*sbi
= F2FS_SB(sb
);
861 trace_f2fs_sync_fs(sb
, sync
);
863 if (unlikely(is_sbi_flag_set(sbi
, SBI_POR_DOING
)))
867 struct cp_control cpc
;
869 cpc
.reason
= __get_cp_reason(sbi
);
871 mutex_lock(&sbi
->gc_mutex
);
872 err
= write_checkpoint(sbi
, &cpc
);
873 mutex_unlock(&sbi
->gc_mutex
);
875 f2fs_trace_ios(NULL
, 1);
880 static int f2fs_freeze(struct super_block
*sb
)
882 if (f2fs_readonly(sb
))
885 /* IO error happened before */
886 if (unlikely(f2fs_cp_error(F2FS_SB(sb
))))
889 /* must be clean, since sync_filesystem() was already called */
890 if (is_sbi_flag_set(F2FS_SB(sb
), SBI_IS_DIRTY
))
895 static int f2fs_unfreeze(struct super_block
*sb
)
901 static int f2fs_statfs_project(struct super_block
*sb
,
902 kprojid_t projid
, struct kstatfs
*buf
)
909 qid
= make_kqid_projid(projid
);
910 dquot
= dqget(sb
, qid
);
912 return PTR_ERR(dquot
);
913 spin_lock(&dq_data_lock
);
915 limit
= (dquot
->dq_dqb
.dqb_bsoftlimit
?
916 dquot
->dq_dqb
.dqb_bsoftlimit
:
917 dquot
->dq_dqb
.dqb_bhardlimit
) >> sb
->s_blocksize_bits
;
918 if (limit
&& buf
->f_blocks
> limit
) {
919 curblock
= dquot
->dq_dqb
.dqb_curspace
>> sb
->s_blocksize_bits
;
920 buf
->f_blocks
= limit
;
921 buf
->f_bfree
= buf
->f_bavail
=
922 (buf
->f_blocks
> curblock
) ?
923 (buf
->f_blocks
- curblock
) : 0;
926 limit
= dquot
->dq_dqb
.dqb_isoftlimit
?
927 dquot
->dq_dqb
.dqb_isoftlimit
:
928 dquot
->dq_dqb
.dqb_ihardlimit
;
929 if (limit
&& buf
->f_files
> limit
) {
930 buf
->f_files
= limit
;
932 (buf
->f_files
> dquot
->dq_dqb
.dqb_curinodes
) ?
933 (buf
->f_files
- dquot
->dq_dqb
.dqb_curinodes
) : 0;
936 spin_unlock(&dq_data_lock
);
942 static int f2fs_statfs(struct dentry
*dentry
, struct kstatfs
*buf
)
944 struct super_block
*sb
= dentry
->d_sb
;
945 struct f2fs_sb_info
*sbi
= F2FS_SB(sb
);
946 u64 id
= huge_encode_dev(sb
->s_bdev
->bd_dev
);
947 block_t total_count
, user_block_count
, start_count
, ovp_count
;
948 u64 avail_node_count
;
950 total_count
= le64_to_cpu(sbi
->raw_super
->block_count
);
951 user_block_count
= sbi
->user_block_count
;
952 start_count
= le32_to_cpu(sbi
->raw_super
->segment0_blkaddr
);
953 ovp_count
= SM_I(sbi
)->ovp_segments
<< sbi
->log_blocks_per_seg
;
954 buf
->f_type
= F2FS_SUPER_MAGIC
;
955 buf
->f_bsize
= sbi
->blocksize
;
957 buf
->f_blocks
= total_count
- start_count
;
958 buf
->f_bfree
= user_block_count
- valid_user_blocks(sbi
) + ovp_count
;
959 buf
->f_bavail
= user_block_count
- valid_user_blocks(sbi
) -
960 sbi
->reserved_blocks
;
962 avail_node_count
= sbi
->total_node_count
- F2FS_RESERVED_NODE_NUM
;
964 if (avail_node_count
> user_block_count
) {
965 buf
->f_files
= user_block_count
;
966 buf
->f_ffree
= buf
->f_bavail
;
968 buf
->f_files
= avail_node_count
;
969 buf
->f_ffree
= min(avail_node_count
- valid_node_count(sbi
),
973 buf
->f_namelen
= F2FS_NAME_LEN
;
974 buf
->f_fsid
.val
[0] = (u32
)id
;
975 buf
->f_fsid
.val
[1] = (u32
)(id
>> 32);
978 if (is_inode_flag_set(dentry
->d_inode
, FI_PROJ_INHERIT
) &&
979 sb_has_quota_limits_enabled(sb
, PRJQUOTA
)) {
980 f2fs_statfs_project(sb
, F2FS_I(dentry
->d_inode
)->i_projid
, buf
);
986 static inline void f2fs_show_quota_options(struct seq_file
*seq
,
987 struct super_block
*sb
)
990 struct f2fs_sb_info
*sbi
= F2FS_SB(sb
);
992 if (sbi
->s_jquota_fmt
) {
995 switch (sbi
->s_jquota_fmt
) {
1006 seq_printf(seq
, ",jqfmt=%s", fmtname
);
1009 if (sbi
->s_qf_names
[USRQUOTA
])
1010 seq_show_option(seq
, "usrjquota", sbi
->s_qf_names
[USRQUOTA
]);
1012 if (sbi
->s_qf_names
[GRPQUOTA
])
1013 seq_show_option(seq
, "grpjquota", sbi
->s_qf_names
[GRPQUOTA
]);
1015 if (sbi
->s_qf_names
[PRJQUOTA
])
1016 seq_show_option(seq
, "prjjquota", sbi
->s_qf_names
[PRJQUOTA
]);
1020 static int f2fs_show_options(struct seq_file
*seq
, struct dentry
*root
)
1022 struct f2fs_sb_info
*sbi
= F2FS_SB(root
->d_sb
);
1024 if (!f2fs_readonly(sbi
->sb
) && test_opt(sbi
, BG_GC
)) {
1025 if (test_opt(sbi
, FORCE_FG_GC
))
1026 seq_printf(seq
, ",background_gc=%s", "sync");
1028 seq_printf(seq
, ",background_gc=%s", "on");
1030 seq_printf(seq
, ",background_gc=%s", "off");
1032 if (test_opt(sbi
, DISABLE_ROLL_FORWARD
))
1033 seq_puts(seq
, ",disable_roll_forward");
1034 if (test_opt(sbi
, DISCARD
))
1035 seq_puts(seq
, ",discard");
1036 if (test_opt(sbi
, NOHEAP
))
1037 seq_puts(seq
, ",no_heap");
1039 seq_puts(seq
, ",heap");
1040 #ifdef CONFIG_F2FS_FS_XATTR
1041 if (test_opt(sbi
, XATTR_USER
))
1042 seq_puts(seq
, ",user_xattr");
1044 seq_puts(seq
, ",nouser_xattr");
1045 if (test_opt(sbi
, INLINE_XATTR
))
1046 seq_puts(seq
, ",inline_xattr");
1048 seq_puts(seq
, ",noinline_xattr");
1050 #ifdef CONFIG_F2FS_FS_POSIX_ACL
1051 if (test_opt(sbi
, POSIX_ACL
))
1052 seq_puts(seq
, ",acl");
1054 seq_puts(seq
, ",noacl");
1056 if (test_opt(sbi
, DISABLE_EXT_IDENTIFY
))
1057 seq_puts(seq
, ",disable_ext_identify");
1058 if (test_opt(sbi
, INLINE_DATA
))
1059 seq_puts(seq
