Linux 4.16.11
[linux/fpc-iii.git] / drivers / auxdisplay / panel.c
blobec5e8800f8adf18ad0f645747d991abb518a2659
1 /*
2 * Front panel driver for Linux
3 * Copyright (C) 2000-2008, Willy Tarreau <w@1wt.eu>
4 * Copyright (C) 2016-2017 Glider bvba
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License
8 * as published by the Free Software Foundation; either version
9 * 2 of the License, or (at your option) any later version.
11 * This code drives an LCD module (/dev/lcd), and a keypad (/dev/keypad)
12 * connected to a parallel printer port.
14 * The LCD module may either be an HD44780-like 8-bit parallel LCD, or a 1-bit
15 * serial module compatible with Samsung's KS0074. The pins may be connected in
16 * any combination, everything is programmable.
18 * The keypad consists in a matrix of push buttons connecting input pins to
19 * data output pins or to the ground. The combinations have to be hard-coded
20 * in the driver, though several profiles exist and adding new ones is easy.
22 * Several profiles are provided for commonly found LCD+keypad modules on the
23 * market, such as those found in Nexcom's appliances.
25 * FIXME:
26 * - the initialization/deinitialization process is very dirty and should
27 * be rewritten. It may even be buggy.
29 * TODO:
30 * - document 24 keys keyboard (3 rows of 8 cols, 32 diodes + 2 inputs)
31 * - make the LCD a part of a virtual screen of Vx*Vy
32 * - make the inputs list smp-safe
33 * - change the keyboard to a double mapping : signals -> key_id -> values
34 * so that applications can change values without knowing signals
38 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
40 #include <linux/module.h>
42 #include <linux/types.h>
43 #include <linux/errno.h>
44 #include <linux/signal.h>
45 #include <linux/sched.h>
46 #include <linux/spinlock.h>
47 #include <linux/interrupt.h>
48 #include <linux/miscdevice.h>
49 #include <linux/slab.h>
50 #include <linux/ioport.h>
51 #include <linux/fcntl.h>
52 #include <linux/init.h>
53 #include <linux/delay.h>
54 #include <linux/kernel.h>
55 #include <linux/ctype.h>
56 #include <linux/parport.h>
57 #include <linux/list.h>
59 #include <linux/io.h>
60 #include <linux/uaccess.h>
62 #include <misc/charlcd.h>
64 #define KEYPAD_MINOR 185
66 #define LCD_MAXBYTES 256 /* max burst write */
68 #define KEYPAD_BUFFER 64
70 /* poll the keyboard this every second */
71 #define INPUT_POLL_TIME (HZ / 50)
72 /* a key starts to repeat after this times INPUT_POLL_TIME */
73 #define KEYPAD_REP_START (10)
74 /* a key repeats this times INPUT_POLL_TIME */
75 #define KEYPAD_REP_DELAY (2)
77 /* converts an r_str() input to an active high, bits string : 000BAOSE */
78 #define PNL_PINPUT(a) ((((unsigned char)(a)) ^ 0x7F) >> 3)
80 #define PNL_PBUSY 0x80 /* inverted input, active low */
81 #define PNL_PACK 0x40 /* direct input, active low */
82 #define PNL_POUTPA 0x20 /* direct input, active high */
83 #define PNL_PSELECD 0x10 /* direct input, active high */
84 #define PNL_PERRORP 0x08 /* direct input, active low */
86 #define PNL_PBIDIR 0x20 /* bi-directional ports */
87 /* high to read data in or-ed with data out */
88 #define PNL_PINTEN 0x10
89 #define PNL_PSELECP 0x08 /* inverted output, active low */
90 #define PNL_PINITP 0x04 /* direct output, active low */
91 #define PNL_PAUTOLF 0x02 /* inverted output, active low */
92 #define PNL_PSTROBE 0x01 /* inverted output */
94 #define PNL_PD0 0x01
95 #define PNL_PD1 0x02
96 #define PNL_PD2 0x04
97 #define PNL_PD3 0x08
98 #define PNL_PD4 0x10
99 #define PNL_PD5 0x20
100 #define PNL_PD6 0x40
101 #define PNL_PD7 0x80
103 #define PIN_NONE 0
104 #define PIN_STROBE 1
105 #define PIN_D0 2
106 #define PIN_D1 3
107 #define PIN_D2 4
108 #define PIN_D3 5
109 #define PIN_D4 6
110 #define PIN_D5 7
111 #define PIN_D6 8
112 #define PIN_D7 9
113 #define PIN_AUTOLF 14
114 #define PIN_INITP 16
115 #define PIN_SELECP 17
116 #define PIN_NOT_SET 127
118 #define NOT_SET -1
120 /* macros to simplify use of the parallel port */
121 #define r_ctr(x) (parport_read_control((x)->port))
122 #define r_dtr(x) (parport_read_data((x)->port))
123 #define r_str(x) (parport_read_status((x)->port))
124 #define w_ctr(x, y) (parport_write_control((x)->port, (y)))
125 #define w_dtr(x, y) (parport_write_data((x)->port, (y)))
127 /* this defines which bits are to be used and which ones to be ignored */
128 /* logical or of the output bits involved in the scan matrix */
129 static __u8 scan_mask_o;
130 /* logical or of the input bits involved in the scan matrix */
131 static __u8 scan_mask_i;
133 enum input_type {
134 INPUT_TYPE_STD,
135 INPUT_TYPE_KBD,
138 enum input_state {
139 INPUT_ST_LOW,
140 INPUT_ST_RISING,
141 INPUT_ST_HIGH,
142 INPUT_ST_FALLING,
145 struct logical_input {
146 struct list_head list;
147 __u64 mask;
148 __u64 value;
149 enum input_type type;
150 enum input_state state;
151 __u8 rise_time, fall_time;
152 __u8 rise_timer, fall_timer, high_timer;
154 union {
155 struct { /* valid when type == INPUT_TYPE_STD */
156 void (*press_fct)(int);
157 void (*release_fct)(int);
158 int press_data;
159 int release_data;
160 } std;
161 struct { /* valid when type == INPUT_TYPE_KBD */
162 /* strings can be non null-terminated */
163 char press_str[sizeof(void *) + sizeof(int)];
164 char repeat_str[sizeof(void *) + sizeof(int)];
165 char release_str[sizeof(void *) + sizeof(int)];
166 } kbd;
167 } u;
170 static LIST_HEAD(logical_inputs); /* list of all defined logical inputs */
172 /* physical contacts history
173 * Physical contacts are a 45 bits string of 9 groups of 5 bits each.
174 * The 8 lower groups correspond to output bits 0 to 7, and the 9th group
175 * corresponds to the ground.
176 * Within each group, bits are stored in the same order as read on the port :
177 * BAPSE (busy=4, ack=3, paper empty=2, select=1, error=0).
178 * So, each __u64 is represented like this :
179 * 0000000000000000000BAPSEBAPSEBAPSEBAPSEBAPSEBAPSEBAPSEBAPSEBAPSE
180 * <-----unused------><gnd><d07><d06><d05><d04><d03><d02><d01><d00>
183 /* what has just been read from the I/O ports */
184 static __u64 phys_read;
185 /* previous phys_read */
186 static __u64 phys_read_prev;
187 /* stabilized phys_read (phys_read|phys_read_prev) */
188 static __u64 phys_curr;
189 /* previous phys_curr */
190 static __u64 phys_prev;
191 /* 0 means that at least one logical signal needs be computed */
192 static char inputs_stable;
194 /* these variables are specific to the keypad */
195 static struct {
196 bool enabled;
197 } keypad;
199 static char keypad_buffer[KEYPAD_BUFFER];
200 static int keypad_buflen;
201 static int keypad_start;
202 static char keypressed;
203 static wait_queue_head_t keypad_read_wait;
205 /* lcd-specific variables */
206 static struct {
207 bool enabled;
208 bool initialized;
210 int charset;
211 int proto;
213 /* TODO: use union here? */
214 struct {
215 int e;
216 int rs;
217 int rw;
218 int cl;
219 int da;
220 int bl;
221 } pins;
223 struct charlcd *charlcd;
224 } lcd;
226 /* Needed only for init */
227 static int selected_lcd_type = NOT_SET;
230 * Bit masks to convert LCD signals to parallel port outputs.
231 * _d_ are values for data port, _c_ are for control port.
