Linux 4.16.11
[linux/fpc-iii.git] / drivers / base / regmap / regmap.c
blob453116fd4362e44c78f294b6b91739f2d34ce7e1
1 /*
2 * Register map access API
4 * Copyright 2011 Wolfson Microelectronics plc
6 * Author: Mark Brown <broonie@opensource.wolfsonmicro.com>
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License version 2 as
10 * published by the Free Software Foundation.
13 #include <linux/device.h>
14 #include <linux/slab.h>
15 #include <linux/export.h>
16 #include <linux/mutex.h>
17 #include <linux/err.h>
18 #include <linux/of.h>
19 #include <linux/rbtree.h>
20 #include <linux/sched.h>
21 #include <linux/delay.h>
22 #include <linux/log2.h>
23 #include <linux/hwspinlock.h>
25 #define CREATE_TRACE_POINTS
26 #include "trace.h"
28 #include "internal.h"
31 * Sometimes for failures during very early init the trace
32 * infrastructure isn't available early enough to be used. For this
33 * sort of problem defining LOG_DEVICE will add printks for basic
34 * register I/O on a specific device.
36 #undef LOG_DEVICE
38 static int _regmap_update_bits(struct regmap *map, unsigned int reg,
39 unsigned int mask, unsigned int val,
40 bool *change, bool force_write);
42 static int _regmap_bus_reg_read(void *context, unsigned int reg,
43 unsigned int *val);
44 static int _regmap_bus_read(void *context, unsigned int reg,
45 unsigned int *val);
46 static int _regmap_bus_formatted_write(void *context, unsigned int reg,
47 unsigned int val);
48 static int _regmap_bus_reg_write(void *context, unsigned int reg,
49 unsigned int val);
50 static int _regmap_bus_raw_write(void *context, unsigned int reg,
51 unsigned int val);
53 bool regmap_reg_in_ranges(unsigned int reg,
54 const struct regmap_range *ranges,
55 unsigned int nranges)
57 const struct regmap_range *r;
58 int i;
60 for (i = 0, r = ranges; i < nranges; i++, r++)
61 if (regmap_reg_in_range(reg, r))
62 return true;
63 return false;
65 EXPORT_SYMBOL_GPL(regmap_reg_in_ranges);
67 bool regmap_check_range_table(struct regmap *map, unsigned int reg,
68 const struct regmap_access_table *table)
70 /* Check "no ranges" first */
71 if (regmap_reg_in_ranges(reg, table->no_ranges, table->n_no_ranges))
72 return false;
74 /* In case zero "yes ranges" are supplied, any reg is OK */
75 if (!table->n_yes_ranges)
76 return true;
78 return regmap_reg_in_ranges(reg, table->yes_ranges,
79 table->n_yes_ranges);
81 EXPORT_SYMBOL_GPL(regmap_check_range_table);
83 bool regmap_writeable(struct regmap *map, unsigned int reg)
85 if (map->max_register && reg > map->max_register)
86 return false;
88 if (map->writeable_reg)
89 return map->writeable_reg(map->dev, reg);
91 if (map->wr_table)
92 return regmap_check_range_table(map, reg, map->wr_table);
94 return true;
97 bool regmap_cached(struct regmap *map, unsigned int reg)
99 int ret;
100 unsigned int val;
102 if (map->cache == REGCACHE_NONE)
103 return false;
105 if (!map->cache_ops)
106 return false;
108 if (map->max_register && reg > map->max_register)
109 return false;
111 map->lock(map->lock_arg);
112 ret = regcache_read(map, reg, &val);
113 map->unlock(map->lock_arg);
114 if (ret)
115 return false;
117 return true;
120 bool regmap_readable(struct regmap *map, unsigned int reg)
122 if (!map->reg_read)
123 return false;
125 if (map->max_register && reg > map->max_register)
126 return false;
128 if (map->format.format_write)
129 return false;
131 if (map->readable_reg)
132 return map->readable_reg(map->dev, reg);
134 if (map->rd_table)
135 return regmap_check_range_table(map, reg, map->rd_table);
137 return true;
140 bool regmap_volatile(struct regmap *map, unsigned int reg)
142 if (!map->format.format_write && !regmap_readable(map, reg))
143 return false;
145 if (map->volatile_reg)
146 return map->volatile_reg(map->dev, reg);
148 if (map->volatile_table)
149 return regmap_check_range_table(map, reg, map->volatile_table);
151 if (map->cache_ops)
152 return false;
153 else
154 return true;
157 bool regmap_precious(struct regmap *map, unsigned int reg)
159 if (!regmap_readable(map, reg))
160 return false;
162 if (map->precious_reg)
163 return map->precious_reg(map->dev, reg);
165 if (map->precious_table)
166 return regmap_check_range_table(map, reg, map->precious_table);
168 return false;
171 static bool regmap_volatile_range(struct regmap *map, unsigned int reg,
172 size_t num)
174 unsigned int i;
176 for (i = 0; i < num; i++)
177 if (!regmap_volatile(map, reg + i))
178 return false;
180 return true;
183 static void regmap_format_2_6_write(struct regmap *map,
184 unsigned int reg, unsigned int val)
186 u8 *out = map->work_buf;
188 *out = (reg << 6) | val;
191 static void regmap_format_4_12_write(struct regmap *map,
192 unsigned int reg, unsigned int val)
194 __be16 *out = map->work_buf;
195 *out = cpu_to_be16((reg << 12) | val);
198 static void regmap_format_7_9_write(struct regmap *map,
199 unsigned int reg, unsigned int val)
201 __be16 *out = map->work_buf;
202 *out = cpu_to_be16((reg << 9) | val);
205 static void regmap_format_10_14_write(struct regmap *map,
206 unsigned int reg, unsigned int val)
208 u8 *out = map->work_buf;
210 out[2] = val;
211 out[1] = (val >> 8) | (reg << 6);
212 out[0] = reg >> 2;
215 static void regmap_format_8(void *buf, unsigned int val, unsigned int shift)
217 u8 *b = buf;
219 b[0] = val << shift;
222 static void regmap_format_16_be(void *buf, unsigned int val, unsigned int shift)
224 __be16 *b = buf;
226 b[0] = cpu_to_be16(val << shift);
229 static void regmap_format_16_le(void *buf, unsigned int val, unsigned int shift)
231 __le16 *b = buf;
233 b[0] = cpu_to_le16(val << shift);
236 static void regmap_format_16_native(void *buf, unsigned int val,
237 unsigned int shift)
239 *(u16 *)buf = val << shift;
242 static void regmap_format_24(void *buf, unsigned int val, unsigned int shift)
244 u8 *b = buf;
246 val <<= shift;
248 b[0] = val >> 16;
249 b[1] = val >> 8;
250 b[2] = val;
253 static void regmap_format_32_be(void *buf, unsigned int val, unsigned int shift)
255 __be32 *b = buf;
257 b[0] = cpu_to_be32(val << shift);
260 static void regmap_format_32_le(void *buf, unsigned int val, unsigned int shift)
262 __le32 *b = buf;
264 b[0] = cpu_to_le32(val << shift);
267 static void regmap_format_32_native(void *buf, unsigned int val,
268 unsigned int shift)
270 *(u32 *)buf = val << shift;
273 #ifdef CONFIG_64BIT
274 static void regmap_format_64_be(void *buf, unsigned int val, unsigned int shift)
276 __be64 *b = buf;
278 b[0] = cpu_to_be64((u64)val << shift);
281 static void regmap_format_64_le(void *buf, unsigned int val, unsigned int shift)
283 __le64 *b = buf;
285 b[0] = cpu_to_le64((u64)val << shift);
288 static void regmap_format_64_native(void *buf, unsigned int val,
289 unsigned int shift)
291 *(u64 *)buf = (u64)val << shift;
293 #endif
295 static void regmap_parse_inplace_noop(void *buf)
299 static unsigned int regmap_parse_8(const void *buf)
301 const u8 *b = buf;
303 return b[0];
306 static unsigned int regmap_parse_16_be(const void *buf)
308 const __be16 *b = buf;
310 return be16_to_cpu(b[0]);
313 static unsigned int regmap_parse_16_le(const void *buf)
315 const __le16 *b = buf;
317 return le16_to_cpu(b[0]);
320 static void regmap_parse_16_be_inplace(void *buf)
322 __be16 *b = buf;
324 b[0] = be16_to_cpu(b[0]);
327 static void regmap_parse_16_le_inplace(void *buf)
329 __le16 *b = buf;
331 b[0] = le16_to_cpu(b[0]);
334 static unsigned int regmap_parse_16_native(const void *buf)
336 return *(u16 *)buf;
339 static unsigned int regmap_parse_24(const void *buf)
341 const u8 *b = buf;
342 unsigned int ret = b[2];
343 ret |= ((unsigned int)b[1]) << 8;
344 ret |= ((unsigned int)b[0]) << 16;
346 return ret;
349 static unsigned int regmap_parse_32_be(const void *buf)
351 const __be32 *b = buf;
353 return be32_to_cpu(b[0]);
356 static unsigned int regmap_parse_32_le(const void *buf)
358 const __le32 *b = buf;
360 return le32_to_cpu(b[0]);
363 static void regmap_parse_32_be_inplace(void *buf)
365 __be32 *b = buf;
367 b[0] = be32_to_cpu(b[0]);
370 static void regmap_parse_32_le_inplace(void *buf)
372 __le32 *b = buf;
374 b[0] = le32_to_cpu(b[0]);
377 static unsigned int regmap_parse_32_native(const void *buf)
379 return *(u32 *)buf;
382 #ifdef CONFIG_64BIT
383 static unsigned int regmap_parse_64_be(const void *buf)
385 const __be64 *b = buf;
387 return be64_to_cpu(b[0]);
390 static unsigned int regmap_parse_64_le(const void *buf)
392 const __le64 *b = buf;
394 return le64_to_cpu(b[0]);
397 static void regmap_parse_64_be_inplace(void *buf)
399 __be64 *b = buf;
401 b[0] = be64_to_cpu(b[0]);
404 static void regmap_parse_64_le_inplace(void *buf)
406 __le64 *b = buf;
408 b[0] = le64_to_cpu(b[0]);
411 static unsigned int regmap_parse_64_native(const void *buf)
413 return *(u64 *)buf;
415 #endif
417 static void regmap_lock_hwlock(void *__map)
419 struct regmap *map = __map;
421 hwspin_lock_timeout(map->hwlock, UINT_MAX);
424 static void regmap_lock_hwlock_irq(void *__map)
426 struct regmap *map = __map;
428 hwspin_lock_timeout_irq(map->hwlock, UINT_MAX);
431 static void regmap_lock_hwlock_irqsave(void *__map)
433 struct regmap *map = __map;
435 hwspin_lock_timeout_irqsave(map->hwlock, UINT_MAX,
436 &map->spinlock_flags);
439 static void regmap_unlock_hwlock(void *__map)
441 struct regmap *map = __map;
443 hwspin_unlock(map->hwlock);
446 static void regmap_unlock_hwlock_irq(void *__map)
448 struct regmap *map = __map;
450 hwspin_unlock_irq(map->hwlock);
453 static void regmap_unlock_hwlock_irqrestore(void *__map)
455 struct regmap *map = __map;
457 hwspin_unlock_irqrestore(map->hwlock, &map->spinlock_flags);
460 static void regmap_lock_unlock_none(void *__map)
465 static void regmap_lock_mutex(void *__map)
467 struct regmap *map = __map;
468 mutex_lock(&map->mutex);
471 static void regmap_unlock_mutex(void *__map)
473 struct regmap *map = __map;
474 mutex_unlock(&map->mutex);
477 static void regmap_lock_spinlock(void *__map)
478 __acquires(&map->spinlock)
480 struct regmap *map = __map;
481 unsigned long flags;
483 spin_lock_irqsave(&map->spinlock, flags);
484 map->spinlock_flags = flags;
487 static void regmap_unlock_spinlock(void *__map)
488 __releases(&map->spinlock)
490 struct regmap *map = __map;
491 spin_unlock_irqrestore(&map->spinlock, map->spinlock_flags);
494 static void dev_get_regmap_release(struct device *dev, void *res)
497 * We don't actually have anything to do here; the goal here
498 * is not to manage the regmap but to provide a simple way to
499 * get the regmap back given a struct device.