, ",inline_data");
1061 seq_puts(seq
, ",noinline_data");
1062 if (test_opt(sbi
, INLINE_DENTRY
))
1063 seq_puts(seq
, ",inline_dentry");
1065 seq_puts(seq
, ",noinline_dentry");
1066 if (!f2fs_readonly(sbi
->sb
) && test_opt(sbi
, FLUSH_MERGE
))
1067 seq_puts(seq
, ",flush_merge");
1068 if (test_opt(sbi
, NOBARRIER
))
1069 seq_puts(seq
, ",nobarrier");
1070 if (test_opt(sbi
, FASTBOOT
))
1071 seq_puts(seq
, ",fastboot");
1072 if (test_opt(sbi
, EXTENT_CACHE
))
1073 seq_puts(seq
, ",extent_cache");
1075 seq_puts(seq
, ",noextent_cache");
1076 if (test_opt(sbi
, DATA_FLUSH
))
1077 seq_puts(seq
, ",data_flush");
1079 seq_puts(seq
, ",mode=");
1080 if (test_opt(sbi
, ADAPTIVE
))
1081 seq_puts(seq
, "adaptive");
1082 else if (test_opt(sbi
, LFS
))
1083 seq_puts(seq
, "lfs");
1084 seq_printf(seq
, ",active_logs=%u", sbi
->active_logs
);
1085 if (F2FS_IO_SIZE_BITS(sbi
))
1086 seq_printf(seq
, ",io_size=%uKB", F2FS_IO_SIZE_KB(sbi
));
1087 #ifdef CONFIG_F2FS_FAULT_INJECTION
1088 if (test_opt(sbi
, FAULT_INJECTION
))
1089 seq_printf(seq
, ",fault_injection=%u",
1090 sbi
->fault_info
.inject_rate
);
1093 if (test_opt(sbi
, QUOTA
))
1094 seq_puts(seq
, ",quota");
1095 if (test_opt(sbi
, USRQUOTA
))
1096 seq_puts(seq
, ",usrquota");
1097 if (test_opt(sbi
, GRPQUOTA
))
1098 seq_puts(seq
, ",grpquota");
1099 if (test_opt(sbi
, PRJQUOTA
))
1100 seq_puts(seq
, ",prjquota");
1102 f2fs_show_quota_options(seq
, sbi
->sb
);
1107 static void default_options(struct f2fs_sb_info
*sbi
)
1109 /* init some FS parameters */
1110 sbi
->active_logs
= NR_CURSEG_TYPE
;
1112 set_opt(sbi
, BG_GC
);
1113 set_opt(sbi
, INLINE_XATTR
);
1114 set_opt(sbi
, INLINE_DATA
);
1115 set_opt(sbi
, INLINE_DENTRY
);
1116 set_opt(sbi
, EXTENT_CACHE
);
1117 set_opt(sbi
, NOHEAP
);
1118 sbi
->sb
->s_flags
|= MS_LAZYTIME
;
1119 set_opt(sbi
, FLUSH_MERGE
);
1120 if (f2fs_sb_mounted_blkzoned(sbi
->sb
)) {
1121 set_opt_mode(sbi
, F2FS_MOUNT_LFS
);
1122 set_opt(sbi
, DISCARD
);
1124 set_opt_mode(sbi
, F2FS_MOUNT_ADAPTIVE
);
1127 #ifdef CONFIG_F2FS_FS_XATTR
1128 set_opt(sbi
, XATTR_USER
);
1130 #ifdef CONFIG_F2FS_FS_POSIX_ACL
1131 set_opt(sbi
, POSIX_ACL
);
1134 #ifdef CONFIG_F2FS_FAULT_INJECTION
1135 f2fs_build_fault_attr(sbi
, 0);
1139 static int f2fs_remount(struct super_block
*sb
, int *flags
, char *data
)
1141 struct f2fs_sb_info
*sbi
= F2FS_SB(sb
);
1142 struct f2fs_mount_info org_mount_opt
;
1143 unsigned long old_sb_flags
;
1144 int err
, active_logs
;
1145 bool need_restart_gc
= false;
1146 bool need_stop_gc
= false;
1147 bool no_extent_cache
= !test_opt(sbi
, EXTENT_CACHE
);
1148 #ifdef CONFIG_F2FS_FAULT_INJECTION
1149 struct f2fs_fault_info ffi
= sbi
->fault_info
;
1153 char *s_qf_names
[MAXQUOTAS
];
1158 * Save the old mount options in case we
1159 * need to restore them.
1161 org_mount_opt
= sbi
->mount_opt
;
1162 old_sb_flags
= sb
->s_flags
;
1163 active_logs
= sbi
->active_logs
;
1166 s_jquota_fmt
= sbi
->s_jquota_fmt
;
1167 for (i
= 0; i
< MAXQUOTAS
; i
++) {
1168 if (sbi
->s_qf_names
[i
]) {
1169 s_qf_names
[i
] = kstrdup(sbi
->s_qf_names
[i
],
1171 if (!s_qf_names
[i
]) {
1172 for (j
= 0; j
< i
; j
++)
1173 kfree(s_qf_names
[j
]);
1177 s_qf_names
[i
] = NULL
;
1182 /* recover superblocks we couldn't write due to previous RO mount */
1183 if (!(*flags
& MS_RDONLY
) && is_sbi_flag_set(sbi
, SBI_NEED_SB_WRITE
)) {
1184 err
= f2fs_commit_super(sbi
, false);
1185 f2fs_msg(sb
, KERN_INFO
,
1186 "Try to recover all the superblocks, ret: %d", err
);
1188 clear_sbi_flag(sbi
, SBI_NEED_SB_WRITE
);
1191 default_options(sbi
);
1193 /* parse mount options */
1194 err
= parse_options(sb
, data
);
1199 * Previous and new state of filesystem is RO,
1200 * so skip checking GC and FLUSH_MERGE conditions.
1202 if (f2fs_readonly(sb
) && (*flags
& MS_RDONLY
))
1205 if (!f2fs_readonly(sb
) && (*flags
& MS_RDONLY
)) {
1206 err
= dquot_suspend(sb
, -1);
1210 /* dquot_resume needs RW */
1211 sb
->s_flags
&= ~MS_RDONLY
;
1212 dquot_resume(sb
, -1);
1215 /* disallow enable/disable extent_cache dynamically */
1216 if (no_extent_cache
== !!test_opt(sbi
, EXTENT_CACHE
)) {
1218 f2fs_msg(sbi
->sb
, KERN_WARNING
,
1219 "switch extent_cache option is not allowed");
1224 * We stop the GC thread if FS is mounted as RO
1225 * or if background_gc = off is passed in mount
1226 * option. Also sync the filesystem.
1228 if ((*flags
& MS_RDONLY
) || !test_opt(sbi
, BG_GC
)) {
1229 if (sbi
->gc_thread
) {
1230 stop_gc_thread(sbi
);
1231 need_restart_gc
= true;
1233 } else if (!sbi
->gc_thread
) {
1234 err
= start_gc_thread(sbi
);
1237 need_stop_gc
= true;
1240 if (*flags
& MS_RDONLY
) {
1241 writeback_inodes_sb(sb
, WB_REASON_SYNC
);
1244 set_sbi_flag(sbi
, SBI_IS_DIRTY
);
1245 set_sbi_flag(sbi
, SBI_IS_CLOSE
);
1246 f2fs_sync_fs(sb
, 1);
1247 clear_sbi_flag(sbi
, SBI_IS_CLOSE
);
1251 * We stop issue flush thread if FS is mounted as RO
1252 * or if flush_merge is not passed in mount option.
