2 * This file is part of UBIFS.
4 * Copyright (C) 2006-2008 Nokia Corporation.
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published by
8 * the Free Software Foundation.
10 * This program is distributed in the hope that it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
15 * You should have received a copy of the GNU General Public License along with
16 * this program; if not, write to the Free Software Foundation, Inc., 51
17 * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
19 * Authors: Adrian Hunter
20 * Artem Bityutskiy (Битюцкий Артём)
24 * This file implements TNC (Tree Node Cache) which caches indexing nodes of
27 * At the moment the locking rules of the TNC tree are quite simple and
28 * straightforward. We just have a mutex and lock it when we traverse the
29 * tree. If a znode is not in memory, we read it from flash while still having
33 #include <linux/crc32.h>
34 #include <linux/slab.h>
37 static int try_read_node(const struct ubifs_info
*c
, void *buf
, int type
,
38 int len
, int lnum
, int offs
);
39 static int fallible_read_node(struct ubifs_info
*c
, const union ubifs_key
*key
,
40 struct ubifs_zbranch
*zbr
, void *node
);
43 * Returned codes of 'matches_name()' and 'fallible_matches_name()' functions.
44 * @NAME_LESS: name corresponding to the first argument is less than second
45 * @NAME_MATCHES: names match
46 * @NAME_GREATER: name corresponding to the second argument is greater than
48 * @NOT_ON_MEDIA: node referred by zbranch does not exist on the media
50 * These constants were introduce to improve readability.
60 * insert_old_idx - record an index node obsoleted since the last commit start.
61 * @c: UBIFS file-system description object
62 * @lnum: LEB number of obsoleted index node
63 * @offs: offset of obsoleted index node
65 * Returns %0 on success, and a negative error code on failure.
67 * For recovery, there must always be a complete intact version of the index on
68 * flash at all times. That is called the "old index". It is the index as at the
69 * time of the last successful commit. Many of the index nodes in the old index
70 * may be dirty, but they must not be erased until the next successful commit
71 * (at which point that index becomes the old index).
73 * That means that the garbage collection and the in-the-gaps method of
74 * committing must be able to determine if an index node is in the old index.
75 * Most of the old index nodes can be found by looking up the TNC using the
76 * 'lookup_znode()' function. However, some of the old index nodes may have
77 * been deleted from the current index or may have been changed so much that
78 * they cannot be easily found. In those cases, an entry is added to an RB-tree.
79 * That is what this function does. The RB-tree is ordered by LEB number and
80 * offset because they uniquely identify the old index node.
82 static int insert_old_idx(struct ubifs_info
*c
, int lnum
, int offs
)
84 struct ubifs_old_idx
*old_idx
, *o
;
85 struct rb_node
**p
, *parent
= NULL
;
87 old_idx
= kmalloc(sizeof(struct ubifs_old_idx
), GFP_NOFS
);
88 if (unlikely(!old_idx
))
93 p
= &c
->old_idx
.rb_node
;
96 o
= rb_entry(parent
, struct ubifs_old_idx
, rb
);
99 else if (lnum
> o
->lnum
)
101 else if (offs
< o
->offs
)
103 else if (offs
> o
->offs
)
106 ubifs_err(c
, "old idx added twice!");
111 rb_link_node(&old_idx
->rb
, parent
, p
);
112 rb_insert_color(&old_idx
->rb
, &c
->old_idx
);
117 * insert_old_idx_znode - record a znode obsoleted since last commit start.
118 * @c: UBIFS file-system description object
119 * @znode: znode of obsoleted index node
121 * Returns %0 on success, and a negative error code on failure.
123 int insert_old_idx_znode(struct ubifs_info
*c
, struct ubifs_znode
*znode
)
126 struct ubifs_zbranch
*zbr
;
128 zbr
= &znode
->parent
->zbranch
[znode
->iip
];
130 return insert_old_idx(c
, zbr
->lnum
, zbr
->offs
);
133 return insert_old_idx(c
, c
->zroot
.lnum
,
139 * ins_clr_old_idx_znode - record a znode obsoleted since last commit start.
140 * @c: UBIFS file-system description object
141 * @znode: znode of obsoleted index node
143 * Returns %0 on success, and a negative error code on failure.
145 static int ins_clr_old_idx_znode(struct ubifs_info
*c
,
146 struct ubifs_znode
*znode
)
151 struct ubifs_zbranch
*zbr
;
153 zbr
= &znode
->parent
->zbranch
[znode
->iip
];
155 err
= insert_old_idx(c
, zbr
->lnum
, zbr
->offs
);
164 err
= insert_old_idx(c
, c
->zroot
.lnum
, c
->zroot
.offs
);
175 * destroy_old_idx - destroy the old_idx RB-tree.
176 * @c: UBIFS file-system description object
178 * During start commit, the old_idx RB-tree is used to avoid overwriting index
179 * nodes that were in the index last commit but have since been deleted. This
180 * is necessary for recovery i.e. the old index must be kept intact until the
181 * new index is successfully written. The old-idx RB-tree is used for the
182 * in-the-gaps method of writing index nodes and is destroyed every commit.
184 void destroy_old_idx(struct ubifs_info
*c
)
186 struct ubifs_old_idx
*old_idx
, *n
;
188 rbtree_postorder_for_each_entry_safe(old_idx
, n
, &c
->old_idx
, rb
)
191 c
->old_idx
= RB_ROOT
;
195 * copy_znode - copy a dirty znode.
196 * @c: UBIFS file-system description object
197 * @znode: znode to copy
199 * A dirty znode being committed may not be changed, so it is copied.
201 static struct ubifs_znode
*copy_znode(struct ubifs_info
*c
,
202 struct ubifs_znode
*znode
)
204 struct ubifs_znode
*zn
;
206 zn
= kmemdup(znode
, c
->max_znode_sz
, GFP_NOFS
);
208 return ERR_PTR(-ENOMEM
);
211 __set_bit(DIRTY_ZNODE
, &zn
->flags
);
212 __clear_bit(COW_ZNODE
, &zn
->flags
);
214 ubifs_assert(!ubifs_zn_obsolete(znode
));
215 __set_bit(OBSOLETE_ZNODE
, &znode
->flags
);
217 if (znode
->level
!= 0) {
219 const int n
= zn
->child_cnt
;
221 /* The children now have new parent */
222 for (i
= 0; i
< n
; i
++) {
223 struct ubifs_zbranch
*zbr
= &zn
->zbranch
[i
];
226 zbr
->znode
->parent
= zn
;
230 atomic_long_inc(&c
->dirty_zn_cnt
);
235 * add_idx_dirt - add dirt due to a dirty znode.
236 * @c: UBIFS file-system description object
237 * @lnum: LEB number of index node
238 * @dirt: size of index node
240 * This function updates lprops dirty space and the new size of the index.
242 static int add_idx_dirt(struct ubifs_info
*c
, int lnum
, int dirt
)
244 c
->calc_idx_sz
-= ALIGN(dirt
, 8);
245 return ubifs_add_dirt(c
, lnum
, dirt
);
249 * dirty_cow_znode - ensure a znode is not being committed.
250 * @c: UBIFS file-system description object
251 * @zbr: branch of znode to check
253 * Returns dirtied znode on success or negative error code on failure.
255 static struct ubifs_znode
*dirty_cow_znode(struct ubifs_info
*c
,
256 struct ubifs_zbranch
*zbr
)
258 struct ubifs_znode
*znode
= zbr
->znode
;
259 struct ubifs_znode
*zn
;
262 if (!ubifs_zn_cow(znode
)) {
263 /* znode is not being committed */
264 if (!test_and_set_bit(DIRTY_ZNODE
, &znode
->flags
)) {
265 atomic_long_inc(&c
->dirty_zn_cnt
);
266 atomic_long_dec(&c
->clean_zn_cnt
);
267 atomic_long_dec(&ubifs_clean_zn_cnt
);
268 err
= add_idx_dirt(c
, zbr
->lnum
, zbr
->len
);
275 zn
= copy_znode(c
, znode
);
280 err
= insert_old_idx(c
, zbr
->lnum
, zbr
->offs
);
283 err
= add_idx_dirt(c
, zbr
->lnum
, zbr
->len
);
298 * lnc_add - add a leaf node to the leaf node cache.
299 * @c: UBIFS file-system description object
300 * @zbr: zbranch of leaf node
303 * Leaf nodes are non-index nodes directory entry nodes or data nodes. The
304 * purpose of the leaf node cache is to save re-reading the same leaf node over
305 * and over again. Most things are cached by VFS, however the file system must
306 * cache directory entries for readdir and for resolving hash collisions. The
307 * present implementation of the leaf node cache is extremely simple, and
308 * allows for error returns that are not used but that may be needed if a more
309 * complex implementation is created.
311 * Note, this function does not add the @node object to LNC directly, but
312 * allocates a copy of the object and adds the copy to LNC. The reason for this
313 * is that @node has been allocated outside of the TNC subsystem and will be
314 * used with @c->tnc_mutex unlock upon return from the TNC subsystem. But LNC
315 * may be changed at any time, e.g. freed by the shrinker.
317 static int lnc_add(struct ubifs_info
*c
, struct ubifs_zbranch
*zbr
,
322 const struct ubifs_dent_node
*dent
= node
;
324 ubifs_assert(!zbr
->leaf
);
325 ubifs_assert(zbr
->len
!= 0);
326 ubifs_assert(is_hash_key(c
, &zbr
->key
));
328 err
= ubifs_validate_entry(c
, dent
);
331 ubifs_dump_node(c
, dent
);
335 lnc_node
= kmemdup(node
, zbr
->len
, GFP_NOFS
);
337 /* We don't have to have the cache, so no error */
340 zbr
->leaf
= lnc_node
;
345 * lnc_add_directly - add a leaf node to the leaf-node-cache.
346 * @c: UBIFS file-system description object
347 * @zbr: zbranch of leaf node
350 * This function is similar to 'lnc_add()', but it does not create a copy of
351 * @node but inserts @node to TNC directly.
353 static int lnc_add_directly(struct ubifs_info
*c
, struct ubifs_zbranch
*zbr
,
358 ubifs_assert(!zbr
->leaf
);
359 ubifs_assert(zbr
->len
!= 0);
361 err
= ubifs_validate_entry(c
, node
);
364 ubifs_dump_node(c
, node
);
373 * lnc_free - remove a leaf node from the leaf node cache.
374 * @zbr: zbranch of leaf node
377 static void lnc_free(struct ubifs_zbranch
*zbr
)
386 * tnc_read_hashed_node - read a "hashed" leaf node.
387 * @c: UBIFS file-system description object
388 * @zbr: key and position of the node
389 * @node: node is returned here
391 * This function reads a "hashed" node defined by @zbr from the leaf node cache
392 * (in it is there) or from the hash media, in which case the node is also
393 * added to LNC. Returns zero in case of success or a negative negative error
394 * code in case of failure.
396 static int tnc_read_hashed_node(struct ubifs_info
*c
, struct ubifs_zbranch
*zbr
,
401 ubifs_assert(is_hash_key(c
, &zbr
->key
));
404 /* Read from the leaf node cache */
405 ubifs_assert(zbr
->len
!= 0);
406 memcpy(node
, zbr
->leaf
, zbr
->len
);
411 err
= fallible_read_node(c
, &zbr
->key
, zbr
, node
);
413 * When the node was not found, return -ENOENT, 0 otherwise.
414 * Negative return codes stay as-is.
421 err
= ubifs_tnc_read_node(c
, zbr
, node
);
426 /* Add the node to the leaf node cache */
427 err
= lnc_add(c
, zbr
, node
);
432 * try_read_node - read a node if it is a node.
433 * @c: UBIFS file-system description object
434 * @buf: buffer to read to
436 * @len: node length (not aligned)
437 * @lnum: LEB number of node to read
438 * @offs: offset of node to read
440 * This function tries to read a node of known type and length, checks it and
441 * stores it in @buf. This function returns %1 if a node is present and %0 if
442 * a node is not present. A negative error code is returned for I/O errors.
443 * This function performs that same function as ubifs_read_node except that
444 * it does not require that there is actually a node present and instead
445 * the return code indicates if a node was read.
447 * Note, this function does not check CRC of data nodes if @c->no_chk_data_crc
448 * is true (it is controlled by corresponding mount option). However, if
449 * @c->mounting or @c->remounting_rw is true (we are mounting or re-mounting to
450 * R/W mode), @c->no_chk_data_crc is ignored and CRC is checked. This is
451 * because during mounting or re-mounting from R/O mode to R/W mode we may read
452 * journal nodes (when replying the journal or doing the recovery) and the
453 * journal nodes may potentially be corrupted, so checking is required.