503 static bool _regmap_range_add(struct regmap *map,
504 struct regmap_range_node *data)
506 struct rb_root *root = &map->range_tree;
507 struct rb_node **new = &(root->rb_node), *parent = NULL;
509 while (*new) {
510 struct regmap_range_node *this =
511 rb_entry(*new, struct regmap_range_node, node);
513 parent = *new;
514 if (data->range_max < this->range_min)
515 new = &((*new)->rb_left);
516 else if (data->range_min > this->range_max)
517 new = &((*new)->rb_right);
518 else
519 return false;
522 rb_link_node(&data->node, parent, new);
523 rb_insert_color(&data->node, root);
525 return true;
528 static struct regmap_range_node *_regmap_range_lookup(struct regmap *map,
529 unsigned int reg)
531 struct rb_node *node = map->range_tree.rb_node;
533 while (node) {
534 struct regmap_range_node *this =
535 rb_entry(node, struct regmap_range_node, node);
537 if (reg < this->range_min)
538 node = node->rb_left;
539 else if (reg > this->range_max)
540 node = node->rb_right;
541 else
542 return this;
545 return NULL;
548 static void regmap_range_exit(struct regmap *map)
550 struct rb_node *next;
551 struct regmap_range_node *range_node;
553 next = rb_first(&map->range_tree);
554 while (next) {
555 range_node = rb_entry(next, struct regmap_range_node, node);
556 next = rb_next(&range_node->node);
557 rb_erase(&range_node->node, &map->range_tree);
558 kfree(range_node);
561 kfree(map->selector_work_buf);
564 int regmap_attach_dev(struct device *dev, struct regmap *map,
565 const struct regmap_config *config)
567 struct regmap **m;
569 map->dev = dev;
571 regmap_debugfs_init(map, config->name);
573 /* Add a devres resource for dev_get_regmap() */
574 m = devres_alloc(dev_get_regmap_release, sizeof(*m), GFP_KERNEL);
575 if (!m) {
576 regmap_debugfs_exit(map);
577 return -ENOMEM;
579 *m = map;
580 devres_add(dev, m);
582 return 0;
584 EXPORT_SYMBOL_GPL(regmap_attach_dev);
586 static enum regmap_endian regmap_get_reg_endian(const struct regmap_bus *bus,
587 const struct regmap_config *config)
589 enum regmap_endian endian;
591 /* Retrieve the endianness specification from the regmap config */
592 endian = config->reg_format_endian;
594 /* If the regmap config specified a non-default value, use that */
595 if (endian != REGMAP_ENDIAN_DEFAULT)
596 return endian;
598 /* Retrieve the endianness specification from the bus config */
599 if (bus && bus->reg_format_endian_default)
600 endian = bus->reg_format_endian_default;
602 /* If the bus specified a non-default value, use that */
603 if (endian != REGMAP_ENDIAN_DEFAULT)
604 return endian;
606 /* Use this if no other value was found */
607 return REGMAP_ENDIAN_BIG;
610 enum regmap_endian regmap_get_val_endian(struct device *dev,
611 const struct regmap_bus *bus,
612 const struct regmap_config *config)
614 struct device_node *np;
615 enum regmap_endian endian;
617 /* Retrieve the endianness specification from the regmap config */
618 endian = config->val_format_endian;
620 /* If the regmap config specified a non-default value, use that */
621 if (endian != REGMAP_ENDIAN_DEFAULT)
622 return endian;
624 /* If the dev and dev->of_node exist try to get endianness from DT */
625 if (dev && dev->of_node) {
626 np = dev->of_node;
628 /* Parse the device's DT node for an endianness specification */
629 if (of_property_read_bool(np, "big-endian"))
630 endian = REGMAP_ENDIAN_BIG;
631 else if (of_property_read_bool(np, "little-endian"))
632 endian = REGMAP_ENDIAN_LITTLE;
633 else if (of_property_read_bool(np, "native-endian"))
634 endian = REGMAP_ENDIAN_NATIVE;
636 /* If the endianness was specified in DT, use that */
637 if (endian != REGMAP_ENDIAN_DEFAULT)
638 return endian;
641 /* Retrieve the endianness specification from the bus config */
642 if (bus && bus->val_format_endian_default)
643 endian = bus->val_format_endian_default;
645 /* If the bus specified a non-default value, use that */
646 if (endian != REGMAP_ENDIAN_DEFAULT)
647 return endian;
649 /* Use this if no other value was found */
650 return REGMAP_ENDIAN_BIG;
652 EXPORT_SYMBOL_GPL(regmap_get_val_endian);
654 struct regmap *__regmap_init(struct device *dev,
655 const struct regmap_bus *bus,
656 void *bus_context,
657 const struct regmap_config *config,
658 struct lock_class_key *lock_key,
659 const char *lock_name)
661 struct regmap *map;
662 int ret = -EINVAL;
663 enum regmap_endian reg_endian, val_endian;
664 int i, j;
666 if (!config)
667 goto err;
669 map = kzalloc(sizeof(*map), GFP_KERNEL);
670 if (map == NULL) {
671 ret = -ENOMEM;
672 goto err;
675 if (config->name) {
676 map->name = kstrdup_const(config->name, GFP_KERNEL);
677 if (!map->name) {
678 ret = -ENOMEM;
679 goto err_map;
683 if (config->disable_locking) {
684 map->lock = map->unlock = regmap_lock_unlock_none;
685 regmap_debugfs_disable(map);
686 } else if (config->lock && config->unlock) {
687 map->lock = config->lock;
688 map->unlock = config->unlock;
689 map->lock_arg = config->lock_arg;
690 } else if (config->use_hwlock) {
691 map->hwlock = hwspin_lock_request_specific(config->hwlock_id);
692 if (!map->hwlock) {
693 ret = -ENXIO;
694 goto err_name;
697 switch (config->hwlock_mode) {
698 case HWLOCK_IRQSTATE:
699 map->lock = regmap_lock_hwlock_irqsave;
700 map->unlock = regmap_unlock_hwlock_irqrestore;
701 break;
702 case HWLOCK_IRQ:
703 map->lock = regmap_lock_hwlock_irq;
704 map->unlock = regmap_unlock_hwlock_irq;
705 break;
706 default:
707 map->lock = regmap_lock_hwlock;
708 map->unlock = regmap_unlock_hwlock;
709 break;
712 map->lock_arg = map;
713 } else {
714 if ((bus && bus->fast_io) ||
715 config->fast_io) {
716 spin_lock_init(&map->spinlock);
717 map->lock = regmap_lock_spinlock;
718 map->unlock = regmap_unlock_spinlock;
719 lockdep_set_class_and_name(&map->spinlock,
720 lock_key, lock_name);
721 } else {
722 mutex_init(&map->mutex);
723 map->lock = regmap_lock_mutex;
724 map->unlock = regmap_unlock_mutex;
725 lockdep_set_class_and_name(&map->mutex,
726 lock_key, lock_name);
728 map->lock_arg = map;
732 * When we write in fast-paths with regmap_bulk_write() don't allocate
733 * scratch buffers with sleeping allocations.