1254 if ((*flags
& MS_RDONLY
) || !test_opt(sbi
, FLUSH_MERGE
)) {
1255 clear_opt(sbi
, FLUSH_MERGE
);
1256 destroy_flush_cmd_control(sbi
, false);
1258 err
= create_flush_cmd_control(sbi
);
1264 /* Release old quota file names */
1265 for (i
= 0; i
< MAXQUOTAS
; i
++)
1266 kfree(s_qf_names
[i
]);
1268 /* Update the POSIXACL Flag */
1269 sb
->s_flags
= (sb
->s_flags
& ~MS_POSIXACL
) |
1270 (test_opt(sbi
, POSIX_ACL
) ? MS_POSIXACL
: 0);
1274 if (need_restart_gc
) {
1275 if (start_gc_thread(sbi
))
1276 f2fs_msg(sbi
->sb
, KERN_WARNING
,
1277 "background gc thread has stopped");
1278 } else if (need_stop_gc
) {
1279 stop_gc_thread(sbi
);
1283 sbi
->s_jquota_fmt
= s_jquota_fmt
;
1284 for (i
= 0; i
< MAXQUOTAS
; i
++) {
1285 kfree(sbi
->s_qf_names
[i
]);
1286 sbi
->s_qf_names
[i
] = s_qf_names
[i
];
1289 sbi
->mount_opt
= org_mount_opt
;
1290 sbi
->active_logs
= active_logs
;
1291 sb
->s_flags
= old_sb_flags
;
1292 #ifdef CONFIG_F2FS_FAULT_INJECTION
1293 sbi
->fault_info
= ffi
;
1299 /* Read data from quotafile */
1300 static ssize_t
f2fs_quota_read(struct super_block
*sb
, int type
, char *data
,
1301 size_t len
, loff_t off
)
1303 struct inode
*inode
= sb_dqopt(sb
)->files
[type
];
1304 struct address_space
*mapping
= inode
->i_mapping
;
1305 block_t blkidx
= F2FS_BYTES_TO_BLK(off
);
1306 int offset
= off
& (sb
->s_blocksize
- 1);
1309 loff_t i_size
= i_size_read(inode
);
1316 if (off
+ len
> i_size
)
1319 while (toread
> 0) {
1320 tocopy
= min_t(unsigned long, sb
->s_blocksize
- offset
, toread
);
1322 page
= read_mapping_page(mapping
, blkidx
, NULL
);
1324 return PTR_ERR(page
);
1328 if (unlikely(page
->mapping
!= mapping
)) {
1329 f2fs_put_page(page
, 1);
1332 if (unlikely(!PageUptodate(page
))) {
1333 f2fs_put_page(page
, 1);
1337 kaddr
= kmap_atomic(page
);
1338 memcpy(data
, kaddr
+ offset
, tocopy
);
1339 kunmap_atomic(kaddr
);
1340 f2fs_put_page(page
, 1);
1350 /* Write to quotafile */
1351 static ssize_t
f2fs_quota_write(struct super_block
*sb
, int type
,
1352 const char *data
, size_t len
, loff_t off
)
1354 struct inode
*inode
= sb_dqopt(sb
)->files
[type
];
1355 struct address_space
*mapping
= inode
->i_mapping
;
1356 const struct address_space_operations
*a_ops
= mapping
->a_ops
;
1357 int offset
= off
& (sb
->s_blocksize
- 1);
1358 size_t towrite
= len
;
1364 while (towrite
> 0) {
1365 tocopy
= min_t(unsigned long, sb
->s_blocksize
- offset
,
1368 err
= a_ops
->write_begin(NULL
, mapping
, off
, tocopy
, 0,
1373 kaddr
= kmap_atomic(page
);
1374 memcpy(kaddr
+ offset
, data
, tocopy
);
1375 kunmap_atomic(kaddr
);
1376 flush_dcache_page(page
);
1378 a_ops
->write_end(NULL
, mapping
, off
, tocopy
, tocopy
,
1390 inode
->i_mtime
= inode
->i_ctime
= current_time(inode
);
1391 f2fs_mark_inode_dirty_sync(inode
, false);
1392 return len
- towrite
;
1395 static struct dquot
**f2fs_get_dquots(struct inode
*inode
)
1397 return F2FS_I(inode
)->i_dquot
;
1400 static qsize_t
*f2fs_get_reserved_space(struct inode
*inode
)
1402 return &F2FS_I(inode
)->i_reserved_quota
;
1405 static int f2fs_quota_on_mount(struct f2fs_sb_info
*sbi
, int type
)
1407 return dquot_quota_on_mount(sbi
->sb
, sbi
->s_qf_names
[type
],
1408 sbi
->s_jquota_fmt
, type
);
1411 void f2fs_enable_quota_files(struct f2fs_sb_info
*sbi
)
1415 for (i
= 0; i
< MAXQUOTAS
; i
++) {
1416 if (sbi
->s_qf_names
[i
]) {
1417 ret
= f2fs_quota_on_mount(sbi
, i
);
1419 f2fs_msg(sbi
->sb
, KERN_ERR
,
1420 "Cannot turn on journaled "
1421 "quota: error %d", ret
);
1426 static int f2fs_quota_sync(struct super_block
*sb
, int type
)
1428 struct quota_info
*dqopt
= sb_dqopt(sb
);
1432 ret
= dquot_writeback_dquots(sb
, type
);
1437 * Now when everything is written we can discard the pagecache so
1438 * that userspace sees the changes.
1440 for (cnt
= 0; cnt
< MAXQUOTAS
; cnt
++) {
1441 if (type
!= -1 && cnt
!= type
)
1443 if (!sb_has_quota_active(sb
, cnt
))
1446 ret
= filemap_write_and_wait(dqopt
->files
[cnt
]->i_mapping
);
1450 inode_lock(dqopt
->files
[cnt
]);
1451 truncate_inode_pages(&dqopt
->files
[cnt
]->i_data
, 0);
1452 inode_unlock(dqopt
->files
[cnt
]);
1457 static int f2fs_quota_on(struct super_block
*sb
, int type
, int format_id
,
1458 const struct path
*path
)
1460 struct inode
*inode
;
1463 err
= f2fs_quota_sync(sb
, type
);
1467 err
= dquot_quota_on(sb
, type
, format_id
, path
);
1471 inode
= d_inode(path
->dentry
);
1474 F2FS_I(inode
)->i_flags
|= FS_NOATIME_FL
| FS_IMMUTABLE_FL
;
1475 inode_set_flags(inode
, S_NOATIME
| S_IMMUTABLE
,
1476 S_NOATIME
| S_IMMUTABLE
);
1477 inode_unlock(inode
);
1478 f2fs_mark_inode_dirty_sync(inode
, false);
1483 static int f2fs_quota_off(struct super_block
*sb
, int type
)
1485 struct inode
*inode
= sb_dqopt(sb
)->files
[type
];
1488 if (!inode
|| !igrab(inode
))
1489 return dquot_quota_off(sb
, type
);
1491 f2fs_quota_sync(sb
, type
);
1493 err
= dquot_quota_off(sb
, type
);
1498 F2FS_I(inode
)->i_flags
&= ~(FS_NOATIME_FL
| FS_IMMUTABLE_FL
);
1499 inode_set_flags(inode
, 0, S_NOATIME
| S_IMMUTABLE
);
1500 inode_unlock(inode
);
1501 f2fs_mark_inode_dirty_sync(inode
, false);
1507 void f2fs_quota_off_umount(struct super_block
*sb
)
1511 for (type
= 0; type
< MAXQUOTAS
; type
++)
1512 f2fs_quota_off(sb
, type
);
1515 int f2fs_get_projid(struct inode
*inode
, kprojid_t
*projid
)
1517 *projid
= F2FS_I(inode
)->i_projid
;
1521 static const struct dquot_operations f2fs_quota_operations
= {
1522 .get_reserved_space
= f2fs_get_reserved_space
,
1523 .write_dquot
= dquot_commit
,
1524 .acquire_dquot
= dquot_acquire
,
1525 .release_dquot
= dquot_release
,
1526 .mark_dirty
= dquot_mark_dquot_dirty
,
1527 .write_info
= dquot_commit_info
,
1528 .alloc_dquot
= dquot_alloc
,
1529 .destroy_dquot
= dquot_destroy
,
1530 .get_projid
= f2fs_get_projid
,
1531 .get_next_id
= dquot_get_next_id
,
1534 static const struct quotactl_ops f2fs_quotactl_ops
= {
1535 .quota_on
= f2fs_quota_on
,
1536 .quota_off
= f2fs_quota_off
,
1537 .quota_sync
= f2fs_quota_sync
,
1538 .get_state
= dquot_get_state
,
1539 .set_info
= dquot_set_dqinfo
,
1540 .get_dqblk
= dquot_get_dqblk
,
1541 .set_dqblk
= dquot_set_dqblk
,
1542 .get_nextdqblk
= dquot_get_next_dqblk
,
1545 void f2fs_quota_off_umount(struct super_block
*sb
)
1550 static const struct super_operations f2fs_sops
= {
1551 .alloc_inode
= f2fs_alloc_inode
,
1552 .drop_inode
= f2fs_drop_inode
,
1553 .destroy_inode
= f2fs_destroy_inode
,
1554 .write_inode
= f2fs_write_inode
,
1555 .dirty_inode
= f2fs_dirty_inode
,
1556 .show_options
= f2fs_show_options
,
1558 .quota_read
= f2fs_quota_read
,
1559 .quota_write
= f2fs_quota_write
,
1560 .get_dquots
= f2fs_get_dquots
,
1562 .evict_inode
= f2fs_evict_inode
,
1563 .put_super
= f2fs_put_super
,
1564 .sync_fs
= f2fs_sync_fs
,
1565 .freeze_fs
= f2fs_freeze
,
1566 .unfreeze_fs
= f2fs_unfreeze
,
1567 .statfs
= f2fs_statfs
,
1568 .remount_fs
= f2fs_remount
,
1571 #ifdef CONFIG_F2FS_FS_ENCRYPTION
1572 static int f2fs_get_context(struct inode
*inode
, void *ctx
, size_t len
)
1574 return f2fs_getxattr(inode
, F2FS_XATTR_INDEX_ENCRYPTION
,
1575 F2FS_XATTR_NAME_ENCRYPTION_CONTEXT
,
1579 static int f2fs_set_context(struct inode
*inode
, const void *ctx
, size_t len
,
1582 return f2fs_setxattr(inode
, F2FS_XATTR_INDEX_ENCRYPTION
,
1583 F2FS_XATTR_NAME_ENCRYPTION_CONTEXT
,
1584 ctx
, len
, fs_data
, XATTR_CREATE
);
1587 static unsigned f2fs_max_namelen(struct inode
*inode
)
1589 return S_ISLNK(inode
->i_mode
) ?