232 * [0] = signal OFF, [1] = signal ON, [2] = mask
234 #define BIT_CLR 0
235 #define BIT_SET 1
236 #define BIT_MSK 2
237 #define BIT_STATES 3
239 * one entry for each bit on the LCD
241 #define LCD_BIT_E 0
242 #define LCD_BIT_RS 1
243 #define LCD_BIT_RW 2
244 #define LCD_BIT_BL 3
245 #define LCD_BIT_CL 4
246 #define LCD_BIT_DA 5
247 #define LCD_BITS 6
250 * each bit can be either connected to a DATA or CTRL port
252 #define LCD_PORT_C 0
253 #define LCD_PORT_D 1
254 #define LCD_PORTS 2
256 static unsigned char lcd_bits[LCD_PORTS][LCD_BITS][BIT_STATES];
259 * LCD protocols
261 #define LCD_PROTO_PARALLEL 0
262 #define LCD_PROTO_SERIAL 1
263 #define LCD_PROTO_TI_DA8XX_LCD 2
266 * LCD character sets
268 #define LCD_CHARSET_NORMAL 0
269 #define LCD_CHARSET_KS0074 1
272 * LCD types
274 #define LCD_TYPE_NONE 0
275 #define LCD_TYPE_CUSTOM 1
276 #define LCD_TYPE_OLD 2
277 #define LCD_TYPE_KS0074 3
278 #define LCD_TYPE_HANTRONIX 4
279 #define LCD_TYPE_NEXCOM 5
282 * keypad types
284 #define KEYPAD_TYPE_NONE 0
285 #define KEYPAD_TYPE_OLD 1
286 #define KEYPAD_TYPE_NEW 2
287 #define KEYPAD_TYPE_NEXCOM 3
290 * panel profiles
292 #define PANEL_PROFILE_CUSTOM 0
293 #define PANEL_PROFILE_OLD 1
294 #define PANEL_PROFILE_NEW 2
295 #define PANEL_PROFILE_HANTRONIX 3
296 #define PANEL_PROFILE_NEXCOM 4
297 #define PANEL_PROFILE_LARGE 5
300 * Construct custom config from the kernel's configuration
302 #define DEFAULT_PARPORT 0
303 #define DEFAULT_PROFILE PANEL_PROFILE_LARGE
304 #define DEFAULT_KEYPAD_TYPE KEYPAD_TYPE_OLD
305 #define DEFAULT_LCD_TYPE LCD_TYPE_OLD
306 #define DEFAULT_LCD_HEIGHT 2
307 #define DEFAULT_LCD_WIDTH 40
308 #define DEFAULT_LCD_BWIDTH 40
309 #define DEFAULT_LCD_HWIDTH 64
310 #define DEFAULT_LCD_CHARSET LCD_CHARSET_NORMAL
311 #define DEFAULT_LCD_PROTO LCD_PROTO_PARALLEL
313 #define DEFAULT_LCD_PIN_E PIN_AUTOLF
314 #define DEFAULT_LCD_PIN_RS PIN_SELECP
315 #define DEFAULT_LCD_PIN_RW PIN_INITP
316 #define DEFAULT_LCD_PIN_SCL PIN_STROBE
317 #define DEFAULT_LCD_PIN_SDA PIN_D0
318 #define DEFAULT_LCD_PIN_BL PIN_NOT_SET
320 #ifdef CONFIG_PANEL_PARPORT
321 #undef DEFAULT_PARPORT
322 #define DEFAULT_PARPORT CONFIG_PANEL_PARPORT
323 #endif
325 #ifdef CONFIG_PANEL_PROFILE
326 #undef DEFAULT_PROFILE
327 #define DEFAULT_PROFILE CONFIG_PANEL_PROFILE
328 #endif
330 #if DEFAULT_PROFILE == 0 /* custom */
331 #ifdef CONFIG_PANEL_KEYPAD
332 #undef DEFAULT_KEYPAD_TYPE
333 #define DEFAULT_KEYPAD_TYPE CONFIG_PANEL_KEYPAD
334 #endif
336 #ifdef CONFIG_PANEL_LCD
337 #undef DEFAULT_LCD_TYPE
338 #define DEFAULT_LCD_TYPE CONFIG_PANEL_LCD
339 #endif
341 #ifdef CONFIG_PANEL_LCD_HEIGHT
342 #undef DEFAULT_LCD_HEIGHT
343 #define DEFAULT_LCD_HEIGHT CONFIG_PANEL_LCD_HEIGHT
344 #endif
346 #ifdef CONFIG_PANEL_LCD_WIDTH
347 #undef DEFAULT_LCD_WIDTH
348 #define DEFAULT_LCD_WIDTH CONFIG_PANEL_LCD_WIDTH
349 #endif
351 #ifdef CONFIG_PANEL_LCD_BWIDTH
352 #undef DEFAULT_LCD_BWIDTH
353 #define DEFAULT_LCD_BWIDTH CONFIG_PANEL_LCD_BWIDTH
354 #endif
356 #ifdef CONFIG_PANEL_LCD_HWIDTH
357 #undef DEFAULT_LCD_HWIDTH
358 #define DEFAULT_LCD_HWIDTH CONFIG_PANEL_LCD_HWIDTH
359 #endif
361 #ifdef CONFIG_PANEL_LCD_CHARSET
362 #undef DEFAULT_LCD_CHARSET
363 #define DEFAULT_LCD_CHARSET CONFIG_PANEL_LCD_CHARSET
364 #endif
366 #ifdef CONFIG_PANEL_LCD_PROTO
367 #undef DEFAULT_LCD_PROTO
368 #define DEFAULT_LCD_PROTO CONFIG_PANEL_LCD_PROTO
369 #endif
371 #ifdef CONFIG_PANEL_LCD_PIN_E
372 #undef DEFAULT_LCD_PIN_E
373 #define DEFAULT_LCD_PIN_E CONFIG_PANEL_LCD_PIN_E
374 #endif
376 #ifdef CONFIG_PANEL_LCD_PIN_RS
377 #undef DEFAULT_LCD_PIN_RS
378 #define DEFAULT_LCD_PIN_RS CONFIG_PANEL_LCD_PIN_RS
379 #endif
381 #ifdef CONFIG_PANEL_LCD_PIN_RW
382 #undef DEFAULT_LCD_PIN_RW
383 #define DEFAULT_LCD_PIN_RW CONFIG_PANEL_LCD_PIN_RW
384 #endif
386 #ifdef CONFIG_PANEL_LCD_PIN_SCL
387 #undef DEFAULT_LCD_PIN_SCL
388 #define DEFAULT_LCD_PIN_SCL CONFIG_PANEL_LCD_PIN_SCL
389 #endif
391 #ifdef CONFIG_PANEL_LCD_PIN_SDA
392 #undef DEFAULT_LCD_PIN_SDA
393 #define DEFAULT_LCD_PIN_SDA CONFIG_PANEL_LCD_PIN_SDA
394 #endif
396 #ifdef CONFIG_PANEL_LCD_PIN_BL
397 #undef DEFAULT_LCD_PIN_BL
398 #define DEFAULT_LCD_PIN_BL CONFIG_PANEL_LCD_PIN_BL
399 #endif
401 #endif /* DEFAULT_PROFILE == 0 */
403 /* global variables */
405 /* Device single-open policy control */
406 static atomic_t keypad_available = ATOMIC_INIT(1);
408 static struct pardevice *pprt;
410 static int keypad_initialized;
412 static DEFINE_SPINLOCK(pprt_lock);
413 static struct timer_list scan_timer;
415 MODULE_DESCRIPTION("Generic parallel port LCD/Keypad driver");
417 static int parport = DEFAULT_PARPORT;
418 module_param(parport, int, 0000);
419 MODULE_PARM_DESC(parport, "Parallel port index (0=lpt1, 1=lpt2, ...)");
421 static int profile = DEFAULT_PROFILE;
422 module_param(profile, int, 0000);
423 MODULE_PARM_DESC(profile,
424 "1=16x2 old kp; 2=serial 16x2, new kp; 3=16x2 hantronix; "
425 "4=16x2 nexcom; default=40x2, old kp");
427 static int keypad_type = NOT_SET;
428 module_param(keypad_type, int, 0000);
429 MODULE_PARM_DESC(keypad_type,
430 "Keypad type: 0=none, 1=old 6 keys, 2=new 6+1 keys, 3=nexcom 4 keys");
432 static int lcd_type = NOT_SET;
433 module_param(lcd_type, int, 0000);
434 MODULE_PARM_DESC(lcd_type,
435 "LCD type: 0=none, 1=compiled-in, 2=old, 3=serial ks0074, 4=hantronix, 5=nexcom");
437 static int lcd_height = NOT_SET;
438 module_param(lcd_height, int, 0000);
439 MODULE_PARM_DESC(lcd_height, "Number of lines on the LCD");
441 static int lcd_width = NOT_SET;
442 module_param(lcd_width, int, 0000);
443 MODULE_PARM_DESC(lcd_width, "Number of columns on the LCD");
445 static int lcd_bwidth = NOT_SET; /* internal buffer width (usually 40) */
446 module_param(lcd_bwidth, int, 0000);
447 MODULE_PARM_DESC(lcd_bwidth, "Internal LCD line width (40)");
449 static int lcd_hwidth = NOT_SET; /* hardware buffer width (usually 64) */
450 module_param(lcd_hwidth, int, 0000);
451 MODULE_PARM_DESC(lcd_hwidth, "LCD line hardware address (64)");
453 static int lcd_charset = NOT_SET;
454 module_param(lcd_charset, int, 0000);
455 MODULE_PARM_DESC(lcd_charset, "LCD character set: 0=standard, 1=KS0074");
457 static int lcd_proto = NOT_SET;
458 module_param(lcd_proto, int, 0000);
459 MODULE_PARM_DESC(lcd_proto,
460 "LCD communication: 0=parallel (//), 1=serial, 2=TI LCD Interface");
463 * These are the parallel port pins the LCD control signals are connected to.