735 if ((bus && bus->fast_io) || config->fast_io)
736 map->alloc_flags = GFP_ATOMIC;
737 else
738 map->alloc_flags = GFP_KERNEL;
740 map->format.reg_bytes = DIV_ROUND_UP(config->reg_bits, 8);
741 map->format.pad_bytes = config->pad_bits / 8;
742 map->format.val_bytes = DIV_ROUND_UP(config->val_bits, 8);
743 map->format.buf_size = DIV_ROUND_UP(config->reg_bits +
744 config->val_bits + config->pad_bits, 8);
745 map->reg_shift = config->pad_bits % 8;
746 if (config->reg_stride)
747 map->reg_stride = config->reg_stride;
748 else
749 map->reg_stride = 1;
750 if (is_power_of_2(map->reg_stride))
751 map->reg_stride_order = ilog2(map->reg_stride);
752 else
753 map->reg_stride_order = -1;
754 map->use_single_read = config->use_single_rw || !bus || !bus->read;
755 map->use_single_write = config->use_single_rw || !bus || !bus->write;
756 map->can_multi_write = config->can_multi_write && bus && bus->write;
757 if (bus) {
758 map->max_raw_read = bus->max_raw_read;
759 map->max_raw_write = bus->max_raw_write;
761 map->dev = dev;
762 map->bus = bus;
763 map->bus_context = bus_context;
764 map->max_register = config->max_register;
765 map->wr_table = config->wr_table;
766 map->rd_table = config->rd_table;
767 map->volatile_table = config->volatile_table;
768 map->precious_table = config->precious_table;
769 map->writeable_reg = config->writeable_reg;
770 map->readable_reg = config->readable_reg;
771 map->volatile_reg = config->volatile_reg;
772 map->precious_reg = config->precious_reg;
773 map->cache_type = config->cache_type;
775 spin_lock_init(&map->async_lock);
776 INIT_LIST_HEAD(&map->async_list);
777 INIT_LIST_HEAD(&map->async_free);
778 init_waitqueue_head(&map->async_waitq);
780 if (config->read_flag_mask ||
781 config->write_flag_mask ||
782 config->zero_flag_mask) {
783 map->read_flag_mask = config->read_flag_mask;
784 map->write_flag_mask = config->write_flag_mask;
785 } else if (bus) {
786 map->read_flag_mask = bus->read_flag_mask;
789 if (!bus) {
790 map->reg_read = config->reg_read;
791 map->reg_write = config->reg_write;
793 map->defer_caching = false;
794 goto skip_format_initialization;
795 } else if (!bus->read || !bus->write) {
796 map->reg_read = _regmap_bus_reg_read;
797 map->reg_write = _regmap_bus_reg_write;
799 map->defer_caching = false;
800 goto skip_format_initialization;
801 } else {
802 map->reg_read = _regmap_bus_read;
803 map->reg_update_bits = bus->reg_update_bits;
806 reg_endian = regmap_get_reg_endian(bus, config);
807 val_endian = regmap_get_val_endian(dev, bus, config);
809 switch (config->reg_bits + map->reg_shift) {
810 case 2:
811 switch (config->val_bits) {
812 case 6:
813 map->format.format_write = regmap_format_2_6_write;
814 break;
815 default:
816 goto err_hwlock;
818 break;
820 case 4:
821 switch (config->val_bits) {
822 case 12:
823 map->format.format_write = regmap_format_4_12_write;
824 break;
825 default:
826 goto err_hwlock;
828 break;
830 case 7:
831 switch (config->val_bits) {
832 case 9:
833 map->format.format_write = regmap_format_7_9_write;
834 break;
835 default:
836 goto err_hwlock;
838 break;
840 case 10:
841 switch (config->val_bits) {
842 case 14:
843 map->format.format_write = regmap_format_10_14_write;
844 break;
845 default:
846 goto err_hwlock;
848 break;
850 case 8:
851 map->format.format_reg = regmap_format_8;
852 break;
854 case 16:
855 switch (reg_endian) {
856 case REGMAP_ENDIAN_BIG:
857 map->format.format_reg = regmap_format_16_be;
858 break;
859 case REGMAP_ENDIAN_LITTLE:
860 map->format.format_reg = regmap_format_16_le;
861 break;
862 case REGMAP_ENDIAN_NATIVE:
863 map->format.format_reg = regmap_format_16_native;
864 break;
865 default:
866 goto err_hwlock;
868 break;
870 case 24:
871 if (reg_endian != REGMAP_ENDIAN_BIG)
872 goto err_hwlock;
873 map->format.format_reg = regmap_format_24;
874 break;
876 case 32:
877 switch (reg_endian) {
878 case REGMAP_ENDIAN_BIG:
879 map->format.format_reg = regmap_format_32_be;
880 break;
881 case REGMAP_ENDIAN_LITTLE:
882 map->format.format_reg = regmap_format_32_le;
883 break;
884 case REGMAP_ENDIAN_NATIVE:
885 map->format.format_reg = regmap_format_32_native;
886 break;
887 default:
888 goto err_hwlock;
890 break;
892 #ifdef CONFIG_64BIT
893 case 64:
894 switch (reg_endian) {
895 case REGMAP_ENDIAN_BIG:
896 map->format.format_reg = regmap_format_64_be;
897 break;
898 case REGMAP_ENDIAN_LITTLE:
899 map->format.format_reg = regmap_format_64_le;
900 break;
901 case REGMAP_ENDIAN_NATIVE:
902 map->format.format_reg = regmap_format_64_native;
903 break;
904 default:
905 goto err_hwlock;
907 break;
908 #endif
910 default:
911 goto err_hwlock;
914 if (val_endian == REGMAP_ENDIAN_NATIVE)
915 map->format.parse_inplace = regmap_parse_inplace_noop;
917 switch (config->val_bits) {
918 case 8:
919 map->format.format_val = regmap_format_8;
920 map->format.parse_val = regmap_parse_8;
921 map->format.parse_inplace = regmap_parse_inplace_noop;
922 break;
923 case 16:
924 switch (val_endian) {
925 case REGMAP_ENDIAN_BIG:
926 map->format.format_val = regmap_format_16_be;
927 map->format.parse_val = regmap_parse_16_be;
928 map->format.parse_inplace = regmap_parse_16_be_inplace;
929 break;
930 case REGMAP_ENDIAN_LITTLE:
931 map->format.format_val = regmap_format_16_le;
932 map->format.parse_val = regmap_parse_16_le;
933 map->format.parse_inplace = regmap_parse_16_le_inplace;
934 break;
935 case REGMAP_ENDIAN_NATIVE:
936 map->format.format_val = regmap_format_16_native;
937 map->format.parse_val = regmap_parse_16_native;
938 break;
939 default:
940 goto err_hwlock;
942 break;
943 case 24:
944 if (val_endian != REGMAP_ENDIAN_BIG)
945 goto err_hwlock;
946 map->format.format_val = regmap_format_24;
947 map->format.parse_val = regmap_parse_24;
948 break;
949 case 32:
950 switch (val_endian) {
951 case REGMAP_ENDIAN_BIG:
952 map->format.format_val = regmap_format_32_be;
953 map->format.parse_val = regmap_parse_32_be;
954 map->format.parse_inplace = regmap_parse_32_be_inplace;
955 break;
956 case REGMAP_ENDIAN_LITTLE:
957 map->format.format_val = regmap_format_32_le;
958 map->format.parse_val = regmap_parse_32_le;
959 map->format.parse_inplace = regmap_parse_32_le_inplace;
960 break;
961 case REGMAP_ENDIAN_NATIVE:
962 map->format.format_val = regmap_format_32_native;
963 map->format.parse_val = regmap_parse_32_native;
964 break;
965 default:
966 goto err_hwlock;
968 break;
969 #ifdef CONFIG_64BIT
970 case 64:
971 switch (val_endian) {
972 case REGMAP_ENDIAN_BIG:
973 map->format.format_val = regmap_format_64_be;
974 map->format.parse_val = regmap_parse_64_be;
975 map->format.parse_inplace = regmap_parse_64_be_inplace;
976 break;
977 case REGMAP_ENDIAN_LITTLE:
978 map->format.format_val = regmap_format_64_le;
979 map->format.parse_val = regmap_parse_64_le;
980 map->format.parse_inplace = regmap_parse_64_le_inplace;
981 break;
982 case REGMAP_ENDIAN_NATIVE:
983 map->format.format_val = regmap_format_64_native;
984 map->format.parse_val = regmap_parse_64_native;
985 break;
986 default:
987 goto err_hwlock;
989 break;
990 #endif
993 if (map->format.format_write) {
994 if ((reg_endian != REGMAP_ENDIAN_BIG) ||
995 (val_endian != REGMAP_ENDIAN_BIG))
996 goto err_hwlock;
997 map->use_single_write = true;
1000 if (!map->format.format_write &&
1001 !(map->format.format_reg && map->format.format_val))
1002 goto err_hwlock;
1004 map->work_buf = kzalloc(map->format.buf_size, GFP_KERNEL);
1005 if (map->work_buf == NULL) {
1006 ret = -ENOMEM;
1007 goto err_hwlock;
1010 if (map->format.format_write) {
1011 map->defer_caching = false;
1012 map->reg_write = _regmap_bus_formatted_write;
1013 } else if (map->format.format_val) {
1014 map->defer_caching = true;
1015 map->reg_write = _regmap_bus_raw_write;
1018 skip_format_initialization:
1020 map->range_tree = RB_ROOT;
1021 for (i = 0; i < config->num_ranges; i++) {
1022 const struct regmap_range_cfg *range_cfg = &config->ranges[i];
1023 struct regmap_range_node *new;
1025 /* Sanity check */
1026 if (range_cfg->range_max < range_cfg->range_min) {
1027 dev_err(map->dev, "Invalid range %d: %d < %d\n", i,
1028 range_cfg->range_max, range_cfg->range_min);
1029 goto err_range;
1032 if (range_cfg->range_max > map->max_register) {
1033 dev_err(map->dev, "Invalid range %d: %d > %d\n", i,
1034 range_cfg->range_max, map->max_register);
1035 goto err_range;
1038 if (range_cfg->selector_reg > map->max_register) {
1039 dev_err(map->dev,
1040 "Invalid range %d: selector out of map\n", i);
1041 goto err_range;
1044 if (range_cfg->window_len == 0) {
1045 dev_err(map->dev, "Invalid range %d: window_len 0\n",
1047 goto err_range;
1050 /* Make sure, that this register range has no selector
1051 or data window within its boundary */
1052 for (j = 0; j < config->num_ranges; j++) {
1053 unsigned sel_reg = config->ranges[j].selector_reg;
1054 unsigned win_min = config->ranges[j].window_start;
1055 unsigned win_max = win_min +
1056 config->ranges[j].window_len - 1;
1058 /* Allow data window inside its own virtual range */
1059 if (j == i)
1060 continue;
1062 if (range_cfg->range_min <= sel_reg &&
1063 sel_reg <= range_cfg->range_max) {
1064 dev_err(map->dev,
1065 "Range %d: selector for %d in window\n",
1066 i, j);
1067 goto err_range;
1070 if (!(win_max < range_cfg->range_min ||
1071 win_min > range_cfg->range_max)) {
1072 dev_err(map->dev,
1073 "Range %d: window for %d in window\n",
1074 i, j);
1075 goto err_range;
1079 new = kzalloc(sizeof(*new), GFP_KERNEL);
1080 if (new == NULL) {
1081 ret = -ENOMEM;
1082 goto err_range;
1085 new->map = map;
1086 new->name = range_cfg->name;
1087 new->range_min = range_cfg->range_min;
1088 new->range_max = range_cfg->range_max;
1089 new->selector_reg = range_cfg->selector_reg;
1090 new->selector_mask = range_cfg->selector_mask;
1091 new->selector_shift = range_cfg->selector_shift;
1092 new->window_start = range_cfg->window_start;
1093 new->window_len = range_cfg->window_len;
1095 if (!_regmap_range_add(map, new)) {
1096 dev_err(map->dev, "Failed to add range %d\n", i);
1097 kfree(new);
1098 goto err_range;
1101 if (map->selector_work_buf == NULL) {
1102 map->selector_work_buf =
1103 kzalloc(map->format.buf_size, GFP_KERNEL);
1104 if (map->selector_work_buf == NULL) {
1105 ret = -ENOMEM;
1106 goto err_range;
1111 ret = regcache_init(map, config);
1112 if (ret != 0)
1113 goto err_range;
1115 if (dev) {
1116 ret = regmap_attach_dev(dev, map, config);
1117 if (ret != 0)
1118 goto err_regcache;
1121 return map;
1123 err_regcache:
1124 regcache_exit(map);
1125 err_range:
1126 regmap_range_exit(map);
1127 kfree(map->work_buf);
1128 err_hwlock:
1129 if (map->hwlock)
1130 hwspin_lock_free(map->hwlock);
1131 err_name:
1132 kfree_const(map->name);
1133 err_map:
1134 kfree(map);
1135 err:
1136 return ERR_PTR(ret);
1138 EXPORT_SYMBOL_GPL(__regmap_init);
1140 static void devm_regmap_release(struct device *dev, void *res)
1142 regmap_exit(*(struct regmap **)res);
1145 struct regmap *__devm_regmap_init(struct device *dev,
1146 const struct regmap_bus *bus,
1147 void *bus_context,
1148 const struct regmap_config *config,
1149 struct lock_class_key *lock_key,
1150 const char *lock_name)
1152 struct regmap **ptr, *regmap;
1154 ptr = devres_alloc(devm_regmap_release, sizeof(*ptr), GFP_KERNEL);
1155 if (!ptr)
1156 return ERR_PTR(-ENOMEM);
1158 regmap = __regmap_init(dev, bus, bus_context, config,
1159 lock_key, lock_name);
1160 if (!IS_ERR(regmap)) {
1161 *ptr = regmap;
1162 devres_add(dev, ptr);
1163 } else {
1164 devres_free(ptr);
1167 return regmap;
1169 EXPORT_SYMBOL_GPL(__devm_regmap_init);
1171 static void regmap_field_init(struct regmap_field *rm_field,
1172 struct regmap *regmap, struct reg_field reg_field)
1174 rm_field->regmap = regmap;
1175 rm_field->reg = reg_field.reg;
1176 rm_field->shift = reg_field.lsb;
1177 rm_field->mask = GENMASK(reg_field.msb, reg_field.lsb);
1178 rm_field->id_size = reg_field.id_size;
1179 rm_field->id_offset = reg_field.id_offset;
1183 * devm_regmap_field_alloc() - Allocate and initialise a register field.