1590 inode
->i_sb
->s_blocksize
: F2FS_NAME_LEN
;
1593 static const struct fscrypt_operations f2fs_cryptops
= {
1594 .key_prefix
= "f2fs:",
1595 .get_context
= f2fs_get_context
,
1596 .set_context
= f2fs_set_context
,
1597 .empty_dir
= f2fs_empty_dir
,
1598 .max_namelen
= f2fs_max_namelen
,
1602 static struct inode
*f2fs_nfs_get_inode(struct super_block
*sb
,
1603 u64 ino
, u32 generation
)
1605 struct f2fs_sb_info
*sbi
= F2FS_SB(sb
);
1606 struct inode
*inode
;
1608 if (check_nid_range(sbi
, ino
))
1609 return ERR_PTR(-ESTALE
);
1612 * f2fs_iget isn't quite right if the inode is currently unallocated!
1613 * However f2fs_iget currently does appropriate checks to handle stale
1614 * inodes so everything is OK.
1616 inode
= f2fs_iget(sb
, ino
);
1618 return ERR_CAST(inode
);
1619 if (unlikely(generation
&& inode
->i_generation
!= generation
)) {
1620 /* we didn't find the right inode.. */
1622 return ERR_PTR(-ESTALE
);
1627 static struct dentry
*f2fs_fh_to_dentry(struct super_block
*sb
, struct fid
*fid
,
1628 int fh_len
, int fh_type
)
1630 return generic_fh_to_dentry(sb
, fid
, fh_len
, fh_type
,
1631 f2fs_nfs_get_inode
);
1634 static struct dentry
*f2fs_fh_to_parent(struct super_block
*sb
, struct fid
*fid
,
1635 int fh_len
, int fh_type
)
1637 return generic_fh_to_parent(sb
, fid
, fh_len
, fh_type
,
1638 f2fs_nfs_get_inode
);
1641 static const struct export_operations f2fs_export_ops
= {
1642 .fh_to_dentry
= f2fs_fh_to_dentry
,
1643 .fh_to_parent
= f2fs_fh_to_parent
,
1644 .get_parent
= f2fs_get_parent
,
1647 static loff_t
max_file_blocks(void)
1650 loff_t leaf_count
= ADDRS_PER_BLOCK
;
1653 * note: previously, result is equal to (DEF_ADDRS_PER_INODE -
1654 * F2FS_INLINE_XATTR_ADDRS), but now f2fs try to reserve more
1655 * space in inode.i_addr, it will be more safe to reassign
1659 /* two direct node blocks */
1660 result
+= (leaf_count
* 2);
1662 /* two indirect node blocks */
1663 leaf_count
*= NIDS_PER_BLOCK
;
1664 result
+= (leaf_count
* 2);
1666 /* one double indirect node block */
1667 leaf_count
*= NIDS_PER_BLOCK
;
1668 result
+= leaf_count
;
1673 static int __f2fs_commit_super(struct buffer_head
*bh
,
1674 struct f2fs_super_block
*super
)
1678 memcpy(bh
->b_data
+ F2FS_SUPER_OFFSET
, super
, sizeof(*super
));
1679 set_buffer_uptodate(bh
);
1680 set_buffer_dirty(bh
);
1683 /* it's rare case, we can do fua all the time */
1684 return __sync_dirty_buffer(bh
, REQ_SYNC
| REQ_PREFLUSH
| REQ_FUA
);
1687 static inline bool sanity_check_area_boundary(struct f2fs_sb_info
*sbi
,
1688 struct buffer_head
*bh
)
1690 struct f2fs_super_block
*raw_super
= (struct f2fs_super_block
*)
1691 (bh
->b_data
+ F2FS_SUPER_OFFSET
);
1692 struct super_block
*sb
= sbi
->sb
;
1693 u32 segment0_blkaddr
= le32_to_cpu(raw_super
->segment0_blkaddr
);
1694 u32 cp_blkaddr
= le32_to_cpu(raw_super
->cp_blkaddr
);
1695 u32 sit_blkaddr
= le32_to_cpu(raw_super
->sit_blkaddr
);
1696 u32 nat_blkaddr
= le32_to_cpu(raw_super
->nat_blkaddr
);
1697 u32 ssa_blkaddr
= le32_to_cpu(raw_super
->ssa_blkaddr
);
1698 u32 main_blkaddr
= le32_to_cpu(raw_super
->main_blkaddr
);
1699 u32 segment_count_ckpt
= le32_to_cpu(raw_super
->segment_count_ckpt
);
1700 u32 segment_count_sit
= le32_to_cpu(raw_super
->segment_count_sit
);
1701 u32 segment_count_nat
= le32_to_cpu(raw_super
->segment_count_nat
);
1702 u32 segment_count_ssa
= le32_to_cpu(raw_super
->segment_count_ssa
);
1703 u32 segment_count_main
= le32_to_cpu(raw_super
->segment_count_main
);
1704 u32 segment_count
= le32_to_cpu(raw_super
->segment_count
);
1705 u32 log_blocks_per_seg
= le32_to_cpu(raw_super
->log_blocks_per_seg
);
1706 u64 main_end_blkaddr
= main_blkaddr
+
1707 (segment_count_main
<< log_blocks_per_seg
);
1708 u64 seg_end_blkaddr
= segment0_blkaddr
+
1709 (segment_count
<< log_blocks_per_seg
);
1711 if (segment0_blkaddr
!= cp_blkaddr
) {
1712 f2fs_msg(sb
, KERN_INFO
,
1713 "Mismatch start address, segment0(%u) cp_blkaddr(%u)",
1714 segment0_blkaddr
, cp_blkaddr
);
1718 if (cp_blkaddr
+ (segment_count_ckpt
<< log_blocks_per_seg
) !=
1720 f2fs_msg(sb
, KERN_INFO
,
1721 "Wrong CP boundary, start(%u) end(%u) blocks(%u)",
1722 cp_blkaddr
, sit_blkaddr
,
1723 segment_count_ckpt
<< log_blocks_per_seg
);
1727 if (sit_blkaddr
+ (segment_count_sit
<< log_blocks_per_seg
) !=
1729 f2fs_msg(sb
, KERN_INFO
,
1730 "Wrong SIT boundary, start(%u) end(%u) blocks(%u)",
1731 sit_blkaddr
, nat_blkaddr
,
1732 segment_count_sit
<< log_blocks_per_seg
);
1736 if (nat_blkaddr
+ (segment_count_nat
<< log_blocks_per_seg
) !=
1738 f2fs_msg(sb
, KERN_INFO
,
1739 "Wrong NAT boundary, start(%u) end(%u) blocks(%u)",
1740 nat_blkaddr
, ssa_blkaddr
,
1741 segment_count_nat
<< log_blocks_per_seg
);
1745 if (ssa_blkaddr
+ (segment_count_ssa
<< log_blocks_per_seg
) !=
1747 f2fs_msg(sb
, KERN_INFO
,
1748 "Wrong SSA boundary, start(%u) end(%u) blocks(%u)",
1749 ssa_blkaddr
, main_blkaddr
,
1750 segment_count_ssa
<< log_blocks_per_seg
);
1754 if (main_end_blkaddr
> seg_end_blkaddr
) {
1755 f2fs_msg(sb
, KERN_INFO
,
1756 "Wrong MAIN_AREA boundary, start(%u) end(%u) block(%u)",
1759 (segment_count
<< log_blocks_per_seg
),
1760 segment_count_main
<< log_blocks_per_seg
);
1762 } else if (main_end_blkaddr
< seg_end_blkaddr
) {
1766 /* fix in-memory information all the time */
1767 raw_super
->segment_count
= cpu_to_le32((main_end_blkaddr
-
1768 segment0_blkaddr
) >> log_blocks_per_seg
);
1770 if (f2fs_readonly(sb
) || bdev_read_only(sb
->s_bdev
)) {
1771 set_sbi_flag(sbi
, SBI_NEED_SB_WRITE
);
1774 err
= __f2fs_commit_super(bh
, NULL
);
1775 res
= err
? "failed" : "done";
1777 f2fs_msg(sb
, KERN_INFO
,
1778 "Fix alignment : %s, start(%u) end(%u) block(%u)",