464 * Set this to 0 if the signal is not used. Set it to its opposite value
465 * (negative) if the signal is negated. -MAXINT is used to indicate that the
466 * pin has not been explicitly specified.
468 * WARNING! no check will be performed about collisions with keypad !
471 static int lcd_e_pin = PIN_NOT_SET;
472 module_param(lcd_e_pin, int, 0000);
473 MODULE_PARM_DESC(lcd_e_pin,
474 "# of the // port pin connected to LCD 'E' signal, with polarity (-17..17)");
476 static int lcd_rs_pin = PIN_NOT_SET;
477 module_param(lcd_rs_pin, int, 0000);
478 MODULE_PARM_DESC(lcd_rs_pin,
479 "# of the // port pin connected to LCD 'RS' signal, with polarity (-17..17)");
481 static int lcd_rw_pin = PIN_NOT_SET;
482 module_param(lcd_rw_pin, int, 0000);
483 MODULE_PARM_DESC(lcd_rw_pin,
484 "# of the // port pin connected to LCD 'RW' signal, with polarity (-17..17)");
486 static int lcd_cl_pin = PIN_NOT_SET;
487 module_param(lcd_cl_pin, int, 0000);
488 MODULE_PARM_DESC(lcd_cl_pin,
489 "# of the // port pin connected to serial LCD 'SCL' signal, with polarity (-17..17)");
491 static int lcd_da_pin = PIN_NOT_SET;
492 module_param(lcd_da_pin, int, 0000);
493 MODULE_PARM_DESC(lcd_da_pin,
494 "# of the // port pin connected to serial LCD 'SDA' signal, with polarity (-17..17)");
496 static int lcd_bl_pin = PIN_NOT_SET;
497 module_param(lcd_bl_pin, int, 0000);
498 MODULE_PARM_DESC(lcd_bl_pin,
499 "# of the // port pin connected to LCD backlight, with polarity (-17..17)");
501 /* Deprecated module parameters - consider not using them anymore */
503 static int lcd_enabled = NOT_SET;
504 module_param(lcd_enabled, int, 0000);
505 MODULE_PARM_DESC(lcd_enabled, "Deprecated option, use lcd_type instead");
507 static int keypad_enabled = NOT_SET;
508 module_param(keypad_enabled, int, 0000);
509 MODULE_PARM_DESC(keypad_enabled, "Deprecated option, use keypad_type instead");
511 /* for some LCD drivers (ks0074) we need a charset conversion table. */
512 static const unsigned char lcd_char_conv_ks0074[256] = {
513 /* 0|8 1|9 2|A 3|B 4|C 5|D 6|E 7|F */
514 /* 0x00 */ 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
515 /* 0x08 */ 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f,
516 /* 0x10 */ 0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17,
517 /* 0x18 */ 0x18, 0x19, 0x1a, 0x1b, 0x1c, 0x1d, 0x1e, 0x1f,
518 /* 0x20 */ 0x20, 0x21, 0x22, 0x23, 0xa2, 0x25, 0x26, 0x27,
519 /* 0x28 */ 0x28, 0x29, 0x2a, 0x2b, 0x2c, 0x2d, 0x2e, 0x2f,
520 /* 0x30 */ 0x30, 0x31, 0x32, 0x33, 0x34, 0x35, 0x36, 0x37,
521 /* 0x38 */ 0x38, 0x39, 0x3a, 0x3b, 0x3c, 0x3d, 0x3e, 0x3f,
522 /* 0x40 */ 0xa0, 0x41, 0x42, 0x43, 0x44, 0x45, 0x46, 0x47,
523 /* 0x48 */ 0x48, 0x49, 0x4a, 0x4b, 0x4c, 0x4d, 0x4e, 0x4f,
524 /* 0x50 */ 0x50, 0x51, 0x52, 0x53, 0x54, 0x55, 0x56, 0x57,
525 /* 0x58 */ 0x58, 0x59, 0x5a, 0xfa, 0xfb, 0xfc, 0x1d, 0xc4,
526 /* 0x60 */ 0x96, 0x61, 0x62, 0x63, 0x64, 0x65, 0x66, 0x67,
527 /* 0x68 */ 0x68, 0x69, 0x6a, 0x6b, 0x6c, 0x6d, 0x6e, 0x6f,
528 /* 0x70 */ 0x70, 0x71, 0x72, 0x73, 0x74, 0x75, 0x76, 0x77,
529 /* 0x78 */ 0x78, 0x79, 0x7a, 0xfd, 0xfe, 0xff, 0xce, 0x20,
530 /* 0x80 */ 0x80, 0x81, 0x82, 0x83, 0x84, 0x85, 0x86, 0x87,
531 /* 0x88 */ 0x88, 0x89, 0x8a, 0x8b, 0x8c, 0x8d, 0x8e, 0x8f,
532 /* 0x90 */ 0x90, 0x91, 0x92, 0x93, 0x94, 0x95, 0x96, 0x97,
533 /* 0x98 */ 0x98, 0x99, 0x9a, 0x9b, 0x9c, 0x9d, 0x9e, 0x9f,
534 /* 0xA0 */ 0x20, 0x40, 0xb1, 0xa1, 0x24, 0xa3, 0xfe, 0x5f,
535 /* 0xA8 */ 0x22, 0xc8, 0x61, 0x14, 0x97, 0x2d, 0xad, 0x96,
536 /* 0xB0 */ 0x80, 0x8c, 0x82, 0x83, 0x27, 0x8f, 0x86, 0xdd,
537 /* 0xB8 */ 0x2c, 0x81, 0x6f, 0x15, 0x8b, 0x8a, 0x84, 0x60,
538 /* 0xC0 */ 0xe2, 0xe2, 0xe2, 0x5b, 0x5b, 0xae, 0xbc, 0xa9,
539 /* 0xC8 */ 0xc5, 0xbf, 0xc6, 0xf1, 0xe3, 0xe3, 0xe3, 0xe3,
540 /* 0xD0 */ 0x44, 0x5d, 0xa8, 0xe4, 0xec, 0xec, 0x5c, 0x78,
541 /* 0xD8 */ 0xab, 0xa6, 0xe5, 0x5e, 0x5e, 0xe6, 0xaa, 0xbe,
542 /* 0xE0 */ 0x7f, 0xe7, 0xaf, 0x7b, 0x7b, 0xaf, 0xbd, 0xc8,
543 /* 0xE8 */ 0xa4, 0xa5, 0xc7, 0xf6, 0xa7, 0xe8, 0x69, 0x69,
544 /* 0xF0 */ 0xed, 0x7d, 0xa8, 0xe4, 0xec, 0x5c, 0x5c, 0x25,
545 /* 0xF8 */ 0xac, 0xa6, 0xea, 0xef, 0x7e, 0xeb, 0xb2, 0x79,
548 static const char old_keypad_profile[][4][9] = {
549 {"S0", "Left\n", "Left\n", ""},
550 {"S1", "Down\n", "Down\n", ""},
551 {"S2", "Up\n", "Up\n", ""},
552 {"S3", "Right\n", "Right\n", ""},
553 {"S4", "Esc\n", "Esc\n", ""},
554 {"S5", "Ret\n", "Ret\n", ""},
555 {"", "", "", ""}
558 /* signals, press, repeat, release */
559 static const char new_keypad_profile[][4][9] = {
560 {"S0", "Left\n", "Left\n", ""},
561 {"S1", "Down\n", "Down\n", ""},
562 {"S2", "Up\n", "Up\n", ""},
563 {"S3", "Right\n", "Right\n", ""},
564 {"S4s5", "", "Esc\n", "Esc\n"},
565 {"s4S5", "", "Ret\n", "Ret\n"},
566 {"S4S5", "Help\n", "", ""},
567 /* add new signals above this line */
568 {"", "", "", ""}
571 /* signals, press, repeat, release */
572 static const char nexcom_keypad_profile[][4][9] = {
573 {"a-p-e-", "Down\n", "Down\n", ""},
574 {"a-p-E-", "Ret\n", "Ret\n", ""},
575 {"a-P-E-", "Esc\n", "Esc\n", ""},
576 {"a-P-e-", "Up\n", "Up\n", ""},
577 /* add new signals above this line */
578 {"", "", "", ""}
581 static const char (*keypad_profile)[4][9] = old_keypad_profile;
583 static DECLARE_BITMAP(bits, LCD_BITS);
585 static void lcd_get_bits(unsigned int port, int *val)
587 unsigned int bit, state;
589 for (bit = 0; bit < LCD_BITS; bit++) {
590 state = test_bit(bit, bits) ? BIT_SET : BIT_CLR;
591 *val &= lcd_bits[port][bit][BIT_MSK];
592 *val |= lcd_bits[port][bit][state];
596 /* sets data port bits according to current signals values */
597 static int set_data_bits(void)
599 int val;
601 val = r_dtr(pprt);
602 lcd_get_bits(LCD_PORT_D, &val);
603 w_dtr(pprt, val);
604 return val;
607 /* sets ctrl port bits according to current signals values */
608 static int set_ctrl_bits(void)
610 int val;
612 val = r_ctr(pprt);
613 lcd_get_bits(LCD_PORT_C, &val);
614 w_ctr(pprt, val);
615 return val;
618 /* sets ctrl & data port bits according to current signals values */
619 static void panel_set_bits(void)
621 set_data_bits();
622 set_ctrl_bits();
626 * Converts a parallel port pin (from -25 to 25) to data and control ports
627 * masks, and data and control port bits. The signal will be considered
628 * unconnected if it's on pin 0 or an invalid pin (<-25 or >25).
