xfs: fix type usage
[linux/fpc-iii.git] / fs / gfs2 / aops.c
blob68ed069625370fa821de91b058c4c9d229db3a89
1 /*
2 * Copyright (C) Sistina Software, Inc. 1997-2003 All rights reserved.
3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
5 * This copyrighted material is made available to anyone wishing to use,
6 * modify, copy, or redistribute it subject to the terms and conditions
7 * of the GNU General Public License version 2.
8 */
10 #include <linux/sched.h>
11 #include <linux/slab.h>
12 #include <linux/spinlock.h>
13 #include <linux/completion.h>
14 #include <linux/buffer_head.h>
15 #include <linux/pagemap.h>
16 #include <linux/pagevec.h>
17 #include <linux/mpage.h>
18 #include <linux/fs.h>
19 #include <linux/writeback.h>
20 #include <linux/swap.h>
21 #include <linux/gfs2_ondisk.h>
22 #include <linux/backing-dev.h>
23 #include <linux/uio.h>
24 #include <trace/events/writeback.h>
26 #include "gfs2.h"
27 #include "incore.h"
28 #include "bmap.h"
29 #include "glock.h"
30 #include "inode.h"
31 #include "log.h"
32 #include "meta_io.h"
33 #include "quota.h"
34 #include "trans.h"
35 #include "rgrp.h"
36 #include "super.h"
37 #include "util.h"
38 #include "glops.h"
41 static void gfs2_page_add_databufs(struct gfs2_inode *ip, struct page *page,
42 unsigned int from, unsigned int to)
44 struct buffer_head *head = page_buffers(page);
45 unsigned int bsize = head->b_size;
46 struct buffer_head *bh;
47 unsigned int start, end;
49 for (bh = head, start = 0; bh != head || !start;
50 bh = bh->b_this_page, start = end) {
51 end = start + bsize;
52 if (end <= from || start >= to)
53 continue;
54 if (gfs2_is_jdata(ip))
55 set_buffer_uptodate(bh);
56 gfs2_trans_add_data(ip->i_gl, bh);
60 /**
61 * gfs2_get_block_noalloc - Fills in a buffer head with details about a block
62 * @inode: The inode
63 * @lblock: The block number to look up
64 * @bh_result: The buffer head to return the result in
65 * @create: Non-zero if we may add block to the file
67 * Returns: errno
70 static int gfs2_get_block_noalloc(struct inode *inode, sector_t lblock,
71 struct buffer_head *bh_result, int create)
73 int error;
75 error = gfs2_block_map(inode, lblock, bh_result, 0);
76 if (error)
77 return error;
78 if (!buffer_mapped(bh_result))
79 return -EIO;
80 return 0;
83 static int gfs2_get_block_direct(struct inode *inode, sector_t lblock,
84 struct buffer_head *bh_result, int create)
86 return gfs2_block_map(inode, lblock, bh_result, 0);
89 /**
90 * gfs2_writepage_common - Common bits of writepage
91 * @page: The page to be written
92 * @wbc: The writeback control
94 * Returns: 1 if writepage is ok, otherwise an error code or zero if no error.
97 static int gfs2_writepage_common(struct page *page,
98 struct writeback_control *wbc)
100 struct inode *inode = page->mapping->host;
101 struct gfs2_inode *ip = GFS2_I(inode);
102 struct gfs2_sbd *sdp = GFS2_SB(inode);
103 loff_t i_size = i_size_read(inode);
104 pgoff_t end_index = i_size >> PAGE_SHIFT;
105 unsigned offset;
107 if (gfs2_assert_withdraw(sdp, gfs2_glock_is_held_excl(ip->i_gl)))
108 goto out;
109 if (current->journal_info)
110 goto redirty;
111 /* Is the page fully outside i_size? (truncate in progress) */
112 offset = i_size & (PAGE_SIZE-1);
113 if (page->index > end_index || (page->index == end_index && !offset)) {
114 page->mapping->a_ops->invalidatepage(page, 0, PAGE_SIZE);
115 goto out;
117 return 1;
118 redirty:
119 redirty_page_for_writepage(wbc, page);
120 out:
121 unlock_page(page);
122 return 0;
126 * gfs2_writepage - Write page for writeback mappings
127 * @page: The page
128 * @wbc: The writeback control
132 static int gfs2_writepage(struct page *page, struct writeback_control *wbc)
134 int ret;
136 ret = gfs2_writepage_common(page, wbc);
137 if (ret <= 0)
138 return ret;
140 return nobh_writepage(page, gfs2_get_block_noalloc, wbc);
143 /* This is the same as calling block_write_full_page, but it also
144 * writes pages outside of i_size
146 static int gfs2_write_full_page(struct page *page, get_block_t *get_block,
147 struct writeback_control *wbc)
149 struct inode * const inode = page->mapping->host;
150 loff_t i_size = i_size_read(inode);
151 const pgoff_t end_index = i_size >> PAGE_SHIFT;
152 unsigned offset;
155 * The page straddles i_size. It must be zeroed out on each and every
156 * writepage invocation because it may be mmapped. "A file is mapped
157 * in multiples of the page size. For a file that is not a multiple of
158 * the page size, the remaining memory is zeroed when mapped, and
159 * writes to that region are not written out to the file."