1185 * @dev: Device that will be interacted with
1186 * @regmap: regmap bank in which this register field is located.
1187 * @reg_field: Register field with in the bank.
1189 * The return value will be an ERR_PTR() on error or a valid pointer
1190 * to a struct regmap_field. The regmap_field will be automatically freed
1191 * by the device management code.
1193 struct regmap_field *devm_regmap_field_alloc(struct device *dev,
1194 struct regmap *regmap, struct reg_field reg_field)
1196 struct regmap_field *rm_field = devm_kzalloc(dev,
1197 sizeof(*rm_field), GFP_KERNEL);
1198 if (!rm_field)
1199 return ERR_PTR(-ENOMEM);
1201 regmap_field_init(rm_field, regmap, reg_field);
1203 return rm_field;
1206 EXPORT_SYMBOL_GPL(devm_regmap_field_alloc);
1209 * devm_regmap_field_free() - Free a register field allocated using
1210 * devm_regmap_field_alloc.
1212 * @dev: Device that will be interacted with
1213 * @field: regmap field which should be freed.
1215 * Free register field allocated using devm_regmap_field_alloc(). Usually
1216 * drivers need not call this function, as the memory allocated via devm
1217 * will be freed as per device-driver life-cyle.
1219 void devm_regmap_field_free(struct device *dev,
1220 struct regmap_field *field)
1222 devm_kfree(dev, field);
1224 EXPORT_SYMBOL_GPL(devm_regmap_field_free);
1227 * regmap_field_alloc() - Allocate and initialise a register field.
1229 * @regmap: regmap bank in which this register field is located.
1230 * @reg_field: Register field with in the bank.
1232 * The return value will be an ERR_PTR() on error or a valid pointer
1233 * to a struct regmap_field. The regmap_field should be freed by the
1234 * user once its finished working with it using regmap_field_free().
1236 struct regmap_field *regmap_field_alloc(struct regmap *regmap,
1237 struct reg_field reg_field)
1239 struct regmap_field *rm_field = kzalloc(sizeof(*rm_field), GFP_KERNEL);
1241 if (!rm_field)
1242 return ERR_PTR(-ENOMEM);
1244 regmap_field_init(rm_field, regmap, reg_field);
1246 return rm_field;
1248 EXPORT_SYMBOL_GPL(regmap_field_alloc);
1251 * regmap_field_free() - Free register field allocated using
1252 * regmap_field_alloc.
1254 * @field: regmap field which should be freed.
1256 void regmap_field_free(struct regmap_field *field)
1258 kfree(field);
1260 EXPORT_SYMBOL_GPL(regmap_field_free);
1263 * regmap_reinit_cache() - Reinitialise the current register cache
1265 * @map: Register map to operate on.
1266 * @config: New configuration. Only the cache data will be used.
1268 * Discard any existing register cache for the map and initialize a
1269 * new cache. This can be used to restore the cache to defaults or to
1270 * update the cache configuration to reflect runtime discovery of the
1271 * hardware.
1273 * No explicit locking is done here, the user needs to ensure that
1274 * this function will not race with other calls to regmap.
1276 int regmap_reinit_cache(struct regmap *map, const struct regmap_config *config)
1278 regcache_exit(map);
1279 regmap_debugfs_exit(map);
1281 map->max_register = config->max_register;
1282 map->writeable_reg = config->writeable_reg;
1283 map->readable_reg = config->readable_reg;
1284 map->volatile_reg = config->volatile_reg;
1285 map->precious_reg = config->precious_reg;
1286 map->cache_type = config->cache_type;
1288 regmap_debugfs_init(map, config->name);
1290 map->cache_bypass = false;
1291 map->cache_only = false;
1293 return regcache_init(map, config);
1295 EXPORT_SYMBOL_GPL(regmap_reinit_cache);
1298 * regmap_exit() - Free a previously allocated register map
1300 * @map: Register map to operate on.
1302 void regmap_exit(struct regmap *map)
1304 struct regmap_async *async;
1306 regcache_exit(map);
1307 regmap_debugfs_exit(map);
1308 regmap_range_exit(map);
1309 if (map->bus && map->bus->free_context)
1310 map->bus->free_context(map->bus_context);
1311 kfree(map->work_buf);
1312 while (!list_empty(&map->async_free)) {
1313 async = list_first_entry_or_null(&map->async_free,
1314 struct regmap_async,
1315 list);
1316 list_del(&async->list);
1317 kfree(async->work_buf);
1318 kfree(async);
1320 if (map->hwlock)
1321 hwspin_lock_free(map->hwlock);
1322 kfree_const(map->name);
1323 kfree(map);
1325 EXPORT_SYMBOL_GPL(regmap_exit);
1327 static int dev_get_regmap_match(struct device *dev, void *res, void *data)
1329 struct regmap **r = res;
1330 if (!r || !*r) {
1331 WARN_ON(!r || !*r);
1332 return 0;
1335 /* If the user didn't specify a name match any */
1336 if (data)
1337 return (*r)->name == data;
1338 else
1339 return 1;
1343 * dev_get_regmap() - Obtain the regmap (if any) for a device
1345 * @dev: Device to retrieve the map for
1346 * @name: Optional name for the register map, usually NULL.
1348 * Returns the regmap for the device if one is present, or NULL. If
1349 * name is specified then it must match the name specified when
1350 * registering the device, if it is NULL then the first regmap found
1351 * will be used. Devices with multiple register maps are very rare,
1352 * generic code should normally not need to specify a name.
1354 struct regmap *dev_get_regmap(struct device *dev, const char *name)
1356 struct regmap **r = devres_find(dev, dev_get_regmap_release,
1357 dev_get_regmap_match, (void *)name);
1359 if (!r)
1360 return NULL;
1361 return *r;
1363 EXPORT_SYMBOL_GPL(dev_get_regmap);
1366 * regmap_get_device() - Obtain the device from a regmap
1368 * @map: Register map to operate on.
1370 * Returns the underlying device that the regmap has been created for.
1372 struct device *regmap_get_device(struct regmap *map)
1374 return map->dev;
1376 EXPORT_SYMBOL_GPL(regmap_get_device);
1378 static int _regmap_select_page(struct regmap *map, unsigned int *reg,
1379 struct regmap_range_node *range,
1380 unsigned int val_num)
1382 void *orig_work_buf;
1383 unsigned int win_offset;
1384 unsigned int win_page;
1385 bool page_chg;
1386 int ret;
1388 win_offset = (*reg - range->range_min) % range->window_len;
1389 win_page = (*reg - range->range_min) / range->window_len;
1391 if (val_num > 1) {
1392 /* Bulk write shouldn't cross range boundary */
1393 if (*reg + val_num - 1 > range->range_max)
1394 return -EINVAL;
1396 /* ... or single page boundary */
1397 if (val_num > range->window_len - win_offset)
1398 return -EINVAL;
1401 /* It is possible to have selector register inside data window.
1402 In that case, selector register is located on every page and
1403 it needs no page switching, when accessed alone. */
1404 if (val_num > 1 ||
1405 range->window_start + win_offset != range->selector_reg) {
1406 /* Use separate work_buf during page switching */
1407 orig_work_buf = map->work_buf;
1408 map->work_buf = map->selector_work_buf;
1410 ret = _regmap_update_bits(map, range->selector_reg,
1411 range->selector_mask,
1412 win_page << range->selector_shift,
1413 &page_chg, false);
1415 map->work_buf = orig_work_buf;
1417 if (ret != 0)
1418 return ret;
1421 *reg = range->window_start + win_offset;
1423 return 0;
1426 static void regmap_set_work_buf_flag_mask(struct regmap *map, int max_bytes,
1427 unsigned long mask)
1429 u8 *buf;
1430 int i;
1432 if (!mask || !map->work_buf)
1433 return;
1435 buf = map->work_buf;
1437 for (i = 0; i < max_bytes; i++)
1438 buf[i] |= (mask >> (8 * i)) & 0xff;
1441 int _regmap_raw_write(struct regmap *map, unsigned int reg,
1442 const void *val, size_t val_len)
1444 struct regmap_range_node *range;
1445 unsigned long flags;
1446 void *work_val = map->work_buf + map->format.reg_bytes +
1447 map->format.pad_bytes;
1448 void *buf;
1449 int ret = -ENOTSUPP;
1450 size_t len;
1451 int i;
1453 WARN_ON(!map->bus);
1455 /* Check for unwritable registers before we start */
1456 if (map->writeable_reg)
1457 for (i = 0; i < val_len / map->format.val_bytes; i++)
1458 if (!map->writeable_reg(map->dev,
1459 reg + regmap_get_offset(map, i)))
1460 return -EINVAL;
1462 if (!map->cache_bypass && map->format.parse_val) {
1463 unsigned int ival;
1464 int val_bytes = map->format.val_bytes;
1465 for (i = 0; i < val_len / val_bytes; i++) {
1466 ival = map->format.parse_val(val + (i * val_bytes));
1467 ret = regcache_write(map,
1468 reg + regmap_get_offset(map, i),
1469 ival);
1470 if (ret) {
1471 dev_err(map->dev,
1472 "Error in caching of register: %x ret: %d\n",
1473 reg + i, ret);
1474 return ret;
1477 if (map->cache_only) {
1478 map->cache_dirty = true;
1479 return 0;
1483 range = _regmap_range_lookup(map, reg);
1484 if (range) {
1485 int val_num = val_len / map->format.val_bytes;
1486 int win_offset = (reg - range->range_min) % range->window_len;
1487 int win_residue = range->window_len - win_offset;
1489 /* If the write goes beyond the end of the window split it */
1490 while (val_num > win_residue) {
1491 dev_dbg(map->dev, "Writing window %d/%zu\n",
1492 win_residue, val_len / map->format.val_bytes);
1493 ret = _regmap_raw_write(map, reg, val, win_residue *
1494 map->format.val_bytes);
1495 if (ret != 0)
1496 return ret;
1498 reg += win_residue;
1499 val_num -= win_residue;
1500 val += win_residue * map->format.val_bytes;
1501 val_len -= win_residue * map->format.val_bytes;
1503 win_offset = (reg - range->range_min) %
1504 range->window_len;
1505 win_residue = range->window_len - win_offset;
1508 ret = _regmap_select_page(map, &reg, range, val_num);
1509 if (ret != 0)
1510 return ret;
1513 map->format.format_reg(map->work_buf, reg, map->reg_shift);
1514 regmap_set_work_buf_flag_mask(map, map->format.reg_bytes,
1515 map->write_flag_mask);
1518 * Essentially all I/O mechanisms will be faster with a single
1519 * buffer to write. Since register syncs often generate raw
1520 * writes of single registers optimise that case.