630 * Result will be used this way :
631 * out(dport, in(dport) & d_val[2] | d_val[signal_state])
632 * out(cport, in(cport) & c_val[2] | c_val[signal_state])
634 static void pin_to_bits(int pin, unsigned char *d_val, unsigned char *c_val)
636 int d_bit, c_bit, inv;
638 d_val[0] = 0;
639 c_val[0] = 0;
640 d_val[1] = 0;
641 c_val[1] = 0;
642 d_val[2] = 0xFF;
643 c_val[2] = 0xFF;
645 if (pin == 0)
646 return;
648 inv = (pin < 0);
649 if (inv)
650 pin = -pin;
652 d_bit = 0;
653 c_bit = 0;
655 switch (pin) {
656 case PIN_STROBE: /* strobe, inverted */
657 c_bit = PNL_PSTROBE;
658 inv = !inv;
659 break;
660 case PIN_D0...PIN_D7: /* D0 - D7 = 2 - 9 */
661 d_bit = 1 << (pin - 2);
662 break;
663 case PIN_AUTOLF: /* autofeed, inverted */
664 c_bit = PNL_PAUTOLF;
665 inv = !inv;
666 break;
667 case PIN_INITP: /* init, direct */
668 c_bit = PNL_PINITP;
669 break;
670 case PIN_SELECP: /* select_in, inverted */
671 c_bit = PNL_PSELECP;
672 inv = !inv;
673 break;
674 default: /* unknown pin, ignore */
675 break;
678 if (c_bit) {
679 c_val[2] &= ~c_bit;
680 c_val[!inv] = c_bit;
681 } else if (d_bit) {
682 d_val[2] &= ~d_bit;
683 d_val[!inv] = d_bit;
688 * send a serial byte to the LCD panel. The caller is responsible for locking
689 * if needed.
691 static void lcd_send_serial(int byte)
693 int bit;
696 * the data bit is set on D0, and the clock on STROBE.
697 * LCD reads D0 on STROBE's rising edge.
699 for (bit = 0; bit < 8; bit++) {
700 clear_bit(LCD_BIT_CL, bits); /* CLK low */
701 panel_set_bits();
702 if (byte & 1) {
703 set_bit(LCD_BIT_DA, bits);
704 } else {
705 clear_bit(LCD_BIT_DA, bits);
708 panel_set_bits();
709 udelay(2); /* maintain the data during 2 us before CLK up */
710 set_bit(LCD_BIT_CL, bits); /* CLK high */
711 panel_set_bits();
712 udelay(1); /* maintain the strobe during 1 us */
713 byte >>= 1;
717 /* turn the backlight on or off */
718 static void lcd_backlight(struct charlcd *charlcd, int on)
720 if (lcd.pins.bl == PIN_NONE)
721 return;
723 /* The backlight is activated by setting the AUTOFEED line to +5V */
724 spin_lock_irq(&pprt_lock);
725 if (on)
726 set_bit(LCD_BIT_BL, bits);
727 else
728 clear_bit(LCD_BIT_BL, bits);
729 panel_set_bits();
730 spin_unlock_irq(&pprt_lock);
733 /* send a command to the LCD panel in serial mode */
734 static void lcd_write_cmd_s(struct charlcd *charlcd, int cmd)
736 spin_lock_irq(&pprt_lock);
737 lcd_send_serial(0x1F); /* R/W=W, RS=0 */
738 lcd_send_serial(cmd & 0x0F);
739 lcd_send_serial((cmd >> 4) & 0x0F);
740 udelay(40); /* the shortest command takes at least 40 us */
741 spin_unlock_irq(&pprt_lock);
744 /* send data to the LCD panel in serial mode */
745 static void lcd_write_data_s(struct charlcd *charlcd, int data)
747 spin_lock_irq(&pprt_lock);
748 lcd_send_serial(0x5F); /* R/W=W, RS=1 */
749 lcd_send_serial(data & 0x0F);
750 lcd_send_serial((data >> 4) & 0x0F);
751 udelay(40); /* the shortest data takes at least 40 us */
752 spin_unlock_irq(&pprt_lock);
755 /* send a command to the LCD panel in 8 bits parallel mode */
756 static void lcd_write_cmd_p8(struct charlcd *charlcd, int cmd)
758 spin_lock_irq(&pprt_lock);
759 /* present the data to the data port */
760 w_dtr(pprt, cmd);
761 udelay(20); /* maintain the data during 20 us before the strobe */
763 set_bit(LCD_BIT_E, bits);
764 clear_bit(LCD_BIT_RS, bits);
765 clear_bit(LCD_BIT_RW, bits);
766 set_ctrl_bits();
768 udelay(40); /* maintain the strobe during 40 us */
770 clear_bit(LCD_BIT_E, bits);
771 set_ctrl_bits();
773 udelay(120); /* the shortest command takes at least 120 us */
774 spin_unlock_irq(&pprt_lock);
777 /* send data to the LCD panel in 8 bits parallel mode */
778 static void lcd_write_data_p8(struct charlcd *charlcd, int data)
780 spin_lock_irq(&pprt_lock);
781 /* present the data to the data port */
782 w_dtr(pprt, data);
783 udelay(20); /* maintain the data during 20 us before the strobe */
785 set_bit(LCD_BIT_E, bits);
786 set_bit(LCD_BIT_RS, bits);
787 clear_bit(LCD_BIT_RW, bits);
788 set_ctrl_bits();
790 udelay(40); /* maintain the strobe during 40 us */
792 clear_bit(LCD_BIT_E, bits);
793 set_ctrl_bits();
795 udelay(45); /* the shortest data takes at least 45 us */
796 spin_unlock_irq(&pprt_lock);
799 /* send a command to the TI LCD panel */
800 static void lcd_write_cmd_tilcd(struct charlcd *charlcd, int cmd)
802 spin_lock_irq(&pprt_lock);
803 /* present the data to the control port */
804 w_ctr(pprt, cmd);
805 udelay(60);
806 spin_unlock_irq(&pprt_lock);
809 /* send data to the TI LCD panel */
810 static void lcd_write_data_tilcd(struct charlcd *charlcd, int data)
812 spin_lock_irq(&pprt_lock);
813 /* present the data to the data port */
814 w_dtr(pprt, data);
815 udelay(60);
816 spin_unlock_irq(&pprt_lock);
819 /* fills the display with spaces and resets X/Y */
820 static void lcd_clear_fast_s(struct charlcd *charlcd)
822 int pos;
824 spin_lock_irq(&pprt_lock);
825 for (pos = 0; pos < charlcd->height * charlcd->hwidth; pos++) {
826 lcd_send_serial(0x5F); /* R/W=W, RS=1 */
827 lcd_send_serial(' ' & 0x0F);
828 lcd_send_serial((' ' >> 4) & 0x0F);
829 /* the shortest data takes at least 40 us */
830 udelay(40);
832 spin_unlock_irq(&pprt_lock);
835 /* fills the display with spaces and resets X/Y */
836 static void lcd_clear_fast_p8(struct charlcd *charlcd)
838 int pos;
840 spin_lock_irq(&pprt_lock);
841 for (pos = 0; pos < charlcd->height * charlcd->hwidth; pos++) {
842 /* present the data to the data port */
843 w_dtr(pprt, ' ');
845 /* maintain the data during 20 us before the strobe */
846 udelay(20);
848 set_bit(LCD_BIT_E, bits);
849 set_bit(LCD_BIT_RS, bits);