161 offset = i_size & (PAGE_SIZE-1);
162 if (page->index == end_index && offset)
163 zero_user_segment(page, offset, PAGE_SIZE);
165 return __block_write_full_page(inode, page, get_block, wbc,
166 end_buffer_async_write);
170 * __gfs2_jdata_writepage - The core of jdata writepage
171 * @page: The page to write
172 * @wbc: The writeback control
174 * This is shared between writepage and writepages and implements the
175 * core of the writepage operation. If a transaction is required then
176 * PageChecked will have been set and the transaction will have
177 * already been started before this is called.
180 static int __gfs2_jdata_writepage(struct page *page, struct writeback_control *wbc)
182 struct inode *inode = page->mapping->host;
183 struct gfs2_inode *ip = GFS2_I(inode);
184 struct gfs2_sbd *sdp = GFS2_SB(inode);
186 if (PageChecked(page)) {
187 ClearPageChecked(page);
188 if (!page_has_buffers(page)) {
189 create_empty_buffers(page, inode->i_sb->s_blocksize,
190 BIT(BH_Dirty)|BIT(BH_Uptodate));
192 gfs2_page_add_databufs(ip, page, 0, sdp->sd_vfs->s_blocksize-1);
194 return gfs2_write_full_page(page, gfs2_get_block_noalloc, wbc);
198 * gfs2_jdata_writepage - Write complete page
199 * @page: Page to write
200 * @wbc: The writeback control
202 * Returns: errno
206 static int gfs2_jdata_writepage(struct page *page, struct writeback_control *wbc)
208 struct inode *inode = page->mapping->host;
209 struct gfs2_inode *ip = GFS2_I(inode);
210 struct gfs2_sbd *sdp = GFS2_SB(inode);
211 int ret;
213 if (gfs2_assert_withdraw(sdp, gfs2_glock_is_held_excl(ip->i_gl)))
214 goto out;
215 if (PageChecked(page) || current->journal_info)
216 goto out_ignore;
217 ret = __gfs2_jdata_writepage(page, wbc);
218 return ret;
220 out_ignore:
221 redirty_page_for_writepage(wbc, page);
222 out:
223 unlock_page(page);
224 return 0;
228 * gfs2_writepages - Write a bunch of dirty pages back to disk
229 * @mapping: The mapping to write
230 * @wbc: Write-back control
232 * Used for both ordered and writeback modes.
234 static int gfs2_writepages(struct address_space *mapping,
235 struct writeback_control *wbc)
237 struct gfs2_sbd *sdp = gfs2_mapping2sbd(mapping);
238 int ret = mpage_writepages(mapping, wbc, gfs2_get_block_noalloc);
241 * Even if we didn't write any pages here, we might still be holding
242 * dirty pages in the ail. We forcibly flush the ail because we don't
243 * want balance_dirty_pages() to loop indefinitely trying to write out
244 * pages held in the ail that it can't find.
246 if (ret == 0)
247 set_bit(SDF_FORCE_AIL_FLUSH, &sdp->sd_flags);
249 return ret;
253 * gfs2_write_jdata_pagevec - Write back a pagevec's worth of pages
254 * @mapping: The mapping
255 * @wbc: The writeback control
256 * @pvec: The vector of pages
257 * @nr_pages: The number of pages to write
258 * @end: End position
259 * @done_index: Page index
261 * Returns: non-zero if loop should terminate, zero otherwise
264 static int gfs2_write_jdata_pagevec(struct address_space *mapping,
265 struct writeback_control *wbc,
266 struct pagevec *pvec,
267 int nr_pages, pgoff_t end,
268 pgoff_t *done_index)
270 struct inode *inode = mapping->host;
271 struct gfs2_sbd *sdp = GFS2_SB(inode);
272 unsigned nrblocks = nr_pages * (PAGE_SIZE/inode->i_sb->s_blocksize);
273 int i;
274 int ret;
276 ret = gfs2_trans_begin(sdp, nrblocks, nrblocks);
277 if (ret < 0)
278 return ret;
280 for(i = 0; i < nr_pages; i++) {
281 struct page *page = pvec->pages[i];
284 * At this point, the page may be truncated or
285 * invalidated (changing page->mapping to NULL), or
286 * even swizzled back from swapper_space to tmpfs file
287 * mapping. However, page->index will not change
288 * because we have a reference on the page.
290 if (page->index > end) {
292 * can't be range_cyclic (1st pass) because
293 * end == -1 in that case.
295 ret = 1;
296 break;
299 *done_index = page->index;
301 lock_page(page);
303 if (unlikely(page->mapping != mapping)) {
304 continue_unlock:
305 unlock_page(page);
306 continue;
309 if (!PageDirty(page)) {
310 /* someone wrote it for us */
311 goto continue_unlock;
314 if (PageWriteback(page)) {
315 if (wbc->sync_mode != WB_SYNC_NONE)
316 wait_on_page_writeback(page);
317 else
318 goto continue_unlock;
321 BUG_ON(PageWriteback(page));
322 if (!clear_page_dirty_for_io(page))
323 goto continue_unlock;
325 trace_wbc_writepage(wbc, inode_to_bdi(inode));
327 ret = __gfs2_jdata_writepage(page, wbc);
328 if (unlikely(ret)) {
329 if (ret == AOP_WRITEPAGE_ACTIVATE) {
330 unlock_page(page);
331 ret = 0;
332 } else {
335 * done_index is set past this page,
336 * so media errors will not choke
337 * background writeout for the entire
338 * file. This has consequences for
339 * range_cyclic semantics (ie. it may
340 * not be suitable for data integrity
341 * writeout).