455 static int try_read_node(const struct ubifs_info
*c
, void *buf
, int type
,
456 int len
, int lnum
, int offs
)
459 struct ubifs_ch
*ch
= buf
;
460 uint32_t crc
, node_crc
;
462 dbg_io("LEB %d:%d, %s, length %d", lnum
, offs
, dbg_ntype(type
), len
);
464 err
= ubifs_leb_read(c
, lnum
, buf
, offs
, len
, 1);
466 ubifs_err(c
, "cannot read node type %d from LEB %d:%d, error %d",
467 type
, lnum
, offs
, err
);
471 if (le32_to_cpu(ch
->magic
) != UBIFS_NODE_MAGIC
)
474 if (ch
->node_type
!= type
)
477 node_len
= le32_to_cpu(ch
->len
);
481 if (type
== UBIFS_DATA_NODE
&& c
->no_chk_data_crc
&& !c
->mounting
&&
485 crc
= crc32(UBIFS_CRC32_INIT
, buf
+ 8, node_len
- 8);
486 node_crc
= le32_to_cpu(ch
->crc
);
494 * fallible_read_node - try to read a leaf node.
495 * @c: UBIFS file-system description object
496 * @key: key of node to read
497 * @zbr: position of node
498 * @node: node returned
500 * This function tries to read a node and returns %1 if the node is read, %0
501 * if the node is not present, and a negative error code in the case of error.
503 static int fallible_read_node(struct ubifs_info
*c
, const union ubifs_key
*key
,
504 struct ubifs_zbranch
*zbr
, void *node
)
508 dbg_tnck(key
, "LEB %d:%d, key ", zbr
->lnum
, zbr
->offs
);
510 ret
= try_read_node(c
, node
, key_type(c
, key
), zbr
->len
, zbr
->lnum
,
513 union ubifs_key node_key
;
514 struct ubifs_dent_node
*dent
= node
;
516 /* All nodes have key in the same place */
517 key_read(c
, &dent
->key
, &node_key
);
518 if (keys_cmp(c
, key
, &node_key
) != 0)
521 if (ret
== 0 && c
->replaying
)
522 dbg_mntk(key
, "dangling branch LEB %d:%d len %d, key ",
523 zbr
->lnum
, zbr
->offs
, zbr
->len
);
528 * matches_name - determine if a direntry or xattr entry matches a given name.
529 * @c: UBIFS file-system description object
530 * @zbr: zbranch of dent
533 * This function checks if xentry/direntry referred by zbranch @zbr matches name
534 * @nm. Returns %NAME_MATCHES if it does, %NAME_LESS if the name referred by
535 * @zbr is less than @nm, and %NAME_GREATER if it is greater than @nm. In case
536 * of failure, a negative error code is returned.
538 static int matches_name(struct ubifs_info
*c
, struct ubifs_zbranch
*zbr
,
539 const struct fscrypt_name
*nm
)
541 struct ubifs_dent_node
*dent
;
544 /* If possible, match against the dent in the leaf node cache */
546 dent
= kmalloc(zbr
->len
, GFP_NOFS
);
550 err
= ubifs_tnc_read_node(c
, zbr
, dent
);
554 /* Add the node to the leaf node cache */
555 err
= lnc_add_directly(c
, zbr
, dent
);
561 nlen
= le16_to_cpu(dent
->nlen
);
562 err
= memcmp(dent
->name
, fname_name(nm
), min_t(int, nlen
, fname_len(nm
)));
564 if (nlen
== fname_len(nm
))
566 else if (nlen
< fname_len(nm
))
581 * get_znode - get a TNC znode that may not be loaded yet.
582 * @c: UBIFS file-system description object
583 * @znode: parent znode
584 * @n: znode branch slot number
586 * This function returns the znode or a negative error code.
588 static struct ubifs_znode
*get_znode(struct ubifs_info
*c
,
589 struct ubifs_znode
*znode
, int n
)
591 struct ubifs_zbranch
*zbr
;
593 zbr
= &znode
->zbranch
[n
];
597 znode
= ubifs_load_znode(c
, zbr
, znode
, n
);
602 * tnc_next - find next TNC entry.
603 * @c: UBIFS file-system description object
604 * @zn: znode is passed and returned here
605 * @n: znode branch slot number is passed and returned here
607 * This function returns %0 if the next TNC entry is found, %-ENOENT if there is
608 * no next entry, or a negative error code otherwise.
610 static int tnc_next(struct ubifs_info
*c
, struct ubifs_znode
**zn
, int *n
)
612 struct ubifs_znode
*znode
= *zn
;
616 if (nn
< znode
->child_cnt
) {
621 struct ubifs_znode
*zp
;
628 if (nn
< znode
->child_cnt
) {
629 znode
= get_znode(c
, znode
, nn
);
631 return PTR_ERR(znode
);
632 while (znode
->level
!= 0) {
633 znode
= get_znode(c
, znode
, 0);
635 return PTR_ERR(znode
);
647 * tnc_prev - find previous TNC entry.
648 * @c: UBIFS file-system description object
649 * @zn: znode is returned here
650 * @n: znode branch slot number is passed and returned here
652 * This function returns %0 if the previous TNC entry is found, %-ENOENT if
653 * there is no next entry, or a negative error code otherwise.
655 static int tnc_prev(struct ubifs_info
*c
, struct ubifs_znode
**zn
, int *n
)
657 struct ubifs_znode
*znode
= *zn
;
665 struct ubifs_znode
*zp
;
673 znode
= get_znode(c
, znode
, nn
);
675 return PTR_ERR(znode
);
676 while (znode
->level
!= 0) {
677 nn
= znode
->child_cnt
- 1;
678 znode
= get_znode(c
, znode
, nn
);
680 return PTR_ERR(znode
);
682 nn
= znode
->child_cnt
- 1;
692 * resolve_collision - resolve a collision.
693 * @c: UBIFS file-system description object
694 * @key: key of a directory or extended attribute entry
695 * @zn: znode is returned here
696 * @n: zbranch number is passed and returned here
697 * @nm: name of the entry
699 * This function is called for "hashed" keys to make sure that the found key
700 * really corresponds to the looked up node (directory or extended attribute
701 * entry). It returns %1 and sets @zn and @n if the collision is resolved.
702 * %0 is returned if @nm is not found and @zn and @n are set to the previous
703 * entry, i.e. to the entry after which @nm could follow if it were in TNC.
704 * This means that @n may be set to %-1 if the leftmost key in @zn is the
705 * previous one. A negative error code is returned on failures.
707 static int resolve_collision(struct ubifs_info
*c
, const union ubifs_key
*key
,
708 struct ubifs_znode
**zn
, int *n
,
709 const struct fscrypt_name
*nm
)
713 err
= matches_name(c
, &(*zn
)->zbranch
[*n
], nm
);
714 if (unlikely(err
< 0))
716 if (err
== NAME_MATCHES
)
719 if (err
== NAME_GREATER
) {
722 err
= tnc_prev(c
, zn
, n
);
723 if (err
== -ENOENT
) {
724 ubifs_assert(*n
== 0);
730 if (keys_cmp(c
, &(*zn
)->zbranch
[*n
].key
, key
)) {
732 * We have found the branch after which we would
733 * like to insert, but inserting in this znode
734 * may still be wrong. Consider the following 3
735 * znodes, in the case where we are resolving a
736 * collision with Key2.
739 * ----------------------
740 * level 1 | Key0 | Key1 |
741 * -----------------------
743 * znode za | | znode zb
744 * ------------ ------------
745 * level 0 | Key0 | | Key2 |
746 * ------------ ------------
748 * The lookup finds Key2 in znode zb. Lets say
749 * there is no match and the name is greater so
750 * we look left. When we find Key0, we end up
751 * here. If we return now, we will insert into
752 * znode za at slot n = 1. But that is invalid
753 * according to the parent's keys. Key2 must
754 * be inserted into znode zb.
756 * Note, this problem is not relevant for the
757 * case when we go right, because
758 * 'tnc_insert()' would correct the parent key.
760 if (*n
== (*zn
)->child_cnt
- 1) {
761 err
= tnc_next(c
, zn
, n
);
763 /* Should be impossible */
769 ubifs_assert(*n
== 0);
774 err
= matches_name(c
, &(*zn
)->zbranch
[*n
], nm
);
777 if (err
== NAME_LESS
)
779 if (err
== NAME_MATCHES
)
781 ubifs_assert(err
== NAME_GREATER
);
785 struct ubifs_znode
*znode
= *zn
;
789 err
= tnc_next(c
, &znode
, &nn
);
794 if (keys_cmp(c
, &znode
->zbranch
[nn
].key
, key
))
796 err
= matches_name(c
, &znode
->zbranch
[nn
], nm
);
799 if (err
== NAME_GREATER
)
803 if (err
== NAME_MATCHES
)
805 ubifs_assert(err
== NAME_LESS
);
811 * fallible_matches_name - determine if a dent matches a given name.
812 * @c: UBIFS file-system description object
813 * @zbr: zbranch of dent
816 * This is a "fallible" version of 'matches_name()' function which does not
817 * panic if the direntry/xentry referred by @zbr does not exist on the media.
819 * This function checks if xentry/direntry referred by zbranch @zbr matches name
820 * @nm. Returns %NAME_MATCHES it does, %NAME_LESS if the name referred by @zbr
821 * is less than @nm, %NAME_GREATER if it is greater than @nm, and @NOT_ON_MEDIA
822 * if xentry/direntry referred by @zbr does not exist on the media. A negative
823 * error code is returned in case of failure.
825 static int fallible_matches_name(struct ubifs_info
*c
,
826 struct ubifs_zbranch
*zbr
,
827 const struct fscrypt_name
*nm
)
829 struct ubifs_dent_node
*dent
;
832 /* If possible, match against the dent in the leaf node cache */
834 dent
= kmalloc(zbr
->len
, GFP_NOFS
);
838 err
= fallible_read_node(c
, &zbr
->key
, zbr
, dent
);
842 /* The node was not present */
846 ubifs_assert(err
== 1);
848 err
= lnc_add_directly(c
, zbr
, dent
);
854 nlen
= le16_to_cpu(dent
->nlen
);
855 err
= memcmp(dent
->name
, fname_name(nm
), min_t(int, nlen
, fname_len(nm
)));
857 if (nlen
== fname_len(nm
))
859 else if (nlen
< fname_len(nm
))
874 * fallible_resolve_collision - resolve a collision even if nodes are missing.
875 * @c: UBIFS file-system description object
877 * @zn: znode is returned here
878 * @n: branch number is passed and returned here
879 * @nm: name of directory entry
880 * @adding: indicates caller is adding a key to the TNC
882 * This is a "fallible" version of the 'resolve_collision()' function which
883 * does not panic if one of the nodes referred to by TNC does not exist on the
884 * media. This may happen when replaying the journal if a deleted node was
885 * Garbage-collected and the commit was not done. A branch that refers to a node
886 * that is not present is called a dangling branch. The following are the return
887 * codes for this function:
888 * o if @nm was found, %1 is returned and @zn and @n are set to the found
890 * o if we are @adding and @nm was not found, %0 is returned;
891 * o if we are not @adding and @nm was not found, but a dangling branch was
892 * found, then %1 is returned and @zn and @n are set to the dangling branch;
893 * o a negative error code is returned in case of failure.
895 static int fallible_resolve_collision(struct ubifs_info
*c
,
896 const union ubifs_key
*key
,
897 struct ubifs_znode
**zn
, int *n
,
898 const struct fscrypt_name
*nm
,
901 struct ubifs_znode
*o_znode
= NULL
, *znode
= *zn
;
902 int uninitialized_var(o_n
), err
, cmp
, unsure
= 0, nn
= *n
;
904 cmp
= fallible_matches_name(c
, &znode
->zbranch
[nn
], nm
);
905 if (unlikely(cmp
< 0))
907 if (cmp
== NAME_MATCHES
)
909 if (cmp
== NOT_ON_MEDIA
) {
913 * We are unlucky and hit a dangling branch straight away.
914 * Now we do not really know where to go to find the needed
915 * branch - to the left or to the right. Well, let's try left.
919 unsure
= 1; /* Remove a dangling branch wherever it is */
921 if (cmp
== NAME_GREATER
|| unsure
) {
924 err
= tnc_prev(c
, zn
, n
);
925 if (err
== -ENOENT
) {
926 ubifs_assert(*n
== 0);
932 if (keys_cmp(c
, &(*zn
)->zbranch
[*n
].key
, key
)) {
933 /* See comments in 'resolve_collision()' */
934 if (*n
== (*zn
)->child_cnt
- 1) {
935 err
= tnc_next(c
, zn
, n
);
937 /* Should be impossible */
943 ubifs_assert(*n
== 0);
948 err
= fallible_matches_name(c
, &(*zn
)->zbranch
[*n
], nm
);
951 if (err
== NAME_MATCHES
)
953 if (err
== NOT_ON_MEDIA
) {
960 if (err
== NAME_LESS
)
967 if (cmp
== NAME_LESS
|| unsure
) {
972 err
= tnc_next(c
, &znode
, &nn
);
977 if (keys_cmp(c
, &znode
->zbranch
[nn
].key
, key
))
979 err
= fallible_matches_name(c
, &znode
->zbranch
[nn
], nm
);
982 if (err
== NAME_GREATER
)
986 if (err
== NAME_MATCHES
)
988 if (err
== NOT_ON_MEDIA
) {
995 /* Never match a dangling branch when adding */
996 if (adding
|| !o_znode
)
999 dbg_mntk(key
, "dangling match LEB %d:%d len %d key ",
1000 o_znode
->zbranch
[o_n
].lnum
, o_znode
->zbranch
[o_n
].offs
,
1001 o_znode
->zbranch
[o_n
].len
);
1008 * matches_position - determine if a zbranch matches a given position.
1009 * @zbr: zbranch of dent
1010 * @lnum: LEB number of dent to match
1011 * @offs: offset of dent to match
1013 * This function returns %1 if @lnum:@offs matches, and %0 otherwise.
1015 static int matches_position(struct ubifs_zbranch
*zbr
, int lnum
, int offs
)
1017 if (zbr
->lnum
== lnum
&& zbr
->offs
== offs
)
1024 * resolve_collision_directly - resolve a collision directly.
1025 * @c: UBIFS file-system description object
1026 * @key: key of directory entry
1027 * @zn: znode is passed and returned here
1028 * @n: zbranch number is passed and returned here
1029 * @lnum: LEB number of dent node to match
1030 * @offs: offset of dent node to match
1032 * This function is used for "hashed" keys to make sure the found directory or
1033 * extended attribute entry node is what was looked for. It is used when the
1034 * flash address of the right node is known (@lnum:@offs) which makes it much
1035 * easier to resolve collisions (no need to read entries and match full
1036 * names). This function returns %1 and sets @zn and @n if the collision is
1037 * resolved, %0 if @lnum:@offs is not found and @zn and @n are set to the
1038 * previous directory entry. Otherwise a negative error code is returned.
1040 static int resolve_collision_directly(struct ubifs_info
*c
,
1041 const union ubifs_key
*key
,
1042 struct ubifs_znode
**zn
, int *n
,
1045 struct ubifs_znode
*znode
;
1050 if (matches_position(&znode
->zbranch
[nn
], lnum
, offs
))
1055 err
= tnc_prev(c
, &znode
, &nn
);
1060 if (keys_cmp(c
, &znode
->zbranch
[nn
].key
, key
))
1062 if (matches_position(&znode
->zbranch
[nn
], lnum
, offs
)) {
1073 err
= tnc_next(c
, &znode
, &nn
);
1078 if (keys_cmp(c
, &znode
->zbranch
[nn
].key
, key
))
1082 if (matches_position(&znode
->zbranch
[nn
], lnum
, offs
))
1088 * dirty_cow_bottom_up - dirty a znode and its ancestors.
1089 * @c: UBIFS file-system description object
1090 * @znode: znode to dirty
1092 * If we do not have a unique key that resides in a znode, then we cannot
1093 * dirty that znode from the top down (i.e. by using lookup_level0_dirty)
1094 * This function records the path back to the last dirty ancestor, and then
1095 * dirties the znodes on that path.
1097 static struct ubifs_znode
*dirty_cow_bottom_up(struct ubifs_info
*c
,
1098 struct ubifs_znode
*znode
)
1100 struct ubifs_znode
*zp
;
1101 int *path
= c
->bottom_up_buf
, p
= 0;
1103 ubifs_assert(c
->zroot
.znode
);
1104 ubifs_assert(znode
);
1105 if (c
->zroot
.znode
->level
> BOTTOM_UP_HEIGHT
) {
1106 kfree(c
->bottom_up_buf
);
1107 c
->bottom_up_buf
= kmalloc(c
->zroot
.znode
->level
* sizeof(int),
1109 if (!c
->bottom_up_buf
)
1110 return ERR_PTR(-ENOMEM
);
1111 path
= c
->bottom_up_buf
;
1113 if (c
->zroot
.znode
->level
) {
1114 /* Go up until parent is dirty */
1122 ubifs_assert(p
< c
->zroot
.znode
->level
);
1124 if (!zp
->cnext
&& ubifs_zn_dirty(znode
))
1130 /* Come back down, dirtying as we go */
1132 struct ubifs_zbranch
*zbr
;
1136 ubifs_assert(path
[p
- 1] >= 0);
1137 ubifs_assert(path
[p
- 1] < zp
->child_cnt
);
1138 zbr
= &zp
->zbranch
[path
[--p
]];
1139 znode
= dirty_cow_znode(c
, zbr
);
1141 ubifs_assert(znode
== c
->zroot
.znode
);
1142 znode
= dirty_cow_znode(c
, &c
->zroot
);
1144 if (IS_ERR(znode
) || !p
)
1146 ubifs_assert(path
[p
- 1] >= 0);
1147 ubifs_assert(path
[p
- 1] < znode
->child_cnt
);
1148 znode
= znode
->zbranch
[path
[p
- 1]].znode
;
1155 * ubifs_lookup_level0 - search for zero-level znode.
1156 * @c: UBIFS file-system description object
1157 * @key: key to lookup
1158 * @zn: znode is returned here
1159 * @n: znode branch slot number is returned here
1161 * This function looks up the TNC tree and search for zero-level znode which
1162 * refers key @key. The found zero-level znode is returned in @zn. There are 3
1164 * o exact match, i.e. the found zero-level znode contains key @key, then %1
1165 * is returned and slot number of the matched branch is stored in @n;
1166 * o not exact match, which means that zero-level znode does not contain
1167 * @key, then %0 is returned and slot number of the closest branch is stored
1169 * o @key is so small that it is even less than the lowest key of the
1170 * leftmost zero-level node, then %0 is returned and %0 is stored in @n.
1172 * Note, when the TNC tree is traversed, some znodes may be absent, then this
1173 * function reads corresponding indexing nodes and inserts them to TNC. In
1174 * case of failure, a negative error code is returned.
1176 int ubifs_lookup_level0(struct ubifs_info
*c
, const union ubifs_key
*key
,
1177 struct ubifs_znode
**zn
, int *n
)
1180 struct ubifs_znode
*znode
;
1181 unsigned long time
= get_seconds();
1183 dbg_tnck(key
, "search key ");
1184 ubifs_assert(key_type(c
, key
) < UBIFS_INVALID_KEY
);
1186 znode
= c
->zroot
.znode
;
1187 if (unlikely(!znode
)) {
1188 znode
= ubifs_load_znode(c
, &c
->zroot
, NULL
, 0);
1190 return PTR_ERR(znode
);
1196 struct ubifs_zbranch
*zbr
;
1198 exact
= ubifs_search_zbranch(c
, znode
, key
, n
);
1200 if (znode
->level
== 0)
1205 zbr
= &znode
->zbranch
[*n
];
1213 /* znode is not in TNC cache, load it from the media */
1214 znode
= ubifs_load_znode(c
, zbr
, znode
, *n
);
1216 return PTR_ERR(znode
);
1220 if (exact
|| !is_hash_key(c
, key
) || *n
!= -1) {
1221 dbg_tnc("found %d, lvl %d, n %d", exact
, znode
->level
, *n
);
1226 * Here is a tricky place. We have not found the key and this is a
1227 * "hashed" key, which may collide. The rest of the code deals with
1228 * situations like this:
1232 * | 3 | 5 | | 6 | 7 | (x)
1234 * Or more a complex example:
1238 * | 1 | 3 | | 5 | 8 |
1240 * | 5 | 5 | | 6 | 7 | (x)
1242 * In the examples, if we are looking for key "5", we may reach nodes
1243 * marked with "(x)". In this case what we have do is to look at the
1244 * left and see if there is "5" key there. If there is, we have to
1247 * Note, this whole situation is possible because we allow to have
1248 * elements which are equivalent to the next key in the parent in the
1249 * children of current znode. For example, this happens if we split a
1250 * znode like this: | 3 | 5 | 5 | 6 | 7 |, which results in something
1254 * | 3 | 5 | | 5 | 6 | 7 |
1256 * And this becomes what is at the first "picture" after key "5" marked
1257 * with "^" is removed. What could be done is we could prohibit
1258 * splitting in the middle of the colliding sequence. Also, when
1259 * removing the leftmost key, we would have to correct the key of the
1260 * parent node, which would introduce additional complications. Namely,
1261 * if we changed the leftmost key of the parent znode, the garbage
1262 * collector would be unable to find it (GC is doing this when GC'ing
1263 * indexing LEBs). Although we already have an additional RB-tree where
1264 * we save such changed znodes (see 'ins_clr_old_idx_znode()') until
1265 * after the commit. But anyway, this does not look easy to implement
1266 * so we did not try this.
1268 err
= tnc_prev(c
, &znode
, n
);
1269 if (err
== -ENOENT
) {
1270 dbg_tnc("found 0, lvl %d, n -1", znode
->level
);
1274 if (unlikely(err
< 0))
1276 if (keys_cmp(c
, key
, &znode
->zbranch
[*n
].key
)) {
1277 dbg_tnc("found 0, lvl %d, n -1", znode
->level
);
1282 dbg_tnc("found 1, lvl %d, n %d", znode
->level
, *n
);
1288 * lookup_level0_dirty - search for zero-level znode dirtying.
1289 * @c: UBIFS file-system description object
1290 * @key: key to lookup
1291 * @zn: znode is returned here
1292 * @n: znode branch slot number is returned here
1294 * This function looks up the TNC tree and search for zero-level znode which
1295 * refers key @key. The found zero-level znode is returned in @zn. There are 3
1297 * o exact match, i.e. the found zero-level znode contains key @key, then %1
1298 * is returned and slot number of the matched branch is stored in @n;
1299 * o not exact match, which means that zero-level znode does not contain @key
1300 * then %0 is returned and slot number of the closed branch is stored in
1302 * o @key is so small that it is even less than the lowest key of the
1303 * leftmost zero-level node, then %0 is returned and %-1 is stored in @n.
1305 * Additionally all znodes in the path from the root to the located zero-level
1306 * znode are marked as dirty.
1308 * Note, when the TNC tree is traversed, some znodes may be absent, then this
1309 * function reads corresponding indexing nodes and inserts them to TNC. In
1310 * case of failure, a negative error code is returned.
1312 static int lookup_level0_dirty(struct ubifs_info
*c
, const union ubifs_key
*key
,
1313 struct ubifs_znode
**zn
, int *n
)
1316 struct ubifs_znode
*znode
;
1317 unsigned long time
= get_seconds();
1319 dbg_tnck(key
, "search and dirty key ");
1321 znode
= c
->zroot
.znode
;
1322 if (unlikely(!znode
)) {
1323 znode
= ubifs_load_znode(c
, &c
->zroot
, NULL
, 0);
1325 return PTR_ERR(znode
);
1328 znode
= dirty_cow_znode(c
, &c
->zroot
);
1330 return PTR_ERR(znode
);
1335 struct ubifs_zbranch
*zbr
;
1337 exact
= ubifs_search_zbranch(c
, znode
, key
, n
);
1339 if (znode
->level
== 0)
1344 zbr
= &znode
->zbranch
[*n
];
1348 znode
= dirty_cow_znode(c
, zbr
);
1350 return PTR_ERR(znode
);
1354 /* znode is not in TNC cache, load it from the media */
1355 znode
= ubifs_load_znode(c
, zbr
, znode
, *n
);
1357 return PTR_ERR(znode
);
1358 znode
= dirty_cow_znode(c
, zbr
);
1360 return PTR_ERR(znode
);
1364 if (exact
|| !is_hash_key(c
, key
) || *n
!= -1) {
1365 dbg_tnc("found %d, lvl %d, n %d", exact
, znode
->level
, *n
);
1370 * See huge comment at 'lookup_level0_dirty()' what is the rest of the
1373 err
= tnc_prev(c
, &znode
, n
);
1374 if (err
== -ENOENT
) {
1376 dbg_tnc("found 0, lvl %d, n -1", znode
->level
);
1379 if (unlikely(err
< 0))
1381 if (keys_cmp(c
, key
, &znode
->zbranch
[*n
].key
)) {
1383 dbg_tnc("found 0, lvl %d, n -1", znode
->level
);
1387 if (znode
->cnext
|| !ubifs_zn_dirty(znode
)) {
1388 znode
= dirty_cow_bottom_up(c
, znode
);
1390 return PTR_ERR(znode
);
1393 dbg_tnc("found 1, lvl %d, n %d", znode
->level
, *n
);
1399 * maybe_leb_gced - determine if a LEB may have been garbage collected.