850 clear_bit(LCD_BIT_RW, bits);
851 set_ctrl_bits();
853 /* maintain the strobe during 40 us */
854 udelay(40);
856 clear_bit(LCD_BIT_E, bits);
857 set_ctrl_bits();
859 /* the shortest data takes at least 45 us */
860 udelay(45);
862 spin_unlock_irq(&pprt_lock);
865 /* fills the display with spaces and resets X/Y */
866 static void lcd_clear_fast_tilcd(struct charlcd *charlcd)
868 int pos;
870 spin_lock_irq(&pprt_lock);
871 for (pos = 0; pos < charlcd->height * charlcd->hwidth; pos++) {
872 /* present the data to the data port */
873 w_dtr(pprt, ' ');
874 udelay(60);
877 spin_unlock_irq(&pprt_lock);
880 static const struct charlcd_ops charlcd_serial_ops = {
881 .write_cmd = lcd_write_cmd_s,
882 .write_data = lcd_write_data_s,
883 .clear_fast = lcd_clear_fast_s,
884 .backlight = lcd_backlight,
887 static const struct charlcd_ops charlcd_parallel_ops = {
888 .write_cmd = lcd_write_cmd_p8,
889 .write_data = lcd_write_data_p8,
890 .clear_fast = lcd_clear_fast_p8,
891 .backlight = lcd_backlight,
894 static const struct charlcd_ops charlcd_tilcd_ops = {
895 .write_cmd = lcd_write_cmd_tilcd,
896 .write_data = lcd_write_data_tilcd,
897 .clear_fast = lcd_clear_fast_tilcd,
898 .backlight = lcd_backlight,
901 /* initialize the LCD driver */
902 static void lcd_init(void)
904 struct charlcd *charlcd;
906 charlcd = charlcd_alloc(0);
907 if (!charlcd)
908 return;
911 * Init lcd struct with load-time values to preserve exact
912 * current functionality (at least for now).
914 charlcd->height = lcd_height;
915 charlcd->width = lcd_width;
916 charlcd->bwidth = lcd_bwidth;
917 charlcd->hwidth = lcd_hwidth;
919 switch (selected_lcd_type) {
920 case LCD_TYPE_OLD:
921 /* parallel mode, 8 bits */
922 lcd.proto = LCD_PROTO_PARALLEL;
923 lcd.charset = LCD_CHARSET_NORMAL;
924 lcd.pins.e = PIN_STROBE;
925 lcd.pins.rs = PIN_AUTOLF;
927 charlcd->width = 40;
928 charlcd->bwidth = 40;
929 charlcd->hwidth = 64;
930 charlcd->height = 2;
931 break;
932 case LCD_TYPE_KS0074:
933 /* serial mode, ks0074 */
934 lcd.proto = LCD_PROTO_SERIAL;
935 lcd.charset = LCD_CHARSET_KS0074;
936 lcd.pins.bl = PIN_AUTOLF;
937 lcd.pins.cl = PIN_STROBE;
938 lcd.pins.da = PIN_D0;
940 charlcd->width = 16;
941 charlcd->bwidth = 40;
942 charlcd->hwidth = 16;
943 charlcd->height = 2;
944 break;
945 case LCD_TYPE_NEXCOM:
946 /* parallel mode, 8 bits, generic */
947 lcd.proto = LCD_PROTO_PARALLEL;
948 lcd.charset = LCD_CHARSET_NORMAL;
949 lcd.pins.e = PIN_AUTOLF;
950 lcd.pins.rs = PIN_SELECP;
951 lcd.pins.rw = PIN_INITP;
953 charlcd->width = 16;
954 charlcd->bwidth = 40;
955 charlcd->hwidth = 64;
956 charlcd->height = 2;
957 break;
958 case LCD_TYPE_CUSTOM:
959 /* customer-defined */
960 lcd.proto = DEFAULT_LCD_PROTO;
961 lcd.charset = DEFAULT_LCD_CHARSET;
962 /* default geometry will be set later */
963 break;
964 case LCD_TYPE_HANTRONIX:
965 /* parallel mode, 8 bits, hantronix-like */
966 default:
967 lcd.proto = LCD_PROTO_PARALLEL;
968 lcd.charset = LCD_CHARSET_NORMAL;
969 lcd.pins.e = PIN_STROBE;
970 lcd.pins.rs = PIN_SELECP;
972 charlcd->width = 16;
973 charlcd->bwidth = 40;
974 charlcd->hwidth = 64;
975 charlcd->height = 2;
976 break;
979 /* Overwrite with module params set on loading */
980 if (lcd_height != NOT_SET)
981 charlcd->height = lcd_height;
982 if (lcd_width != NOT_SET)
983 charlcd->width = lcd_width;
984 if (lcd_bwidth != NOT_SET)
985 charlcd->bwidth = lcd_bwidth;
986 if (lcd_hwidth != NOT_SET)
987 charlcd->hwidth = lcd_hwidth;
988 if (lcd_charset != NOT_SET)
989 lcd.charset = lcd_charset;
990 if (lcd_proto != NOT_SET)
991 lcd.proto = lcd_proto;
992 if (lcd_e_pin != PIN_NOT_SET)
993 lcd.pins.e = lcd_e_pin;
994 if (lcd_rs_pin != PIN_NOT_SET)
995 lcd.pins.rs = lcd_rs_pin;
996 if (lcd_rw_pin != PIN_NOT_SET)
997 lcd.pins.rw = lcd_rw_pin;
998 if (lcd_cl_pin != PIN_NOT_SET)
999 lcd.pins.cl = lcd_cl_pin;
1000 if (lcd_da_pin != PIN_NOT_SET)
1001 lcd.pins.da = lcd_da_pin;
1002 if (lcd_bl_pin != PIN_NOT_SET)
1003 lcd.pins.bl = lcd_bl_pin;
1005 /* this is used to catch wrong and default values */
1006 if (charlcd->width <= 0)
1007 charlcd->width = DEFAULT_LCD_WIDTH;
1008 if (charlcd->bwidth <= 0)
1009 charlcd->bwidth = DEFAULT_LCD_BWIDTH;
1010 if (charlcd->hwidth <= 0)
1011 charlcd->hwidth = DEFAULT_LCD_HWIDTH;
1012 if (charlcd->height <= 0)
1013 charlcd->height = DEFAULT_LCD_HEIGHT;
1015 if (lcd.proto == LCD_PROTO_SERIAL) { /* SERIAL */
1016 charlcd->ops = &charlcd_serial_ops;
1018 if (lcd.pins.cl == PIN_NOT_SET)
1019 lcd.pins.cl = DEFAULT_LCD_PIN_SCL;
1020 if (lcd.pins.da == PIN_NOT_SET)
1021 lcd.pins.da = DEFAULT_LCD_PIN_SDA;
1023 } else if (lcd.proto == LCD_PROTO_PARALLEL) { /* PARALLEL */
1024 charlcd->ops = &charlcd_parallel_ops;
1026 if (lcd.pins.e == PIN_NOT_SET)
1027 lcd.pins.e = DEFAULT_LCD_PIN_E;
1028 if (lcd.pins.rs == PIN_NOT_SET)
1029 lcd.pins.rs = DEFAULT_LCD_PIN_RS;
1030 if (lcd.pins.rw == PIN_NOT_SET)
1031 lcd.pins.rw = DEFAULT_LCD_PIN_RW;
1032 } else {
1033 charlcd->ops = &charlcd_tilcd_ops;
1036 if (lcd.pins.bl == PIN_NOT_SET)
1037 lcd.pins.bl = DEFAULT_LCD_PIN_BL;
1039 if (lcd.pins.e == PIN_NOT_SET)
1040 lcd.pins.e = PIN_NONE;
1041 if (lcd.pins.rs == PIN_NOT_SET)
1042 lcd.pins.rs = PIN_NONE;
1043 if (lcd.pins.rw == PIN_NOT_SET)
1044 lcd.pins.rw = PIN_NONE;
1045 if (lcd.pins.bl == PIN_NOT_SET)
1046 lcd.pins.bl = PIN_NONE;
1047 if (lcd.pins.cl == PIN_NOT_SET)
1048 lcd.pins.cl = PIN_NONE;
1049 if (lcd.pins.da == PIN_NOT_SET)
1050 lcd.pins.da = PIN_NONE;
1052 if (lcd.charset == NOT_SET)
1053 lcd.charset = DEFAULT_LCD_CHARSET;
1055 if (lcd.charset == LCD_CHARSET_KS0074)
1056 charlcd->char_conv = lcd_char_conv_ks0074;
1057 else