343 *done_index = page->index + 1;
344 ret = 1;
345 break;
350 * We stop writing back only if we are not doing
351 * integrity sync. In case of integrity sync we have to
352 * keep going until we have written all the pages
353 * we tagged for writeback prior to entering this loop.
355 if (--wbc->nr_to_write <= 0 && wbc->sync_mode == WB_SYNC_NONE) {
356 ret = 1;
357 break;
361 gfs2_trans_end(sdp);
362 return ret;
366 * gfs2_write_cache_jdata - Like write_cache_pages but different
367 * @mapping: The mapping to write
368 * @wbc: The writeback control
370 * The reason that we use our own function here is that we need to
371 * start transactions before we grab page locks. This allows us
372 * to get the ordering right.
375 static int gfs2_write_cache_jdata(struct address_space *mapping,
376 struct writeback_control *wbc)
378 int ret = 0;
379 int done = 0;
380 struct pagevec pvec;
381 int nr_pages;
382 pgoff_t uninitialized_var(writeback_index);
383 pgoff_t index;
384 pgoff_t end;
385 pgoff_t done_index;
386 int cycled;
387 int range_whole = 0;
388 int tag;
390 pagevec_init(&pvec, 0);
391 if (wbc->range_cyclic) {
392 writeback_index = mapping->writeback_index; /* prev offset */
393 index = writeback_index;
394 if (index == 0)
395 cycled = 1;
396 else
397 cycled = 0;
398 end = -1;
399 } else {
400 index = wbc->range_start >> PAGE_SHIFT;
401 end = wbc->range_end >> PAGE_SHIFT;
402 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
403 range_whole = 1;
404 cycled = 1; /* ignore range_cyclic tests */
406 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
407 tag = PAGECACHE_TAG_TOWRITE;
408 else
409 tag = PAGECACHE_TAG_DIRTY;
411 retry:
412 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
413 tag_pages_for_writeback(mapping, index, end);
414 done_index = index;
415 while (!done && (index <= end)) {
416 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
417 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
418 if (nr_pages == 0)
419 break;
421 ret = gfs2_write_jdata_pagevec(mapping, wbc, &pvec, nr_pages, end, &done_index);
422 if (ret)
423 done = 1;
424 if (ret > 0)
425 ret = 0;
426 pagevec_release(&pvec);
427 cond_resched();
430 if (!cycled && !done) {
432 * range_cyclic:
433 * We hit the last page and there is more work to be done: wrap
434 * back to the start of the file
436 cycled = 1;
437 index = 0;
438 end = writeback_index - 1;
439 goto retry;
442 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
443 mapping->writeback_index = done_index;
445 return ret;
450 * gfs2_jdata_writepages - Write a bunch of dirty pages back to disk
451 * @mapping: The mapping to write
452 * @wbc: The writeback control
456 static int gfs2_jdata_writepages(struct address_space *mapping,
457 struct writeback_control *wbc)
459 struct gfs2_inode *ip = GFS2_I(mapping->host);
460 struct gfs2_sbd *sdp = GFS2_SB(mapping->host);
461 int ret;
463 ret = gfs2_write_cache_jdata(mapping, wbc);
464 if (ret == 0 && wbc->sync_mode == WB_SYNC_ALL) {
465 gfs2_log_flush(sdp, ip->i_gl, NORMAL_FLUSH);
466 ret = gfs2_write_cache_jdata(mapping, wbc);
468 return ret;
472 * stuffed_readpage - Fill in a Linux page with stuffed file data
473 * @ip: the inode
474 * @page: the page
476 * Returns: errno
479 static int stuffed_readpage(struct gfs2_inode *ip, struct page *page)
481 struct buffer_head *dibh;
482 u64 dsize = i_size_read(&ip->i_inode);
483 void *kaddr;
484 int error;
487 * Due to the order of unstuffing files and ->fault(), we can be
488 * asked for a zero page in the case of a stuffed file being extended,
489 * so we need to supply one here. It doesn't happen often.
491 if (unlikely(page->index)) {
492 zero_user(page, 0, PAGE_SIZE);
493 SetPageUptodate(page);
494 return 0;
497 error = gfs2_meta_inode_buffer(ip, &dibh);
498 if (error)
499 return error;
501 kaddr = kmap_atomic(page);
502 if (dsize > (dibh->b_size - sizeof(struct gfs2_dinode)))
503 dsize = (dibh->b_size - sizeof(struct gfs2_dinode));
504 memcpy(kaddr, dibh->b_data + sizeof(struct gfs2_dinode), dsize);
505 memset(kaddr + dsize, 0, PAGE_SIZE - dsize);
506 kunmap_atomic(kaddr);
507 flush_dcache_page(page);
508 brelse(dibh);
509 SetPageUptodate(page);
511 return 0;
516 * __gfs2_readpage - readpage
517 * @file: The file to read a page for
518 * @page: The page to read
520 * This is the core of gfs2's readpage. Its used by the internal file
521 * reading code as in that case we already hold the glock. Also its
522 * called by gfs2_readpage() once the required lock has been granted.