1781 (segment_count
<< log_blocks_per_seg
),
1782 segment_count_main
<< log_blocks_per_seg
);
1789 static int sanity_check_raw_super(struct f2fs_sb_info
*sbi
,
1790 struct buffer_head
*bh
)
1792 struct f2fs_super_block
*raw_super
= (struct f2fs_super_block
*)
1793 (bh
->b_data
+ F2FS_SUPER_OFFSET
);
1794 struct super_block
*sb
= sbi
->sb
;
1795 unsigned int blocksize
;
1797 if (F2FS_SUPER_MAGIC
!= le32_to_cpu(raw_super
->magic
)) {
1798 f2fs_msg(sb
, KERN_INFO
,
1799 "Magic Mismatch, valid(0x%x) - read(0x%x)",
1800 F2FS_SUPER_MAGIC
, le32_to_cpu(raw_super
->magic
));
1804 /* Currently, support only 4KB page cache size */
1805 if (F2FS_BLKSIZE
!= PAGE_SIZE
) {
1806 f2fs_msg(sb
, KERN_INFO
,
1807 "Invalid page_cache_size (%lu), supports only 4KB\n",
1812 /* Currently, support only 4KB block size */
1813 blocksize
= 1 << le32_to_cpu(raw_super
->log_blocksize
);
1814 if (blocksize
!= F2FS_BLKSIZE
) {
1815 f2fs_msg(sb
, KERN_INFO
,
1816 "Invalid blocksize (%u), supports only 4KB\n",
1821 /* check log blocks per segment */
1822 if (le32_to_cpu(raw_super
->log_blocks_per_seg
) != 9) {
1823 f2fs_msg(sb
, KERN_INFO
,
1824 "Invalid log blocks per segment (%u)\n",
1825 le32_to_cpu(raw_super
->log_blocks_per_seg
));
1829 /* Currently, support 512/1024/2048/4096 bytes sector size */
1830 if (le32_to_cpu(raw_super
->log_sectorsize
) >
1831 F2FS_MAX_LOG_SECTOR_SIZE
||
1832 le32_to_cpu(raw_super
->log_sectorsize
) <
1833 F2FS_MIN_LOG_SECTOR_SIZE
) {
1834 f2fs_msg(sb
, KERN_INFO
, "Invalid log sectorsize (%u)",
1835 le32_to_cpu(raw_super
->log_sectorsize
));
1838 if (le32_to_cpu(raw_super
->log_sectors_per_block
) +
1839 le32_to_cpu(raw_super
->log_sectorsize
) !=
1840 F2FS_MAX_LOG_SECTOR_SIZE
) {
1841 f2fs_msg(sb
, KERN_INFO
,
1842 "Invalid log sectors per block(%u) log sectorsize(%u)",
1843 le32_to_cpu(raw_super
->log_sectors_per_block
),
1844 le32_to_cpu(raw_super
->log_sectorsize
));
1848 /* check reserved ino info */
1849 if (le32_to_cpu(raw_super
->node_ino
) != 1 ||
1850 le32_to_cpu(raw_super
->meta_ino
) != 2 ||
1851 le32_to_cpu(raw_super
->root_ino
) != 3) {
1852 f2fs_msg(sb
, KERN_INFO
,
1853 "Invalid Fs Meta Ino: node(%u) meta(%u) root(%u)",
1854 le32_to_cpu(raw_super
->node_ino
),
1855 le32_to_cpu(raw_super
->meta_ino
),
1856 le32_to_cpu(raw_super
->root_ino
));
1860 if (le32_to_cpu(raw_super
->segment_count
) > F2FS_MAX_SEGMENT
) {
1861 f2fs_msg(sb
, KERN_INFO
,
1862 "Invalid segment count (%u)",
1863 le32_to_cpu(raw_super
->segment_count
));
1867 /* check CP/SIT/NAT/SSA/MAIN_AREA area boundary */
1868 if (sanity_check_area_boundary(sbi
, bh
))
1874 int sanity_check_ckpt(struct f2fs_sb_info
*sbi
)
1876 unsigned int total
, fsmeta
;
1877 struct f2fs_super_block
*raw_super
= F2FS_RAW_SUPER(sbi
);
1878 struct f2fs_checkpoint
*ckpt
= F2FS_CKPT(sbi
);
1879 unsigned int ovp_segments
, reserved_segments
;
1880 unsigned int main_segs
, blocks_per_seg
;
1883 total
= le32_to_cpu(raw_super
->segment_count
);
1884 fsmeta
= le32_to_cpu(raw_super
->segment_count_ckpt
);
1885 fsmeta
+= le32_to_cpu(raw_super
->segment_count_sit
);
1886 fsmeta
+= le32_to_cpu(raw_super
->segment_count_nat
);
1887 fsmeta
+= le32_to_cpu(ckpt
->rsvd_segment_count
);
1888 fsmeta
+= le32_to_cpu(raw_super
->segment_count_ssa
);
1890 if (unlikely(fsmeta
>= total
))
1893 ovp_segments
= le32_to_cpu(ckpt
->overprov_segment_count
);
1894 reserved_segments
= le32_to_cpu(ckpt
->rsvd_segment_count
);
1896 if (unlikely(fsmeta
< F2FS_MIN_SEGMENTS
||
1897 ovp_segments
== 0 || reserved_segments
== 0)) {
1898 f2fs_msg(sbi
->sb
, KERN_ERR
,
1899 "Wrong layout: check mkfs.f2fs version");
1903 main_segs
= le32_to_cpu(raw_super
->segment_count_main
);
1904 blocks_per_seg
= sbi
->blocks_per_seg
;
1906 for (i
= 0; i
< NR_CURSEG_NODE_TYPE
; i
++) {
1907 if (le32_to_cpu(ckpt
->cur_node_segno
[i
]) >= main_segs
||
1908 le16_to_cpu(ckpt
->cur_node_blkoff
[i
]) >= blocks_per_seg
)
1911 for (i
= 0; i
< NR_CURSEG_DATA_TYPE
; i
++) {
1912 if (le32_to_cpu(ckpt
->cur_data_segno
[i
]) >= main_segs
||
1913 le16_to_cpu(ckpt
->cur_data_blkoff
[i
]) >= blocks_per_seg
)
1917 if (unlikely(f2fs_cp_error(sbi
))) {
1918 f2fs_msg(sbi
->sb
, KERN_ERR
, "A bug case: need to run fsck");
1924 static void init_sb_info(struct f2fs_sb_info
*sbi
)
1926 struct f2fs_super_block
*raw_super
= sbi
->raw_super
;
1929 sbi
->log_sectors_per_block
=
1930 le32_to_cpu(raw_super
->log_sectors_per_block
);
1931 sbi
->log_blocksize
= le32_to_cpu(raw_super
->log_blocksize
);
1932 sbi
->blocksize
= 1 << sbi
->log_blocksize
;
1933 sbi
->log_blocks_per_seg
= le32_to_cpu(raw_super
->log_blocks_per_seg
);
1934 sbi
->blocks_per_seg
= 1 << sbi
->log_blocks_per_seg
;
1935 sbi
->segs_per_sec
= le32_to_cpu(raw_super
->segs_per_sec
);
1936 sbi
->secs_per_zone
= le32_to_cpu(raw_super
->secs_per_zone
);
1937 sbi
->total_sections
= le32_to_cpu(raw_super
->section_count
);
1938 sbi
->total_node_count
=
1939 (le32_to_cpu(raw_super
->segment_count_nat
) / 2)
1940 * sbi
->blocks_per_seg
* NAT_ENTRY_PER_BLOCK
;
1941 sbi
->root_ino_num
= le32_to_cpu(raw_super
->root_ino
);
1942 sbi
->node_ino_num
= le32_to_cpu(raw_super
->node_ino
);
1943 sbi
->meta_ino_num
= le32_to_cpu(raw_super
->meta_ino
);
1944 sbi
->cur_victim_sec
= NULL_SECNO
;
1945 sbi
->max_victim_search
= DEF_MAX_VICTIM_SEARCH
;
1947 sbi
->dir_level
= DEF_DIR_LEVEL
;
1948 sbi
->interval_time
[CP_TIME
] = DEF_CP_INTERVAL
;
1949 sbi
->interval_time
[REQ_TIME
] = DEF_IDLE_INTERVAL
;
1950 clear_sbi_flag(sbi
, SBI_NEED_FSCK
);
1952 for (i
= 0; i
< NR_COUNT_TYPE
; i
++)
1953 atomic_set(&sbi
->nr_pages
[i
], 0);
1955 atomic_set(&sbi
->wb_sync_req
, 0);
1957 INIT_LIST_HEAD(&sbi