1522 if (val != work_val && val_len == map->format.val_bytes) {
1523 memcpy(work_val, val, map->format.val_bytes);
1524 val = work_val;
1527 if (map->async && map->bus->async_write) {
1528 struct regmap_async *async;
1530 trace_regmap_async_write_start(map, reg, val_len);
1532 spin_lock_irqsave(&map->async_lock, flags);
1533 async = list_first_entry_or_null(&map->async_free,
1534 struct regmap_async,
1535 list);
1536 if (async)
1537 list_del(&async->list);
1538 spin_unlock_irqrestore(&map->async_lock, flags);
1540 if (!async) {
1541 async = map->bus->async_alloc();
1542 if (!async)
1543 return -ENOMEM;
1545 async->work_buf = kzalloc(map->format.buf_size,
1546 GFP_KERNEL | GFP_DMA);
1547 if (!async->work_buf) {
1548 kfree(async);
1549 return -ENOMEM;
1553 async->map = map;
1555 /* If the caller supplied the value we can use it safely. */
1556 memcpy(async->work_buf, map->work_buf, map->format.pad_bytes +
1557 map->format.reg_bytes + map->format.val_bytes);
1559 spin_lock_irqsave(&map->async_lock, flags);
1560 list_add_tail(&async->list, &map->async_list);
1561 spin_unlock_irqrestore(&map->async_lock, flags);
1563 if (val != work_val)
1564 ret = map->bus->async_write(map->bus_context,
1565 async->work_buf,
1566 map->format.reg_bytes +
1567 map->format.pad_bytes,
1568 val, val_len, async);
1569 else
1570 ret = map->bus->async_write(map->bus_context,
1571 async->work_buf,
1572 map->format.reg_bytes +
1573 map->format.pad_bytes +
1574 val_len, NULL, 0, async);
1576 if (ret != 0) {
1577 dev_err(map->dev, "Failed to schedule write: %d\n",
1578 ret);
1580 spin_lock_irqsave(&map->async_lock, flags);
1581 list_move(&async->list, &map->async_free);
1582 spin_unlock_irqrestore(&map->async_lock, flags);
1585 return ret;
1588 trace_regmap_hw_write_start(map, reg, val_len / map->format.val_bytes);
1590 /* If we're doing a single register write we can probably just
1591 * send the work_buf directly, otherwise try to do a gather
1592 * write.
1594 if (val == work_val)
1595 ret = map->bus->write(map->bus_context, map->work_buf,
1596 map->format.reg_bytes +
1597 map->format.pad_bytes +
1598 val_len);
1599 else if (map->bus->gather_write)
1600 ret = map->bus->gather_write(map->bus_context, map->work_buf,
1601 map->format.reg_bytes +
1602 map->format.pad_bytes,
1603 val, val_len);
1605 /* If that didn't work fall back on linearising by hand. */
1606 if (ret == -ENOTSUPP) {
1607 len = map->format.reg_bytes + map->format.pad_bytes + val_len;
1608 buf = kzalloc(len, GFP_KERNEL);
1609 if (!buf)
1610 return -ENOMEM;
1612 memcpy(buf, map->work_buf, map->format.reg_bytes);
1613 memcpy(buf + map->format.reg_bytes + map->format.pad_bytes,
1614 val, val_len);
1615 ret = map->bus->write(map->bus_context, buf, len);
1617 kfree(buf);
1618 } else if (ret != 0 && !map->cache_bypass && map->format.parse_val) {
1619 /* regcache_drop_region() takes lock that we already have,
1620 * thus call map->cache_ops->drop() directly
1622 if (map->cache_ops && map->cache_ops->drop)
1623 map->cache_ops->drop(map, reg, reg + 1);
1626 trace_regmap_hw_write_done(map, reg, val_len / map->format.val_bytes);
1628 return ret;
1632 * regmap_can_raw_write - Test if regmap_raw_write() is supported
1634 * @map: Map to check.
1636 bool regmap_can_raw_write(struct regmap *map)
1638 return map->bus && map->bus->write && map->format.format_val &&
1639 map->format.format_reg;
1641 EXPORT_SYMBOL_GPL(regmap_can_raw_write);
1644 * regmap_get_raw_read_max - Get the maximum size we can read
1646 * @map: Map to check.
1648 size_t regmap_get_raw_read_max(struct regmap *map)
1650 return map->max_raw_read;
1652 EXPORT_SYMBOL_GPL(regmap_get_raw_read_max);
1655 * regmap_get_raw_write_max - Get the maximum size we can read
1657 * @map: Map to check.
1659 size_t regmap_get_raw_write_max(struct regmap *map)
1661 return map->max_raw_write;
1663 EXPORT_SYMBOL_GPL(regmap_get_raw_write_max);
1665 static int _regmap_bus_formatted_write(void *context, unsigned int reg,
1666 unsigned int val)
1668 int ret;
1669 struct regmap_range_node *range;
1670 struct regmap *map = context;
1672 WARN_ON(!map->bus || !map->format.format_write);
1674 range = _regmap_range_lookup(map, reg);
1675 if (range) {
1676 ret = _regmap_select_page(map, &reg, range, 1);
1677 if (ret != 0)
1678 return ret;
1681 map->format.format_write(map, reg, val);
1683 trace_regmap_hw_write_start(map, reg, 1);
1685 ret = map->bus->write(map->bus_context, map->work_buf,
1686 map->format.buf_size);
1688 trace_regmap_hw_write_done(map, reg, 1);
1690 return ret;
1693 static int _regmap_bus_reg_write(void *context, unsigned int reg,
1694 unsigned int val)
1696 struct regmap *map = context;
1698 return map->bus->reg_write(map->bus_context, reg, val);
1701 static int _regmap_bus_raw_write(void *context, unsigned int reg,
1702 unsigned int val)
1704 struct regmap *map = context;
1706 WARN_ON(!map->bus || !map->format.format_val);
1708 map->format.format_val(map->work_buf + map->format.reg_bytes
1709 + map->format.pad_bytes, val, 0);
1710 return _regmap_raw_write(map, reg,
1711 map->work_buf +
1712 map->format.reg_bytes +
1713 map->format.pad_bytes,
1714 map->format.val_bytes);
1717 static inline void *_regmap_map_get_context(struct regmap *map)
1719 return (map->bus) ? map : map->bus_context;
1722 int _regmap_write(struct regmap *map, unsigned int reg,
1723 unsigned int val)
1725 int ret;
1726 void *context = _regmap_map_get_context(map);
1728 if (!regmap_writeable(map, reg))
1729 return -EIO;
1731 if (!map->cache_bypass && !map->defer_caching) {
1732 ret = regcache_write(map, reg, val);
1733 if (ret != 0)
1734 return ret;
1735 if (map->cache_only) {
1736 map->cache_dirty = true;
1737 return 0;
1741 #ifdef LOG_DEVICE
1742 if (map->dev && strcmp(dev_name(map->dev), LOG_DEVICE) == 0)
1743 dev_info(map->dev, "%x <= %x\n", reg, val);
1744 #endif
1746 trace_regmap_reg_write(map, reg, val);
1748 return map->reg_write(context, reg, val);
1752 * regmap_write() - Write a value to a single register
1754 * @map: Register map to write to
1755 * @reg: Register to write to
1756 * @val: Value to be written
1758 * A value of zero will be returned on success, a negative errno will
1759 * be returned in error cases.
1761 int regmap_write(struct regmap *map, unsigned int reg, unsigned int val)
1763 int ret;
1765 if (!IS_ALIGNED(reg, map->reg_stride))
1766 return -EINVAL;
1768 map->lock(map->lock_arg);
1770 ret = _regmap_write(map, reg, val);
1772 map->unlock(map->lock_arg);
1774 return ret;
1776 EXPORT_SYMBOL_GPL(regmap_write);
1779 * regmap_write_async() - Write a value to a single register asynchronously
1781 * @map: Register map to write to
1782 * @reg: Register to write to
1783 * @val: Value to be written
1785 * A value of zero will be returned on success, a negative errno will
1786 * be returned in error cases.
1788 int regmap_write_async(struct regmap *map, unsigned int reg, unsigned int val)
1790 int ret;
1792 if (!IS_ALIGNED(reg, map->reg_stride))
1793 return -EINVAL;
1795 map->lock(map->lock_arg);
1797 map->async = true;
1799 ret = _regmap_write(map, reg, val);
1801 map->async = false;
1803 map->unlock(map->lock_arg);
1805 return ret;
1807 EXPORT_SYMBOL_GPL(regmap_write_async);
1810 * regmap_raw_write() - Write raw values to one or more registers
1812 * @map: Register map to write to
1813 * @reg: Initial register to write to
1814 * @val: Block of data to be written, laid out for direct transmission to the
1815 * device
1816 * @val_len: Length of data pointed to by val.
1818 * This function is intended to be used for things like firmware
1819 * download where a large block of data needs to be transferred to the
1820 * device. No formatting will be done on the data provided.
1822 * A value of zero will be returned on success, a negative errno will
1823 * be returned in error cases.
1825 int regmap_raw_write(struct regmap *map, unsigned int reg,
1826 const void *val, size_t val_len)
1828 int ret;
1830 if (!regmap_can_raw_write(map))
1831 return -EINVAL;
1832 if (val_len % map->format.val_bytes)
1833 return -EINVAL;
1834 if (map->max_raw_write && map->max_raw_write < val_len)
1835 return -E2BIG;
1837 map->lock(map->lock_arg);
1839 ret = _regmap_raw_write(map, reg, val, val_len);
1841 map->unlock(map->lock_arg);
1843 return ret;
1845 EXPORT_SYMBOL_GPL(regmap_raw_write);
1848 * regmap_field_update_bits_base() - Perform a read/modify/write cycle a
1849 * register field.
1851 * @field: Register field to write to
1852 * @mask: Bitmask to change
1853 * @val: Value to be written
1854 * @change: Boolean indicating if a write was done
1855 * @async: Boolean indicating asynchronously
1856 * @force: Boolean indicating use force update
1858 * Perform a read/modify/write cycle on the register field with change,
1859 * async, force option.
1861 * A value of zero will be returned on success, a negative errno will
1862 * be returned in error cases.
1864 int regmap_field_update_bits_base(struct regmap_field *field,
1865 unsigned int mask, unsigned int val,
1866 bool *change, bool async, bool force)
1868 mask = (mask << field->shift) & field->mask;
1870 return regmap_update_bits_base(field->regmap, field->reg,
1871 mask, val << field->shift,
1872 change, async, force);
1874 EXPORT_SYMBOL_GPL(regmap_field_update_bits_base);
1877 * regmap_fields_update_bits_base() - Perform a read/modify/write cycle a
1878 * register field with port ID
1880 * @field: Register field to write to
1881 * @id: port ID
1882 * @mask: Bitmask to change
1883 * @val: Value to be written
1884 * @change: Boolean indicating if a write was done
1885 * @async: Boolean indicating asynchronously
1886 * @force: Boolean indicating use force update
1888 * A value of zero will be returned on success, a negative errno will
1889 * be returned in error cases.