526 static int __gfs2_readpage(void *file, struct page *page)
528 struct gfs2_inode *ip = GFS2_I(page->mapping->host);
529 struct gfs2_sbd *sdp = GFS2_SB(page->mapping->host);
530 int error;
532 if (gfs2_is_stuffed(ip)) {
533 error = stuffed_readpage(ip, page);
534 unlock_page(page);
535 } else {
536 error = mpage_readpage(page, gfs2_block_map);
539 if (unlikely(test_bit(SDF_SHUTDOWN, &sdp->sd_flags)))
540 return -EIO;
542 return error;
546 * gfs2_readpage - read a page of a file
547 * @file: The file to read
548 * @page: The page of the file
550 * This deals with the locking required. We have to unlock and
551 * relock the page in order to get the locking in the right
552 * order.
555 static int gfs2_readpage(struct file *file, struct page *page)
557 struct address_space *mapping = page->mapping;
558 struct gfs2_inode *ip = GFS2_I(mapping->host);
559 struct gfs2_holder gh;
560 int error;
562 unlock_page(page);
563 gfs2_holder_init(ip->i_gl, LM_ST_SHARED, 0, &gh);
564 error = gfs2_glock_nq(&gh);
565 if (unlikely(error))
566 goto out;
567 error = AOP_TRUNCATED_PAGE;
568 lock_page(page);
569 if (page->mapping == mapping && !PageUptodate(page))
570 error = __gfs2_readpage(file, page);
571 else
572 unlock_page(page);
573 gfs2_glock_dq(&gh);
574 out:
575 gfs2_holder_uninit(&gh);
576 if (error && error != AOP_TRUNCATED_PAGE)
577 lock_page(page);
578 return error;
582 * gfs2_internal_read - read an internal file
583 * @ip: The gfs2 inode
584 * @buf: The buffer to fill
585 * @pos: The file position
586 * @size: The amount to read
590 int gfs2_internal_read(struct gfs2_inode *ip, char *buf, loff_t *pos,
591 unsigned size)
593 struct address_space *mapping = ip->i_inode.i_mapping;
594 unsigned long index = *pos / PAGE_SIZE;
595 unsigned offset = *pos & (PAGE_SIZE - 1);
596 unsigned copied = 0;
597 unsigned amt;
598 struct page *page;
599 void *p;
601 do {
602 amt = size - copied;
603 if (offset + size > PAGE_SIZE)
604 amt = PAGE_SIZE - offset;
605 page = read_cache_page(mapping, index, __gfs2_readpage, NULL);
606 if (IS_ERR(page))
607 return PTR_ERR(page);
608 p = kmap_atomic(page);
609 memcpy(buf + copied, p + offset, amt);
610 kunmap_atomic(p);
611 put_page(page);
612 copied += amt;
613 index++;
614 offset = 0;
615 } while(copied < size);
616 (*pos) += size;
617 return size;
621 * gfs2_readpages - Read a bunch of pages at once
622 * @file: The file to read from
623 * @mapping: Address space info
624 * @pages: List of pages to read
625 * @nr_pages: Number of pages to read
627 * Some notes:
628 * 1. This is only for readahead, so we can simply ignore any things
629 * which are slightly inconvenient (such as locking conflicts between
630 * the page lock and the glock) and return having done no I/O. Its
631 * obviously not something we'd want to do on too regular a basis.
632 * Any I/O we ignore at this time will be done via readpage later.
633 * 2. We don't handle stuffed files here we let readpage do the honours.
634 * 3. mpage_readpages() does most of the heavy lifting in the common case.
635 * 4. gfs2_block_map() is relied upon to set BH_Boundary in the right places.
638 static int gfs2_readpages(struct file *file, struct address_space *mapping,
639 struct list_head *pages, unsigned nr_pages)
641 struct inode *inode = mapping->host;
642 struct gfs2_inode *ip = GFS2_I(inode);
643 struct gfs2_sbd *sdp = GFS2_SB(inode);
644 struct gfs2_holder gh;
645 int ret;
647 gfs2_holder_init(ip->i_gl, LM_ST_SHARED, 0, &gh);
648 ret = gfs2_glock_nq(&gh);
649 if (unlikely(ret))
650 goto out_uninit;
651 if (!gfs2_is_stuffed(ip))
652 ret = mpage_readpages(mapping, pages, nr_pages, gfs2_block_map);
653 gfs2_glock_dq(&gh);
654 out_uninit:
655 gfs2_holder_uninit(&gh);
656 if (unlikely(test_bit(SDF_SHUTDOWN, &sdp->sd_flags)))
657 ret = -EIO;
658 return ret;
662 * gfs2_write_begin - Begin to write to a file
663 * @file: The file to write to
664 * @mapping: The mapping in which to write
665 * @pos: The file offset at which to start writing
666 * @len: Length of the write
667 * @flags: Various flags
668 * @pagep: Pointer to return the page
669 * @fsdata: Pointer to return fs data (unused by GFS2)
671 * Returns: errno
674 static int gfs2_write_begin(struct file *file, struct address_space *mapping,
675 loff_t pos, unsigned len, unsigned flags,
676 struct page **pagep, void **fsdata)
678 struct gfs2_inode *ip = GFS2_I(mapping->host);
679 struct gfs2_sbd *sdp = GFS2_SB(mapping->host);