1400 * @c: UBIFS file-system description object
1402 * @gc_seq1: garbage collection sequence number
1404 * This function determines if @lnum may have been garbage collected since
1405 * sequence number @gc_seq1. If it may have been then %1 is returned, otherwise
1408 static int maybe_leb_gced(struct ubifs_info
*c
, int lnum
, int gc_seq1
)
1410 int gc_seq2
, gced_lnum
;
1412 gced_lnum
= c
->gced_lnum
;
1414 gc_seq2
= c
->gc_seq
;
1415 /* Same seq means no GC */
1416 if (gc_seq1
== gc_seq2
)
1418 /* Different by more than 1 means we don't know */
1419 if (gc_seq1
+ 1 != gc_seq2
)
1422 * We have seen the sequence number has increased by 1. Now we need to
1423 * be sure we read the right LEB number, so read it again.
1426 if (gced_lnum
!= c
->gced_lnum
)
1428 /* Finally we can check lnum */
1429 if (gced_lnum
== lnum
)
1435 * ubifs_tnc_locate - look up a file-system node and return it and its location.
1436 * @c: UBIFS file-system description object
1437 * @key: node key to lookup
1438 * @node: the node is returned here
1439 * @lnum: LEB number is returned here
1440 * @offs: offset is returned here
1442 * This function looks up and reads node with key @key. The caller has to make
1443 * sure the @node buffer is large enough to fit the node. Returns zero in case
1444 * of success, %-ENOENT if the node was not found, and a negative error code in
1445 * case of failure. The node location can be returned in @lnum and @offs.
1447 int ubifs_tnc_locate(struct ubifs_info
*c
, const union ubifs_key
*key
,
1448 void *node
, int *lnum
, int *offs
)
1450 int found
, n
, err
, safely
= 0, gc_seq1
;
1451 struct ubifs_znode
*znode
;
1452 struct ubifs_zbranch zbr
, *zt
;
1455 mutex_lock(&c
->tnc_mutex
);
1456 found
= ubifs_lookup_level0(c
, key
, &znode
, &n
);
1460 } else if (found
< 0) {
1464 zt
= &znode
->zbranch
[n
];
1469 if (is_hash_key(c
, key
)) {
1471 * In this case the leaf node cache gets used, so we pass the
1472 * address of the zbranch and keep the mutex locked
1474 err
= tnc_read_hashed_node(c
, zt
, node
);
1478 err
= ubifs_tnc_read_node(c
, zt
, node
);
1481 /* Drop the TNC mutex prematurely and race with garbage collection */
1482 zbr
= znode
->zbranch
[n
];
1483 gc_seq1
= c
->gc_seq
;
1484 mutex_unlock(&c
->tnc_mutex
);
1486 if (ubifs_get_wbuf(c
, zbr
.lnum
)) {
1487 /* We do not GC journal heads */
1488 err
= ubifs_tnc_read_node(c
, &zbr
, node
);
1492 err
= fallible_read_node(c
, key
, &zbr
, node
);
1493 if (err
<= 0 || maybe_leb_gced(c
, zbr
.lnum
, gc_seq1
)) {
1495 * The node may have been GC'ed out from under us so try again
1496 * while keeping the TNC mutex locked.
1504 mutex_unlock(&c
->tnc_mutex
);
1509 * ubifs_tnc_get_bu_keys - lookup keys for bulk-read.
1510 * @c: UBIFS file-system description object
1511 * @bu: bulk-read parameters and results
1513 * Lookup consecutive data node keys for the same inode that reside
1514 * consecutively in the same LEB. This function returns zero in case of success
1515 * and a negative error code in case of failure.
1517 * Note, if the bulk-read buffer length (@bu->buf_len) is known, this function
1518 * makes sure bulk-read nodes fit the buffer. Otherwise, this function prepares
1519 * maximum possible amount of nodes for bulk-read.
1521 int ubifs_tnc_get_bu_keys(struct ubifs_info
*c
, struct bu_info
*bu
)
1523 int n
, err
= 0, lnum
= -1, uninitialized_var(offs
);
1524 int uninitialized_var(len
);
1525 unsigned int block
= key_block(c
, &bu
->key
);
1526 struct ubifs_znode
*znode
;
1532 mutex_lock(&c
->tnc_mutex
);
1533 /* Find first key */
1534 err
= ubifs_lookup_level0(c
, &bu
->key
, &znode
, &n
);
1539 len
= znode
->zbranch
[n
].len
;
1540 /* The buffer must be big enough for at least 1 node */
1541 if (len
> bu
->buf_len
) {
1546 bu
->zbranch
[bu
->cnt
++] = znode
->zbranch
[n
];
1548 lnum
= znode
->zbranch
[n
].lnum
;
1549 offs
= ALIGN(znode
->zbranch
[n
].offs
+ len
, 8);
1552 struct ubifs_zbranch
*zbr
;
1553 union ubifs_key
*key
;
1554 unsigned int next_block
;
1557 err
= tnc_next(c
, &znode
, &n
);
1560 zbr
= &znode
->zbranch
[n
];
1562 /* See if there is another data key for this file */
1563 if (key_inum(c
, key
) != key_inum(c
, &bu
->key
) ||
1564 key_type(c
, key
) != UBIFS_DATA_KEY
) {
1569 /* First key found */
1571 offs
= ALIGN(zbr
->offs
+ zbr
->len
, 8);
1573 if (len
> bu
->buf_len
) {
1579 * The data nodes must be in consecutive positions in
1582 if (zbr
->lnum
!= lnum
|| zbr
->offs
!= offs
)
1584 offs
+= ALIGN(zbr
->len
, 8);
1585 len
= ALIGN(len
, 8) + zbr
->len
;
1586 /* Must not exceed buffer length */
1587 if (len
> bu
->buf_len
)
1590 /* Allow for holes */
1591 next_block
= key_block(c
, key
);
1592 bu
->blk_cnt
+= (next_block
- block
- 1);
1593 if (bu
->blk_cnt
>= UBIFS_MAX_BULK_READ
)
1597 bu
->zbranch
[bu
->cnt
++] = *zbr
;
1599 /* See if we have room for more */
1600 if (bu
->cnt
>= UBIFS_MAX_BULK_READ
)
1602 if (bu
->blk_cnt
>= UBIFS_MAX_BULK_READ
)
1606 if (err
== -ENOENT
) {
1610 bu
->gc_seq
= c
->gc_seq
;
1611 mutex_unlock(&c
->tnc_mutex
);
1615 * An enormous hole could cause bulk-read to encompass too many
1616 * page cache pages, so limit the number here.
1618 if (bu
->blk_cnt
> UBIFS_MAX_BULK_READ
)
1619 bu
->blk_cnt
= UBIFS_MAX_BULK_READ
;
1621 * Ensure that bulk-read covers a whole number of page cache
1624 if (UBIFS_BLOCKS_PER_PAGE
== 1 ||
1625 !(bu
->blk_cnt
& (UBIFS_BLOCKS_PER_PAGE
- 1)))
1628 /* At the end of file we can round up */
1629 bu
->blk_cnt
+= UBIFS_BLOCKS_PER_PAGE
- 1;
1632 /* Exclude data nodes that do not make up a whole page cache page */
1633 block
= key_block(c
, &bu
->key
) + bu
->blk_cnt
;
1634 block
&= ~(UBIFS_BLOCKS_PER_PAGE
- 1);
1636 if (key_block(c
, &bu
->zbranch
[bu
->cnt
- 1].key
) < block
)
1644 * read_wbuf - bulk-read from a LEB with a wbuf.
1645 * @wbuf: wbuf that may overlap the read
1646 * @buf: buffer into which to read
1648 * @lnum: LEB number from which to read
1649 * @offs: offset from which to read
1651 * This functions returns %0 on success or a negative error code on failure.
1653 static int read_wbuf(struct ubifs_wbuf
*wbuf
, void *buf
, int len
, int lnum
,
1656 const struct ubifs_info
*c
= wbuf
->c
;
1659 dbg_io("LEB %d:%d, length %d", lnum
, offs
, len
);
1660 ubifs_assert(wbuf
&& lnum
>= 0 && lnum
< c
->leb_cnt
&& offs
>= 0);
1661 ubifs_assert(!(offs
& 7) && offs
< c
->leb_size
);
1662 ubifs_assert(offs
+ len
<= c
->leb_size
);
1664 spin_lock(&wbuf
->lock
);
1665 overlap
= (lnum
== wbuf
->lnum
&& offs
+ len
> wbuf
->offs
);
1667 /* We may safely unlock the write-buffer and read the data */
1668 spin_unlock(&wbuf
->lock
);
1669 return ubifs_leb_read(c
, lnum
, buf
, offs
, len
, 0);
1672 /* Don't read under wbuf */
1673 rlen
= wbuf
->offs
- offs
;
1677 /* Copy the rest from the write-buffer */
1678 memcpy(buf
+ rlen
, wbuf
->buf
+ offs
+ rlen
- wbuf
->offs
, len
- rlen
);
1679 spin_unlock(&wbuf
->lock
);
1682 /* Read everything that goes before write-buffer */
1683 return ubifs_leb_read(c
, lnum
, buf
, offs
, rlen
, 0);
1689 * validate_data_node - validate data nodes for bulk-read.
1690 * @c: UBIFS file-system description object
1691 * @buf: buffer containing data node to validate
1692 * @zbr: zbranch of data node to validate
1694 * This functions returns %0 on success or a negative error code on failure.
1696 static int validate_data_node(struct ubifs_info
*c
, void *buf
,
1697 struct ubifs_zbranch
*zbr
)
1699 union ubifs_key key1
;
1700 struct ubifs_ch
*ch
= buf
;
1703 if (ch
->node_type
!= UBIFS_DATA_NODE
) {
1704 ubifs_err(c
, "bad node type (%d but expected %d)",
1705 ch
->node_type
, UBIFS_DATA_NODE
);
1709 err
= ubifs_check_node(c
, buf
, zbr
->lnum
, zbr
->offs
, 0, 0);
1711 ubifs_err(c
, "expected node type %d", UBIFS_DATA_NODE
);
1715 len
= le32_to_cpu(ch
->len
);
1716 if (len
!= zbr
->len
) {
1717 ubifs_err(c
, "bad node length %d, expected %d", len
, zbr
->len
);
1721 /* Make sure the key of the read node is correct */
1722 key_read(c
, buf
+ UBIFS_KEY_OFFSET
, &key1
);
1723 if (!keys_eq(c
, &zbr
->key
, &key1
)) {
1724 ubifs_err(c
, "bad key in node at LEB %d:%d",
1725 zbr
->lnum
, zbr
->offs
);
1726 dbg_tnck(&zbr
->key
, "looked for key ");
1727 dbg_tnck(&key1
, "found node's key ");
1736 ubifs_err(c
, "bad node at LEB %d:%d", zbr
->lnum
, zbr
->offs
);
1737 ubifs_dump_node(c
, buf
);
1743 * ubifs_tnc_bulk_read - read a number of data nodes in one go.
1744 * @c: UBIFS file-system description object
1745 * @bu: bulk-read parameters and results
1747 * This functions reads and validates the data nodes that were identified by the
1748 * 'ubifs_tnc_get_bu_keys()' function. This functions returns %0 on success,
1749 * -EAGAIN to indicate a race with GC, or another negative error code on
1752 int ubifs_tnc_bulk_read(struct ubifs_info
*c
, struct bu_info
*bu
)
1754 int lnum
= bu
->zbranch
[0].lnum
, offs
= bu
->zbranch
[0].offs
, len
, err
, i
;
1755 struct ubifs_wbuf
*wbuf
;
1758 len
= bu
->zbranch
[bu
->cnt
- 1].offs
;
1759 len
+= bu
->zbranch
[bu
->cnt
- 1].len
- offs
;
1760 if (len
> bu
->buf_len
) {
1761 ubifs_err(c
, "buffer too small %d vs %d", bu
->buf_len
, len
);
1766 wbuf
= ubifs_get_wbuf(c
, lnum
);
1768 err
= read_wbuf(wbuf
, bu
->buf
, len
, lnum
, offs
);
1770 err
= ubifs_leb_read(c
, lnum
, bu
->buf
, offs
, len
, 0);
1772 /* Check for a race with GC */
1773 if (maybe_leb_gced(c
, lnum
, bu
->gc_seq
))
1776 if (err
&& err
!= -EBADMSG
) {
1777 ubifs_err(c
, "failed to read from LEB %d:%d, error %d",
1780 dbg_tnck(&bu
->key
, "key ");
1784 /* Validate the nodes read */
1786 for (i
= 0; i
< bu
->cnt
; i
++) {
1787 err
= validate_data_node(c
, buf
, &bu
->zbranch
[i
]);
1790 buf
= buf
+ ALIGN(bu
->zbranch
[i
].len
, 8);
1797 * do_lookup_nm- look up a "hashed" node.
1798 * @c: UBIFS file-system description object
1799 * @key: node key to lookup
1800 * @node: the node is returned here
1803 * This function looks up and reads a node which contains name hash in the key.
1804 * Since the hash may have collisions, there may be many nodes with the same
1805 * key, so we have to sequentially look to all of them until the needed one is
1806 * found. This function returns zero in case of success, %-ENOENT if the node
1807 * was not found, and a negative error code in case of failure.
1809 static int do_lookup_nm(struct ubifs_info
*c
, const union ubifs_key
*key
,
1810 void *node
, const struct fscrypt_name
*nm
)
1813 struct ubifs_znode
*znode
;
1815 dbg_tnck(key
, "key ");
1816 mutex_lock(&c
->tnc_mutex
);
1817 found
= ubifs_lookup_level0(c
, key
, &znode
, &n
);
1821 } else if (found
< 0) {
1826 ubifs_assert(n
>= 0);
1828 err
= resolve_collision(c
, key
, &znode
, &n
, nm
);
1829 dbg_tnc("rc returned %d, znode %p, n %d", err
, znode
, n
);
1830 if (unlikely(err
< 0))
1837 err
= tnc_read_hashed_node(c
, &znode
->zbranch
[n
], node
);
1840 mutex_unlock(&c
->tnc_mutex
);
1845 * ubifs_tnc_lookup_nm - look up a "hashed" node.
1846 * @c: UBIFS file-system description object
1847 * @key: node key to lookup
1848 * @node: the node is returned here
1851 * This function looks up and reads a node which contains name hash in the key.
1852 * Since the hash may have collisions, there may be many nodes with the same
1853 * key, so we have to sequentially look to all of them until the needed one is
1854 * found. This function returns zero in case of success, %-ENOENT if the node
1855 * was not found, and a negative error code in case of failure.
1857 int ubifs_tnc_lookup_nm(struct ubifs_info
*c
, const union ubifs_key
*key
,
1858 void *node
, const struct fscrypt_name
*nm
)
1861 const struct ubifs_dent_node
*dent
= node
;
1864 * We assume that in most of the cases there are no name collisions and
1865 * 'ubifs_tnc_lookup()' returns us the right direntry.
1867 err
= ubifs_tnc_lookup(c
, key
, node
);
1871 len
= le16_to_cpu(dent
->nlen
);
1872 if (fname_len(nm
) == len
&& !memcmp(dent
->name
, fname_name(nm
), len
))
1876 * Unluckily, there are hash collisions and we have to iterate over
1877 * them look at each direntry with colliding name hash sequentially.
1880 return do_lookup_nm(c
, key
, node
, nm
);
1883 static int search_dh_cookie(struct ubifs_info
*c
, const union ubifs_key
*key
,
1884 struct ubifs_dent_node
*dent
, uint32_t cookie
,
1885 struct ubifs_znode
**zn
, int *n
)
1888 struct ubifs_znode
*znode
= *zn
;
1889 struct ubifs_zbranch
*zbr
;
1890 union ubifs_key
*dkey
;
1894 err
= tnc_next(c
, &znode
, n
);
1899 zbr
= &znode
->zbranch
[*n
];
1902 if (key_inum(c
, dkey
) != key_inum(c
, key
) ||
1903 key_type(c
, dkey
) != key_type(c
, key
)) {
1908 err
= tnc_read_hashed_node(c
, zbr
, dent
);
1912 if (key_hash(c
, key
) == key_hash(c
, dkey
) &&
1913 le32_to_cpu(dent
->cookie
) == cookie
) {
1924 static int do_lookup_dh(struct ubifs_info
*c
, const union ubifs_key
*key
,
1925 struct ubifs_dent_node
*dent
, uint32_t cookie
)
1928 struct ubifs_znode
*znode
;
1929 union ubifs_key start_key
;
1931 ubifs_assert(is_hash_key(c
, key
));
1933 lowest_dent_key(c
, &start_key
, key_inum(c
, key
));
1935 mutex_lock(&c
->tnc_mutex
);
1936 err
= ubifs_lookup_level0(c
, &start_key
, &znode
, &n
);
1937 if (unlikely(err
< 0))
1940 err
= search_dh_cookie(c
, key
, dent
, cookie
, &znode
, &n
);
1943 mutex_unlock(&c
->tnc_mutex
);
1948 * ubifs_tnc_lookup_dh - look up a "double hashed" node.
1949 * @c: UBIFS file-system description object
1950 * @key: node key to lookup
1951 * @node: the node is returned here
1952 * @cookie: node cookie for collision resolution
1954 * This function looks up and reads a node which contains name hash in the key.
1955 * Since the hash may have collisions, there may be many nodes with the same
1956 * key, so we have to sequentially look to all of them until the needed one
1957 * with the same cookie value is found.
1958 * This function returns zero in case of success, %-ENOENT if the node
1959 * was not found, and a negative error code in case of failure.
1961 int ubifs_tnc_lookup_dh(struct ubifs_info
*c
, const union ubifs_key
*key
,
1962 void *node
, uint32_t cookie
)
1965 const struct ubifs_dent_node
*dent
= node
;
1967 if (!c
->double_hash
)
1971 * We assume that in most of the cases there are no name collisions and
1972 * 'ubifs_tnc_lookup()' returns us the right direntry.
1974 err
= ubifs_tnc_lookup(c
, key
, node
);
1978 if (le32_to_cpu(dent
->cookie
) == cookie
)
1982 * Unluckily, there are hash collisions and we have to iterate over
1983 * them look at each direntry with colliding name hash sequentially.
1985 return do_lookup_dh(c
, key
, node
, cookie
);
1989 * correct_parent_keys - correct parent znodes' keys.
1990 * @c: UBIFS file-system description object
1991 * @znode: znode to correct parent znodes for
1993 * This is a helper function for 'tnc_insert()'. When the key of the leftmost
1994 * zbranch changes, keys of parent znodes have to be corrected. This helper
1995 * function is called in such situations and corrects the keys if needed.
1997 static void correct_parent_keys(const struct ubifs_info
*c
,
1998 struct ubifs_znode
*znode
)
2000 union ubifs_key
*key
, *key1
;
2002 ubifs_assert(znode
->parent
);
2003 ubifs_assert(znode
->iip
== 0);
2005 key
= &znode
->zbranch
[0].key
;
2006 key1
= &znode
->parent
->zbranch
[0].key
;
2008 while (keys_cmp(c
, key
, key1
) < 0) {
2009 key_copy(c
, key
, key1
);
2010 znode
= znode
->parent
;
2012 if (!znode
->parent
|| znode
->iip
)
2014 key1
= &znode
->parent
->zbranch
[0].key
;
2019 * insert_zbranch - insert a zbranch into a znode.
2020 * @znode: znode into which to insert
2021 * @zbr: zbranch to insert
2022 * @n: slot number to insert to
2024 * This is a helper function for 'tnc_insert()'. UBIFS does not allow "gaps" in
2025 * znode's array of zbranches and keeps zbranches consolidated, so when a new
2026 * zbranch has to be inserted to the @znode->zbranches[]' array at the @n-th
2027 * slot, zbranches starting from @n have to be moved right.
2029 static void insert_zbranch(struct ubifs_znode
*znode
,
2030 const struct ubifs_zbranch
*zbr
, int n
)
2034 ubifs_assert(ubifs_zn_dirty(znode
));
2037 for (i
= znode
->child_cnt
; i
> n
; i
--) {
2038 znode
->zbranch
[i
] = znode
->zbranch
[i
- 1];
2039 if (znode
->zbranch
[i
].znode
)
2040 znode
->zbranch
[i
].znode
->iip
= i
;
2043 zbr
->znode
->iip
= n
;
2045 for (i
= znode
->child_cnt
; i
> n
; i
--)
2046 znode
->zbranch
[i
] = znode
->zbranch
[i
- 1];
2048 znode
->zbranch
[n
] = *zbr
;
2049 znode
->child_cnt
+= 1;
2052 * After inserting at slot zero, the lower bound of the key range of
2053 * this znode may have changed. If this znode is subsequently split
2054 * then the upper bound of the key range may change, and furthermore
2055 * it could change to be lower than the original lower bound. If that
2056 * happens, then it will no longer be possible to find this znode in the
2057 * TNC using the key from the index node on flash. That is bad because
2058 * if it is not found, we will assume it is obsolete and may overwrite
2059 * it. Then if there is an unclean unmount, we will start using the
2060 * old index which will be broken.
2062 * So we first mark znodes that have insertions at slot zero, and then
2063 * if they are split we add their lnum/offs to the old_idx tree.
2070 * tnc_insert - insert a node into TNC.
2071 * @c: UBIFS file-system description object
2072 * @znode: znode to insert into
2073 * @zbr: branch to insert
2074 * @n: slot number to insert new zbranch to
2076 * This function inserts a new node described by @zbr into znode @znode. If
2077 * znode does not have a free slot for new zbranch, it is split. Parent znodes
2078 * are splat as well if needed. Returns zero in case of success or a negative
2079 * error code in case of failure.
2081 static int tnc_insert(struct ubifs_info
*c
, struct ubifs_znode
*znode
,
2082 struct ubifs_zbranch
*zbr
, int n
)
2084 struct ubifs_znode
*zn
, *zi
, *zp
;
2085 int i
, keep
, move
, appending
= 0;
2086 union ubifs_key
*key
= &zbr
->key
, *key1
;
2088 ubifs_assert(n
>= 0 && n
<= c
->fanout
);
2090 /* Implement naive insert for now */
2093 if (znode
->child_cnt
< c
->fanout
) {
2094 ubifs_assert(n
!= c
->fanout
);
2095 dbg_tnck(key
, "inserted at %d level %d, key ", n
, znode
->level
);
2097 insert_zbranch(znode
, zbr
, n
);
2099 /* Ensure parent's key is correct */
2100 if (n
== 0 && zp
&& znode
->iip
== 0)
2101 correct_parent_keys(c
, znode
);
2107 * Unfortunately, @znode does not have more empty slots and we have to
2110 dbg_tnck(key
, "splitting level %d, key ", znode
->level
);
2114 * We can no longer be sure of finding this znode by key, so we
2115 * record it in the old_idx tree.
2117 ins_clr_old_idx_znode(c
, znode
);
2119 zn
= kzalloc(c
->max_znode_sz
, GFP_NOFS
);
2123 zn
->level
= znode
->level
;
2125 /* Decide where to split */
2126 if (znode
->level
== 0 && key_type(c
, key
) == UBIFS_DATA_KEY
) {
2127 /* Try not to split consecutive data keys */
2128 if (n
== c
->fanout
) {
2129 key1
= &znode
->zbranch
[n
- 1].key
;
2130 if (key_inum(c
, key1
) == key_inum(c
, key
) &&
2131 key_type(c
, key1
) == UBIFS_DATA_KEY
)
2135 } else if (appending
&& n
!= c
->fanout
) {
2136 /* Try not to split consecutive data keys */
2139 if (n
>= (c
->fanout
+ 1) / 2) {
2140 key1
= &znode
->zbranch
[0].key
;
2141 if (key_inum(c
, key1
) == key_inum(c
, key
) &&
2142 key_type(c
, key1
) == UBIFS_DATA_KEY
) {
2143 key1
= &znode
->zbranch
[n
].key
;
2144 if (key_inum(c
, key1
) != key_inum(c
, key
) ||
2145 key_type(c
, key1
) != UBIFS_DATA_KEY
) {
2147 move
= c
->fanout
- keep
;
2159 keep
= (c
->fanout
+ 1) / 2;
2160 move
= c
->fanout
- keep
;
2164 * Although we don't at present, we could look at the neighbors and see
2165 * if we can move some zbranches there.
2169 /* Insert into existing znode */
2174 /* Insert into new znode */
2179 zbr
->znode
->parent
= zn
;
2184 __set_bit(DIRTY_ZNODE
, &zn
->flags
);
2185 atomic_long_inc(&c
->dirty_zn_cnt
);
2187 zn
->child_cnt
= move
;
2188 znode
->child_cnt
= keep
;
2190 dbg_tnc("moving %d, keeping %d", move
, keep
);
2193 for (i
= 0; i
< move
; i
++) {
2194 zn
->zbranch
[i
] = znode
->zbranch
[keep
+ i
];
2197 if (zn
->zbranch
[i
].znode
) {
2198 zn
->zbranch
[i
].znode
->parent
= zn
;
2199 zn
->zbranch
[i
].znode
->iip
= i
;
2203 /* Insert new key and branch */
2204 dbg_tnck(key
, "inserting at %d level %d, key ", n
, zn
->level
);
2206 insert_zbranch(zi
, zbr
, n
);
2208 /* Insert new znode (produced by spitting) into the parent */
2210 if (n
== 0 && zi
== znode
&& znode
->iip
== 0)
2211 correct_parent_keys(c
, znode
);
2213 /* Locate insertion point */
2216 /* Tail recursion */
2217 zbr
->key
= zn
->zbranch
[0].key
;
2227 /* We have to split root znode */
2228 dbg_tnc("creating new zroot at level %d", znode
->level
+ 1);
2230 zi
= kzalloc(c
->max_znode_sz
, GFP_NOFS
);
2235 zi
->level
= znode
->level
+ 1;
2237 __set_bit(DIRTY_ZNODE
, &zi
->flags
);
2238 atomic_long_inc(&c
->dirty_zn_cnt
);
2240 zi
->zbranch
[0].key
= znode
->zbranch
[0].key
;
2241 zi
->zbranch
[0].znode
= znode
;
2242 zi
->zbranch
[0].lnum
= c
->zroot
.lnum
;
2243 zi
->zbranch
[0].offs
= c
->zroot
.offs
;
2244 zi
->zbranch
[0].len
= c
->zroot
.len
;
2245 zi
->zbranch
[1].key
= zn
->zbranch
[0].key
;
2246 zi
->zbranch
[1].znode
= zn
;
2251 c
->zroot
.znode
= zi
;
2262 * ubifs_tnc_add - add a node to TNC.
2263 * @c: UBIFS file-system description object
2265 * @lnum: LEB number of node
2266 * @offs: node offset
2269 * This function adds a node with key @key to TNC. The node may be new or it may
2270 * obsolete some existing one. Returns %0 on success or negative error code on
2273 int ubifs_tnc_add(struct ubifs_info
*c
, const union ubifs_key
*key
, int lnum
,
2276 int found
, n
, err
= 0;
2277 struct ubifs_znode
*znode
;
2279 mutex_lock(&c
->tnc_mutex
);
2280 dbg_tnck(key
, "%d:%d, len %d, key ", lnum
, offs
, len
);
2281 found
= lookup_level0_dirty(c
, key
, &znode
, &n
);
2283 struct ubifs_zbranch zbr
;
2289 key_copy(c
, key
, &zbr
.key
);
2290 err
= tnc_insert(c
, znode
, &zbr
, n
+ 1);
2291 } else if (found
== 1) {
2292 struct ubifs_zbranch
*zbr
= &znode
->zbranch
[n
];
2295 err
= ubifs_add_dirt(c
, zbr
->lnum
, zbr
->len
);
2302 err
= dbg_check_tnc(c
, 0);
2303 mutex_unlock(&c
->tnc_mutex
);
2309 * ubifs_tnc_replace - replace a node in the TNC only if the old node is found.
2310 * @c: UBIFS file-system description object
2312 * @old_lnum: LEB number of old node
2313 * @old_offs: old node offset
2314 * @lnum: LEB number of node
2315 * @offs: node offset
2318 * This function replaces a node with key @key in the TNC only if the old node
2319 * is found. This function is called by garbage collection when node are moved.
2320 * Returns %0 on success or negative error code on failure.
2322 int ubifs_tnc_replace(struct ubifs_info
*c
, const union ubifs_key
*key
,
2323 int old_lnum
, int old_offs
, int lnum
, int offs
, int len
)
2325 int found
, n
, err
= 0;
2326 struct ubifs_znode
*znode
;
2328 mutex_lock(&c
->tnc_mutex
);
2329 dbg_tnck(key
, "old LEB %d:%d, new LEB %d:%d, len %d, key ", old_lnum
,
2330 old_offs
, lnum
, offs
, len
);
2331 found
= lookup_level0_dirty(c
, key
, &znode
, &n
);
2338 struct ubifs_zbranch
*zbr
= &znode
->zbranch
[n
];
2341 if (zbr
->lnum
== old_lnum
&& zbr
->offs
== old_offs
) {
2343 err
= ubifs_add_dirt(c
, zbr
->lnum
, zbr
->len
);
2350 } else if (is_hash_key(c
, key
)) {
2351 found
= resolve_collision_directly(c
, key
, &znode
, &n
,
2352 old_lnum
, old_offs
);
2353 dbg_tnc("rc returned %d, znode %p, n %d, LEB %d:%d",
2354 found
, znode
, n
, old_lnum
, old_offs
);
2361 /* Ensure the znode is dirtied */
2362 if (znode
->cnext
|| !ubifs_zn_dirty(znode
)) {
2363 znode
= dirty_cow_bottom_up(c
, znode
);
2364 if (IS_ERR(znode
)) {
2365 err
= PTR_ERR(znode
);
2369 zbr
= &znode
->zbranch
[n
];
2371 err
= ubifs_add_dirt(c
, zbr
->lnum
,
2383 err
= ubifs_add_dirt(c
, lnum
, len
);
2386 err
= dbg_check_tnc(c
, 0);
2389 mutex_unlock(&c
->tnc_mutex
);
2394 * ubifs_tnc_add_nm - add a "hashed" node to TNC.
2395 * @c: UBIFS file-system description object
2397 * @lnum: LEB number of node
2398 * @offs: node offset
2402 * This is the same as 'ubifs_tnc_add()' but it should be used with keys which
2403 * may have collisions, like directory entry keys.
2405 int ubifs_tnc_add_nm(struct ubifs_info
*c
, const union ubifs_key
*key
,
2406 int lnum
, int offs
, int len
,
2407 const struct fscrypt_name
*nm
)
2409 int found
, n
, err
= 0;
2410 struct ubifs_znode
*znode
;
2412 mutex_lock(&c
->tnc_mutex
);
2413 dbg_tnck(key
, "LEB %d:%d, key ", lnum
, offs
);
2414 found
= lookup_level0_dirty(c
, key
, &znode
, &n
);
2422 found
= fallible_resolve_collision(c
, key
, &znode
, &n
,
2425 found
= resolve_collision(c
, key
, &znode
, &n
, nm
);
2426 dbg_tnc("rc returned %d, znode %p, n %d", found
, znode
, n
);
2432 /* Ensure the znode is dirtied */
2433 if (znode
->cnext
|| !ubifs_zn_dirty(znode
)) {
2434 znode
= dirty_cow_bottom_up(c
, znode
);
2435 if (IS_ERR(znode
)) {
2436 err
= PTR_ERR(znode
);
2442 struct ubifs_zbranch
*zbr
= &znode
->zbranch
[n
];
2445 err
= ubifs_add_dirt(c
, zbr
->lnum
, zbr
->len
);
2454 struct ubifs_zbranch zbr
;
2460 key_copy(c
, key
, &zbr
.key
);
2461 err
= tnc_insert(c
, znode
, &zbr
, n
+ 1);
2466 * We did not find it in the index so there may be a
2467 * dangling branch still in the index. So we remove it
2468 * by passing 'ubifs_tnc_remove_nm()' the same key but
2469 * an unmatchable name.
2471 struct fscrypt_name noname
= { .disk_name
= { .name
= "", .len
= 1 } };
2473 err
= dbg_check_tnc(c
, 0);
2474 mutex_unlock(&c
->tnc_mutex
);
2477 return ubifs_tnc_remove_nm(c
, key
, &noname
);
2483 err
= dbg_check_tnc(c
, 0);
2484 mutex_unlock(&c
->tnc_mutex
);
2489 * tnc_delete - delete a znode form TNC.
2490 * @c: UBIFS file-system description object
2491 * @znode: znode to delete from
2492 * @n: zbranch slot number to delete
2494 * This function deletes a leaf node from @n-th slot of @znode. Returns zero in
2495 * case of success and a negative error code in case of failure.
2497 static int tnc_delete(struct ubifs_info
*c
, struct ubifs_znode
*znode
, int n
)
2499 struct ubifs_zbranch
*zbr
;
2500 struct ubifs_znode
*zp
;
2503 /* Delete without merge for now */
2504 ubifs_assert(znode
->level
== 0);
2505 ubifs_assert(n
>= 0 && n
< c
->fanout
);
2506 dbg_tnck(&znode
->zbranch
[n
].key
, "deleting key ");
2508 zbr
= &znode
->zbranch
[n
];
2511 err
= ubifs_add_dirt(c
, zbr
->lnum
, zbr
->len
);
2513 ubifs_dump_znode(c
, znode
);
2517 /* We do not "gap" zbranch slots */
2518 for (i
= n
; i
< znode
->child_cnt
- 1; i
++)
2519 znode
->zbranch
[i
] = znode
->zbranch
[i
+ 1];
2520 znode
->child_cnt
-= 1;
2522 if (znode
->child_cnt
> 0)
2526 * This was the last zbranch, we have to delete this znode from the
2531 ubifs_assert(!ubifs_zn_obsolete(znode
));
2532 ubifs_assert(ubifs_zn_dirty(znode
));
2537 atomic_long_dec(&c
->dirty_zn_cnt
);
2539 err
= insert_old_idx_znode(c
, znode
);
2544 __set_bit(OBSOLETE_ZNODE
, &znode
->flags
);
2545 atomic_long_inc(&c
->clean_zn_cnt
);
2546 atomic_long_inc(&ubifs_clean_zn_cnt
);
2550 } while (znode
->child_cnt
== 1); /* while removing last child */
2552 /* Remove from znode, entry n - 1 */
2553 znode
->child_cnt
-= 1;
2554 ubifs_assert(znode
->level
!= 0);
2555 for (i
= n
; i
< znode
->child_cnt
; i
++) {
2556 znode
->zbranch
[i
] = znode
->zbranch
[i
+ 1];
2557 if (znode
->zbranch
[i
].znode
)
2558 znode
->zbranch
[i
].znode
->iip
= i
;
2562 * If this is the root and it has only 1 child then
2563 * collapse the tree.
2565 if (!znode
->parent
) {
2566 while (znode
->child_cnt
== 1 && znode
->level
!= 0) {
2568 zbr
= &znode
->zbranch
[0];
2569 znode
= get_znode(c
, znode
, 0);
2571 return PTR_ERR(znode
);
2572 znode
= dirty_cow_znode(c
, zbr
);
2574 return PTR_ERR(znode
);
2575 znode
->parent
= NULL
;
2578 err
= insert_old_idx(c
, c
->zroot
.lnum
,
2583 c
->zroot
.lnum
= zbr
->lnum
;
2584 c
->zroot
.offs
= zbr
->offs
;
2585 c
->zroot
.len
= zbr
->len
;
2586 c
->zroot
.znode
= znode
;
2587 ubifs_assert(!ubifs_zn_obsolete(zp
));
2588 ubifs_assert(ubifs_zn_dirty(zp
));
2589 atomic_long_dec(&c
->dirty_zn_cnt
);
2592 __set_bit(OBSOLETE_ZNODE
, &zp
->flags
);
2593 atomic_long_inc(&c
->clean_zn_cnt
);
2594 atomic_long_inc(&ubifs_clean_zn_cnt
);
2604 * ubifs_tnc_remove - remove an index entry of a node.
2605 * @c: UBIFS file-system description object
2608 * Returns %0 on success or negative error code on failure.
2610 int ubifs_tnc_remove(struct ubifs_info
*c
, const union ubifs_key
*key
)
2612 int found
, n
, err
= 0;
2613 struct ubifs_znode
*znode
;
2615 mutex_lock(&c
->tnc_mutex
);
2616 dbg_tnck(key
, "key ");
2617 found
= lookup_level0_dirty(c
, key
, &znode
, &n
);
2623 err
= tnc_delete(c
, znode
, n
);
2625 err
= dbg_check_tnc(c
, 0);
2628 mutex_unlock(&c
->tnc_mutex
);
2633 * ubifs_tnc_remove_nm - remove an index entry for a "hashed" node.
2634 * @c: UBIFS file-system description object
2636 * @nm: directory entry name
2638 * Returns %0 on success or negative error code on failure.
2640 int ubifs_tnc_remove_nm(struct ubifs_info
*c
, const union ubifs_key
*key
,
2641 const struct fscrypt_name
*nm
)
2644 struct ubifs_znode
*znode
;
2646 mutex_lock(&c
->tnc_mutex
);
2647 dbg_tnck(key
, "key ");
2648 err
= lookup_level0_dirty(c
, key
, &znode
, &n
);
2654 err
= fallible_resolve_collision(c
, key
, &znode
, &n
,
2657 err
= resolve_collision(c
, key
, &znode
, &n
, nm
);
2658 dbg_tnc("rc returned %d, znode %p, n %d", err
, znode
, n
);
2662 /* Ensure the znode is dirtied */
2663 if (znode
->cnext
|| !ubifs_zn_dirty(znode
)) {
2664 znode
= dirty_cow_bottom_up(c
, znode
);
2665 if (IS_ERR(znode
)) {
2666 err
= PTR_ERR(znode
);
2670 err
= tnc_delete(c
, znode
, n
);
2676 err
= dbg_check_tnc(c
, 0);
2677 mutex_unlock(&c
->tnc_mutex
);
2682 * ubifs_tnc_remove_dh - remove an index entry for a "double hashed" node.
2683 * @c: UBIFS file-system description object
2685 * @cookie: node cookie for collision resolution
2687 * Returns %0 on success or negative error code on failure.
2689 int ubifs_tnc_remove_dh(struct ubifs_info
*c
, const union ubifs_key
*key
,
2693 struct ubifs_znode
*znode
;
2694 struct ubifs_dent_node
*dent
;
2695 struct ubifs_zbranch
*zbr
;
2697 if (!c
->double_hash
)
2700 mutex_lock(&c
->tnc_mutex
);
2701 err
= lookup_level0_dirty(c
, key
, &znode
, &n
);
2705 zbr
= &znode
->zbranch
[n
];
2706 dent
= kmalloc(UBIFS_MAX_DENT_NODE_SZ
, GFP_NOFS
);
2712 err
= tnc_read_hashed_node(c
, zbr
, dent
);
2716 /* If the cookie does not match, we're facing a hash collision. */
2717 if (le32_to_cpu(dent
->cookie
) != cookie
) {
2718 union ubifs_key start_key
;
2720 lowest_dent_key(c
, &start_key
, key_inum(c
, key
));
2722 err
= ubifs_lookup_level0(c
, &start_key
, &znode
, &n
);
2723 if (unlikely(err
< 0))
2726 err
= search_dh_cookie(c
, key
, dent
, cookie
, &znode
, &n
);
2731 if (znode
->cnext
|| !ubifs_zn_dirty(znode
)) {
2732 znode
= dirty_cow_bottom_up(c
, znode
);
2733 if (IS_ERR(znode
)) {
2734 err
= PTR_ERR(znode
);
2738 err
= tnc_delete(c
, znode
, n
);
2744 err
= dbg_check_tnc(c
, 0);
2745 mutex_unlock(&c
->tnc_mutex
);
2750 * key_in_range - determine if a key falls within a range of keys.
2751 * @c: UBIFS file-system description object
2752 * @key: key to check
2753 * @from_key: lowest key in range
2754 * @to_key: highest key in range
2756 * This function returns %1 if the key is in range and %0 otherwise.
2758 static int key_in_range(struct ubifs_info
*c
, union ubifs_key
*key
,
2759 union ubifs_key
*from_key
, union ubifs_key
*to_key
)
2761 if (keys_cmp(c
, key
, from_key
) < 0)
2763 if (keys_cmp(c
, key
, to_key
) > 0)
2769 * ubifs_tnc_remove_range - remove index entries in range.
2770 * @c: UBIFS file-system description object
2771 * @from_key: lowest key to remove
2772 * @to_key: highest key to remove
2774 * This function removes index entries starting at @from_key and ending at
2775 * @to_key. This function returns zero in case of success and a negative error
2776 * code in case of failure.
2778 int ubifs_tnc_remove_range(struct ubifs_info
*c
, union ubifs_key
*from_key
,
2779 union ubifs_key
*to_key
)
2781 int i
, n
, k
, err
= 0;
2782 struct ubifs_znode
*znode
;
2783 union ubifs_key
*key
;
2785 mutex_lock(&c
->tnc_mutex
);
2787 /* Find first level 0 znode that contains keys to remove */
2788 err
= ubifs_lookup_level0(c
, from_key
, &znode
, &n
);
2795 err
= tnc_next(c
, &znode
, &n
);
2796 if (err
== -ENOENT
) {
2802 key
= &znode
->zbranch
[n
].key
;
2803 if (!key_in_range(c
, key
, from_key
, to_key
)) {
2809 /* Ensure the znode is dirtied */
2810 if (znode
->cnext
|| !ubifs_zn_dirty(znode
)) {
2811 znode
= dirty_cow_bottom_up(c
, znode
);
2812 if (IS_ERR(znode
)) {
2813 err
= PTR_ERR(znode
);
2818 /* Remove all keys in range except the first */
2819 for (i
= n
+ 1, k
= 0; i
< znode
->child_cnt
; i
++, k
++) {
2820 key
= &znode
->zbranch
[i
].key
;
2821 if (!key_in_range(c
, key
, from_key
, to_key
))
2823 lnc_free(&znode
->zbranch
[i
]);
2824 err
= ubifs_add_dirt(c
, znode
->zbranch
[i
].lnum
,
2825 znode
->zbranch
[i
].len
);
2827 ubifs_dump_znode(c
, znode
);
2830 dbg_tnck(key
, "removing key ");
2833 for (i
= n
+ 1 + k
; i
< znode
->child_cnt
; i
++)
2834 znode
->zbranch
[i
- k
] = znode
->zbranch
[i
];
2835 znode
->child_cnt
-= k
;
2838 /* Now delete the first */
2839 err
= tnc_delete(c
, znode
, n
);
2846 err
= dbg_check_tnc(c
, 0);
2847 mutex_unlock(&c
->tnc_mutex
);
2852 * ubifs_tnc_remove_ino - remove an inode from TNC.
2853 * @c: UBIFS file-system description object
2854 * @inum: inode number to remove
2856 * This function remove inode @inum and all the extended attributes associated
2857 * with the anode from TNC and returns zero in case of success or a negative
2858 * error code in case of failure.
2860 int ubifs_tnc_remove_ino(struct ubifs_info
*c
, ino_t inum
)
2862 union ubifs_key key1
, key2
;
2863 struct ubifs_dent_node
*xent
, *pxent
= NULL
;
2864 struct fscrypt_name nm
= {0};
2866 dbg_tnc("ino %lu", (unsigned long)inum
);
2869 * Walk all extended attribute entries and remove them together with
2870 * corresponding extended attribute inodes.
2872 lowest_xent_key(c
, &key1
, inum
);
2877 xent
= ubifs_tnc_next_ent(c
, &key1
, &nm
);
2879 err
= PTR_ERR(xent
);
2885 xattr_inum
= le64_to_cpu(xent
->inum
);
2886 dbg_tnc("xent '%s', ino %lu", xent
->name
,
2887 (unsigned long)xattr_inum
);
2889 ubifs_evict_xattr_inode(c
, xattr_inum
);
2891 fname_name(&nm
) = xent
->name
;
2892 fname_len(&nm
) = le16_to_cpu(xent
->nlen
);
2893 err
= ubifs_tnc_remove_nm(c
, &key1
, &nm
);
2899 lowest_ino_key(c
, &key1
, xattr_inum
);
2900 highest_ino_key(c
, &key2
, xattr_inum
);
2901 err
= ubifs_tnc_remove_range(c
, &key1
, &key2
);
2909 key_read(c
, &xent
->key
, &key1
);
2913 lowest_ino_key(c
, &key1
, inum
);
2914 highest_ino_key(c
, &key2
, inum
);
2916 return ubifs_tnc_remove_range(c
, &key1
, &key2
);
2920 * ubifs_tnc_next_ent - walk directory or extended attribute entries.
2921 * @c: UBIFS file-system description object
2922 * @key: key of last entry
2923 * @nm: name of last entry found or %NULL
2925 * This function finds and reads the next directory or extended attribute entry
2926 * after the given key (@key) if there is one. @nm is used to resolve
2929 * If the name of the current entry is not known and only the key is known,
2930 * @nm->name has to be %NULL. In this case the semantics of this function is a
2931 * little bit different and it returns the entry corresponding to this key, not
2932 * the next one. If the key was not found, the closest "right" entry is
2935 * If the fist entry has to be found, @key has to contain the lowest possible
2936 * key value for this inode and @name has to be %NULL.
2938 * This function returns the found directory or extended attribute entry node
2939 * in case of success, %-ENOENT is returned if no entry was found, and a
2940 * negative error code is returned in case of failure.
2942 struct ubifs_dent_node
*ubifs_tnc_next_ent(struct ubifs_info
*c
,
2943 union ubifs_key
*key
,
2944 const struct fscrypt_name
*nm
)
2946 int n
, err
, type
= key_type(c
, key
);
2947 struct ubifs_znode
*znode
;
2948 struct ubifs_dent_node
*dent
;
2949 struct ubifs_zbranch
*zbr
;
2950 union ubifs_key
*dkey
;
2952 dbg_tnck(key
, "key ");
2953 ubifs_assert(is_hash_key(c
, key
));
2955 mutex_lock(&c
->tnc_mutex
);
2956 err
= ubifs_lookup_level0(c
, key
, &znode
, &n
);
2957 if (unlikely(err
< 0))
2960 if (fname_len(nm
) > 0) {
2962 /* Handle collisions */
2964 err
= fallible_resolve_collision(c
, key
, &znode
, &n
,
2967 err
= resolve_collision(c
, key
, &znode
, &n
, nm
);
2968 dbg_tnc("rc returned %d, znode %p, n %d",
2970 if (unlikely(err
< 0))
2974 /* Now find next entry */
2975 err
= tnc_next(c
, &znode
, &n
);
2980 * The full name of the entry was not given, in which case the
2981 * behavior of this function is a little different and it
2982 * returns current entry, not the next one.
2986 * However, the given key does not exist in the TNC
2987 * tree and @znode/@n variables contain the closest
2988 * "preceding" element. Switch to the next one.
2990 err
= tnc_next(c
, &znode
, &n
);
2996 zbr
= &znode
->zbranch
[n
];
2997 dent
= kmalloc(zbr
->len
, GFP_NOFS
);
2998 if (unlikely(!dent
)) {
3004 * The above 'tnc_next()' call could lead us to the next inode, check
3008 if (key_inum(c
, dkey
) != key_inum(c
, key
) ||
3009 key_type(c
, dkey
) != type
) {
3014 err
= tnc_read_hashed_node(c
, zbr
, dent
);
3018 mutex_unlock(&c
->tnc_mutex
);
3024 mutex_unlock(&c
->tnc_mutex
);
3025 return ERR_PTR(err
);
3029 * tnc_destroy_cnext - destroy left-over obsolete znodes from a failed commit.
3030 * @c: UBIFS file-system description object
3032 * Destroy left-over obsolete znodes from a failed commit.
3034 static void tnc_destroy_cnext(struct ubifs_info
*c
)
3036 struct ubifs_znode
*cnext
;
3040 ubifs_assert(c
->cmt_state
== COMMIT_BROKEN
);
3043 struct ubifs_znode
*znode
= cnext
;
3045 cnext
= cnext
->cnext
;
3046 if (ubifs_zn_obsolete(znode
))
3048 } while (cnext
&& cnext
!= c
->cnext
);
3052 * ubifs_tnc_close - close TNC subsystem and free all related resources.
3053 * @c: UBIFS file-system description object
3055 void ubifs_tnc_close(struct ubifs_info
*c
)
3057 tnc_destroy_cnext(c
);
3058 if (c
->zroot
.znode
) {
3061 n
= atomic_long_read(&c
->clean_zn_cnt
);
3062 freed
= ubifs_destroy_tnc_subtree(c
->zroot
.znode
);
3063 ubifs_assert(freed
== n
);
3064 atomic_long_sub(n
, &ubifs_clean_zn_cnt
);
3072 * left_znode - get the znode to the left.
3073 * @c: UBIFS file-system description object
3076 * This function returns a pointer to the znode to the left of @znode or NULL if
3077 * there is not one. A negative error code is returned on failure.
3079 static struct ubifs_znode
*left_znode(struct ubifs_info
*c
,
3080 struct ubifs_znode
*znode
)
3082 int level
= znode
->level
;
3085 int n
= znode
->iip
- 1;
3087 /* Go up until we can go left */
3088 znode
= znode
->parent
;
3092 /* Now go down the rightmost branch to 'level' */
3093 znode
= get_znode(c
, znode
, n
);
3096 while (znode
->level
!= level
) {
3097 n
= znode
->child_cnt
- 1;
3098 znode
= get_znode(c
, znode
, n
);
3109 * right_znode - get the znode to the right.
3110 * @c: UBIFS file-system description object
3113 * This function returns a pointer to the znode to the right of @znode or NULL
3114 * if there is not one. A negative error code is returned on failure.
3116 static struct ubifs_znode
*right_znode(struct ubifs_info
*c
,
3117 struct ubifs_znode
*znode
)
3119 int level
= znode
->level
;
3122 int n
= znode
->iip
+ 1;
3124 /* Go up until we can go right */
3125 znode
= znode
->parent
;
3128 if (n
< znode
->child_cnt
) {
3129 /* Now go down the leftmost branch to 'level' */
3130 znode
= get_znode(c
, znode
, n
);
3133 while (znode
->level
!= level
) {
3134 znode
= get_znode(c
, znode
, 0);
3145 * lookup_znode - find a particular indexing node from TNC.
3146 * @c: UBIFS file-system description object
3147 * @key: index node key to lookup
3148 * @level: index node level
3149 * @lnum: index node LEB number
3150 * @offs: index node offset
3152 * This function searches an indexing node by its first key @key and its
3153 * address @lnum:@offs. It looks up the indexing tree by pulling all indexing
3154 * nodes it traverses to TNC. This function is called for indexing nodes which
3155 * were found on the media by scanning, for example when garbage-collecting or
3156 * when doing in-the-gaps commit. This means that the indexing node which is
3157 * looked for does not have to have exactly the same leftmost key @key, because
3158 * the leftmost key may have been changed, in which case TNC will contain a
3159 * dirty znode which still refers the same @lnum:@offs. This function is clever
3160 * enough to recognize such indexing nodes.
3162 * Note, if a znode was deleted or changed too much, then this function will
3163 * not find it. For situations like this UBIFS has the old index RB-tree
3164 * (indexed by @lnum:@offs).
3166 * This function returns a pointer to the znode found or %NULL if it is not
3167 * found. A negative error code is returned on failure.
3169 static struct ubifs_znode
*lookup_znode(struct ubifs_info
*c
,
3170 union ubifs_key
*key
, int level
,
3173 struct ubifs_znode
*znode
, *zn
;
3176 ubifs_assert(key_type(c
, key
) < UBIFS_INVALID_KEY
);
3179 * The arguments have probably been read off flash, so don't assume
3183 return ERR_PTR(-EINVAL
);
3185 /* Get the root znode */
3186 znode
= c
->zroot
.znode
;
3188 znode
= ubifs_load_znode(c
, &c
->zroot
, NULL
, 0);
3192 /* Check if it is the one we are looking for */
3193 if (c
->zroot
.lnum
== lnum
&& c
->zroot
.offs
== offs
)
3195 /* Descend to the parent level i.e. (level + 1) */
3196 if (level
>= znode
->level
)
3199 ubifs_search_zbranch(c
, znode
, key
, &n
);
3202 * We reached a znode where the leftmost key is greater
3203 * than the key we are searching for. This is the same
3204 * situation as the one described in a huge comment at
3205 * the end of the 'ubifs_lookup_level0()' function. And
3206 * for exactly the same reasons we have to try to look
3207 * left before giving up.
3209 znode
= left_znode(c
, znode
);
3214 ubifs_search_zbranch(c
, znode
, key
, &n
);
3215 ubifs_assert(n
>= 0);
3217 if (znode
->level
== level
+ 1)
3219 znode
= get_znode(c
, znode
, n
);
3223 /* Check if the child is the one we are looking for */
3224 if (znode
->zbranch
[n
].lnum
== lnum
&& znode
->zbranch
[n
].offs
== offs
)
3225 return get_znode(c
, znode
, n
);
3226 /* If the key is unique, there is nowhere else to look */
3227 if (!is_hash_key(c
, key
))
3230 * The key is not unique and so may be also in the znodes to either
3237 /* Move one branch to the left */
3241 znode
= left_znode(c
, znode
);
3246 n
= znode
->child_cnt
- 1;
3249 if (znode
->zbranch
[n
].lnum
== lnum
&&
3250 znode
->zbranch
[n
].offs
== offs
)
3251 return get_znode(c
, znode
, n
);
3252 /* Stop if the key is less than the one we are looking for */
3253 if (keys_cmp(c
, &znode
->zbranch
[n
].key
, key
) < 0)
3256 /* Back to the middle */
3261 /* Move one branch to the right */
3262 if (++n
>= znode
->child_cnt
) {
3263 znode
= right_znode(c
, znode
);
3271 if (znode
->zbranch
[n
].lnum
== lnum
&&
3272 znode
->zbranch
[n
].offs
== offs
)
3273 return get_znode(c
, znode
, n
);
3274 /* Stop if the key is greater than the one we are looking for */
3275 if (keys_cmp(c
, &znode
->zbranch
[n
].key
, key
) > 0)
3282 * is_idx_node_in_tnc - determine if an index node is in the TNC.
3283 * @c: UBIFS file-system description object
3284 * @key: key of index node
3285 * @level: index node level
3286 * @lnum: LEB number of index node
3287 * @offs: offset of index node
3289 * This function returns %0 if the index node is not referred to in the TNC, %1
3290 * if the index node is referred to in the TNC and the corresponding znode is
3291 * dirty, %2 if an index node is referred to in the TNC and the corresponding
3292 * znode is clean, and a negative error code in case of failure.
3294 * Note, the @key argument has to be the key of the first child. Also note,
3295 * this function relies on the fact that 0:0 is never a valid LEB number and
3296 * offset for a main-area node.
3298 int is_idx_node_in_tnc(struct ubifs_info
*c
, union ubifs_key
*key
, int level
,
3301 struct ubifs_znode
*znode
;
3303 znode
= lookup_znode(c
, key
, level
, lnum
, offs
);
3307 return PTR_ERR(znode
);
3309 return ubifs_zn_dirty(znode
) ? 1 : 2;
3313 * is_leaf_node_in_tnc - determine if a non-indexing not is in the TNC.
3314 * @c: UBIFS file-system description object
3316 * @lnum: node LEB number
3317 * @offs: node offset
3319 * This function returns %1 if the node is referred to in the TNC, %0 if it is
3320 * not, and a negative error code in case of failure.
3322 * Note, this function relies on the fact that 0:0 is never a valid LEB number
3323 * and offset for a main-area node.
3325 static int is_leaf_node_in_tnc(struct ubifs_info
*c
, union ubifs_key
*key
,
3328 struct ubifs_zbranch
*zbr
;
3329 struct ubifs_znode
*znode
, *zn
;
3330 int n
, found
, err
, nn
;
3331 const int unique
= !is_hash_key(c
, key
);
3333 found
= ubifs_lookup_level0(c
, key
, &znode
, &n
);
3335 return found
; /* Error code */
3338 zbr
= &znode
->zbranch
[n
];
3339 if (lnum
== zbr
->lnum
&& offs
== zbr
->offs
)
3340 return 1; /* Found it */
3344 * Because the key is not unique, we have to look left
3351 err
= tnc_prev(c
, &znode
, &n
);
3356 if (keys_cmp(c
, key
, &znode
->zbranch
[n
].key
))
3358 zbr
= &znode
->zbranch
[n
];
3359 if (lnum
== zbr
->lnum
&& offs
== zbr
->offs
)
3360 return 1; /* Found it */
3366 err
= tnc_next(c
, &znode
, &n
);
3372 if (keys_cmp(c
, key
, &znode
->zbranch
[n
].key
))
3374 zbr
= &znode
->zbranch
[n
];
3375 if (lnum
== zbr
->lnum
&& offs
== zbr
->offs
)
3376 return 1; /* Found it */
3382 * ubifs_tnc_has_node - determine whether a node is in the TNC.
3383 * @c: UBIFS file-system description object
3385 * @level: index node level (if it is an index node)
3386 * @lnum: node LEB number
3387 * @offs: node offset
3388 * @is_idx: non-zero if the node is an index node
3390 * This function returns %1 if the node is in the TNC, %0 if it is not, and a
3391 * negative error code in case of failure. For index nodes, @key has to be the
3392 * key of the first child. An index node is considered to be in the TNC only if
3393 * the corresponding znode is clean or has not been loaded.
3395 int ubifs_tnc_has_node(struct ubifs_info
*c
, union ubifs_key
*key
, int level
,
3396 int lnum
, int offs
, int is_idx
)
3400 mutex_lock(&c
->tnc_mutex
);
3402 err
= is_idx_node_in_tnc(c
, key
, level
, lnum
, offs
);
3406 /* The index node was found but it was dirty */
3409 /* The index node was found and it was clean */
3414 err
= is_leaf_node_in_tnc(c
, key
, lnum
, offs
);
3417 mutex_unlock(&c
->tnc_mutex
);
3422 * ubifs_dirty_idx_node - dirty an index node.
3423 * @c: UBIFS file-system description object
3424 * @key: index node key
3425 * @level: index node level
3426 * @lnum: index node LEB number
3427 * @offs: index node offset
3429 * This function loads and dirties an index node so that it can be garbage
3430 * collected. The @key argument has to be the key of the first child. This
3431 * function relies on the fact that 0:0 is never a valid LEB number and offset
3432 * for a main-area node. Returns %0 on success and a negative error code on
3435 int ubifs_dirty_idx_node(struct ubifs_info
*c
, union ubifs_key
*key
, int level
,
3438 struct ubifs_znode
*znode
;
3441 mutex_lock(&c
->tnc_mutex
);
3442 znode
= lookup_znode(c
, key
, level
, lnum
, offs
);
3445 if (IS_ERR(znode
)) {
3446 err
= PTR_ERR(znode
);
3449 znode
= dirty_cow_bottom_up(c
, znode
);
3450 if (IS_ERR(znode
)) {
3451 err
= PTR_ERR(znode
);
3456 mutex_unlock(&c
->tnc_mutex
);
3461 * dbg_check_inode_size - check if inode size is correct.
3462 * @c: UBIFS file-system description object
3463 * @inum: inode number
3466 * This function makes sure that the inode size (@size) is correct and it does
3467 * not have any pages beyond @size. Returns zero if the inode is OK, %-EINVAL
3468 * if it has a data page beyond @size, and other negative error code in case of
3471 int dbg_check_inode_size(struct ubifs_info
*c
, const struct inode
*inode
,
3475 union ubifs_key from_key
, to_key
, *key
;
3476 struct ubifs_znode
*znode
;
3479 if (!S_ISREG(inode
->i_mode
))
3481 if (!dbg_is_chk_gen(c
))
3484 block
= (size
+ UBIFS_BLOCK_SIZE
- 1) >> UBIFS_BLOCK_SHIFT
;
3485 data_key_init(c
, &from_key
, inode
->i_ino
, block
);
3486 highest_data_key(c
, &to_key
, inode
->i_ino
);
3488 mutex_lock(&c
->tnc_mutex
);
3489 err
= ubifs_lookup_level0(c
, &from_key
, &znode
, &n
);
3498 err
= tnc_next(c
, &znode
, &n
);
3499 if (err
== -ENOENT
) {
3506 ubifs_assert(err
== 0);
3507 key
= &znode
->zbranch
[n
].key
;
3508 if (!key_in_range(c
, key
, &from_key
, &to_key
))
3512 block
= key_block(c
, key
);
3513 ubifs_err(c
, "inode %lu has size %lld, but there are data at offset %lld",
3514 (unsigned long)inode
->i_ino
, size
,
3515 ((loff_t
)block
) << UBIFS_BLOCK_SHIFT
);
3516 mutex_unlock(&c
->tnc_mutex
);
3517 ubifs_dump_inode(c
, inode
);
3522 mutex_unlock(&c
->tnc_mutex
);