1058 charlcd->char_conv = NULL;
1060 pin_to_bits(lcd.pins.e, lcd_bits[LCD_PORT_D][LCD_BIT_E],
1061 lcd_bits[LCD_PORT_C][LCD_BIT_E]);
1062 pin_to_bits(lcd.pins.rs, lcd_bits[LCD_PORT_D][LCD_BIT_RS],
1063 lcd_bits[LCD_PORT_C][LCD_BIT_RS]);
1064 pin_to_bits(lcd.pins.rw, lcd_bits[LCD_PORT_D][LCD_BIT_RW],
1065 lcd_bits[LCD_PORT_C][LCD_BIT_RW]);
1066 pin_to_bits(lcd.pins.bl, lcd_bits[LCD_PORT_D][LCD_BIT_BL],
1067 lcd_bits[LCD_PORT_C][LCD_BIT_BL]);
1068 pin_to_bits(lcd.pins.cl, lcd_bits[LCD_PORT_D][LCD_BIT_CL],
1069 lcd_bits[LCD_PORT_C][LCD_BIT_CL]);
1070 pin_to_bits(lcd.pins.da, lcd_bits[LCD_PORT_D][LCD_BIT_DA],
1071 lcd_bits[LCD_PORT_C][LCD_BIT_DA]);
1073 lcd.charlcd = charlcd;
1074 lcd.initialized = true;
1078 * These are the file operation function for user access to /dev/keypad
1081 static ssize_t keypad_read(struct file *file,
1082 char __user *buf, size_t count, loff_t *ppos)
1084 unsigned i = *ppos;
1085 char __user *tmp = buf;
1087 if (keypad_buflen == 0) {
1088 if (file->f_flags & O_NONBLOCK)
1089 return -EAGAIN;
1091 if (wait_event_interruptible(keypad_read_wait,
1092 keypad_buflen != 0))
1093 return -EINTR;
1096 for (; count-- > 0 && (keypad_buflen > 0);
1097 ++i, ++tmp, --keypad_buflen) {
1098 put_user(keypad_buffer[keypad_start], tmp);
1099 keypad_start = (keypad_start + 1) % KEYPAD_BUFFER;
1101 *ppos = i;
1103 return tmp - buf;
1106 static int keypad_open(struct inode *inode, struct file *file)
1108 int ret;
1110 ret = -EBUSY;
1111 if (!atomic_dec_and_test(&keypad_available))
1112 goto fail; /* open only once at a time */
1114 ret = -EPERM;
1115 if (file->f_mode & FMODE_WRITE) /* device is read-only */
1116 goto fail;
1118 keypad_buflen = 0; /* flush the buffer on opening */
1119 return 0;
1120 fail:
1121 atomic_inc(&keypad_available);
1122 return ret;
1125 static int keypad_release(struct inode *inode, struct file *file)
1127 atomic_inc(&keypad_available);
1128 return 0;
1131 static const struct file_operations keypad_fops = {
1132 .read = keypad_read, /* read */
1133 .open = keypad_open, /* open */
1134 .release = keypad_release, /* close */
1135 .llseek = default_llseek,
1138 static struct miscdevice keypad_dev = {
1139 .minor = KEYPAD_MINOR,
1140 .name = "keypad",
1141 .fops = &keypad_fops,
1144 static void keypad_send_key(const char *string, int max_len)
1146 /* send the key to the device only if a process is attached to it. */
1147 if (!atomic_read(&keypad_available)) {
1148 while (max_len-- && keypad_buflen < KEYPAD_BUFFER && *string) {
1149 keypad_buffer[(keypad_start + keypad_buflen++) %
1150 KEYPAD_BUFFER] = *string++;
1152 wake_up_interruptible(&keypad_read_wait);
1156 /* this function scans all the bits involving at least one logical signal,
1157 * and puts the results in the bitfield "phys_read" (one bit per established
1158 * contact), and sets "phys_read_prev" to "phys_read".
1160 * Note: to debounce input signals, we will only consider as switched a signal
1161 * which is stable across 2 measures. Signals which are different between two
1162 * reads will be kept as they previously were in their logical form (phys_prev).
1163 * A signal which has just switched will have a 1 in
1164 * (phys_read ^ phys_read_prev).
1166 static void phys_scan_contacts(void)
1168 int bit, bitval;
1169 char oldval;
1170 char bitmask;
1171 char gndmask;
1173 phys_prev = phys_curr;
1174 phys_read_prev = phys_read;
1175 phys_read = 0; /* flush all signals */
1177 /* keep track of old value, with all outputs disabled */
1178 oldval = r_dtr(pprt) | scan_mask_o;
1179 /* activate all keyboard outputs (active low) */
1180 w_dtr(pprt, oldval & ~scan_mask_o);
1182 /* will have a 1 for each bit set to gnd */
1183 bitmask = PNL_PINPUT(r_str(pprt)) & scan_mask_i;
1184 /* disable all matrix signals */
1185 w_dtr(pprt, oldval);
1187 /* now that all outputs are cleared, the only active input bits are
1188 * directly connected to the ground
1191 /* 1 for each grounded input */
1192 gndmask = PNL_PINPUT(r_str(pprt)) & scan_mask_i;
1194 /* grounded inputs are signals 40-44 */
1195 phys_read |= (__u64)gndmask << 40;
1197 if (bitmask != gndmask) {
1199 * since clearing the outputs changed some inputs, we know
1200 * that some input signals are currently tied to some outputs.
1201 * So we'll scan them.
1203 for (bit = 0; bit < 8; bit++) {
1204 bitval = BIT(bit);
1206 if (!(scan_mask_o & bitval)) /* skip unused bits */
1207 continue;
1209 w_dtr(pprt, oldval & ~bitval); /* enable this output */
1210 bitmask = PNL_PINPUT(r_str(pprt)) & ~gndmask;
1211 phys_read |= (__u64)bitmask << (5 * bit);
1213 w_dtr(pprt, oldval); /* disable all outputs */
1216 * this is easy: use old bits when they are flapping,
1217 * use new ones when stable
1219 phys_curr = (phys_prev & (phys_read ^ phys_read_prev)) |
1220 (phys_read & ~(phys_read ^ phys_read_prev));
1223 static inline int input_state_high(struct logical_input *input)
1225 #if 0
1226 /* FIXME:
1227 * this is an invalid test. It tries to catch
1228 * transitions from single-key to multiple-key, but
1229 * doesn't take into account the contacts polarity.
1230 * The only solution to the problem is to parse keys
1231 * from the most complex to the simplest combinations,
1232 * and mark them as 'caught' once a combination
1233 * matches, then unmatch it for all other ones.
1236 /* try to catch dangerous transitions cases :
1237 * someone adds a bit, so this signal was a false
1238 * positive resulting from a transition. We should
1239 * invalidate the signal immediately and not call the
1240 * release function.
1241 * eg: 0 -(press A)-> A -(press B)-> AB : don't match A's release.