680 struct gfs2_inode *m_ip = GFS2_I(sdp->sd_statfs_inode);
681 unsigned int data_blocks = 0, ind_blocks = 0, rblocks;
682 unsigned requested = 0;
683 int alloc_required;
684 int error = 0;
685 pgoff_t index = pos >> PAGE_SHIFT;
686 unsigned from = pos & (PAGE_SIZE - 1);
687 struct page *page;
689 gfs2_holder_init(ip->i_gl, LM_ST_EXCLUSIVE, 0, &ip->i_gh);
690 error = gfs2_glock_nq(&ip->i_gh);
691 if (unlikely(error))
692 goto out_uninit;
693 if (&ip->i_inode == sdp->sd_rindex) {
694 error = gfs2_glock_nq_init(m_ip->i_gl, LM_ST_EXCLUSIVE,
695 GL_NOCACHE, &m_ip->i_gh);
696 if (unlikely(error)) {
697 gfs2_glock_dq(&ip->i_gh);
698 goto out_uninit;
702 alloc_required = gfs2_write_alloc_required(ip, pos, len);
704 if (alloc_required || gfs2_is_jdata(ip))
705 gfs2_write_calc_reserv(ip, len, &data_blocks, &ind_blocks);
707 if (alloc_required) {
708 struct gfs2_alloc_parms ap = { .aflags = 0, };
709 requested = data_blocks + ind_blocks;
710 ap.target = requested;
711 error = gfs2_quota_lock_check(ip, &ap);
712 if (error)
713 goto out_unlock;
715 error = gfs2_inplace_reserve(ip, &ap);
716 if (error)
717 goto out_qunlock;
720 rblocks = RES_DINODE + ind_blocks;
721 if (gfs2_is_jdata(ip))
722 rblocks += data_blocks ? data_blocks : 1;
723 if (ind_blocks || data_blocks)
724 rblocks += RES_STATFS + RES_QUOTA;
725 if (&ip->i_inode == sdp->sd_rindex)
726 rblocks += 2 * RES_STATFS;
727 if (alloc_required)
728 rblocks += gfs2_rg_blocks(ip, requested);
730 error = gfs2_trans_begin(sdp, rblocks,
731 PAGE_SIZE/sdp->sd_sb.sb_bsize);
732 if (error)
733 goto out_trans_fail;
735 error = -ENOMEM;
736 flags |= AOP_FLAG_NOFS;
737 page = grab_cache_page_write_begin(mapping, index, flags);
738 *pagep = page;
739 if (unlikely(!page))
740 goto out_endtrans;
742 if (gfs2_is_stuffed(ip)) {
743 error = 0;
744 if (pos + len > sdp->sd_sb.sb_bsize - sizeof(struct gfs2_dinode)) {
745 error = gfs2_unstuff_dinode(ip, page);
746 if (error == 0)
747 goto prepare_write;
748 } else if (!PageUptodate(page)) {
749 error = stuffed_readpage(ip, page);
751 goto out;
754 prepare_write:
755 error = __block_write_begin(page, from, len, gfs2_block_map);
756 out:
757 if (error == 0)
758 return 0;
760 unlock_page(page);
761 put_page(page);
763 gfs2_trans_end(sdp);
764 if (pos + len > ip->i_inode.i_size)
765 gfs2_trim_blocks(&ip->i_inode);
766 goto out_trans_fail;
768 out_endtrans:
769 gfs2_trans_end(sdp);
770 out_trans_fail:
771 if (alloc_required) {
772 gfs2_inplace_release(ip);
773 out_qunlock:
774 gfs2_quota_unlock(ip);
776 out_unlock:
777 if (&ip->i_inode == sdp->sd_rindex) {
778 gfs2_glock_dq(&m_ip->i_gh);
779 gfs2_holder_uninit(&m_ip->i_gh);
781 gfs2_glock_dq(&ip->i_gh);
782 out_uninit:
783 gfs2_holder_uninit(&ip->i_gh);
784 return error;
788 * adjust_fs_space - Adjusts the free space available due to gfs2_grow
789 * @inode: the rindex inode
791 static void adjust_fs_space(struct inode *inode)
793 struct gfs2_sbd *sdp = inode->i_sb->s_fs_info;
794 struct gfs2_inode *m_ip = GFS2_I(sdp->sd_statfs_inode);
795 struct gfs2_inode *l_ip = GFS2_I(sdp->sd_sc_inode);
796 struct gfs2_statfs_change_host *m_sc = &sdp->sd_statfs_master;
797 struct gfs2_statfs_change_host *l_sc = &sdp->sd_statfs_local;
798 struct buffer_head *m_bh, *l_bh;
799 u64 fs_total, new_free;
801 /* Total up the file system space, according to the latest rindex. */
802 fs_total = gfs2_ri_total(sdp);
803 if (gfs2_meta_inode_buffer(m_ip, &m_bh) != 0)
804 return;
806 spin_lock(&sdp->sd_statfs_spin);
807 gfs2_statfs_change_in(m_sc, m_bh->b_data +
808 sizeof(struct gfs2_dinode));
809 if (fs_total > (m_sc->sc_total + l_sc->sc_total))
810 new_free = fs_total - (m_sc->sc_total + l_sc->sc_total);
811 else
812 new_free = 0;
813 spin_unlock(&sdp->sd_statfs_spin);
814 fs_warn(sdp, "File system extended by %llu blocks.\n",
815 (unsigned long long)new_free);
816 gfs2_statfs_change(sdp, new_free, new_free, 0);
818 if (gfs2_meta_inode_buffer(l_ip, &l_bh) != 0)
819 goto out;
820 update_statfs(sdp, m_bh, l_bh);
821 brelse(l_bh);
822 out:
823 brelse(m_bh);
827 * gfs2_stuffed_write_end - Write end for stuffed files
828 * @inode: The inode
829 * @dibh: The buffer_head containing the on-disk inode
830 * @pos: The file position
831 * @len: The length of the write
832 * @copied: How much was actually copied by the VFS
833 * @page: The page
835 * This copies the data from the page into the inode block after
836 * the inode data structure itself.