1891 int regmap_fields_update_bits_base(struct regmap_field *field, unsigned int id,
1892 unsigned int mask, unsigned int val,
1893 bool *change, bool async, bool force)
1895 if (id >= field->id_size)
1896 return -EINVAL;
1898 mask = (mask << field->shift) & field->mask;
1900 return regmap_update_bits_base(field->regmap,
1901 field->reg + (field->id_offset * id),
1902 mask, val << field->shift,
1903 change, async, force);
1905 EXPORT_SYMBOL_GPL(regmap_fields_update_bits_base);
1908 * regmap_bulk_write() - Write multiple registers to the device
1910 * @map: Register map to write to
1911 * @reg: First register to be write from
1912 * @val: Block of data to be written, in native register size for device
1913 * @val_count: Number of registers to write
1915 * This function is intended to be used for writing a large block of
1916 * data to the device either in single transfer or multiple transfer.
1918 * A value of zero will be returned on success, a negative errno will
1919 * be returned in error cases.
1921 int regmap_bulk_write(struct regmap *map, unsigned int reg, const void *val,
1922 size_t val_count)
1924 int ret = 0, i;
1925 size_t val_bytes = map->format.val_bytes;
1926 size_t total_size = val_bytes * val_count;
1928 if (!IS_ALIGNED(reg, map->reg_stride))
1929 return -EINVAL;
1932 * Some devices don't support bulk write, for
1933 * them we have a series of single write operations in the first two if
1934 * blocks.
1936 * The first if block is used for memory mapped io. It does not allow
1937 * val_bytes of 3 for example.
1938 * The second one is for busses that do not provide raw I/O.
1939 * The third one is used for busses which do not have these limitations
1940 * and can write arbitrary value lengths.
1942 if (!map->bus) {
1943 map->lock(map->lock_arg);
1944 for (i = 0; i < val_count; i++) {
1945 unsigned int ival;
1947 switch (val_bytes) {
1948 case 1:
1949 ival = *(u8 *)(val + (i * val_bytes));
1950 break;
1951 case 2:
1952 ival = *(u16 *)(val + (i * val_bytes));
1953 break;
1954 case 4:
1955 ival = *(u32 *)(val + (i * val_bytes));
1956 break;
1957 #ifdef CONFIG_64BIT
1958 case 8:
1959 ival = *(u64 *)(val + (i * val_bytes));
1960 break;
1961 #endif
1962 default:
1963 ret = -EINVAL;
1964 goto out;
1967 ret = _regmap_write(map,
1968 reg + regmap_get_offset(map, i),
1969 ival);
1970 if (ret != 0)
1971 goto out;
1973 out:
1974 map->unlock(map->lock_arg);
1975 } else if (map->bus && !map->format.parse_inplace) {
1976 const u8 *u8 = val;
1977 const u16 *u16 = val;
1978 const u32 *u32 = val;
1979 unsigned int ival;
1981 for (i = 0; i < val_count; i++) {
1982 switch (map->format.val_bytes) {
1983 case 4:
1984 ival = u32[i];
1985 break;
1986 case 2:
1987 ival = u16[i];
1988 break;
1989 case 1:
1990 ival = u8[i];
1991 break;
1992 default:
1993 return -EINVAL;
1996 ret = regmap_write(map, reg + (i * map->reg_stride),
1997 ival);
1998 if (ret)
1999 return ret;
2001 } else if (map->use_single_write ||
2002 (map->max_raw_write && map->max_raw_write < total_size)) {
2003 int chunk_stride = map->reg_stride;
2004 size_t chunk_size = val_bytes;
2005 size_t chunk_count = val_count;
2007 if (!map->use_single_write) {
2008 chunk_size = map->max_raw_write;
2009 if (chunk_size % val_bytes)
2010 chunk_size -= chunk_size % val_bytes;
2011 chunk_count = total_size / chunk_size;
2012 chunk_stride *= chunk_size / val_bytes;
2015 map->lock(map->lock_arg);
2016 /* Write as many bytes as possible with chunk_size */
2017 for (i = 0; i < chunk_count; i++) {
2018 ret = _regmap_raw_write(map,
2019 reg + (i * chunk_stride),
2020 val + (i * chunk_size),
2021 chunk_size);
2022 if (ret)
2023 break;
2026 /* Write remaining bytes */
2027 if (!ret && chunk_size * i < total_size) {
2028 ret = _regmap_raw_write(map, reg + (i * chunk_stride),
2029 val + (i * chunk_size),
2030 total_size - i * chunk_size);
2032 map->unlock(map->lock_arg);
2033 } else {
2034 void *wval;
2036 if (!val_count)
2037 return -EINVAL;
2039 wval = kmemdup(val, val_count * val_bytes, map->alloc_flags);
2040 if (!wval) {
2041 dev_err(map->dev, "Error in memory allocation\n");
2042 return -ENOMEM;
2044 for (i = 0; i < val_count * val_bytes; i += val_bytes)
2045 map->format.parse_inplace(wval + i);
2047 map->lock(map->lock_arg);
2048 ret = _regmap_raw_write(map, reg, wval, val_bytes * val_count);
2049 map->unlock(map->lock_arg);
2051 kfree(wval);
2053 return ret;
2055 EXPORT_SYMBOL_GPL(regmap_bulk_write);
2058 * _regmap_raw_multi_reg_write()
2060 * the (register,newvalue) pairs in regs have not been formatted, but
2061 * they are all in the same page and have been changed to being page
2062 * relative. The page register has been written if that was necessary.
2064 static int _regmap_raw_multi_reg_write(struct regmap *map,
2065 const struct reg_sequence *regs,
2066 size_t num_regs)
2068 int ret;
2069 void *buf;
2070 int i;
2071 u8 *u8;
2072 size_t val_bytes = map->format.val_bytes;
2073 size_t reg_bytes = map->format.reg_bytes;
2074 size_t pad_bytes = map->format.pad_bytes;
2075 size_t pair_size = reg_bytes + pad_bytes + val_bytes;
2076 size_t len = pair_size * num_regs;
2078 if (!len)
2079 return -EINVAL;
2081 buf = kzalloc(len, GFP_KERNEL);
2082 if (!buf)
2083 return -ENOMEM;
2085 /* We have to linearise by hand. */
2087 u8 = buf;
2089 for (i = 0; i < num_regs; i++) {
2090 unsigned int reg = regs[i].reg;
2091 unsigned int val = regs[i].def;
2092 trace_regmap_hw_write_start(map, reg, 1);
2093 map->format.format_reg(u8, reg, map->reg_shift);
2094 u8 += reg_bytes + pad_bytes;
2095 map->format.format_val(u8, val, 0);
2096 u8 += val_bytes;
2098 u8 = buf;
2099 *u8 |= map->write_flag_mask;
2101 ret = map->bus->write(map->bus_context, buf, len);
2103 kfree(buf);
2105 for (i = 0; i < num_regs; i++) {
2106 int reg = regs[i].reg;
2107 trace_regmap_hw_write_done(map, reg, 1);
2109 return ret;
2112 static unsigned int _regmap_register_page(struct regmap *map,
2113 unsigned int reg,
2114 struct regmap_range_node *range)
2116 unsigned int win_page = (reg - range->range_min) / range->window_len;
2118 return win_page;
2121 static int _regmap_range_multi_paged_reg_write(struct regmap *map,
2122 struct reg_sequence *regs,
2123 size_t num_regs)
2125 int ret;
2126 int i, n;
2127 struct reg_sequence *base;
2128 unsigned int this_page = 0;
2129 unsigned int page_change = 0;
2131 * the set of registers are not neccessarily in order, but
2132 * since the order of write must be preserved this algorithm
2133 * chops the set each time the page changes. This also applies
2134 * if there is a delay required at any point in the sequence.
2136 base = regs;
2137 for (i = 0, n = 0; i < num_regs; i++, n++) {
2138 unsigned int reg = regs[i].reg;
2139 struct regmap_range_node *range;
2141 range = _regmap_range_lookup(map, reg);
2142 if (range) {
2143 unsigned int win_page = _regmap_register_page(map, reg,
2144 range);
2146 if (i == 0)
2147 this_page = win_page;
2148 if (win_page != this_page) {
2149 this_page = win_page;
2150 page_change = 1;
2154 /* If we have both a page change and a delay make sure to
2155 * write the regs and apply the delay before we change the
2156 * page.
2159 if (page_change || regs[i].delay_us) {
2161 /* For situations where the first write requires
2162 * a delay we need to make sure we don't call
2163 * raw_multi_reg_write with n=0
2164 * This can't occur with page breaks as we
2165 * never write on the first iteration
2167 if (regs[i].delay_us && i == 0)
2168 n = 1;
2170 ret = _regmap_raw_multi_reg_write(map, base, n);
2171 if (ret != 0)
2172 return ret;
2174 if (regs[i].delay_us)
2175 udelay(regs[i].delay_us);
2177 base += n;
2178 n = 0;
2180 if (page_change) {
2181 ret = _regmap_select_page(map,
2182 &base[n].reg,
2183 range, 1);
2184 if (ret != 0)
2185 return ret;
2187 page_change = 0;
2193 if (n > 0)
2194 return _regmap_raw_multi_reg_write(map, base, n);
2195 return 0;
2198 static int _regmap_multi_reg_write(struct regmap *map,
2199 const struct reg_sequence *regs,
2200 size_t num_regs)
2202 int i;
2203 int ret;
2205 if (!map->can_multi_write) {
2206 for (i = 0; i < num_regs; i++) {
2207 ret = _regmap_write(map, regs[i].reg, regs[i].def);
2208 if (ret != 0)
2209 return ret;
2211 if (regs[i].delay_us)
2212 udelay(regs[i].delay_us);
2214 return 0;
2217 if (!map->format.parse_inplace)
2218 return -EINVAL;
2220 if (map->writeable_reg)
2221 for (i = 0; i < num_regs; i++) {
2222 int reg = regs[i].reg;
2223 if (!map->writeable_reg(map->dev, reg))
2224 return -EINVAL;
2225 if (!IS_ALIGNED(reg, map->reg_stride))
2226 return -EINVAL;
2229 if (!map->cache_bypass) {
2230 for (i = 0; i < num_regs; i++) {
2231 unsigned int val = regs[i].def;
2232 unsigned int reg = regs[i].reg;
2233 ret = regcache_write(map, reg, val);
2234 if (ret) {
2235 dev_err(map->dev,
2236 "Error in caching of register: %x ret: %d\n",
2237 reg, ret);
2238 return ret;
2241 if (map->cache_only) {
2242 map->cache_dirty = true;
2243 return 0;
2247 WARN_ON(!map->bus);
2249 for (i = 0; i < num_regs; i++) {
2250 unsigned int reg = regs[i].reg;
2251 struct regmap_range_node *range;
2253 /* Coalesce all the writes between a page break or a delay
2254 * in a sequence
2256 range = _regmap_range_lookup(map, reg);
2257 if (range || regs[i].delay_us) {
2258 size_t len = sizeof(struct reg_sequence)*num_regs;
2259 struct reg_sequence *base = kmemdup(regs, len,
2260 GFP_KERNEL);
2261 if (!base)
2262 return -ENOMEM;
2263 ret = _regmap_range_multi_paged_reg_write(map, base,
2264 num_regs);
2265 kfree(base);
2267 return ret;
2270 return _regmap_raw_multi_reg_write(map, regs, num_regs);
2274 * regmap_multi_reg_write() - Write multiple registers to the device
2276 * @map: Register map to write to
2277 * @regs: Array of structures containing register,value to be written
2278 * @num_regs: Number of registers to write
2280 * Write multiple registers to the device where the set of register, value
2281 * pairs are supplied in any order, possibly not all in a single range.
2283 * The 'normal' block write mode will send ultimately send data on the
2284 * target bus as R,V1,V2,V3,..,Vn where successively higher registers are
2285 * addressed. However, this alternative block multi write mode will send
2286 * the data as R1,V1,R2,V2,..,Rn,Vn on the target bus. The target device
2287 * must of course support the mode.
2289 * A value of zero will be returned on success, a negative errno will be
2290 * returned in error cases.
2292 int regmap_multi_reg_write(struct regmap *map, const struct reg_sequence *regs,
2293 int num_regs)
2295 int ret;
2297 map->lock(map->lock_arg);
2299 ret = _regmap_multi_reg_write(map, regs, num_regs);
2301 map->unlock(map->lock_arg);
2303 return ret;
2305 EXPORT_SYMBOL_GPL(regmap_multi_reg_write);
2308 * regmap_multi_reg_write_bypassed() - Write multiple registers to the
2309 * device but not the cache
2311 * @map: Register map to write to
2312 * @regs: Array of structures containing register,value to be written
2313 * @num_regs: Number of registers to write
2315 * Write multiple registers to the device but not the cache where the set
2316 * of register are supplied in any order.
2318 * This function is intended to be used for writing a large block of data
2319 * atomically to the device in single transfer for those I2C client devices
2320 * that implement this alternative block write mode.
2322 * A value of zero will be returned on success, a negative errno will
2323 * be returned in error cases.
2325 int regmap_multi_reg_write_bypassed(struct regmap *map,
2326 const struct reg_sequence *regs,
2327 int num_regs)
2329 int ret;
2330 bool bypass;
2332 map->lock(map->lock_arg);
2334 bypass = map->cache_bypass;
2335 map->cache_bypass = true;
2337 ret = _regmap_multi_reg_write(map, regs, num_regs);
2339 map->cache_bypass = bypass;
2341 map->unlock(map->lock_arg);
2343 return ret;
2345 EXPORT_SYMBOL_GPL(regmap_multi_reg_write_bypassed);
2348 * regmap_raw_write_async() - Write raw values to one or more registers
2349 * asynchronously
2351 * @map: Register map to write to
2352 * @reg: Initial register to write to
2353 * @val: Block of data to be written, laid out for direct transmission to the
2354 * device. Must be valid until regmap_async_complete() is called.
2355 * @val_len: Length of data pointed to by val.
2357 * This function is intended to be used for things like firmware
2358 * download where a large block of data needs to be transferred to the
2359 * device. No formatting will be done on the data provided.
2361 * If supported by the underlying bus the write will be scheduled
2362 * asynchronously, helping maximise I/O speed on higher speed buses
2363 * like SPI. regmap_async_complete() can be called to ensure that all
2364 * asynchrnous writes have been completed.
2366 * A value of zero will be returned on success, a negative errno will
2367 * be returned in error cases.
2369 int regmap_raw_write_async(struct regmap *map, unsigned int reg,
2370 const void *val, size_t val_len)
2372 int ret;
2374 if (val_len % map->format.val_bytes)
2375 return -EINVAL;
2376 if (!IS_ALIGNED(reg, map->reg_stride))
2377 return -EINVAL;
2379 map->lock(map->lock_arg);
2381 map->async = true;
2383 ret = _regmap_raw_write(map, reg, val, val_len);
2385 map->async = false;
2387 map->unlock(map->lock_arg);
2389 return ret;
2391 EXPORT_SYMBOL_GPL(regmap_raw_write_async);
2393 static int _regmap_raw_read(struct regmap *map, unsigned int reg, void *val,
2394 unsigned int val_len)
2396 struct regmap_range_node *range;
2397 int ret;
2399 WARN_ON(!map->bus);
2401 if (!map->bus || !map->bus->read)
2402 return -EINVAL;
2404 range = _regmap_range_lookup(map, reg);
2405 if (range) {
2406 ret = _regmap_select_page(map, &reg, range,
2407 val_len / map->format.val_bytes);
2408 if (ret != 0)
2409 return ret;
2412 map->format.format_reg(map->work_buf, reg, map->reg_shift);
2413 regmap_set_work_buf_flag_mask(map, map->format.reg_bytes,
2414 map->read_flag_mask);
2415 trace_regmap_hw_read_start(map, reg, val_len / map->format.val_bytes);
2417 ret = map->bus->read(map->bus_context, map->work_buf,
2418 map->format.reg_bytes + map->format.pad_bytes,
2419 val, val_len);
2421 trace_regmap_hw_read_done(map, reg, val_len / map->format.val_bytes);
2423 return ret;
2426 static int _regmap_bus_reg_read(void *context, unsigned int reg,
2427 unsigned int *val)
2429 struct regmap *map = context;
2431 return map->bus->reg_read(map->bus_context, reg, val);
2434 static int _regmap_bus_read(void *context, unsigned int reg,
2435 unsigned int *val)
2437 int ret;
2438 struct regmap *map = context;
2439 void *work_val = map->work_buf + map->format.reg_bytes +
2440 map->format.pad_bytes;
2442 if (!map->format.parse_val)
2443 return -EINVAL;
2445 ret = _regmap_raw_read(map, reg, work_val, map->format.val_bytes);
2446 if (ret == 0)
2447 *val = map->format.parse_val(work_val);
2449 return ret;
2452 static int _regmap_read(struct regmap *map, unsigned int reg,
2453 unsigned int *val)
2455 int ret;
2456 void *context = _regmap_map_get_context(map);
2458 if (!map->cache_bypass) {
2459 ret = regcache_read(map, reg, val);
2460 if (ret == 0)
2461 return 0;
2464 if (map->cache_only)
2465 return -EBUSY;
2467 if (!regmap_readable(map, reg))
2468 return -EIO;
2470 ret = map->reg_read(context, reg, val);
2471 if (ret == 0) {
2472 #ifdef LOG_DEVICE
2473 if (map->dev && strcmp(dev_name(map->dev), LOG_DEVICE) == 0)
2474 dev_info(map->dev, "%x => %x\n", reg, *val);
2475 #endif
2477 trace_regmap_reg_read(map, reg, *val);
2479 if (!map->cache_bypass)
2480 regcache_write(map, reg, *val);
2483 return ret;
2487 * regmap_read() - Read a value from a single register
2489 * @map: Register map to read from
2490 * @reg: Register to be read from
2491 * @val: Pointer to store read value
2493 * A value of zero will be returned on success, a negative errno will
2494 * be returned in error cases.
2496 int regmap_read(struct regmap *map, unsigned int reg, unsigned int *val)
2498 int ret;
2500 if (!IS_ALIGNED(reg, map->reg_stride))
2501 return -EINVAL;
2503 map->lock(map->lock_arg);
2505 ret = _regmap_read(map, reg, val);
2507 map->unlock(map->lock_arg);
2509 return ret;
2511 EXPORT_SYMBOL_GPL(regmap_read);
2514 * regmap_raw_read() - Read raw data from the device
2516 * @map: Register map to read from
2517 * @reg: First register to be read from
2518 * @val: Pointer to store read value
2519 * @val_len: Size of data to read
2521 * A value of zero will be returned on success, a negative errno will
2522 * be returned in error cases.
2524 int regmap_raw_read(struct regmap *map, unsigned int reg, void *val,
2525 size_t val_len)
2527 size_t val_bytes = map->format.val_bytes;
2528 size_t val_count = val_len / val_bytes;
2529 unsigned int v;
2530 int ret, i;
2532 if (!map->bus)
2533 return -EINVAL;
2534 if (val_len % map->format.val_bytes)
2535 return -EINVAL;
2536 if (!IS_ALIGNED(reg, map->reg_stride))
2537 return -EINVAL;
2538 if (val_count == 0)
2539 return -EINVAL;
2541 map->lock(map->lock_arg);
2543 if (regmap_volatile_range(map, reg, val_count) || map->cache_bypass ||
2544 map->cache_type == REGCACHE_NONE) {
2545 if (!map->bus->read) {
2546 ret = -ENOTSUPP;
2547 goto out;
2549 if (map->max_raw_read && map->max_raw_read < val_len) {
2550 ret = -E2BIG;
2551 goto out;
2554 /* Physical block read if there's no cache involved */
2555 ret = _regmap_raw_read(map, reg, val, val_len);
2557 } else {
2558 /* Otherwise go word by word for the cache; should be low
2559 * cost as we expect to hit the cache.
2561 for (i = 0; i < val_count; i++) {
2562 ret = _regmap_read(map, reg + regmap_get_offset(map, i),
2563 &v);
2564 if (ret != 0)
2565 goto out;
2567 map->format.format_val(val + (i * val_bytes), v, 0);
2571 out:
2572 map->unlock(map->lock_arg);
2574 return ret;
2576 EXPORT_SYMBOL_GPL(regmap_raw_read);
2579 * regmap_field_read() - Read a value to a single register field
2581 * @field: Register field to read from
2582 * @val: Pointer to store read value
2584 * A value of zero will be returned on success, a negative errno will
2585 * be returned in error cases.
2587 int regmap_field_read(struct regmap_field *field, unsigned int *val)
2589 int ret;
2590 unsigned int reg_val;
2591 ret = regmap_read(field->regmap, field->reg, &reg_val);
2592 if (ret != 0)
2593 return ret;
2595 reg_val &= field->mask;
2596 reg_val >>= field->shift;
2597 *val = reg_val;
2599 return ret;
2601 EXPORT_SYMBOL_GPL(regmap_field_read);
2604 * regmap_fields_read() - Read a value to a single register field with port ID
2606 * @field: Register field to read from
2607 * @id: port ID
2608 * @val: Pointer to store read value
2610 * A value of zero will be returned on success, a negative errno will
2611 * be returned in error cases.
2613 int regmap_fields_read(struct regmap_field *field, unsigned int id,
2614 unsigned int *val)
2616 int ret;
2617 unsigned int reg_val;
2619 if (id >= field->id_size)
2620 return -EINVAL;
2622 ret = regmap_read(field->regmap,
2623 field->reg + (field->id_offset * id),
2624 &reg_val);
2625 if (ret != 0)
2626 return ret;
2628 reg_val &= field->mask;
2629 reg_val >>= field->shift;
2630 *val = reg_val;
2632 return ret;
2634 EXPORT_SYMBOL_GPL(regmap_fields_read);
2637 * regmap_bulk_read() - Read multiple registers from the device
2639 * @map: Register map to read from
2640 * @reg: First register to be read from
2641 * @val: Pointer to store read value, in native register size for device
2642 * @val_count: Number of registers to read
2644 * A value of zero will be returned on success, a negative errno will
2645 * be returned in error cases.
2647 int regmap_bulk_read(struct regmap *map, unsigned int reg, void *val,
2648 size_t val_count)
2650 int ret, i;
2651 size_t val_bytes = map->format.val_bytes;
2652 bool vol = regmap_volatile_range(map, reg, val_count);
2654 if (!IS_ALIGNED(reg, map->reg_stride))
2655 return -EINVAL;
2657 if (map->bus && map->format.parse_inplace && (vol || map->cache_type == REGCACHE_NONE)) {
2659 * Some devices does not support bulk read, for
2660 * them we have a series of single read operations.
2662 size_t total_size = val_bytes * val_count;
2664 if (!map->use_single_read &&
2665 (!map->max_raw_read || map->max_raw_read > total_size)) {
2666 ret = regmap_raw_read(map, reg, val,
2667 val_bytes * val_count);
2668 if (ret != 0)
2669 return ret;
2670 } else {
2672 * Some devices do not support bulk read or do not
2673 * support large bulk reads, for them we have a series
2674 * of read operations.
2676 int chunk_stride = map->reg_stride;
2677 size_t chunk_size = val_bytes;
2678 size_t chunk_count = val_count;
2680 if (!map->use_single_read) {
2681 chunk_size = map->max_raw_read;
2682 if (chunk_size % val_bytes)
2683 chunk_size -= chunk_size % val_bytes;
2684 chunk_count = total_size / chunk_size;
2685 chunk_stride *= chunk_size / val_bytes;
2688 /* Read bytes that fit into a multiple of chunk_size */
2689 for (i = 0; i < chunk_count; i++) {
2690 ret = regmap_raw_read(map,
2691 reg + (i * chunk_stride),
2692 val + (i * chunk_size),
2693 chunk_size);
2694 if (ret != 0)
2695 return ret;
2698 /* Read remaining bytes */
2699 if (chunk_size * i < total_size) {
2700 ret = regmap_raw_read(map,
2701 reg + (i * chunk_stride),
2702 val + (i * chunk_size),
2703 total_size - i * chunk_size);
2704 if (ret != 0)
2705 return ret;
2709 for (i = 0; i < val_count * val_bytes; i += val_bytes)
2710 map->format.parse_inplace(val + i);
2711 } else {
2712 for (i = 0; i < val_count; i++) {
2713 unsigned int ival;
2714 ret = regmap_read(map, reg + regmap_get_offset(map, i),
2715 &ival);
2716 if (ret != 0)
2717 return ret;
2719 if (map->format.format_val) {
2720 map->format.format_val(val + (i * val_bytes), ival, 0);
2721 } else {
2722 /* Devices providing read and write
2723 * operations can use the bulk I/O
2724 * functions if they define a val_bytes,
2725 * we assume that the values are native
2726 * endian.
2728 #ifdef CONFIG_64BIT
2729 u64 *u64 = val;
2730 #endif
2731 u32 *u32 = val;
2732 u16 *u16 = val;
2733 u8 *u8 = val;
2735 switch (map->format.val_bytes) {
2736 #ifdef CONFIG_64BIT
2737 case 8:
2738 u64[i] = ival;
2739 break;
2740 #endif
2741 case 4:
2742 u32[i] = ival;
2743 break;
2744 case 2:
2745 u16[i] = ival;
2746 break;
2747 case 1:
2748 u8[i] = ival;
2749 break;
2750 default:
2751 return -EINVAL;
2757 return 0;
2759 EXPORT_SYMBOL_GPL(regmap_bulk_read);
2761 static int _regmap_update_bits(struct regmap *map, unsigned int reg,
2762 unsigned int mask, unsigned int val,
2763 bool *change, bool force_write)
2765 int ret;
2766 unsigned int tmp, orig;
2768 if (change)
2769 *change = false;
2771 if (regmap_volatile(map, reg) && map->reg_update_bits) {
2772 ret = map->reg_update_bits(map->bus_context, reg, mask, val);
2773 if (ret == 0 && change)
2774 *change = true;
2775 } else {
2776 ret = _regmap_read(map, reg, &orig);
2777 if (ret != 0)
2778 return ret;
2780 tmp = orig & ~mask;
2781 tmp |= val & mask;
2783 if (force_write || (tmp != orig)) {
2784 ret = _regmap_write(map, reg, tmp);
2785 if (ret == 0 && change)
2786 *change = true;
2790 return ret;
2794 * regmap_update_bits_base() - Perform a read/modify/write cycle on a register
2796 * @map: Register map to update
2797 * @reg: Register to update
2798 * @mask: Bitmask to change
2799 * @val: New value for bitmask
2800 * @change: Boolean indicating if a write was done
2801 * @async: Boolean indicating asynchronously
2802 * @force: Boolean indicating use force update
2804 * Perform a read/modify/write cycle on a register map with change, async, force
2805 * options.
2807 * If async is true:
2809 * With most buses the read must be done synchronously so this is most useful
2810 * for devices with a cache which do not need to interact with the hardware to
2811 * determine the current register value.
2813 * Returns zero for success, a negative number on error.
2815 int regmap_update_bits_base(struct regmap *map, unsigned int reg,
2816 unsigned int mask, unsigned int val,
2817 bool *change, bool async, bool force)
2819 int ret;
2821 map->lock(map->lock_arg);
2823 map->async = async;
2825 ret = _regmap_update_bits(map, reg, mask, val, change, force);
2827 map->async = false;
2829 map->unlock(map->lock_arg);
2831 return ret;
2833 EXPORT_SYMBOL_GPL(regmap_update_bits_base);
2835 void regmap_async_complete_cb(struct regmap_async *async, int ret)
2837 struct regmap *map = async->map;
2838 bool wake;
2840 trace_regmap_async_io_complete(map);
2842 spin_lock(&map->async_lock);
2843 list_move(&async->list, &map->async_free);
2844 wake = list_empty(&map->async_list);
2846 if (ret != 0)
2847 map->async_ret = ret;
2849 spin_unlock(&map->async_lock);
2851 if (wake)
2852 wake_up(&map->async_waitq);
2854 EXPORT_SYMBOL_GPL(regmap_async_complete_cb);
2856 static int regmap_async_is_done(struct regmap *map)
2858 unsigned long flags;
2859 int ret;
2861 spin_lock_irqsave(&map->async_lock, flags);
2862 ret = list_empty(&map->async_list);
2863 spin_unlock_irqrestore(&map->async_lock, flags);
2865 return ret;
2869 * regmap_async_complete - Ensure all asynchronous I/O has completed.
2871 * @map: Map to operate on.
2873 * Blocks until any pending asynchronous I/O has completed. Returns
2874 * an error code for any failed I/O operations.
2876 int regmap_async_complete(struct regmap *map)
2878 unsigned long flags;
2879 int ret;
2881 /* Nothing to do with no async support */
2882 if (!map->bus || !map->bus->async_write)
2883 return 0;
2885 trace_regmap_async_complete_start(map);
2887 wait_event(map->async_waitq, regmap_async_is_done(map));
2889 spin_lock_irqsave(&map->async_lock, flags);
2890 ret = map->async_ret;
2891 map->async_ret = 0;
2892 spin_unlock_irqrestore(&map->async_lock, flags);
2894 trace_regmap_async_complete_done(map);
2896 return ret;
2898 EXPORT_SYMBOL_GPL(regmap_async_complete);
2901 * regmap_register_patch - Register and apply register updates to be applied
2902 * on device initialistion
2904 * @map: Register map to apply updates to.
2905 * @regs: Values to update.
2906 * @num_regs: Number of entries in regs.
2908 * Register a set of register updates to be applied to the device
2909 * whenever the device registers are synchronised with the cache and
2910 * apply them immediately. Typically this is used to apply
2911 * corrections to be applied to the device defaults on startup, such
2912 * as the updates some vendors provide to undocumented registers.
2914 * The caller must ensure that this function cannot be called
2915 * concurrently with either itself or regcache_sync().
2917 int regmap_register_patch(struct regmap *map, const struct reg_sequence *regs,
2918 int num_regs)
2920 struct reg_sequence *p;
2921 int ret;
2922 bool bypass;
2924 if (WARN_ONCE(num_regs <= 0, "invalid registers number (%d)\n",
2925 num_regs))
2926 return 0;
2928 p = krealloc(map->patch,
2929 sizeof(struct reg_sequence) * (map->patch_regs + num_regs),
2930 GFP_KERNEL);
2931 if (p) {
2932 memcpy(p + map->patch_regs, regs, num_regs * sizeof(*regs));
2933 map->patch = p;
2934 map->patch_regs += num_regs;
2935 } else {
2936 return -ENOMEM;
2939 map->lock(map->lock_arg);
2941 bypass = map->cache_bypass;
2943 map->cache_bypass = true;
2944 map->async = true;
2946 ret = _regmap_multi_reg_write(map, regs, num_regs);
2948 map->async = false;
2949 map->cache_bypass = bypass;
2951 map->unlock(map->lock_arg);
2953 regmap_async_complete(map);
2955 return ret;
2957 EXPORT_SYMBOL_GPL(regmap_register_patch);
2960 * regmap_get_val_bytes() - Report the size of a register value
2962 * @map: Register map to operate on.
2964 * Report the size of a register value, mainly intended to for use by
2965 * generic infrastructure built on top of regmap.
2967 int regmap_get_val_bytes(struct regmap *map)
2969 if (map->format.format_write)
2970 return -EINVAL;
2972 return map->format.val_bytes;
2974 EXPORT_SYMBOL_GPL(regmap_get_val_bytes);
2977 * regmap_get_max_register() - Report the max register value
2979 * @map: Register map to operate on.
2981 * Report the max register value, mainly intended to for use by
2982 * generic infrastructure built on top of regmap.
2984 int regmap_get_max_register(struct regmap *map)
2986 return map->max_register ? map->max_register : -EINVAL;
2988 EXPORT_SYMBOL_GPL(regmap_get_max_register);
2991 * regmap_get_reg_stride() - Report the register address stride
2993 * @map: Register map to operate on.
2995 * Report the register address stride, mainly intended to for use by
2996 * generic infrastructure built on top of regmap.
2998 int regmap_get_reg_stride(struct regmap *map)
3000 return map->reg_stride;
3002 EXPORT_SYMBOL_GPL(regmap_get_reg_stride);
3004 int regmap_parse_val(struct regmap *map, const void *buf,
3005 unsigned int *val)
3007 if (!map->format.parse_val)
3008 return -EINVAL;
3010 *val = map->format.parse_val(buf);
3012 return 0;
3014 EXPORT_SYMBOL_GPL(regmap_parse_val);
3016 static int __init regmap_initcall(void)
3018 regmap_debugfs_initcall();
3020 return 0;
3022 postcore_initcall(regmap_initcall);