1243 if (((phys_prev & input->mask) == input->value) &&
1244 ((phys_curr & input->mask) > input->value)) {
1245 input->state = INPUT_ST_LOW; /* invalidate */
1246 return 1;
1248 #endif
1250 if ((phys_curr & input->mask) == input->value) {
1251 if ((input->type == INPUT_TYPE_STD) &&
1252 (input->high_timer == 0)) {
1253 input->high_timer++;
1254 if (input->u.std.press_fct)
1255 input->u.std.press_fct(input->u.std.press_data);
1256 } else if (input->type == INPUT_TYPE_KBD) {
1257 /* will turn on the light */
1258 keypressed = 1;
1260 if (input->high_timer == 0) {
1261 char *press_str = input->u.kbd.press_str;
1263 if (press_str[0]) {
1264 int s = sizeof(input->u.kbd.press_str);
1266 keypad_send_key(press_str, s);
1270 if (input->u.kbd.repeat_str[0]) {
1271 char *repeat_str = input->u.kbd.repeat_str;
1273 if (input->high_timer >= KEYPAD_REP_START) {
1274 int s = sizeof(input->u.kbd.repeat_str);
1276 input->high_timer -= KEYPAD_REP_DELAY;
1277 keypad_send_key(repeat_str, s);
1279 /* we will need to come back here soon */
1280 inputs_stable = 0;
1283 if (input->high_timer < 255)
1284 input->high_timer++;
1286 return 1;
1289 /* else signal falling down. Let's fall through. */
1290 input->state = INPUT_ST_FALLING;
1291 input->fall_timer = 0;
1293 return 0;
1296 static inline void input_state_falling(struct logical_input *input)
1298 #if 0
1299 /* FIXME !!! same comment as in input_state_high */
1300 if (((phys_prev & input->mask) == input->value) &&
1301 ((phys_curr & input->mask) > input->value)) {
1302 input->state = INPUT_ST_LOW; /* invalidate */
1303 return;
1305 #endif
1307 if ((phys_curr & input->mask) == input->value) {
1308 if (input->type == INPUT_TYPE_KBD) {
1309 /* will turn on the light */
1310 keypressed = 1;
1312 if (input->u.kbd.repeat_str[0]) {
1313 char *repeat_str = input->u.kbd.repeat_str;
1315 if (input->high_timer >= KEYPAD_REP_START) {
1316 int s = sizeof(input->u.kbd.repeat_str);
1318 input->high_timer -= KEYPAD_REP_DELAY;
1319 keypad_send_key(repeat_str, s);
1321 /* we will need to come back here soon */
1322 inputs_stable = 0;
1325 if (input->high_timer < 255)
1326 input->high_timer++;
1328 input->state = INPUT_ST_HIGH;
1329 } else if (input->fall_timer >= input->fall_time) {
1330 /* call release event */
1331 if (input->type == INPUT_TYPE_STD) {
1332 void (*release_fct)(int) = input->u.std.release_fct;
1334 if (release_fct)
1335 release_fct(input->u.std.release_data);
1336 } else if (input->type == INPUT_TYPE_KBD) {
1337 char *release_str = input->u.kbd.release_str;
1339 if (release_str[0]) {
1340 int s = sizeof(input->u.kbd.release_str);
1342 keypad_send_key(release_str, s);
1346 input->state = INPUT_ST_LOW;
1347 } else {
1348 input->fall_timer++;
1349 inputs_stable = 0;
1353 static void panel_process_inputs(void)
1355 struct logical_input *input;
1357 keypressed = 0;
1358 inputs_stable = 1;
1359 list_for_each_entry(input, &logical_inputs, list) {
1360 switch (input->state) {
1361 case INPUT_ST_LOW:
1362 if ((phys_curr & input->mask) != input->value)
1363 break;
1364 /* if all needed ones were already set previously,
1365 * this means that this logical signal has been
1366 * activated by the releasing of another combined
1367 * signal, so we don't want to match.
1368 * eg: AB -(release B)-> A -(release A)-> 0 :
1369 * don't match A.
1371 if ((phys_prev & input->mask) == input->value)
1372 break;
1373 input->rise_timer = 0;
1374 input->state = INPUT_ST_RISING;
1375 /* fall through */
1376 case INPUT_ST_RISING:
1377 if ((phys_curr & input->mask) != input->value) {
1378 input->state = INPUT_ST_LOW;
1379 break;
1381 if (input->rise_timer < input->rise_time) {
1382 inputs_stable = 0;
1383 input->rise_timer++;
1384 break;
1386 input->high_timer = 0;
1387 input->state = INPUT_ST_HIGH;
1388 /* fall through */
1389 case INPUT_ST_HIGH:
1390 if (input_state_high(input))
1391 break;
1392 /* fall through */
1393 case INPUT_ST_FALLING:
1394 input_state_falling(input);
1399 static void panel_scan_timer(struct timer_list *unused)
1401 if (keypad.enabled && keypad_initialized) {
1402 if (spin_trylock_irq(&pprt_lock)) {
1403 phys_scan_contacts();
1405 /* no need for the parport anymore */
1406 spin_unlock_irq(&pprt_lock);
1409 if (!inputs_stable || phys_curr != phys_prev)
1410 panel_process_inputs();
1413 if (keypressed && lcd.enabled && lcd.initialized)
1414 charlcd_poke(lcd.charlcd);
1416 mod_timer(&scan_timer, jiffies + INPUT_POLL_TIME);
1419 static void init_scan_timer(void)
1421 if (scan_timer.function)
1422 return; /* already started */
1424 timer_setup(&scan_timer, panel_scan_timer, 0);
1425 scan_timer.expires = jiffies + INPUT_POLL_TIME;
1426 add_timer(&scan_timer);
1429 /* converts a name of the form "({BbAaPpSsEe}{01234567-})*" to a series of bits.
1430 * if <omask> or <imask> are non-null, they will be or'ed with the bits
1431 * corresponding to out and in bits respectively.
1432 * returns 1 if ok, 0 if error (in which case, nothing is written).
1434 static u8 input_name2mask(const char *name, __u64 *mask, __u64 *value,
1435 u8 *imask, u8 *omask)
1437 const char sigtab[] = "EeSsPpAaBb";
1438 u8 im, om;
1439 __u64 m, v;
1441 om = 0;
1442 im = 0;
1443 m = 0ULL;
1444 v = 0ULL;
1445 while (*name) {
1446 int in, out, bit, neg;
1447 const char *idx;
1449 idx = strchr(sigtab, *name);
1450 if (!idx)
1451 return 0; /* input name not found */
1453 in = idx - sigtab;
1454 neg = (in & 1); /* odd (lower) names are negated */
1455 in >>= 1;
1456 im |= BIT(in);
1458 name++;
1459 if (*name >= '0' && *name <= '7') {
1460 out = *name - '0';
1461 om |= BIT(out);
1462 } else if (*name == '-') {
1463 out = 8;
1464 } else {
1465 return 0; /* unknown bit name */
1468 bit = (out * 5) + in;
1470 m |= 1ULL << bit;
1471 if (!neg)
1472 v |= 1ULL << bit;
1473 name++;
1475 *mask = m;
1476 *value = v;
1477 if (imask)
1478 *imask |= im;
1479 if (omask)
1480 *omask |= om;
1481 return 1;
1484 /* tries to bind a key to the signal name <name>. The key will send the
1485 * strings <press>, <repeat>, <release> for these respective events.
1486 * Returns the pointer to the new key if ok, NULL if the key could not be bound.
1488 static struct logical_input *panel_bind_key(const char *name, const char *press,
1489 const char *repeat,
1490 const char *release)
1492 struct logical_input *key;
1494 key = kzalloc(sizeof(*key), GFP_KERNEL);
1495 if (!key)
1496 return NULL;
1498 if (!input_name2mask(name, &key->mask, &key->value, &scan_mask_i,
1499 &scan_mask_o)) {
1500 kfree(key);
1501 return NULL;
1504 key->type = INPUT_TYPE_KBD;
1505 key->state = INPUT_ST_LOW;
1506 key->rise_time = 1;
1507 key->fall_time = 1;
1509 strncpy(key->u.kbd.press_str, press, sizeof(key->u.kbd.press_str));
1510 strncpy(key->u.kbd.repeat_str, repeat, sizeof(key->u.kbd.repeat_str));
1511 strncpy(key->u.kbd.release_str, release,
1512 sizeof(key->u.kbd.release_str));
1513 list_add(&key->list, &logical_inputs);
1514 return key;
1517 #if 0
1518 /* tries to bind a callback function to the signal name <name>. The function
1519 * <press_fct> will be called with the <press_data> arg when the signal is
1520 * activated, and so on for <release_fct>/<release_data>
1521 * Returns the pointer to the new signal if ok, NULL if the signal could not
1522 * be bound.