->s_list
);
1958 mutex_init(&sbi
->umount_mutex
);
1959 for (i
= 0; i
< NR_PAGE_TYPE
- 1; i
++)
1960 for (j
= HOT
; j
< NR_TEMP_TYPE
; j
++)
1961 mutex_init(&sbi
->wio_mutex
[i
][j
]);
1962 spin_lock_init(&sbi
->cp_lock
);
1965 static int init_percpu_info(struct f2fs_sb_info
*sbi
)
1969 err
= percpu_counter_init(&sbi
->alloc_valid_block_count
, 0, GFP_KERNEL
);
1973 return percpu_counter_init(&sbi
->total_valid_inode_count
, 0,
1977 #ifdef CONFIG_BLK_DEV_ZONED
1978 static int init_blkz_info(struct f2fs_sb_info
*sbi
, int devi
)
1980 struct block_device
*bdev
= FDEV(devi
).bdev
;
1981 sector_t nr_sectors
= bdev
->bd_part
->nr_sects
;
1982 sector_t sector
= 0;
1983 struct blk_zone
*zones
;
1984 unsigned int i
, nr_zones
;
1988 if (!f2fs_sb_mounted_blkzoned(sbi
->sb
))
1991 if (sbi
->blocks_per_blkz
&& sbi
->blocks_per_blkz
!=
1992 SECTOR_TO_BLOCK(bdev_zone_sectors(bdev
)))
1994 sbi
->blocks_per_blkz
= SECTOR_TO_BLOCK(bdev_zone_sectors(bdev
));
1995 if (sbi
->log_blocks_per_blkz
&& sbi
->log_blocks_per_blkz
!=
1996 __ilog2_u32(sbi
->blocks_per_blkz
))
1998 sbi
->log_blocks_per_blkz
= __ilog2_u32(sbi
->blocks_per_blkz
);
1999 FDEV(devi
).nr_blkz
= SECTOR_TO_BLOCK(nr_sectors
) >>
2000 sbi
->log_blocks_per_blkz
;
2001 if (nr_sectors
& (bdev_zone_sectors(bdev
) - 1))
2002 FDEV(devi
).nr_blkz
++;
2004 FDEV(devi
).blkz_type
= kmalloc(FDEV(devi
).nr_blkz
, GFP_KERNEL
);
2005 if (!FDEV(devi
).blkz_type
)
2008 #define F2FS_REPORT_NR_ZONES 4096
2010 zones
= kcalloc(F2FS_REPORT_NR_ZONES
, sizeof(struct blk_zone
),
2015 /* Get block zones type */
2016 while (zones
&& sector
< nr_sectors
) {
2018 nr_zones
= F2FS_REPORT_NR_ZONES
;
2019 err
= blkdev_report_zones(bdev
, sector
,
2029 for (i
= 0; i
< nr_zones
; i
++) {
2030 FDEV(devi
).blkz_type
[n
] = zones
[i
].type
;
2031 sector
+= zones
[i
].len
;
2043 * Read f2fs raw super block.
2044 * Because we have two copies of super block, so read both of them
2045 * to get the first valid one. If any one of them is broken, we pass
2046 * them recovery flag back to the caller.
2048 static int read_raw_super_block(struct f2fs_sb_info
*sbi
,
2049 struct f2fs_super_block
**raw_super
,
2050 int *valid_super_block
, int *recovery
)
2052 struct super_block
*sb
= sbi
->sb
;
2054 struct buffer_head
*bh
;
2055 struct f2fs_super_block
*super
;
2058 super
= kzalloc(sizeof(struct f2fs_super_block
), GFP_KERNEL
);
2062 for (block
= 0; block
< 2; block
++) {
2063 bh
= sb_bread(sb
, block
);
2065 f2fs_msg(sb
, KERN_ERR
, "Unable to read %dth superblock",
2071 /* sanity checking of raw super */
2072 if (sanity_check_raw_super(sbi
, bh
)) {
2073 f2fs_msg(sb
, KERN_ERR
,
2074 "Can't find valid F2FS filesystem in %dth superblock",
2082 memcpy(super
, bh
->b_data
+ F2FS_SUPER_OFFSET
,
2084 *valid_super_block
= block
;
2090 /* Fail to read any one of the superblocks*/
2094 /* No valid superblock */
2103 int f2fs_commit_super(struct f2fs_sb_info
*sbi
, bool recover
)
2105 struct buffer_head
*bh
;
2108 if ((recover
&& f2fs_readonly(sbi
->sb
)) ||
2109 bdev_read_only(sbi
->sb
->s_bdev
)) {
2110 set_sbi_flag(sbi
, SBI_NEED_SB_WRITE
);
2114 /* write back-up superblock first */
2115 bh
= sb_getblk(sbi
->sb
, sbi
->valid_super_block
? 0: 1);
2118 err
= __f2fs_commit_super(bh
, F2FS_RAW_SUPER(sbi
));
2121 /* if we are in recovery path, skip writing valid superblock */
2125 /* write current valid superblock */
2126 bh
= sb_getblk(sbi
->sb
, sbi
->valid_super_block
);
2129 err
= __f2fs_commit_super(bh
, F2FS_RAW_SUPER(sbi
));
2134 static int f2fs_scan_devices(struct f2fs_sb_info
*sbi
)
2136 struct f2fs_super_block
*raw_super
= F2FS_RAW_SUPER(sbi
);
2137 unsigned int max_devices
= MAX_DEVICES
;
2140 /* Initialize single device information */
2141 if (!RDEV(0).path
[0]) {
2142 if (!bdev_is_zoned(sbi
->sb
->s_bdev
))
2148 * Initialize multiple devices information, or single
2149 * zoned block device information.
2151 sbi
->devs
= kcalloc(max_devices
, sizeof(struct f2fs_dev_info
),
2156 for (i
= 0; i
< max_devices
; i
++) {
2158 if (i
> 0 && !RDEV(i
).path
[0])
2161 if (max_devices
== 1) {
2162 /* Single zoned block device mount */
2164 blkdev_get_by_dev(sbi
->sb
->s_bdev
->bd_dev
,
2165 sbi
->sb
->s_mode
, sbi
->sb
->s_type
);
2167 /* Multi-device mount */
2168 memcpy(FDEV(i
).path
, RDEV(i
).path
, MAX_PATH_LEN
);
2169 FDEV(i
).total_segments
=
2170 le32_to_cpu(RDEV(i
).total_segments
);
2172 FDEV(i
).start_blk
= 0;
2173 FDEV(i
).end_blk
= FDEV(i
).start_blk
+
2174 (FDEV(i
).total_segments
<<
2175 sbi
->log_blocks_per_seg
) - 1 +
2176 le32_to_cpu(raw_super
->segment0_blkaddr
);
2178 FDEV(i
).start_blk
= FDEV(i
- 1).end_blk
+ 1;
2179 FDEV(i
).end_blk
= FDEV(i
).start_blk
+
2180 (FDEV(i
).total_segments
<<
2181 sbi
->log_blocks_per_seg
) - 1;
2183 FDEV(i
).bdev
= blkdev_get_by_path(FDEV(i
).path
,
2184 sbi
->sb
->s_mode
, sbi
->sb
->s_type
);
2186 if (IS_ERR(FDEV(i
).bdev
))
2187 return PTR_ERR(FDEV(i
).bdev
);
2189 /* to release errored devices */
2190 sbi
->s_ndevs
= i
+ 1;
2192 #ifdef CONFIG_BLK_DEV_ZONED
2193 if (bdev_zoned_model(FDEV(i
).bdev
) == BLK_ZONED_HM
&&
2194 !f2fs_sb_mounted_blkzoned(sbi
->sb
)) {
2195 f2fs_msg(sbi
->sb
, KERN_ERR
,
2196 "Zoned block device feature not enabled\n");
2199 if (bdev_zoned_model(FDEV(i
).bdev
) != BLK_ZONED_NONE
) {
2200 if (init_blkz_info(sbi
, i
)) {
2201 f2fs_msg(sbi
->sb
, KERN_ERR
,
2202 "Failed to initialize F2FS blkzone information");
2205 if (max_devices
== 1)
2207 f2fs_msg(sbi
->sb
, KERN_INFO
,
2208 "Mount Device [%2d]: %20s, %8u, %8x - %8x (zone: %s)",
2210 FDEV(i
).total_segments
,
2211 FDEV(i
).start_blk
, FDEV(i
).end_blk
,
2212 bdev_zoned_model(FDEV(i
).bdev
) == BLK_ZONED_HA
?
2213 "Host-aware" : "Host-managed");
2217 f2fs_msg(sbi
->sb
, KERN_INFO
,
2218 "Mount Device [%2d]: %20s, %8u, %8x - %8x",
2220 FDEV(i
).total_segments
,
2221 FDEV(i
).start_blk
, FDEV(i
).end_blk
);
2223 f2fs_msg(sbi
->sb
, KERN_INFO
,
2224 "IO Block Size: %8d KB", F2FS_IO_SIZE_KB(sbi
));
2228 static int f2fs_fill_super(struct super_block
*sb
, void *data
, int silent
)
2230 struct f2fs_sb_info
*sbi
;
2231 struct f2fs_super_block
*raw_super
;
2234 bool retry
= true, need_fsck
= false;
2235 char *options
= NULL
;
2236 int recovery
, i
, valid_super_block
;
2237 struct curseg_info
*seg_i
;
2242 valid_super_block
= -1;
2245 /* allocate memory for f2fs-specific super block info */
2246 sbi
= kzalloc(sizeof(struct f2fs_sb_info
), GFP_KERNEL
);
2252 /* Load the checksum driver */
2253 sbi
->s_chksum_driver
= crypto_alloc_shash("crc32", 0, 0);
2254 if (IS_ERR(sbi
->s_chksum_driver
)) {
2255 f2fs_msg(sb
, KERN_ERR
, "Cannot load crc32 driver.");
2256 err
= PTR_ERR(sbi
->s_chksum_driver
);
2257 sbi
->s_chksum_driver
= NULL
;
2261 /* set a block size */
2262 if (unlikely(!sb_set_blocksize(sb
, F2FS_BLKSIZE
))) {
2263 f2fs_msg(sb
, KERN_ERR
, "unable to set blocksize");
2267 err
= read_raw_super_block(sbi
, &raw_super
, &valid_super_block
,
2272 sb
->s_fs_info
= sbi
;
2273 sbi
->raw_super
= raw_super
;
2275 /* precompute checksum seed for metadata */
2276 if (f2fs_sb_has_inode_chksum(sb
))
2277 sbi
->s_chksum_seed
= f2fs_chksum(sbi
, ~0, raw_super
->uuid
,
2278 sizeof(raw_super
->uuid
));
2281 * The BLKZONED feature indicates that the drive was formatted with
2282 * zone alignment optimization. This is optional for host-aware
2283 * devices, but mandatory for host-managed zoned block devices.
2285 #ifndef CONFIG_BLK_DEV_ZONED
2286 if (f2fs_sb_mounted_blkzoned(sb
)) {
2287 f2fs_msg(sb
, KERN_ERR
,
2288 "Zoned block device support is not enabled\n");
2293 default_options(sbi
);
2294 /* parse mount options */
2295 options
= kstrdup((const char *)data
, GFP_KERNEL
);
2296 if (data
&& !options
) {
2301 err
= parse_options(sb
, options
);
2305 sbi
->max_file_blocks
= max_file_blocks();
2306 sb
->s_maxbytes
= sbi
->max_file_blocks
<<
2307 le32_to_cpu(raw_super
->log_blocksize
);
2308 sb
->s_max_links
= F2FS_LINK_MAX
;
2309 get_random_bytes(&sbi
->s_next_generation
, sizeof(u32
));
2312 sb
->dq_op
= &f2fs_quota_operations
;
2313 sb
->s_qcop
= &f2fs_quotactl_ops
;
2314 sb
->s_quota_types
= QTYPE_MASK_USR
| QTYPE_MASK_GRP
| QTYPE_MASK_PRJ
;
2317 sb
->s_op
= &f2fs_sops
;
2318 #ifdef CONFIG_F2FS_FS_ENCRYPTION
2319 sb
->s_cop
= &f2fs_cryptops
;
2321 sb
->s_xattr
= f2fs_xattr_handlers
;
2322 sb
->s_export_op
= &f2fs_export_ops
;
2323 sb
->s_magic
= F2FS_SUPER_MAGIC
;
2324 sb
->s_time_gran
= 1;
2325 sb
->s_flags
= (sb
->s_flags
& ~MS_POSIXACL
) |
2326 (test_opt(sbi
, POSIX_ACL
) ? MS_POSIXACL
: 0);
2327 memcpy(&sb
->s_uuid
, raw_super
->uuid
, sizeof(raw_super
->uuid
));
2329 /* init f2fs-specific super block info */
2330 sbi
->valid_super_block
= valid_super_block
;
2331 mutex_init(&sbi
->gc_mutex
);
2332 mutex_init(&sbi
->cp_mutex
);
2333 init_rwsem(&sbi
->node_write
);
2334 init_rwsem(&sbi
->node_change
);
2336 /* disallow all the data/node/meta page writes */
2337 set_sbi_flag(sbi
, SBI_POR_DOING
);
2338 spin_lock_init(&sbi
->stat_lock
);
2340 /* init iostat info */
2341 spin_lock_init(&sbi
->iostat_lock
);
2342 sbi
->iostat_enable
= false;
2344 for (i
= 0; i
< NR_PAGE_TYPE
; i
++) {
2345 int n
= (i
== META
) ? 1: NR_TEMP_TYPE
;
2348 sbi
->write_io
[i
] = kmalloc(n
* sizeof(struct f2fs_bio_info
),
2350 if (!sbi
->write_io
[i
]) {
2355 for (j
= HOT
; j
< n
; j
++) {
2356 init_rwsem(&sbi
->write_io
[i
][j
].io_rwsem
);
2357 sbi
->write_io
[i
][j
].sbi
= sbi
;
2358 sbi
->write_io
[i
][j
].bio
= NULL
;
2359 spin_lock_init(&sbi
->write_io
[i
][j
].io_lock
);
2360 INIT_LIST_HEAD(&sbi
->write_io
[i
][j
].io_list
);
2364 init_rwsem(&sbi
->cp_rwsem
);
2365 init_waitqueue_head(&sbi
->cp_wait
);
2368 err
= init_percpu_info(sbi
);
2372 if (F2FS_IO_SIZE(sbi
) > 1) {
2373 sbi
->write_io_dummy
=
2374 mempool_create_page_pool(2 * (F2FS_IO_SIZE(sbi
) - 1), 0);
2375 if (!sbi
->write_io_dummy
) {
2381 /* get an inode for meta space */
2382 sbi
->meta_inode
= f2fs_iget(sb
, F2FS_META_INO(sbi
));
2383 if (IS_ERR(sbi
->meta_inode
)) {
2384 f2fs_msg(sb
, KERN_ERR
, "Failed to read F2FS meta data inode");
2385 err
= PTR_ERR(sbi
->meta_inode
);
2389 err
= get_valid_checkpoint(sbi
);
2391 f2fs_msg(sb
, KERN_ERR
, "Failed to get valid F2FS checkpoint");
2392 goto free_meta_inode
;
2395 /* Initialize device list */
2396 err
= f2fs_scan_devices(sbi
);
2398 f2fs_msg(sb
, KERN_ERR
, "Failed to find devices");
2402 sbi
->total_valid_node_count
=
2403 le32_to_cpu(sbi
->ckpt
->valid_node_count
);
2404 percpu_counter_set(&sbi
->total_valid_inode_count
,
2405 le32_to_cpu(sbi
->ckpt
->valid_inode_count
));
2406 sbi
->user_block_count
= le64_to_cpu(sbi
->ckpt
->user_block_count
);
2407 sbi
->total_valid_block_count
=
2408 le64_to_cpu(sbi
->ckpt
->valid_block_count
);
2409 sbi
->last_valid_block_count
= sbi
->total_valid_block_count
;
2410 sbi
->reserved_blocks
= 0;
2412 for (i
= 0; i
< NR_INODE_TYPE
; i
++) {
2413 INIT_LIST_HEAD(&sbi
->inode_list
[i
]);
2414 spin_lock_init(&sbi
->inode_lock
[i
]);
2417 init_extent_cache_info(sbi
);
2419 init_ino_entry_info(sbi
);
2421 /* setup f2fs internal modules */
2422 err
= build_segment_manager(sbi
);
2424 f2fs_msg(sb
, KERN_ERR
,
2425 "Failed to initialize F2FS segment manager");
2428 err
= build_node_manager(sbi
);
2430 f2fs_msg(sb
, KERN_ERR
,
2431 "Failed to initialize F2FS node manager");
2435 /* For write statistics */
2436 if (sb
->s_bdev
->bd_part
)
2437 sbi
->sectors_written_start
=
2438 (u64
)part_stat_read(sb
->s_bdev
->bd_part
, sectors
[1]);
2440 /* Read accumulated write IO statistics if exists */
2441 seg_i
= CURSEG_I(sbi
, CURSEG_HOT_NODE
);
2442 if (__exist_node_summaries(sbi
))
2443 sbi
->kbytes_written
=
2444 le64_to_cpu(seg_i
->journal
->info
.kbytes_written
);
2446 build_gc_manager(sbi
);
2448 /* get an inode for node space */
2449 sbi
->node_inode
= f2fs_iget(sb
, F2FS_NODE_INO(sbi
));
2450 if (IS_ERR(sbi
->node_inode
)) {
2451 f2fs_msg(sb
, KERN_ERR
, "Failed to read node inode");
2452 err
= PTR_ERR(sbi
->node_inode
);
2456 f2fs_join_shrinker(sbi
);
2458 err
= f2fs_build_stats(sbi
);
2462 /* read root inode and dentry */
2463 root
= f2fs_iget(sb
, F2FS_ROOT_INO(sbi
));
2465 f2fs_msg(sb
, KERN_ERR
, "Failed to read root inode");
2466 err
= PTR_ERR(root
);
2467 goto free_node_inode
;
2469 if (!S_ISDIR(root
->i_mode
) || !root
->i_blocks
|| !root
->i_size
) {
2472 goto free_node_inode
;
2475 sb
->s_root
= d_make_root(root
); /* allocate root dentry */
2478 goto free_root_inode
;
2481 err
= f2fs_register_sysfs(sbi
);
2483 goto free_root_inode
;
2485 /* if there are nt orphan nodes free them */
2486 err
= recover_orphan_inodes(sbi
);
2490 /* recover fsynced data */
2491 if (!test_opt(sbi
, DISABLE_ROLL_FORWARD
)) {
2493 * mount should be failed, when device has readonly mode, and
2494 * previous checkpoint was not done by clean system shutdown.
2496 if (bdev_read_only(sb
->s_bdev
) &&
2497 !is_set_ckpt_flags(sbi
, CP_UMOUNT_FLAG
)) {
2503 set_sbi_flag(sbi
, SBI_NEED_FSCK
);
2508 err
= recover_fsync_data(sbi
, false);
2511 f2fs_msg(sb
, KERN_ERR
,
2512 "Cannot recover all fsync data errno=%d", err
);
2516 err
= recover_fsync_data(sbi
, true);
2518 if (!f2fs_readonly(sb
) && err
> 0) {
2520 f2fs_msg(sb
, KERN_ERR
,
2521 "Need to recover fsync data");
2526 /* recover_fsync_data() cleared this already */
2527 clear_sbi_flag(sbi
, SBI_POR_DOING
);
2530 * If filesystem is not mounted as read-only then
2531 * do start the gc_thread.
2533 if (test_opt(sbi
, BG_GC
) && !f2fs_readonly(sb
)) {
2534 /* After POR, we can run background GC thread.*/
2535 err
= start_gc_thread(sbi
);
2541 /* recover broken superblock */
2543 err
= f2fs_commit_super(sbi
, true);
2544 f2fs_msg(sb
, KERN_INFO
,
2545 "Try to recover %dth superblock, ret: %d",
2546 sbi
->valid_super_block
? 1 : 2, err
);
2549 f2fs_msg(sbi
->sb
, KERN_NOTICE
, "Mounted with checkpoint version = %llx",
2550 cur_cp_version(F2FS_CKPT(sbi
)));
2551 f2fs_update_time(sbi
, CP_TIME
);
2552 f2fs_update_time(sbi
, REQ_TIME
);
2556 f2fs_sync_inode_meta(sbi
);
2558 * Some dirty meta pages can be produced by recover_orphan_inodes()
2559 * failed by EIO. Then, iput(node_inode) can trigger balance_fs_bg()
2560 * followed by write_checkpoint() through f2fs_write_node_pages(), which
2561 * falls into an infinite loop in sync_meta_pages().
2563 truncate_inode_pages_final(META_MAPPING(sbi
));
2565 f2fs_unregister_sysfs(sbi
);
2570 truncate_inode_pages_final(NODE_MAPPING(sbi
));
2571 mutex_lock(&sbi
->umount_mutex
);
2572 release_ino_entry(sbi
, true);
2573 f2fs_leave_shrinker(sbi
);
2574 iput(sbi
->node_inode
);
2575 mutex_unlock(&sbi
->umount_mutex
);
2576 f2fs_destroy_stats(sbi
);
2578 destroy_node_manager(sbi
);
2580 destroy_segment_manager(sbi
);
2582 destroy_device_list(sbi
);
2585 make_bad_inode(sbi
->meta_inode
);
2586 iput(sbi
->meta_inode
);
2588 mempool_destroy(sbi
->write_io_dummy
);
2590 for (i
= 0; i
< NR_PAGE_TYPE
; i
++)
2591 kfree(sbi
->write_io
[i
]);
2592 destroy_percpu_info(sbi
);
2594 for (i
= 0; i
< MAXQUOTAS
; i
++)
2595 kfree(sbi
->s_qf_names
[i
]);
2601 if (sbi
->s_chksum_driver
)
2602 crypto_free_shash(sbi
->s_chksum_driver
);
2605 /* give only one another chance */
2608 shrink_dcache_sb(sb
);
2614 static struct dentry
*f2fs_mount(struct file_system_type
*fs_type
, int flags
,
2615 const char *dev_name
, void *data
)
2617 return mount_bdev(fs_type
, flags
, dev_name
, data
, f2fs_fill_super
);
2620 static void kill_f2fs_super(struct super_block
*sb
)
2623 set_sbi_flag(F2FS_SB(sb
), SBI_IS_CLOSE
);
2624 stop_gc_thread(F2FS_SB(sb
));
2625 stop_discard_thread(F2FS_SB(sb
));
2627 kill_block_super(sb
);
2630 static struct file_system_type f2fs_fs_type
= {
2631 .owner
= THIS_MODULE
,
2633 .mount
= f2fs_mount
,
2634 .kill_sb
= kill_f2fs_super
,
2635 .fs_flags
= FS_REQUIRES_DEV
,
2637 MODULE_ALIAS_FS("f2fs");
2639 static int __init
init_inodecache(void)
2641 f2fs_inode_cachep
= kmem_cache_create("f2fs_inode_cache",
2642 sizeof(struct f2fs_inode_info
), 0,
2643 SLAB_RECLAIM_ACCOUNT
|SLAB_ACCOUNT
, NULL
);
2644 if (!f2fs_inode_cachep
)
2649 static void destroy_inodecache(void)
2652 * Make sure all delayed rcu free inodes are flushed before we
2656 kmem_cache_destroy(f2fs_inode_cachep
);
2659 static int __init
init_f2fs_fs(void)
2663 f2fs_build_trace_ios();
2665 err
= init_inodecache();
2668 err
= create_node_manager_caches();
2670 goto free_inodecache
;
2671 err
= create_segment_manager_caches();
2673 goto free_node_manager_caches
;
2674 err
= create_checkpoint_caches();
2676 goto free_segment_manager_caches
;
2677 err
= create_extent_cache();
2679 goto free_checkpoint_caches
;
2680 err
= f2fs_init_sysfs();
2682 goto free_extent_cache
;
2683 err
= register_shrinker(&f2fs_shrinker_info
);
2686 err
= register_filesystem(&f2fs_fs_type
);
2689 err
= f2fs_create_root_stats();
2691 goto free_filesystem
;
2695 unregister_filesystem(&f2fs_fs_type
);
2697 unregister_shrinker(&f2fs_shrinker_info
);
2701 destroy_extent_cache();
2702 free_checkpoint_caches
:
2703 destroy_checkpoint_caches();
2704 free_segment_manager_caches
:
2705 destroy_segment_manager_caches();
2706 free_node_manager_caches
:
2707 destroy_node_manager_caches();
2709 destroy_inodecache();
2714 static void __exit
exit_f2fs_fs(void)
2716 f2fs_destroy_root_stats();
2717 unregister_filesystem(&f2fs_fs_type
);
2718 unregister_shrinker(&f2fs_shrinker_info
);
2720 destroy_extent_cache();
2721 destroy_checkpoint_caches();
2722 destroy_segment_manager_caches();
2723 destroy_node_manager_caches();
2724 destroy_inodecache();
2725 f2fs_destroy_trace_ios();
2728 module_init(init_f2fs_fs
)
2729 module_exit(exit_f2fs_fs
)
2731 MODULE_AUTHOR("Samsung Electronics's Praesto Team");
2732 MODULE_DESCRIPTION("Flash Friendly File System");
2733 MODULE_LICENSE("GPL");