838 * Returns: errno
840 static int gfs2_stuffed_write_end(struct inode *inode, struct buffer_head *dibh,
841 loff_t pos, unsigned len, unsigned copied,
842 struct page *page)
844 struct gfs2_inode *ip = GFS2_I(inode);
845 struct gfs2_sbd *sdp = GFS2_SB(inode);
846 struct gfs2_inode *m_ip = GFS2_I(sdp->sd_statfs_inode);
847 u64 to = pos + copied;
848 void *kaddr;
849 unsigned char *buf = dibh->b_data + sizeof(struct gfs2_dinode);
851 BUG_ON((pos + len) > (dibh->b_size - sizeof(struct gfs2_dinode)));
852 kaddr = kmap_atomic(page);
853 memcpy(buf + pos, kaddr + pos, copied);
854 flush_dcache_page(page);
855 kunmap_atomic(kaddr);
857 WARN_ON(!PageUptodate(page));
858 unlock_page(page);
859 put_page(page);
861 if (copied) {
862 if (inode->i_size < to)
863 i_size_write(inode, to);
864 mark_inode_dirty(inode);
867 if (inode == sdp->sd_rindex) {
868 adjust_fs_space(inode);
869 sdp->sd_rindex_uptodate = 0;
872 brelse(dibh);
873 gfs2_trans_end(sdp);
874 if (inode == sdp->sd_rindex) {
875 gfs2_glock_dq(&m_ip->i_gh);
876 gfs2_holder_uninit(&m_ip->i_gh);
878 gfs2_glock_dq(&ip->i_gh);
879 gfs2_holder_uninit(&ip->i_gh);
880 return copied;
884 * gfs2_write_end
885 * @file: The file to write to
886 * @mapping: The address space to write to
887 * @pos: The file position
888 * @len: The length of the data
889 * @copied: How much was actually copied by the VFS
890 * @page: The page that has been written
891 * @fsdata: The fsdata (unused in GFS2)
893 * The main write_end function for GFS2. We have a separate one for
894 * stuffed files as they are slightly different, otherwise we just
895 * put our locking around the VFS provided functions.
897 * Returns: errno
900 static int gfs2_write_end(struct file *file, struct address_space *mapping,
901 loff_t pos, unsigned len, unsigned copied,
902 struct page *page, void *fsdata)
904 struct inode *inode = page->mapping->host;
905 struct gfs2_inode *ip = GFS2_I(inode);
906 struct gfs2_sbd *sdp = GFS2_SB(inode);
907 struct gfs2_inode *m_ip = GFS2_I(sdp->sd_statfs_inode);
908 struct buffer_head *dibh;
909 unsigned int from = pos & (PAGE_SIZE - 1);
910 unsigned int to = from + len;
911 int ret;
912 struct gfs2_trans *tr = current->journal_info;
913 BUG_ON(!tr);
915 BUG_ON(gfs2_glock_is_locked_by_me(ip->i_gl) == NULL);
917 ret = gfs2_meta_inode_buffer(ip, &dibh);
918 if (unlikely(ret)) {
919 unlock_page(page);
920 put_page(page);
921 goto failed;
924 if (gfs2_is_stuffed(ip))
925 return gfs2_stuffed_write_end(inode, dibh, pos, len, copied, page);
927 if (!gfs2_is_writeback(ip))
928 gfs2_page_add_databufs(ip, page, from, to);
930 ret = generic_write_end(file, mapping, pos, len, copied, page, fsdata);
931 if (tr->tr_num_buf_new)
932 __mark_inode_dirty(inode, I_DIRTY_DATASYNC);
933 else
934 gfs2_trans_add_meta(ip->i_gl, dibh);
937 if (inode == sdp->sd_rindex) {
938 adjust_fs_space(inode);
939 sdp->sd_rindex_uptodate = 0;
942 brelse(dibh);
943 failed:
944 gfs2_trans_end(sdp);
945 gfs2_inplace_release(ip);
946 if (ip->i_qadata && ip->i_qadata->qa_qd_num)
947 gfs2_quota_unlock(ip);
948 if (inode == sdp->sd_rindex) {
949 gfs2_glock_dq(&m_ip->i_gh);
950 gfs2_holder_uninit(&m_ip->i_gh);
952 gfs2_glock_dq(&ip->i_gh);
953 gfs2_holder_uninit(&ip->i_gh);
954 return ret;
958 * gfs2_set_page_dirty - Page dirtying function
959 * @page: The page to dirty
961 * Returns: 1 if it dirtyed the page, or 0 otherwise
964 static int gfs2_set_page_dirty(struct page *page)
966 SetPageChecked(page);
967 return __set_page_dirty_buffers(page);
971 * gfs2_bmap - Block map function
972 * @mapping: Address space info
973 * @lblock: The block to map
975 * Returns: The disk address for the block or 0 on hole or error
978 static sector_t gfs2_bmap(struct address_space *mapping, sector_t lblock)
980 struct gfs2_inode *ip = GFS2_I(mapping->host);
981 struct gfs2_holder i_gh;
982 sector_t dblock = 0;
983 int error;
985 error = gfs2_glock_nq_init(ip->i_gl, LM_ST_SHARED, LM_FLAG_ANY, &i_gh);
986 if (error)
987 return 0;
989 if (!gfs2_is_stuffed(ip))
990 dblock = generic_block_bmap(mapping, lblock, gfs2_block_map);
992 gfs2_glock_dq_uninit(&i_gh);
994 return dblock;
997 static void gfs2_discard(struct gfs2_sbd *sdp, struct buffer_head *bh)
999 struct gfs2_bufdata *bd;
1001 lock_buffer(bh);
1002 gfs2_log_lock(sdp);
1003 clear_buffer_dirty(bh);
1004 bd = bh->b_private;
1005 if (bd) {
1006 if (!list_empty(&bd->bd_list) && !buffer_pinned(bh))
1007 list_del_init(&bd->bd_list);
1008 else
1009 gfs2_remove_from_journal(bh, REMOVE_JDATA);
1011 bh->b_bdev = NULL;
1012 clear_buffer_mapped(bh);
1013 clear_buffer_req(bh);
1014 clear_buffer_new(bh);
1015 gfs2_log_unlock(sdp);
1016 unlock_buffer(bh);
1019 static void gfs2_invalidatepage(struct page *page, unsigned int offset,
1020 unsigned int length)
1022 struct gfs2_sbd *sdp = GFS2_SB(page->mapping->host);
1023 unsigned int stop = offset + length;
1024 int partial_page = (offset || length < PAGE_SIZE);
1025 struct buffer_head *bh, *head;
1026 unsigned long pos = 0;
1028 BUG_ON(!PageLocked(page));
1029 if (!partial_page)
1030 ClearPageChecked(page);
1031 if (!page_has_buffers(page))
1032 goto out;
1034 bh = head = page_buffers(page);
1035 do {
1036 if (pos + bh->b_size > stop)
1037 return;
1039 if (offset <= pos)
1040 gfs2_discard(sdp, bh);
1041 pos += bh->b_size;
1042 bh = bh->b_this_page;
1043 } while (bh != head);
1044 out:
1045 if (!partial_page)
1046 try_to_release_page(page, 0);
1050 * gfs2_ok_for_dio - check that dio is valid on this file
1051 * @ip: The inode
1052 * @offset: The offset at which we are reading or writing
1054 * Returns: 0 (to ignore the i/o request and thus fall back to buffered i/o)
1055 * 1 (to accept the i/o request)
1057 static int gfs2_ok_for_dio(struct gfs2_inode *ip, loff_t offset)
1060 * Should we return an error here? I can't see that O_DIRECT for
1061 * a stuffed file makes any sense. For now we'll silently fall
1062 * back to buffered I/O
1064 if (gfs2_is_stuffed(ip))
1065 return 0;
1067 if (offset >= i_size_read(&ip->i_inode))
1068 return 0;
1069 return 1;
1074 static ssize_t gfs2_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
1076 struct file *file = iocb->ki_filp;
1077 struct inode *inode = file->f_mapping->host;
1078 struct address_space *mapping = inode->i_mapping;
1079 struct gfs2_inode *ip = GFS2_I(inode);
1080 loff_t offset = iocb->ki_pos;
1081 struct gfs2_holder gh;
1082 int rv;
1085 * Deferred lock, even if its a write, since we do no allocation
1086 * on this path. All we need change is atime, and this lock mode
1087 * ensures that other nodes have flushed their buffered read caches
1088 * (i.e. their page cache entries for this inode). We do not,
1089 * unfortunately have the option of only flushing a range like
1090 * the VFS does.
1092 gfs2_holder_init(ip->i_gl, LM_ST_DEFERRED, 0, &gh);
1093 rv = gfs2_glock_nq(&gh);
1094 if (rv)
1095 goto out_uninit;
1096 rv = gfs2_ok_for_dio(ip, offset);
1097 if (rv != 1)
1098 goto out; /* dio not valid, fall back to buffered i/o */
1101 * Now since we are holding a deferred (CW) lock at this point, you
1102 * might be wondering why this is ever needed. There is a case however
1103 * where we've granted a deferred local lock against a cached exclusive
1104 * glock. That is ok provided all granted local locks are deferred, but
1105 * it also means that it is possible to encounter pages which are
1106 * cached and possibly also mapped. So here we check for that and sort
1107 * them out ahead of the dio. The glock state machine will take care of
1108 * everything else.
1110 * If in fact the cached glock state (gl->gl_state) is deferred (CW) in
1111 * the first place, mapping->nr_pages will always be zero.
1113 if (mapping->nrpages) {
1114 loff_t lstart = offset & ~(PAGE_SIZE - 1);
1115 loff_t len = iov_iter_count(iter);
1116 loff_t end = PAGE_ALIGN(offset + len) - 1;
1118 rv = 0;
1119 if (len == 0)
1120 goto out;
1121 if (test_and_clear_bit(GIF_SW_PAGED, &ip->i_flags))
1122 unmap_shared_mapping_range(ip->i_inode.i_mapping, offset, len);
1123 rv = filemap_write_and_wait_range(mapping, lstart, end);
1124 if (rv)
1125 goto out;
1126 if (iov_iter_rw(iter) == WRITE)
1127 truncate_inode_pages_range(mapping, lstart, end);
1130 rv = __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev, iter,
1131 gfs2_get_block_direct, NULL, NULL, 0);
1132 out:
1133 gfs2_glock_dq(&gh);
1134 out_uninit:
1135 gfs2_holder_uninit(&gh);
1136 return rv;
1140 * gfs2_releasepage - free the metadata associated with a page
1141 * @page: the page that's being released
1142 * @gfp_mask: passed from Linux VFS, ignored by us
1144 * Call try_to_free_buffers() if the buffers in this page can be
1145 * released.
1147 * Returns: 0
1150 int gfs2_releasepage(struct page *page, gfp_t gfp_mask)
1152 struct address_space *mapping = page->mapping;
1153 struct gfs2_sbd *sdp = gfs2_mapping2sbd(mapping);
1154 struct buffer_head *bh, *head;
1155 struct gfs2_bufdata *bd;
1157 if (!page_has_buffers(page))
1158 return 0;
1161 * From xfs_vm_releasepage: mm accommodates an old ext3 case where
1162 * clean pages might not have had the dirty bit cleared. Thus, it can
1163 * send actual dirty pages to ->releasepage() via shrink_active_list().
1165 * As a workaround, we skip pages that contain dirty buffers below.
1166 * Once ->releasepage isn't called on dirty pages anymore, we can warn
1167 * on dirty buffers like we used to here again.
1170 gfs2_log_lock(sdp);
1171 spin_lock(&sdp->sd_ail_lock);
1172 head = bh = page_buffers(page);
1173 do {
1174 if (atomic_read(&bh->b_count))
1175 goto cannot_release;
1176 bd = bh->b_private;
1177 if (bd && bd->bd_tr)
1178 goto cannot_release;
1179 if (buffer_dirty(bh) || WARN_ON(buffer_pinned(bh)))
1180 goto cannot_release;
1181 bh = bh->b_this_page;
1182 } while(bh != head);
1183 spin_unlock(&sdp->sd_ail_lock);
1185 head = bh = page_buffers(page);
1186 do {
1187 bd = bh->b_private;
1188 if (bd) {
1189 gfs2_assert_warn(sdp, bd->bd_bh == bh);
1190 if (!list_empty(&bd->bd_list))
1191 list_del_init(&bd->bd_list);
1192 bd->bd_bh = NULL;
1193 bh->b_private = NULL;
1194 kmem_cache_free(gfs2_bufdata_cachep, bd);
1197 bh = bh->b_this_page;
1198 } while (bh != head);
1199 gfs2_log_unlock(sdp);
1201 return try_to_free_buffers(page);
1203 cannot_release:
1204 spin_unlock(&sdp->sd_ail_lock);
1205 gfs2_log_unlock(sdp);
1206 return 0;
1209 static const struct address_space_operations gfs2_writeback_aops = {
1210 .writepage = gfs2_writepage,
1211 .writepages = gfs2_writepages,
1212 .readpage = gfs2_readpage,
1213 .readpages = gfs2_readpages,
1214 .write_begin = gfs2_write_begin,
1215 .write_end = gfs2_write_end,
1216 .bmap = gfs2_bmap,
1217 .invalidatepage = gfs2_invalidatepage,
1218 .releasepage = gfs2_releasepage,
1219 .direct_IO = gfs2_direct_IO,
1220 .migratepage = buffer_migrate_page,
1221 .is_partially_uptodate = block_is_partially_uptodate,
1222 .error_remove_page = generic_error_remove_page,
1225 static const struct address_space_operations gfs2_ordered_aops = {
1226 .writepage = gfs2_writepage,
1227 .writepages = gfs2_writepages,
1228 .readpage = gfs2_readpage,
1229 .readpages = gfs2_readpages,
1230 .write_begin = gfs2_write_begin,
1231 .write_end = gfs2_write_end,
1232 .set_page_dirty = gfs2_set_page_dirty,
1233 .bmap = gfs2_bmap,
1234 .invalidatepage = gfs2_invalidatepage,
1235 .releasepage = gfs2_releasepage,
1236 .direct_IO = gfs2_direct_IO,
1237 .migratepage = buffer_migrate_page,
1238 .is_partially_uptodate = block_is_partially_uptodate,
1239 .error_remove_page = generic_error_remove_page,
1242 static const struct address_space_operations gfs2_jdata_aops = {
1243 .writepage = gfs2_jdata_writepage,
1244 .writepages = gfs2_jdata_writepages,
1245 .readpage = gfs2_readpage,
1246 .readpages = gfs2_readpages,
1247 .write_begin = gfs2_write_begin,
1248 .write_end = gfs2_write_end,
1249 .set_page_dirty = gfs2_set_page_dirty,
1250 .bmap = gfs2_bmap,
1251 .invalidatepage = gfs2_invalidatepage,
1252 .releasepage = gfs2_releasepage,
1253 .is_partially_uptodate = block_is_partially_uptodate,
1254 .error_remove_page = generic_error_remove_page,
1257 void gfs2_set_aops(struct inode *inode)
1259 struct gfs2_inode *ip = GFS2_I(inode);
1261 if (gfs2_is_writeback(ip))
1262 inode->i_mapping->a_ops = &gfs2_writeback_aops;
1263 else if (gfs2_is_ordered(ip))
1264 inode->i_mapping->a_ops = &gfs2_ordered_aops;
1265 else if (gfs2_is_jdata(ip))
1266 inode->i_mapping->a_ops = &gfs2_jdata_aops;
1267 else
1268 BUG();