1524 static struct logical_input *panel_bind_callback(char *name,
1525 void (*press_fct)(int),
1526 int press_data,
1527 void (*release_fct)(int),
1528 int release_data)
1530 struct logical_input *callback;
1532 callback = kmalloc(sizeof(*callback), GFP_KERNEL);
1533 if (!callback)
1534 return NULL;
1536 memset(callback, 0, sizeof(struct logical_input));
1537 if (!input_name2mask(name, &callback->mask, &callback->value,
1538 &scan_mask_i, &scan_mask_o))
1539 return NULL;
1541 callback->type = INPUT_TYPE_STD;
1542 callback->state = INPUT_ST_LOW;
1543 callback->rise_time = 1;
1544 callback->fall_time = 1;
1545 callback->u.std.press_fct = press_fct;
1546 callback->u.std.press_data = press_data;
1547 callback->u.std.release_fct = release_fct;
1548 callback->u.std.release_data = release_data;
1549 list_add(&callback->list, &logical_inputs);
1550 return callback;
1552 #endif
1554 static void keypad_init(void)
1556 int keynum;
1558 init_waitqueue_head(&keypad_read_wait);
1559 keypad_buflen = 0; /* flushes any eventual noisy keystroke */
1561 /* Let's create all known keys */
1563 for (keynum = 0; keypad_profile[keynum][0][0]; keynum++) {
1564 panel_bind_key(keypad_profile[keynum][0],
1565 keypad_profile[keynum][1],
1566 keypad_profile[keynum][2],
1567 keypad_profile[keynum][3]);
1570 init_scan_timer();
1571 keypad_initialized = 1;
1574 /**************************************************/
1575 /* device initialization */
1576 /**************************************************/
1578 static void panel_attach(struct parport *port)
1580 struct pardev_cb panel_cb;
1582 if (port->number != parport)
1583 return;
1585 if (pprt) {
1586 pr_err("%s: port->number=%d parport=%d, already registered!\n",
1587 __func__, port->number, parport);
1588 return;
1591 memset(&panel_cb, 0, sizeof(panel_cb));
1592 panel_cb.private = &pprt;
1593 /* panel_cb.flags = 0 should be PARPORT_DEV_EXCL? */
1595 pprt = parport_register_dev_model(port, "panel", &panel_cb, 0);
1596 if (!pprt) {
1597 pr_err("%s: port->number=%d parport=%d, parport_register_device() failed\n",
1598 __func__, port->number, parport);
1599 return;
1602 if (parport_claim(pprt)) {
1603 pr_err("could not claim access to parport%d. Aborting.\n",
1604 parport);
1605 goto err_unreg_device;
1608 /* must init LCD first, just in case an IRQ from the keypad is
1609 * generated at keypad init
1611 if (lcd.enabled) {
1612 lcd_init();
1613 if (!lcd.charlcd || charlcd_register(lcd.charlcd))
1614 goto err_unreg_device;
1617 if (keypad.enabled) {
1618 keypad_init();
1619 if (misc_register(&keypad_dev))
1620 goto err_lcd_unreg;
1622 return;
1624 err_lcd_unreg:
1625 if (lcd.enabled)
1626 charlcd_unregister(lcd.charlcd);
1627 err_unreg_device:
1628 kfree(lcd.charlcd);
1629 lcd.charlcd = NULL;
1630 parport_unregister_device(pprt);
1631 pprt = NULL;
1634 static void panel_detach(struct parport *port)
1636 if (port->number != parport)
1637 return;
1639 if (!pprt) {
1640 pr_err("%s: port->number=%d parport=%d, nothing to unregister.\n",
1641 __func__, port->number, parport);
1642 return;
1644 if (scan_timer.function)
1645 del_timer_sync(&scan_timer);
1647 if (keypad.enabled) {
1648 misc_deregister(&keypad_dev);
1649 keypad_initialized = 0;
1652 if (lcd.enabled) {
1653 charlcd_unregister(lcd.charlcd);
1654 lcd.initialized = false;
1655 kfree(lcd.charlcd);
1656 lcd.charlcd = NULL;
1659 /* TODO: free all input signals */
1660 parport_release(pprt);
1661 parport_unregister_device(pprt);
1662 pprt = NULL;
1665 static struct parport_driver panel_driver = {
1666 .name = "panel",
1667 .match_port = panel_attach,
1668 .detach = panel_detach,
1669 .devmodel = true,
1672 /* init function */
1673 static int __init panel_init_module(void)
1675 int selected_keypad_type = NOT_SET, err;
1677 /* take care of an eventual profile */
1678 switch (profile) {
1679 case PANEL_PROFILE_CUSTOM:
1680 /* custom profile */
1681 selected_keypad_type = DEFAULT_KEYPAD_TYPE;
1682 selected_lcd_type = DEFAULT_LCD_TYPE;
1683 break;
1684 case PANEL_PROFILE_OLD:
1685 /* 8 bits, 2*16, old keypad */
1686 selected_keypad_type = KEYPAD_TYPE_OLD;
1687 selected_lcd_type = LCD_TYPE_OLD;
1689 /* TODO: This two are a little hacky, sort it out later */
1690 if (lcd_width == NOT_SET)
1691 lcd_width = 16;
1692 if (lcd_hwidth == NOT_SET)
1693 lcd_hwidth = 16;
1694 break;
1695 case PANEL_PROFILE_NEW:
1696 /* serial, 2*16, new keypad */
1697 selected_keypad_type = KEYPAD_TYPE_NEW;
1698 selected_lcd_type = LCD_TYPE_KS0074;
1699 break;
1700 case PANEL_PROFILE_HANTRONIX:
1701 /* 8 bits, 2*16 hantronix-like, no keypad */
1702 selected_keypad_type = KEYPAD_TYPE_NONE;
1703 selected_lcd_type = LCD_TYPE_HANTRONIX;
1704 break;
1705 case PANEL_PROFILE_NEXCOM:
1706 /* generic 8 bits, 2*16, nexcom keypad, eg. Nexcom. */
1707 selected_keypad_type = KEYPAD_TYPE_NEXCOM;
1708 selected_lcd_type = LCD_TYPE_NEXCOM;
1709 break;
1710 case PANEL_PROFILE_LARGE:
1711 /* 8 bits, 2*40, old keypad */
1712 selected_keypad_type = KEYPAD_TYPE_OLD;
1713 selected_lcd_type = LCD_TYPE_OLD;
1714 break;
1718 * Overwrite selection with module param values (both keypad and lcd),
1719 * where the deprecated params have lower prio.
1721 if (keypad_enabled != NOT_SET)
1722 selected_keypad_type = keypad_enabled;
1723 if (keypad_type != NOT_SET)
1724 selected_keypad_type = keypad_type;
1726 keypad.enabled = (selected_keypad_type > 0);
1728 if (lcd_enabled != NOT_SET)
1729 selected_lcd_type = lcd_enabled;
1730 if (lcd_type != NOT_SET)
1731 selected_lcd_type = lcd_type;
1733 lcd.enabled = (selected_lcd_type > 0);
1735 if (lcd.enabled) {
1737 * Init lcd struct with load-time values to preserve exact
1738 * current functionality (at least for now).
1740 lcd.charset = lcd_charset;
1741 lcd.proto = lcd_proto;
1742 lcd.pins.e = lcd_e_pin;
1743 lcd.pins.rs = lcd_rs_pin;
1744 lcd.pins.rw = lcd_rw_pin;
1745 lcd.pins.cl = lcd_cl_pin;
1746 lcd.pins.da = lcd_da_pin;
1747 lcd.pins.bl = lcd_bl_pin;
1750 switch (selected_keypad_type) {
1751 case KEYPAD_TYPE_OLD:
1752 keypad_profile = old_keypad_profile;
1753 break;
1754 case KEYPAD_TYPE_NEW:
1755 keypad_profile = new_keypad_profile;
1756 break;
1757 case KEYPAD_TYPE_NEXCOM:
1758 keypad_profile = nexcom_keypad_profile;
1759 break;
1760 default:
1761 keypad_profile = NULL;
1762 break;
1765 if (!lcd.enabled && !keypad.enabled) {
1766 /* no device enabled, let's exit */
1767 pr_err("panel driver disabled.\n");
1768 return -ENODEV;
1771 err = parport_register_driver(&panel_driver);
1772 if (err) {
1773 pr_err("could not register with parport. Aborting.\n");
1774 return err;
1777 if (pprt)
1778 pr_info("panel driver registered on parport%d (io=0x%lx).\n",
1779 parport, pprt->port->base);
1780 else
1781 pr_info("panel driver not yet registered\n");
1782 return 0;
1785 static void __exit panel_cleanup_module(void)
1787 parport_unregister_driver(&panel_driver);
1790 module_init(panel_init_module);
1791 module_exit(panel_cleanup_module);
1792 MODULE_AUTHOR("Willy Tarreau");
1793 MODULE_LICENSE("GPL");
1796 * Local variables:
1797 * c-indent-level: 4
1798 * tab-width: 8
1799 * End: