Linux 4.16.11
[linux/fpc-iii.git] / drivers / char / ipmi / ipmi_msghandler.c
blobe0b0d7e2d976ac7802ed254371e11e50c1412e88
1 /*
2 * ipmi_msghandler.c
4 * Incoming and outgoing message routing for an IPMI interface.
6 * Author: MontaVista Software, Inc.
7 * Corey Minyard <minyard@mvista.com>
8 * source@mvista.com
10 * Copyright 2002 MontaVista Software Inc.
12 * This program is free software; you can redistribute it and/or modify it
13 * under the terms of the GNU General Public License as published by the
14 * Free Software Foundation; either version 2 of the License, or (at your
15 * option) any later version.
18 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
19 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
20 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
21 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
22 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
23 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
24 * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
25 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
26 * TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
27 * USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
29 * You should have received a copy of the GNU General Public License along
30 * with this program; if not, write to the Free Software Foundation, Inc.,
31 * 675 Mass Ave, Cambridge, MA 02139, USA.
34 #include <linux/module.h>
35 #include <linux/errno.h>
36 #include <linux/poll.h>
37 #include <linux/sched.h>
38 #include <linux/seq_file.h>
39 #include <linux/spinlock.h>
40 #include <linux/mutex.h>
41 #include <linux/slab.h>
42 #include <linux/ipmi.h>
43 #include <linux/ipmi_smi.h>
44 #include <linux/notifier.h>
45 #include <linux/init.h>
46 #include <linux/proc_fs.h>
47 #include <linux/rcupdate.h>
48 #include <linux/interrupt.h>
49 #include <linux/moduleparam.h>
50 #include <linux/workqueue.h>
51 #include <linux/uuid.h>
53 #define PFX "IPMI message handler: "
55 #define IPMI_DRIVER_VERSION "39.2"
57 static struct ipmi_recv_msg *ipmi_alloc_recv_msg(void);
58 static int ipmi_init_msghandler(void);
59 static void smi_recv_tasklet(unsigned long);
60 static void handle_new_recv_msgs(ipmi_smi_t intf);
61 static void need_waiter(ipmi_smi_t intf);
62 static int handle_one_recv_msg(ipmi_smi_t intf,
63 struct ipmi_smi_msg *msg);
65 static int initialized;
67 enum ipmi_panic_event_op {
68 IPMI_SEND_PANIC_EVENT_NONE,
69 IPMI_SEND_PANIC_EVENT,
70 IPMI_SEND_PANIC_EVENT_STRING
72 #ifdef CONFIG_IPMI_PANIC_STRING
73 #define IPMI_PANIC_DEFAULT IPMI_SEND_PANIC_EVENT_STRING
74 #elif defined(CONFIG_IPMI_PANIC_EVENT)
75 #define IPMI_PANIC_DEFAULT IPMI_SEND_PANIC_EVENT
76 #else
77 #define IPMI_PANIC_DEFAULT IPMI_SEND_PANIC_EVENT_NONE
78 #endif
79 static enum ipmi_panic_event_op ipmi_send_panic_event = IPMI_PANIC_DEFAULT;
81 static int panic_op_write_handler(const char *val,
82 const struct kernel_param *kp)
84 char valcp[16];
85 char *s;
87 strncpy(valcp, val, 15);
88 valcp[15] = '\0';
90 s = strstrip(valcp);
92 if (strcmp(s, "none") == 0)
93 ipmi_send_panic_event = IPMI_SEND_PANIC_EVENT_NONE;
94 else if (strcmp(s, "event") == 0)
95 ipmi_send_panic_event = IPMI_SEND_PANIC_EVENT;
96 else if (strcmp(s, "string") == 0)
97 ipmi_send_panic_event = IPMI_SEND_PANIC_EVENT_STRING;
98 else
99 return -EINVAL;
101 return 0;
104 static int panic_op_read_handler(char *buffer, const struct kernel_param *kp)
106 switch (ipmi_send_panic_event) {
107 case IPMI_SEND_PANIC_EVENT_NONE:
108 strcpy(buffer, "none");
109 break;
111 case IPMI_SEND_PANIC_EVENT:
112 strcpy(buffer, "event");
113 break;
115 case IPMI_SEND_PANIC_EVENT_STRING:
116 strcpy(buffer, "string");
117 break;
119 default:
120 strcpy(buffer, "???");
121 break;
124 return strlen(buffer);
127 static const struct kernel_param_ops panic_op_ops = {
128 .set = panic_op_write_handler,
129 .get = panic_op_read_handler
131 module_param_cb(panic_op, &panic_op_ops, NULL, 0600);
132 MODULE_PARM_DESC(panic_op, "Sets if the IPMI driver will attempt to store panic information in the event log in the event of a panic. Set to 'none' for no, 'event' for a single event, or 'string' for a generic event and the panic string in IPMI OEM events.");
135 #ifdef CONFIG_IPMI_PROC_INTERFACE
136 static struct proc_dir_entry *proc_ipmi_root;
137 #endif /* CONFIG_IPMI_PROC_INTERFACE */
139 /* Remain in auto-maintenance mode for this amount of time (in ms). */
140 #define IPMI_MAINTENANCE_MODE_TIMEOUT 30000
142 #define MAX_EVENTS_IN_QUEUE 25
145 * Don't let a message sit in a queue forever, always time it with at lest
146 * the max message timer. This is in milliseconds.
148 #define MAX_MSG_TIMEOUT 60000
150 /* Call every ~1000 ms. */
151 #define IPMI_TIMEOUT_TIME 1000
153 /* How many jiffies does it take to get to the timeout time. */
154 #define IPMI_TIMEOUT_JIFFIES ((IPMI_TIMEOUT_TIME * HZ) / 1000)
157 * Request events from the queue every second (this is the number of
158 * IPMI_TIMEOUT_TIMES between event requests). Hopefully, in the
159 * future, IPMI will add a way to know immediately if an event is in
160 * the queue and this silliness can go away.
162 #define IPMI_REQUEST_EV_TIME (1000 / (IPMI_TIMEOUT_TIME))
164 /* How long should we cache dynamic device IDs? */
165 #define IPMI_DYN_DEV_ID_EXPIRY (10 * HZ)
168 * The main "user" data structure.
170 struct ipmi_user {
171 struct list_head link;
173 /* Set to false when the user is destroyed. */
174 bool valid;
176 struct kref refcount;
178 /* The upper layer that handles receive messages. */
179 const struct ipmi_user_hndl *handler;
180 void *handler_data;
182 /* The interface this user is bound to. */
183 ipmi_smi_t intf;
185 /* Does this interface receive IPMI events? */
186 bool gets_events;
189 struct cmd_rcvr {
190 struct list_head link;
192 ipmi_user_t user;
193 unsigned char netfn;
194 unsigned char cmd;
195 unsigned int chans;
198 * This is used to form a linked lised during mass deletion.
199 * Since this is in an RCU list, we cannot use the link above
200 * or change any data until the RCU period completes. So we
201 * use this next variable during mass deletion so we can have
202 * a list and don't have to wait and restart the search on
203 * every individual deletion of a command.
205 struct cmd_rcvr *next;
208 struct seq_table {
209 unsigned int inuse : 1;
210 unsigned int broadcast : 1;
212 unsigned long timeout;
213 unsigned long orig_timeout;
214 unsigned int retries_left;
217 * To verify on an incoming send message response that this is
218 * the message that the response is for, we keep a sequence id
219 * and increment it every time we send a message.
221 long seqid;
224 * This is held so we can properly respond to the message on a
225 * timeout, and it is used to hold the temporary data for
226 * retransmission, too.
228 struct ipmi_recv_msg *recv_msg;
232 * Store the information in a msgid (long) to allow us to find a
233 * sequence table entry from the msgid.
235 #define STORE_SEQ_IN_MSGID(seq, seqid) \
236 ((((seq) & 0x3f) << 26) | ((seqid) & 0x3ffffff))
238 #define GET_SEQ_FROM_MSGID(msgid, seq, seqid) \
239 do { \
240 seq = (((msgid) >> 26) & 0x3f); \
241 seqid = ((msgid) & 0x3ffffff); \
242 } while (0)
244 #define NEXT_SEQID(seqid) (((seqid) + 1) & 0x3ffffff)
246 #define IPMI_MAX_CHANNELS 16
247 struct ipmi_channel {
248 unsigned char medium;
249 unsigned char protocol;
252 struct ipmi_channel_set {
253 struct ipmi_channel c[IPMI_MAX_CHANNELS];
256 struct ipmi_my_addrinfo {
258 * My slave address. This is initialized to IPMI_BMC_SLAVE_ADDR,
259 * but may be changed by the user.
261 unsigned char address;
264 * My LUN. This should generally stay the SMS LUN, but just in
265 * case...
267 unsigned char lun;
270 #ifdef CONFIG_IPMI_PROC_INTERFACE
271 struct ipmi_proc_entry {
272 char *name;
273 struct ipmi_proc_entry *next;
275 #endif
278 * Note that the product id, manufacturer id, guid, and device id are
279 * immutable in this structure, so dyn_mutex is not required for
280 * accessing those. If those change on a BMC, a new BMC is allocated.
282 struct bmc_device {
283 struct platform_device pdev;
284 struct list_head intfs; /* Interfaces on this BMC. */
285 struct ipmi_device_id id;
286 struct ipmi_device_id fetch_id;
287 int dyn_id_set;
288 unsigned long dyn_id_expiry;
289 struct mutex dyn_mutex; /* Protects id, intfs, & dyn* */
290 guid_t guid;
291 guid_t fetch_guid;
292 int dyn_guid_set;
293 struct kref usecount;
294 struct work_struct remove_work;
296 #define to_bmc_device(x) container_of((x), struct bmc_device, pdev.dev)
298 static int bmc_get_device_id(ipmi_smi_t intf, struct bmc_device *bmc,
299 struct ipmi_device_id *id,
300 bool *guid_set, guid_t *guid);
303 * Various statistics for IPMI, these index stats[] in the ipmi_smi
304 * structure.
306 enum ipmi_stat_indexes {
307 /* Commands we got from the user that were invalid. */
308 IPMI_STAT_sent_invalid_commands = 0,
310 /* Commands we sent to the MC. */
311 IPMI_STAT_sent_local_commands,
313 /* Responses from the MC that were delivered to a user. */
314 IPMI_STAT_handled_local_responses,
316 /* Responses from the MC that were not delivered to a user. */
317 IPMI_STAT_unhandled_local_responses,
319 /* Commands we sent out to the IPMB bus. */
320 IPMI_STAT_sent_ipmb_commands,
322 /* Commands sent on the IPMB that had errors on the SEND CMD */
323 IPMI_STAT_sent_ipmb_command_errs,
325 /* Each retransmit increments this count. */
326 IPMI_STAT_retransmitted_ipmb_commands,
329 * When a message times out (runs out of retransmits) this is
330 * incremented.
332 IPMI_STAT_timed_out_ipmb_commands,
335 * This is like above, but for broadcasts. Broadcasts are
336 * *not* included in the above count (they are expected to
337 * time out).
339 IPMI_STAT_timed_out_ipmb_broadcasts,
341 /* Responses I have sent to the IPMB bus. */
342 IPMI_STAT_sent_ipmb_responses,
344 /* The response was delivered to the user. */
345 IPMI_STAT_handled_ipmb_responses,
347 /* The response had invalid data in it. */
348 IPMI_STAT_invalid_ipmb_responses,
350 /* The response didn't have anyone waiting for it. */
351 IPMI_STAT_unhandled_ipmb_responses,
353 /* Commands we sent out to the IPMB bus. */
354 IPMI_STAT_sent_lan_commands,
356 /* Commands sent on the IPMB that had errors on the SEND CMD */
357 IPMI_STAT_sent_lan_command_errs,
359 /* Each retransmit increments this count. */
360 IPMI_STAT_retransmitted_lan_commands,
363 * When a message times out (runs out of retransmits) this is
364 * incremented.
366 IPMI_STAT_timed_out_lan_commands,
368 /* Responses I have sent to the IPMB bus. */
369 IPMI_STAT_sent_lan_responses,
371 /* The response was delivered to the user. */
372 IPMI_STAT_handled_lan_responses,
374 /* The response had invalid data in it. */
375 IPMI_STAT_invalid_lan_responses,
377 /* The response didn't have anyone waiting for it. */
378 IPMI_STAT_unhandled_lan_responses,
380 /* The command was delivered to the user. */
381 IPMI_STAT_handled_commands,
383 /* The command had invalid data in it. */
384 IPMI_STAT_invalid_commands,
386 /* The command didn't have anyone waiting for it. */
387 IPMI_STAT_unhandled_commands,
389 /* Invalid data in an event. */
390 IPMI_STAT_invalid_events,
392 /* Events that were received with the proper format. */
393 IPMI_STAT_events,
395 /* Retransmissions on IPMB that failed. */
396 IPMI_STAT_dropped_rexmit_ipmb_commands,
398 /* Retransmissions on LAN that failed. */
399 IPMI_STAT_dropped_rexmit_lan_commands,
401 /* This *must* remain last, add new values above this. */
402 IPMI_NUM_STATS
406 #define IPMI_IPMB_NUM_SEQ 64
407 struct ipmi_smi {
408 /* What interface number are we? */
409 int intf_num;
411 struct kref refcount;
413 /* Set when the interface is being unregistered. */
414 bool in_shutdown;
416 /* Used for a list of interfaces. */
417 struct list_head link;
420 * The list of upper layers that are using me. seq_lock
421 * protects this.
423 struct list_head users;
425 /* Used for wake ups at startup. */
426 wait_queue_head_t waitq;
429 * Prevents the interface from being unregistered when the
430 * interface is used by being looked up through the BMC
431 * structure.
433 struct mutex bmc_reg_mutex;
435 struct bmc_device tmp_bmc;
436 struct bmc_device *bmc;
437 bool bmc_registered;
438 struct list_head bmc_link;
439 char *my_dev_name;
440 bool in_bmc_register; /* Handle recursive situations. Yuck. */
441 struct work_struct bmc_reg_work;
444 * This is the lower-layer's sender routine. Note that you
445 * must either be holding the ipmi_interfaces_mutex or be in
446 * an umpreemptible region to use this. You must fetch the
447 * value into a local variable and make sure it is not NULL.
449 const struct ipmi_smi_handlers *handlers;
450 void *send_info;
452 #ifdef CONFIG_IPMI_PROC_INTERFACE
453 /* A list of proc entries for this interface. */
454 struct mutex proc_entry_lock;
455 struct ipmi_proc_entry *proc_entries;
457 struct proc_dir_entry *proc_dir;
458 char proc_dir_name[10];
459 #endif
461 /* Driver-model device for the system interface. */
462 struct device *si_dev;
465 * A table of sequence numbers for this interface. We use the
466 * sequence numbers for IPMB messages that go out of the
467 * interface to match them up with their responses. A routine
468 * is called periodically to time the items in this list.
470 spinlock_t seq_lock;
471 struct seq_table seq_table[IPMI_IPMB_NUM_SEQ];
472 int curr_seq;
475 * Messages queued for delivery. If delivery fails (out of memory
476 * for instance), They will stay in here to be processed later in a
477 * periodic timer interrupt. The tasklet is for handling received
478 * messages directly from the handler.
480 spinlock_t waiting_rcv_msgs_lock;
481 struct list_head waiting_rcv_msgs;
482 atomic_t watchdog_pretimeouts_to_deliver;
483 struct tasklet_struct recv_tasklet;
485 spinlock_t xmit_msgs_lock;
486 struct list_head xmit_msgs;
487 struct ipmi_smi_msg *curr_msg;
488 struct list_head hp_xmit_msgs;
491 * The list of command receivers that are registered for commands
492 * on this interface.
494 struct mutex cmd_rcvrs_mutex;
495 struct list_head cmd_rcvrs;
498 * Events that were queues because no one was there to receive
499 * them.
501 spinlock_t events_lock; /* For dealing with event stuff. */
502 struct list_head waiting_events;
503 unsigned int waiting_events_count; /* How many events in queue? */
504 char delivering_events;
505 char event_msg_printed;
506 atomic_t event_waiters;
507 unsigned int ticks_to_req_ev;
508 int last_needs_timer;
511 * The event receiver for my BMC, only really used at panic
512 * shutdown as a place to store this.
514 unsigned char event_receiver;
515 unsigned char event_receiver_lun;
516 unsigned char local_sel_device;
517 unsigned char local_event_generator;
519 /* For handling of maintenance mode. */
520 int maintenance_mode;
521 bool maintenance_mode_enable;
522 int auto_maintenance_timeout;
523 spinlock_t maintenance_mode_lock; /* Used in a timer... */
526 * A cheap hack, if this is non-null and a message to an
527 * interface comes in with a NULL user, call this routine with
528 * it. Note that the message will still be freed by the
529 * caller. This only works on the system interface.
531 * Protected by bmc_reg_mutex.
533 void (*null_user_handler)(ipmi_smi_t intf, struct ipmi_recv_msg *msg);
536 * When we are scanning the channels for an SMI, this will
537 * tell which channel we are scanning.
539 int curr_channel;
541 /* Channel information */
542 struct ipmi_channel_set *channel_list;
543 unsigned int curr_working_cset; /* First index into the following. */
544 struct ipmi_channel_set wchannels[2];
545 struct ipmi_my_addrinfo addrinfo[IPMI_MAX_CHANNELS];
546 bool channels_ready;
548 atomic_t stats[IPMI_NUM_STATS];
551 * run_to_completion duplicate of smb_info, smi_info
552 * and ipmi_serial_info structures. Used to decrease numbers of
553 * parameters passed by "low" level IPMI code.
555 int run_to_completion;
557 #define to_si_intf_from_dev(device) container_of(device, struct ipmi_smi, dev)
559 static void __get_guid(ipmi_smi_t intf);
560 static void __ipmi_bmc_unregister(ipmi_smi_t intf);
561 static int __ipmi_bmc_register(ipmi_smi_t intf,
562 struct ipmi_device_id *id,
563 bool guid_set, guid_t *guid, int intf_num);
564 static int __scan_channels(ipmi_smi_t intf, struct ipmi_device_id *id);
568 * The driver model view of the IPMI messaging driver.
570 static struct platform_driver ipmidriver = {
571 .driver = {
572 .name = "ipmi",
573 .bus = &platform_bus_type
577 * This mutex keeps us from adding the same BMC twice.
579 static DEFINE_MUTEX(ipmidriver_mutex);
581 static LIST_HEAD(ipmi_interfaces);
582 static DEFINE_MUTEX(ipmi_interfaces_mutex);
585 * List of watchers that want to know when smi's are added and deleted.
587 static LIST_HEAD(smi_watchers);
588 static DEFINE_MUTEX(smi_watchers_mutex);
590 #define ipmi_inc_stat(intf, stat) \
591 atomic_inc(&(intf)->stats[IPMI_STAT_ ## stat])
592 #define ipmi_get_stat(intf, stat) \
593 ((unsigned int) atomic_read(&(intf)->stats[IPMI_STAT_ ## stat]))
595 static const char * const addr_src_to_str[] = {
596 "invalid", "hotmod", "hardcoded", "SPMI", "ACPI", "SMBIOS", "PCI",
597 "device-tree", "platform"
600 const char *ipmi_addr_src_to_str(enum ipmi_addr_src src)
602 if (src >= SI_LAST)
603 src = 0; /* Invalid */
604 return addr_src_to_str[src];
606 EXPORT_SYMBOL(ipmi_addr_src_to_str);
608 static int is_lan_addr(struct ipmi_addr *addr)
610 return addr->addr_type == IPMI_LAN_ADDR_TYPE;
613 static int is_ipmb_addr(struct ipmi_addr *addr)
615 return addr->addr_type == IPMI_IPMB_ADDR_TYPE;
618 static int is_ipmb_bcast_addr(struct ipmi_addr *addr)
620 return addr->addr_type == IPMI_IPMB_BROADCAST_ADDR_TYPE;
623 static void free_recv_msg_list(struct list_head *q)
625 struct ipmi_recv_msg *msg, *msg2;
627 list_for_each_entry_safe(msg, msg2, q, link) {
628 list_del(&msg->link);
629 ipmi_free_recv_msg(msg);
633 static void free_smi_msg_list(struct list_head *q)
635 struct ipmi_smi_msg *msg, *msg2;
637 list_for_each_entry_safe(msg, msg2, q, link) {
638 list_del(&msg->link);
639 ipmi_free_smi_msg(msg);
643 static void clean_up_interface_data(ipmi_smi_t intf)
645 int i;
646 struct cmd_rcvr *rcvr, *rcvr2;
647 struct list_head list;
649 tasklet_kill(&intf->recv_tasklet);
651 free_smi_msg_list(&intf->waiting_rcv_msgs);
652 free_recv_msg_list(&intf->waiting_events);
655 * Wholesale remove all the entries from the list in the
656 * interface and wait for RCU to know that none are in use.
658 mutex_lock(&intf->cmd_rcvrs_mutex);
659 INIT_LIST_HEAD(&list);
660 list_splice_init_rcu(&intf->cmd_rcvrs, &list, synchronize_rcu);
661 mutex_unlock(&intf->cmd_rcvrs_mutex);
663 list_for_each_entry_safe(rcvr, rcvr2, &list, link)
664 kfree(rcvr);
666 for (i = 0; i < IPMI_IPMB_NUM_SEQ; i++) {
667 if ((intf->seq_table[i].inuse)
668 && (intf->seq_table[i].recv_msg))
669 ipmi_free_recv_msg(intf->seq_table[i].recv_msg);
673 static void intf_free(struct kref *ref)
675 ipmi_smi_t intf = container_of(ref, struct ipmi_smi, refcount);
677 clean_up_interface_data(intf);
678 kfree(intf);
681 struct watcher_entry {
682 int intf_num;
683 ipmi_smi_t intf;
684 struct list_head link;
687 int ipmi_smi_watcher_register(struct ipmi_smi_watcher *watcher)
689 ipmi_smi_t intf;
690 LIST_HEAD(to_deliver);
691 struct watcher_entry *e, *e2;
693 mutex_lock(&smi_watchers_mutex);
695 mutex_lock(&ipmi_interfaces_mutex);
697 /* Build a list of things to deliver. */
698 list_for_each_entry(intf, &ipmi_interfaces, link) {
699 if (intf->intf_num == -1)
700 continue;
701 e = kmalloc(sizeof(*e), GFP_KERNEL);
702 if (!e)
703 goto out_err;
704 kref_get(&intf->refcount);
705 e->intf = intf;
706 e->intf_num = intf->intf_num;
707 list_add_tail(&e->link, &to_deliver);
710 /* We will succeed, so add it to the list. */
711 list_add(&watcher->link, &smi_watchers);
713 mutex_unlock(&ipmi_interfaces_mutex);
715 list_for_each_entry_safe(e, e2, &to_deliver, link) {
716 list_del(&e->link);
717 watcher->new_smi(e->intf_num, e->intf->si_dev);
718 kref_put(&e->intf->refcount, intf_free);
719 kfree(e);
722 mutex_unlock(&smi_watchers_mutex);
724 return 0;
726 out_err:
727 mutex_unlock(&ipmi_interfaces_mutex);
728 mutex_unlock(&smi_watchers_mutex);
729 list_for_each_entry_safe(e, e2, &to_deliver, link) {
730 list_del(&e->link);
731 kref_put(&e->intf->refcount, intf_free);
732 kfree(e);
734 return -ENOMEM;
736 EXPORT_SYMBOL(ipmi_smi_watcher_register);
738 int ipmi_smi_watcher_unregister(struct ipmi_smi_watcher *watcher)
740 mutex_lock(&smi_watchers_mutex);
741 list_del(&(watcher->link));
742 mutex_unlock(&smi_watchers_mutex);
743 return 0;
745 EXPORT_SYMBOL(ipmi_smi_watcher_unregister);
748 * Must be called with smi_watchers_mutex held.
750 static void
751 call_smi_watchers(int i, struct device *dev)
753 struct ipmi_smi_watcher *w;
755 list_for_each_entry(w, &smi_watchers, link) {
756 if (try_module_get(w->owner)) {
757 w->new_smi(i, dev);
758 module_put(w->owner);
763 static int
764 ipmi_addr_equal(struct ipmi_addr *addr1, struct ipmi_addr *addr2)
766 if (addr1->addr_type != addr2->addr_type)
767 return 0;
769 if (addr1->channel != addr2->channel)
770 return 0;
772 if (addr1->addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE) {
773 struct ipmi_system_interface_addr *smi_addr1
774 = (struct ipmi_system_interface_addr *) addr1;
775 struct ipmi_system_interface_addr *smi_addr2
776 = (struct ipmi_system_interface_addr *) addr2;
777 return (smi_addr1->lun == smi_addr2->lun);
780 if (is_ipmb_addr(addr1) || is_ipmb_bcast_addr(addr1)) {
781 struct ipmi_ipmb_addr *ipmb_addr1
782 = (struct ipmi_ipmb_addr *) addr1;
783 struct ipmi_ipmb_addr *ipmb_addr2
784 = (struct ipmi_ipmb_addr *) addr2;
786 return ((ipmb_addr1->slave_addr == ipmb_addr2->slave_addr)
787 && (ipmb_addr1->lun == ipmb_addr2->lun));
790 if (is_lan_addr(addr1)) {
791 struct ipmi_lan_addr *lan_addr1
792 = (struct ipmi_lan_addr *) addr1;
793 struct ipmi_lan_addr *lan_addr2
794 = (struct ipmi_lan_addr *) addr2;
796 return ((lan_addr1->remote_SWID == lan_addr2->remote_SWID)
797 && (lan_addr1->local_SWID == lan_addr2->local_SWID)
798 && (lan_addr1->session_handle
799 == lan_addr2->session_handle)
800 && (lan_addr1->lun == lan_addr2->lun));
803 return 1;
806 int ipmi_validate_addr(struct ipmi_addr *addr, int len)
808 if (len < sizeof(struct ipmi_system_interface_addr))
809 return -EINVAL;
811 if (addr->addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE) {
812 if (addr->channel != IPMI_BMC_CHANNEL)
813 return -EINVAL;
814 return 0;
817 if ((addr->channel == IPMI_BMC_CHANNEL)
818 || (addr->channel >= IPMI_MAX_CHANNELS)
819 || (addr->channel < 0))
820 return -EINVAL;
822 if (is_ipmb_addr(addr) || is_ipmb_bcast_addr(addr)) {
823 if (len < sizeof(struct ipmi_ipmb_addr))
824 return -EINVAL;
825 return 0;
828 if (is_lan_addr(addr)) {
829 if (len < sizeof(struct ipmi_lan_addr))
830 return -EINVAL;
831 return 0;
834 return -EINVAL;
836 EXPORT_SYMBOL(ipmi_validate_addr);
838 unsigned int ipmi_addr_length(int addr_type)
840 if (addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE)
841 return sizeof(struct ipmi_system_interface_addr);
843 if ((addr_type == IPMI_IPMB_ADDR_TYPE)
844 || (addr_type == IPMI_IPMB_BROADCAST_ADDR_TYPE))
845 return sizeof(struct ipmi_ipmb_addr);
847 if (addr_type == IPMI_LAN_ADDR_TYPE)
848 return sizeof(struct ipmi_lan_addr);
850 return 0;
852 EXPORT_SYMBOL(ipmi_addr_length);
854 static void deliver_response(struct ipmi_recv_msg *msg)
856 if (!msg->user) {
857 ipmi_smi_t intf = msg->user_msg_data;
859 /* Special handling for NULL users. */
860 if (intf->null_user_handler) {
861 intf->null_user_handler(intf, msg);
862 ipmi_inc_stat(intf, handled_local_responses);
863 } else {
864 /* No handler, so give up. */
865 ipmi_inc_stat(intf, unhandled_local_responses);
867 ipmi_free_recv_msg(msg);
868 } else if (!oops_in_progress) {
870 * If we are running in the panic context, calling the
871 * receive handler doesn't much meaning and has a deadlock
872 * risk. At this moment, simply skip it in that case.
875 ipmi_user_t user = msg->user;
876 user->handler->ipmi_recv_hndl(msg, user->handler_data);
880 static void
881 deliver_err_response(struct ipmi_recv_msg *msg, int err)
883 msg->recv_type = IPMI_RESPONSE_RECV_TYPE;
884 msg->msg_data[0] = err;
885 msg->msg.netfn |= 1; /* Convert to a response. */
886 msg->msg.data_len = 1;
887 msg->msg.data = msg->msg_data;
888 deliver_response(msg);
892 * Find the next sequence number not being used and add the given
893 * message with the given timeout to the sequence table. This must be
894 * called with the interface's seq_lock held.
896 static int intf_next_seq(ipmi_smi_t intf,
897 struct ipmi_recv_msg *recv_msg,
898 unsigned long timeout,
899 int retries,
900 int broadcast,
901 unsigned char *seq,
902 long *seqid)
904 int rv = 0;
905 unsigned int i;
907 for (i = intf->curr_seq; (i+1)%IPMI_IPMB_NUM_SEQ != intf->curr_seq;
908 i = (i+1)%IPMI_IPMB_NUM_SEQ) {
909 if (!intf->seq_table[i].inuse)
910 break;
913 if (!intf->seq_table[i].inuse) {
914 intf->seq_table[i].recv_msg = recv_msg;
917 * Start with the maximum timeout, when the send response
918 * comes in we will start the real timer.
920 intf->seq_table[i].timeout = MAX_MSG_TIMEOUT;
921 intf->seq_table[i].orig_timeout = timeout;
922 intf->seq_table[i].retries_left = retries;
923 intf->seq_table[i].broadcast = broadcast;
924 intf->seq_table[i].inuse = 1;
925 intf->seq_table[i].seqid = NEXT_SEQID(intf->seq_table[i].seqid);
926 *seq = i;
927 *seqid = intf->seq_table[i].seqid;
928 intf->curr_seq = (i+1)%IPMI_IPMB_NUM_SEQ;
929 need_waiter(intf);
930 } else {
931 rv = -EAGAIN;
934 return rv;
938 * Return the receive message for the given sequence number and
939 * release the sequence number so it can be reused. Some other data
940 * is passed in to be sure the message matches up correctly (to help
941 * guard against message coming in after their timeout and the
942 * sequence number being reused).
944 static int intf_find_seq(ipmi_smi_t intf,
945 unsigned char seq,
946 short channel,
947 unsigned char cmd,
948 unsigned char netfn,
949 struct ipmi_addr *addr,
950 struct ipmi_recv_msg **recv_msg)
952 int rv = -ENODEV;
953 unsigned long flags;
955 if (seq >= IPMI_IPMB_NUM_SEQ)
956 return -EINVAL;
958 spin_lock_irqsave(&(intf->seq_lock), flags);
959 if (intf->seq_table[seq].inuse) {
960 struct ipmi_recv_msg *msg = intf->seq_table[seq].recv_msg;
962 if ((msg->addr.channel == channel) && (msg->msg.cmd == cmd)
963 && (msg->msg.netfn == netfn)
964 && (ipmi_addr_equal(addr, &(msg->addr)))) {
965 *recv_msg = msg;
966 intf->seq_table[seq].inuse = 0;
967 rv = 0;
970 spin_unlock_irqrestore(&(intf->seq_lock), flags);
972 return rv;
976 /* Start the timer for a specific sequence table entry. */
977 static int intf_start_seq_timer(ipmi_smi_t intf,
978 long msgid)
980 int rv = -ENODEV;
981 unsigned long flags;
982 unsigned char seq;
983 unsigned long seqid;
986 GET_SEQ_FROM_MSGID(msgid, seq, seqid);
988 spin_lock_irqsave(&(intf->seq_lock), flags);
990 * We do this verification because the user can be deleted
991 * while a message is outstanding.
993 if ((intf->seq_table[seq].inuse)
994 && (intf->seq_table[seq].seqid == seqid)) {
995 struct seq_table *ent = &(intf->seq_table[seq]);
996 ent->timeout = ent->orig_timeout;
997 rv = 0;
999 spin_unlock_irqrestore(&(intf->seq_lock), flags);
1001 return rv;
1004 /* Got an error for the send message for a specific sequence number. */
1005 static int intf_err_seq(ipmi_smi_t intf,
1006 long msgid,
1007 unsigned int err)
1009 int rv = -ENODEV;
1010 unsigned long flags;
1011 unsigned char seq;
1012 unsigned long seqid;
1013 struct ipmi_recv_msg *msg = NULL;
1016 GET_SEQ_FROM_MSGID(msgid, seq, seqid);
1018 spin_lock_irqsave(&(intf->seq_lock), flags);
1020 * We do this verification because the user can be deleted
1021 * while a message is outstanding.
1023 if ((intf->seq_table[seq].inuse)
1024 && (intf->seq_table[seq].seqid == seqid)) {
1025 struct seq_table *ent = &(intf->seq_table[seq]);
1027 ent->inuse = 0;
1028 msg = ent->recv_msg;
1029 rv = 0;
1031 spin_unlock_irqrestore(&(intf->seq_lock), flags);
1033 if (msg)
1034 deliver_err_response(msg, err);
1036 return rv;
1040 int ipmi_create_user(unsigned int if_num,
1041 const struct ipmi_user_hndl *handler,
1042 void *handler_data,
1043 ipmi_user_t *user)
1045 unsigned long flags;
1046 ipmi_user_t new_user;
1047 int rv = 0;
1048 ipmi_smi_t intf;
1051 * There is no module usecount here, because it's not
1052 * required. Since this can only be used by and called from
1053 * other modules, they will implicitly use this module, and
1054 * thus this can't be removed unless the other modules are
1055 * removed.
1058 if (handler == NULL)
1059 return -EINVAL;
1062 * Make sure the driver is actually initialized, this handles
1063 * problems with initialization order.
1065 if (!initialized) {
1066 rv = ipmi_init_msghandler();
1067 if (rv)
1068 return rv;
1071 * The init code doesn't return an error if it was turned
1072 * off, but it won't initialize. Check that.
1074 if (!initialized)
1075 return -ENODEV;
1078 new_user = kmalloc(sizeof(*new_user), GFP_KERNEL);
1079 if (!new_user)
1080 return -ENOMEM;
1082 mutex_lock(&ipmi_interfaces_mutex);
1083 list_for_each_entry_rcu(intf, &ipmi_interfaces, link) {
1084 if (intf->intf_num == if_num)
1085 goto found;
1087 /* Not found, return an error */
1088 rv = -EINVAL;
1089 goto out_kfree;
1091 found:
1092 /* Note that each existing user holds a refcount to the interface. */
1093 kref_get(&intf->refcount);
1095 kref_init(&new_user->refcount);
1096 new_user->handler = handler;
1097 new_user->handler_data = handler_data;
1098 new_user->intf = intf;
1099 new_user->gets_events = false;
1101 if (!try_module_get(intf->handlers->owner)) {
1102 rv = -ENODEV;
1103 goto out_kref;
1106 if (intf->handlers->inc_usecount) {
1107 rv = intf->handlers->inc_usecount(intf->send_info);
1108 if (rv) {
1109 module_put(intf->handlers->owner);
1110 goto out_kref;
1115 * Hold the lock so intf->handlers is guaranteed to be good
1116 * until now
1118 mutex_unlock(&ipmi_interfaces_mutex);
1120 new_user->valid = true;
1121 spin_lock_irqsave(&intf->seq_lock, flags);
1122 list_add_rcu(&new_user->link, &intf->users);
1123 spin_unlock_irqrestore(&intf->seq_lock, flags);
1124 if (handler->ipmi_watchdog_pretimeout) {
1125 /* User wants pretimeouts, so make sure to watch for them. */
1126 if (atomic_inc_return(&intf->event_waiters) == 1)
1127 need_waiter(intf);
1129 *user = new_user;
1130 return 0;
1132 out_kref:
1133 kref_put(&intf->refcount, intf_free);
1134 out_kfree:
1135 mutex_unlock(&ipmi_interfaces_mutex);
1136 kfree(new_user);
1137 return rv;
1139 EXPORT_SYMBOL(ipmi_create_user);
1141 int ipmi_get_smi_info(int if_num, struct ipmi_smi_info *data)
1143 int rv = 0;
1144 ipmi_smi_t intf;
1145 const struct ipmi_smi_handlers *handlers;
1147 mutex_lock(&ipmi_interfaces_mutex);
1148 list_for_each_entry_rcu(intf, &ipmi_interfaces, link) {
1149 if (intf->intf_num == if_num)
1150 goto found;
1152 /* Not found, return an error */
1153 rv = -EINVAL;
1154 mutex_unlock(&ipmi_interfaces_mutex);
1155 return rv;
1157 found:
1158 handlers = intf->handlers;
1159 rv = -ENOSYS;
1160 if (handlers->get_smi_info)
1161 rv = handlers->get_smi_info(intf->send_info, data);
1162 mutex_unlock(&ipmi_interfaces_mutex);
1164 return rv;
1166 EXPORT_SYMBOL(ipmi_get_smi_info);
1168 static void free_user(struct kref *ref)
1170 ipmi_user_t user = container_of(ref, struct ipmi_user, refcount);
1171 kfree(user);
1174 int ipmi_destroy_user(ipmi_user_t user)
1176 ipmi_smi_t intf = user->intf;
1177 int i;
1178 unsigned long flags;
1179 struct cmd_rcvr *rcvr;
1180 struct cmd_rcvr *rcvrs = NULL;
1182 user->valid = false;
1184 if (user->handler->ipmi_watchdog_pretimeout)
1185 atomic_dec(&intf->event_waiters);
1187 if (user->gets_events)
1188 atomic_dec(&intf->event_waiters);
1190 /* Remove the user from the interface's sequence table. */
1191 spin_lock_irqsave(&intf->seq_lock, flags);
1192 list_del_rcu(&user->link);
1194 for (i = 0; i < IPMI_IPMB_NUM_SEQ; i++) {
1195 if (intf->seq_table[i].inuse
1196 && (intf->seq_table[i].recv_msg->user == user)) {
1197 intf->seq_table[i].inuse = 0;
1198 ipmi_free_recv_msg(intf->seq_table[i].recv_msg);
1201 spin_unlock_irqrestore(&intf->seq_lock, flags);
1204 * Remove the user from the command receiver's table. First
1205 * we build a list of everything (not using the standard link,
1206 * since other things may be using it till we do
1207 * synchronize_rcu()) then free everything in that list.
1209 mutex_lock(&intf->cmd_rcvrs_mutex);
1210 list_for_each_entry_rcu(rcvr, &intf->cmd_rcvrs, link) {
1211 if (rcvr->user == user) {
1212 list_del_rcu(&rcvr->link);
1213 rcvr->next = rcvrs;
1214 rcvrs = rcvr;
1217 mutex_unlock(&intf->cmd_rcvrs_mutex);
1218 synchronize_rcu();
1219 while (rcvrs) {
1220 rcvr = rcvrs;
1221 rcvrs = rcvr->next;
1222 kfree(rcvr);
1225 mutex_lock(&ipmi_interfaces_mutex);
1226 if (intf->handlers) {
1227 module_put(intf->handlers->owner);
1228 if (intf->handlers->dec_usecount)
1229 intf->handlers->dec_usecount(intf->send_info);
1231 mutex_unlock(&ipmi_interfaces_mutex);
1233 kref_put(&intf->refcount, intf_free);
1235 kref_put(&user->refcount, free_user);
1237 return 0;
1239 EXPORT_SYMBOL(ipmi_destroy_user);
1241 int ipmi_get_version(ipmi_user_t user,
1242 unsigned char *major,
1243 unsigned char *minor)
1245 struct ipmi_device_id id;
1246 int rv;
1248 rv = bmc_get_device_id(user->intf, NULL, &id, NULL, NULL);
1249 if (rv)
1250 return rv;
1252 *major = ipmi_version_major(&id);
1253 *minor = ipmi_version_minor(&id);
1255 return 0;
1257 EXPORT_SYMBOL(ipmi_get_version);
1259 int ipmi_set_my_address(ipmi_user_t user,
1260 unsigned int channel,
1261 unsigned char address)
1263 if (channel >= IPMI_MAX_CHANNELS)
1264 return -EINVAL;
1265 user->intf->addrinfo[channel].address = address;
1266 return 0;
1268 EXPORT_SYMBOL(ipmi_set_my_address);
1270 int ipmi_get_my_address(ipmi_user_t user,
1271 unsigned int channel,
1272 unsigned char *address)
1274 if (channel >= IPMI_MAX_CHANNELS)
1275 return -EINVAL;
1276 *address = user->intf->addrinfo[channel].address;
1277 return 0;
1279 EXPORT_SYMBOL(ipmi_get_my_address);
1281 int ipmi_set_my_LUN(ipmi_user_t user,
1282 unsigned int channel,
1283 unsigned char LUN)
1285 if (channel >= IPMI_MAX_CHANNELS)
1286 return -EINVAL;
1287 user->intf->addrinfo[channel].lun = LUN & 0x3;
1288 return 0;
1290 EXPORT_SYMBOL(ipmi_set_my_LUN);
1292 int ipmi_get_my_LUN(ipmi_user_t user,
1293 unsigned int channel,
1294 unsigned char *address)
1296 if (channel >= IPMI_MAX_CHANNELS)
1297 return -EINVAL;
1298 *address = user->intf->addrinfo[channel].lun;
1299 return 0;
1301 EXPORT_SYMBOL(ipmi_get_my_LUN);
1303 int ipmi_get_maintenance_mode(ipmi_user_t user)
1305 int mode;
1306 unsigned long flags;
1308 spin_lock_irqsave(&user->intf->maintenance_mode_lock, flags);
1309 mode = user->intf->maintenance_mode;
1310 spin_unlock_irqrestore(&user->intf->maintenance_mode_lock, flags);
1312 return mode;
1314 EXPORT_SYMBOL(ipmi_get_maintenance_mode);
1316 static void maintenance_mode_update(ipmi_smi_t intf)
1318 if (intf->handlers->set_maintenance_mode)
1319 intf->handlers->set_maintenance_mode(
1320 intf->send_info, intf->maintenance_mode_enable);
1323 int ipmi_set_maintenance_mode(ipmi_user_t user, int mode)
1325 int rv = 0;
1326 unsigned long flags;
1327 ipmi_smi_t intf = user->intf;
1329 spin_lock_irqsave(&intf->maintenance_mode_lock, flags);
1330 if (intf->maintenance_mode != mode) {
1331 switch (mode) {
1332 case IPMI_MAINTENANCE_MODE_AUTO:
1333 intf->maintenance_mode_enable
1334 = (intf->auto_maintenance_timeout > 0);
1335 break;
1337 case IPMI_MAINTENANCE_MODE_OFF:
1338 intf->maintenance_mode_enable = false;
1339 break;
1341 case IPMI_MAINTENANCE_MODE_ON:
1342 intf->maintenance_mode_enable = true;
1343 break;
1345 default:
1346 rv = -EINVAL;
1347 goto out_unlock;
1349 intf->maintenance_mode = mode;
1351 maintenance_mode_update(intf);
1353 out_unlock:
1354 spin_unlock_irqrestore(&intf->maintenance_mode_lock, flags);
1356 return rv;
1358 EXPORT_SYMBOL(ipmi_set_maintenance_mode);
1360 int ipmi_set_gets_events(ipmi_user_t user, bool val)
1362 unsigned long flags;
1363 ipmi_smi_t intf = user->intf;
1364 struct ipmi_recv_msg *msg, *msg2;
1365 struct list_head msgs;
1367 INIT_LIST_HEAD(&msgs);
1369 spin_lock_irqsave(&intf->events_lock, flags);
1370 if (user->gets_events == val)
1371 goto out;
1373 user->gets_events = val;
1375 if (val) {
1376 if (atomic_inc_return(&intf->event_waiters) == 1)
1377 need_waiter(intf);
1378 } else {
1379 atomic_dec(&intf->event_waiters);
1382 if (intf->delivering_events)
1384 * Another thread is delivering events for this, so
1385 * let it handle any new events.
1387 goto out;
1389 /* Deliver any queued events. */
1390 while (user->gets_events && !list_empty(&intf->waiting_events)) {
1391 list_for_each_entry_safe(msg, msg2, &intf->waiting_events, link)
1392 list_move_tail(&msg->link, &msgs);
1393 intf->waiting_events_count = 0;
1394 if (intf->event_msg_printed) {
1395 dev_warn(intf->si_dev,
1396 PFX "Event queue no longer full\n");
1397 intf->event_msg_printed = 0;
1400 intf->delivering_events = 1;
1401 spin_unlock_irqrestore(&intf->events_lock, flags);
1403 list_for_each_entry_safe(msg, msg2, &msgs, link) {
1404 msg->user = user;
1405 kref_get(&user->refcount);
1406 deliver_response(msg);
1409 spin_lock_irqsave(&intf->events_lock, flags);
1410 intf->delivering_events = 0;
1413 out:
1414 spin_unlock_irqrestore(&intf->events_lock, flags);
1416 return 0;
1418 EXPORT_SYMBOL(ipmi_set_gets_events);
1420 static struct cmd_rcvr *find_cmd_rcvr(ipmi_smi_t intf,
1421 unsigned char netfn,
1422 unsigned char cmd,
1423 unsigned char chan)
1425 struct cmd_rcvr *rcvr;
1427 list_for_each_entry_rcu(rcvr, &intf->cmd_rcvrs, link) {
1428 if ((rcvr->netfn == netfn) && (rcvr->cmd == cmd)
1429 && (rcvr->chans & (1 << chan)))
1430 return rcvr;
1432 return NULL;
1435 static int is_cmd_rcvr_exclusive(ipmi_smi_t intf,
1436 unsigned char netfn,
1437 unsigned char cmd,
1438 unsigned int chans)
1440 struct cmd_rcvr *rcvr;
1442 list_for_each_entry_rcu(rcvr, &intf->cmd_rcvrs, link) {
1443 if ((rcvr->netfn == netfn) && (rcvr->cmd == cmd)
1444 && (rcvr->chans & chans))
1445 return 0;
1447 return 1;
1450 int ipmi_register_for_cmd(ipmi_user_t user,
1451 unsigned char netfn,
1452 unsigned char cmd,
1453 unsigned int chans)
1455 ipmi_smi_t intf = user->intf;
1456 struct cmd_rcvr *rcvr;
1457 int rv = 0;
1460 rcvr = kmalloc(sizeof(*rcvr), GFP_KERNEL);
1461 if (!rcvr)
1462 return -ENOMEM;
1463 rcvr->cmd = cmd;
1464 rcvr->netfn = netfn;
1465 rcvr->chans = chans;
1466 rcvr->user = user;
1468 mutex_lock(&intf->cmd_rcvrs_mutex);
1469 /* Make sure the command/netfn is not already registered. */
1470 if (!is_cmd_rcvr_exclusive(intf, netfn, cmd, chans)) {
1471 rv = -EBUSY;
1472 goto out_unlock;
1475 if (atomic_inc_return(&intf->event_waiters) == 1)
1476 need_waiter(intf);
1478 list_add_rcu(&rcvr->link, &intf->cmd_rcvrs);
1480 out_unlock:
1481 mutex_unlock(&intf->cmd_rcvrs_mutex);
1482 if (rv)
1483 kfree(rcvr);
1485 return rv;
1487 EXPORT_SYMBOL(ipmi_register_for_cmd);
1489 int ipmi_unregister_for_cmd(ipmi_user_t user,
1490 unsigned char netfn,
1491 unsigned char cmd,
1492 unsigned int chans)
1494 ipmi_smi_t intf = user->intf;
1495 struct cmd_rcvr *rcvr;
1496 struct cmd_rcvr *rcvrs = NULL;
1497 int i, rv = -ENOENT;
1499 mutex_lock(&intf->cmd_rcvrs_mutex);
1500 for (i = 0; i < IPMI_NUM_CHANNELS; i++) {
1501 if (((1 << i) & chans) == 0)
1502 continue;
1503 rcvr = find_cmd_rcvr(intf, netfn, cmd, i);
1504 if (rcvr == NULL)
1505 continue;
1506 if (rcvr->user == user) {
1507 rv = 0;
1508 rcvr->chans &= ~chans;
1509 if (rcvr->chans == 0) {
1510 list_del_rcu(&rcvr->link);
1511 rcvr->next = rcvrs;
1512 rcvrs = rcvr;
1516 mutex_unlock(&intf->cmd_rcvrs_mutex);
1517 synchronize_rcu();
1518 while (rcvrs) {
1519 atomic_dec(&intf->event_waiters);
1520 rcvr = rcvrs;
1521 rcvrs = rcvr->next;
1522 kfree(rcvr);
1524 return rv;
1526 EXPORT_SYMBOL(ipmi_unregister_for_cmd);
1528 static unsigned char
1529 ipmb_checksum(unsigned char *data, int size)
1531 unsigned char csum = 0;
1533 for (; size > 0; size--, data++)
1534 csum += *data;
1536 return -csum;
1539 static inline void format_ipmb_msg(struct ipmi_smi_msg *smi_msg,
1540 struct kernel_ipmi_msg *msg,
1541 struct ipmi_ipmb_addr *ipmb_addr,
1542 long msgid,
1543 unsigned char ipmb_seq,
1544 int broadcast,
1545 unsigned char source_address,
1546 unsigned char source_lun)
1548 int i = broadcast;
1550 /* Format the IPMB header data. */
1551 smi_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
1552 smi_msg->data[1] = IPMI_SEND_MSG_CMD;
1553 smi_msg->data[2] = ipmb_addr->channel;
1554 if (broadcast)
1555 smi_msg->data[3] = 0;
1556 smi_msg->data[i+3] = ipmb_addr->slave_addr;
1557 smi_msg->data[i+4] = (msg->netfn << 2) | (ipmb_addr->lun & 0x3);
1558 smi_msg->data[i+5] = ipmb_checksum(&(smi_msg->data[i+3]), 2);
1559 smi_msg->data[i+6] = source_address;
1560 smi_msg->data[i+7] = (ipmb_seq << 2) | source_lun;
1561 smi_msg->data[i+8] = msg->cmd;
1563 /* Now tack on the data to the message. */
1564 if (msg->data_len > 0)
1565 memcpy(&(smi_msg->data[i+9]), msg->data,
1566 msg->data_len);
1567 smi_msg->data_size = msg->data_len + 9;
1569 /* Now calculate the checksum and tack it on. */
1570 smi_msg->data[i+smi_msg->data_size]
1571 = ipmb_checksum(&(smi_msg->data[i+6]),
1572 smi_msg->data_size-6);
1575 * Add on the checksum size and the offset from the
1576 * broadcast.
1578 smi_msg->data_size += 1 + i;
1580 smi_msg->msgid = msgid;
1583 static inline void format_lan_msg(struct ipmi_smi_msg *smi_msg,
1584 struct kernel_ipmi_msg *msg,
1585 struct ipmi_lan_addr *lan_addr,
1586 long msgid,
1587 unsigned char ipmb_seq,
1588 unsigned char source_lun)
1590 /* Format the IPMB header data. */
1591 smi_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
1592 smi_msg->data[1] = IPMI_SEND_MSG_CMD;
1593 smi_msg->data[2] = lan_addr->channel;
1594 smi_msg->data[3] = lan_addr->session_handle;
1595 smi_msg->data[4] = lan_addr->remote_SWID;
1596 smi_msg->data[5] = (msg->netfn << 2) | (lan_addr->lun & 0x3);
1597 smi_msg->data[6] = ipmb_checksum(&(smi_msg->data[4]), 2);
1598 smi_msg->data[7] = lan_addr->local_SWID;
1599 smi_msg->data[8] = (ipmb_seq << 2) | source_lun;
1600 smi_msg->data[9] = msg->cmd;
1602 /* Now tack on the data to the message. */
1603 if (msg->data_len > 0)
1604 memcpy(&(smi_msg->data[10]), msg->data,
1605 msg->data_len);
1606 smi_msg->data_size = msg->data_len + 10;
1608 /* Now calculate the checksum and tack it on. */
1609 smi_msg->data[smi_msg->data_size]
1610 = ipmb_checksum(&(smi_msg->data[7]),
1611 smi_msg->data_size-7);
1614 * Add on the checksum size and the offset from the
1615 * broadcast.
1617 smi_msg->data_size += 1;
1619 smi_msg->msgid = msgid;
1622 static struct ipmi_smi_msg *smi_add_send_msg(ipmi_smi_t intf,
1623 struct ipmi_smi_msg *smi_msg,
1624 int priority)
1626 if (intf->curr_msg) {
1627 if (priority > 0)
1628 list_add_tail(&smi_msg->link, &intf->hp_xmit_msgs);
1629 else
1630 list_add_tail(&smi_msg->link, &intf->xmit_msgs);
1631 smi_msg = NULL;
1632 } else {
1633 intf->curr_msg = smi_msg;
1636 return smi_msg;
1640 static void smi_send(ipmi_smi_t intf, const struct ipmi_smi_handlers *handlers,
1641 struct ipmi_smi_msg *smi_msg, int priority)
1643 int run_to_completion = intf->run_to_completion;
1645 if (run_to_completion) {
1646 smi_msg = smi_add_send_msg(intf, smi_msg, priority);
1647 } else {
1648 unsigned long flags;
1650 spin_lock_irqsave(&intf->xmit_msgs_lock, flags);
1651 smi_msg = smi_add_send_msg(intf, smi_msg, priority);
1652 spin_unlock_irqrestore(&intf->xmit_msgs_lock, flags);
1655 if (smi_msg)
1656 handlers->sender(intf->send_info, smi_msg);
1660 * Separate from ipmi_request so that the user does not have to be
1661 * supplied in certain circumstances (mainly at panic time). If
1662 * messages are supplied, they will be freed, even if an error
1663 * occurs.
1665 static int i_ipmi_request(ipmi_user_t user,
1666 ipmi_smi_t intf,
1667 struct ipmi_addr *addr,
1668 long msgid,
1669 struct kernel_ipmi_msg *msg,
1670 void *user_msg_data,
1671 void *supplied_smi,
1672 struct ipmi_recv_msg *supplied_recv,
1673 int priority,
1674 unsigned char source_address,
1675 unsigned char source_lun,
1676 int retries,
1677 unsigned int retry_time_ms)
1679 int rv = 0;
1680 struct ipmi_smi_msg *smi_msg;
1681 struct ipmi_recv_msg *recv_msg;
1682 unsigned long flags;
1685 if (supplied_recv)
1686 recv_msg = supplied_recv;
1687 else {
1688 recv_msg = ipmi_alloc_recv_msg();
1689 if (recv_msg == NULL)
1690 return -ENOMEM;
1692 recv_msg->user_msg_data = user_msg_data;
1694 if (supplied_smi)
1695 smi_msg = (struct ipmi_smi_msg *) supplied_smi;
1696 else {
1697 smi_msg = ipmi_alloc_smi_msg();
1698 if (smi_msg == NULL) {
1699 ipmi_free_recv_msg(recv_msg);
1700 return -ENOMEM;
1704 rcu_read_lock();
1705 if (intf->in_shutdown) {
1706 rv = -ENODEV;
1707 goto out_err;
1710 recv_msg->user = user;
1711 if (user)
1712 kref_get(&user->refcount);
1713 recv_msg->msgid = msgid;
1715 * Store the message to send in the receive message so timeout
1716 * responses can get the proper response data.
1718 recv_msg->msg = *msg;
1720 if (addr->addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE) {
1721 struct ipmi_system_interface_addr *smi_addr;
1723 if (msg->netfn & 1) {
1724 /* Responses are not allowed to the SMI. */
1725 rv = -EINVAL;
1726 goto out_err;
1729 smi_addr = (struct ipmi_system_interface_addr *) addr;
1730 if (smi_addr->lun > 3) {
1731 ipmi_inc_stat(intf, sent_invalid_commands);
1732 rv = -EINVAL;
1733 goto out_err;
1736 memcpy(&recv_msg->addr, smi_addr, sizeof(*smi_addr));
1738 if ((msg->netfn == IPMI_NETFN_APP_REQUEST)
1739 && ((msg->cmd == IPMI_SEND_MSG_CMD)
1740 || (msg->cmd == IPMI_GET_MSG_CMD)
1741 || (msg->cmd == IPMI_READ_EVENT_MSG_BUFFER_CMD))) {
1743 * We don't let the user do these, since we manage
1744 * the sequence numbers.
1746 ipmi_inc_stat(intf, sent_invalid_commands);
1747 rv = -EINVAL;
1748 goto out_err;
1751 if (((msg->netfn == IPMI_NETFN_APP_REQUEST)
1752 && ((msg->cmd == IPMI_COLD_RESET_CMD)
1753 || (msg->cmd == IPMI_WARM_RESET_CMD)))
1754 || (msg->netfn == IPMI_NETFN_FIRMWARE_REQUEST)) {
1755 spin_lock_irqsave(&intf->maintenance_mode_lock, flags);
1756 intf->auto_maintenance_timeout
1757 = IPMI_MAINTENANCE_MODE_TIMEOUT;
1758 if (!intf->maintenance_mode
1759 && !intf->maintenance_mode_enable) {
1760 intf->maintenance_mode_enable = true;
1761 maintenance_mode_update(intf);
1763 spin_unlock_irqrestore(&intf->maintenance_mode_lock,
1764 flags);
1767 if ((msg->data_len + 2) > IPMI_MAX_MSG_LENGTH) {
1768 ipmi_inc_stat(intf, sent_invalid_commands);
1769 rv = -EMSGSIZE;
1770 goto out_err;
1773 smi_msg->data[0] = (msg->netfn << 2) | (smi_addr->lun & 0x3);
1774 smi_msg->data[1] = msg->cmd;
1775 smi_msg->msgid = msgid;
1776 smi_msg->user_data = recv_msg;
1777 if (msg->data_len > 0)
1778 memcpy(&(smi_msg->data[2]), msg->data, msg->data_len);
1779 smi_msg->data_size = msg->data_len + 2;
1780 ipmi_inc_stat(intf, sent_local_commands);
1781 } else if (is_ipmb_addr(addr) || is_ipmb_bcast_addr(addr)) {
1782 struct ipmi_ipmb_addr *ipmb_addr;
1783 unsigned char ipmb_seq;
1784 long seqid;
1785 int broadcast = 0;
1786 struct ipmi_channel *chans;
1788 if (addr->channel >= IPMI_MAX_CHANNELS) {
1789 ipmi_inc_stat(intf, sent_invalid_commands);
1790 rv = -EINVAL;
1791 goto out_err;
1794 chans = READ_ONCE(intf->channel_list)->c;
1796 if (chans[addr->channel].medium != IPMI_CHANNEL_MEDIUM_IPMB) {
1797 ipmi_inc_stat(intf, sent_invalid_commands);
1798 rv = -EINVAL;
1799 goto out_err;
1802 if (retries < 0) {
1803 if (addr->addr_type == IPMI_IPMB_BROADCAST_ADDR_TYPE)
1804 retries = 0; /* Don't retry broadcasts. */
1805 else
1806 retries = 4;
1808 if (addr->addr_type == IPMI_IPMB_BROADCAST_ADDR_TYPE) {
1810 * Broadcasts add a zero at the beginning of the
1811 * message, but otherwise is the same as an IPMB
1812 * address.
1814 addr->addr_type = IPMI_IPMB_ADDR_TYPE;
1815 broadcast = 1;
1819 /* Default to 1 second retries. */
1820 if (retry_time_ms == 0)
1821 retry_time_ms = 1000;
1824 * 9 for the header and 1 for the checksum, plus
1825 * possibly one for the broadcast.
1827 if ((msg->data_len + 10 + broadcast) > IPMI_MAX_MSG_LENGTH) {
1828 ipmi_inc_stat(intf, sent_invalid_commands);
1829 rv = -EMSGSIZE;
1830 goto out_err;
1833 ipmb_addr = (struct ipmi_ipmb_addr *) addr;
1834 if (ipmb_addr->lun > 3) {
1835 ipmi_inc_stat(intf, sent_invalid_commands);
1836 rv = -EINVAL;
1837 goto out_err;
1840 memcpy(&recv_msg->addr, ipmb_addr, sizeof(*ipmb_addr));
1842 if (recv_msg->msg.netfn & 0x1) {
1844 * It's a response, so use the user's sequence
1845 * from msgid.
1847 ipmi_inc_stat(intf, sent_ipmb_responses);
1848 format_ipmb_msg(smi_msg, msg, ipmb_addr, msgid,
1849 msgid, broadcast,
1850 source_address, source_lun);
1853 * Save the receive message so we can use it
1854 * to deliver the response.
1856 smi_msg->user_data = recv_msg;
1857 } else {
1858 /* It's a command, so get a sequence for it. */
1860 spin_lock_irqsave(&(intf->seq_lock), flags);
1863 * Create a sequence number with a 1 second
1864 * timeout and 4 retries.
1866 rv = intf_next_seq(intf,
1867 recv_msg,
1868 retry_time_ms,
1869 retries,
1870 broadcast,
1871 &ipmb_seq,
1872 &seqid);
1873 if (rv) {
1875 * We have used up all the sequence numbers,
1876 * probably, so abort.
1878 spin_unlock_irqrestore(&(intf->seq_lock),
1879 flags);
1880 goto out_err;
1883 ipmi_inc_stat(intf, sent_ipmb_commands);
1886 * Store the sequence number in the message,
1887 * so that when the send message response
1888 * comes back we can start the timer.
1890 format_ipmb_msg(smi_msg, msg, ipmb_addr,
1891 STORE_SEQ_IN_MSGID(ipmb_seq, seqid),
1892 ipmb_seq, broadcast,
1893 source_address, source_lun);
1896 * Copy the message into the recv message data, so we
1897 * can retransmit it later if necessary.
1899 memcpy(recv_msg->msg_data, smi_msg->data,
1900 smi_msg->data_size);
1901 recv_msg->msg.data = recv_msg->msg_data;
1902 recv_msg->msg.data_len = smi_msg->data_size;
1905 * We don't unlock until here, because we need
1906 * to copy the completed message into the
1907 * recv_msg before we release the lock.
1908 * Otherwise, race conditions may bite us. I
1909 * know that's pretty paranoid, but I prefer
1910 * to be correct.
1912 spin_unlock_irqrestore(&(intf->seq_lock), flags);
1914 } else if (is_lan_addr(addr)) {
1915 struct ipmi_lan_addr *lan_addr;
1916 unsigned char ipmb_seq;
1917 long seqid;
1918 struct ipmi_channel *chans;
1920 if (addr->channel >= IPMI_MAX_CHANNELS) {
1921 ipmi_inc_stat(intf, sent_invalid_commands);
1922 rv = -EINVAL;
1923 goto out_err;
1926 chans = READ_ONCE(intf->channel_list)->c;
1928 if ((chans[addr->channel].medium
1929 != IPMI_CHANNEL_MEDIUM_8023LAN)
1930 && (chans[addr->channel].medium
1931 != IPMI_CHANNEL_MEDIUM_ASYNC)) {
1932 ipmi_inc_stat(intf, sent_invalid_commands);
1933 rv = -EINVAL;
1934 goto out_err;
1937 retries = 4;
1939 /* Default to 1 second retries. */
1940 if (retry_time_ms == 0)
1941 retry_time_ms = 1000;
1943 /* 11 for the header and 1 for the checksum. */
1944 if ((msg->data_len + 12) > IPMI_MAX_MSG_LENGTH) {
1945 ipmi_inc_stat(intf, sent_invalid_commands);
1946 rv = -EMSGSIZE;
1947 goto out_err;
1950 lan_addr = (struct ipmi_lan_addr *) addr;
1951 if (lan_addr->lun > 3) {
1952 ipmi_inc_stat(intf, sent_invalid_commands);
1953 rv = -EINVAL;
1954 goto out_err;
1957 memcpy(&recv_msg->addr, lan_addr, sizeof(*lan_addr));
1959 if (recv_msg->msg.netfn & 0x1) {
1961 * It's a response, so use the user's sequence
1962 * from msgid.
1964 ipmi_inc_stat(intf, sent_lan_responses);
1965 format_lan_msg(smi_msg, msg, lan_addr, msgid,
1966 msgid, source_lun);
1969 * Save the receive message so we can use it
1970 * to deliver the response.
1972 smi_msg->user_data = recv_msg;
1973 } else {
1974 /* It's a command, so get a sequence for it. */
1976 spin_lock_irqsave(&(intf->seq_lock), flags);
1979 * Create a sequence number with a 1 second
1980 * timeout and 4 retries.
1982 rv = intf_next_seq(intf,
1983 recv_msg,
1984 retry_time_ms,
1985 retries,
1987 &ipmb_seq,
1988 &seqid);
1989 if (rv) {
1991 * We have used up all the sequence numbers,
1992 * probably, so abort.
1994 spin_unlock_irqrestore(&(intf->seq_lock),
1995 flags);
1996 goto out_err;
1999 ipmi_inc_stat(intf, sent_lan_commands);
2002 * Store the sequence number in the message,
2003 * so that when the send message response
2004 * comes back we can start the timer.
2006 format_lan_msg(smi_msg, msg, lan_addr,
2007 STORE_SEQ_IN_MSGID(ipmb_seq, seqid),
2008 ipmb_seq, source_lun);
2011 * Copy the message into the recv message data, so we
2012 * can retransmit it later if necessary.
2014 memcpy(recv_msg->msg_data, smi_msg->data,
2015 smi_msg->data_size);
2016 recv_msg->msg.data = recv_msg->msg_data;
2017 recv_msg->msg.data_len = smi_msg->data_size;
2020 * We don't unlock until here, because we need
2021 * to copy the completed message into the
2022 * recv_msg before we release the lock.
2023 * Otherwise, race conditions may bite us. I
2024 * know that's pretty paranoid, but I prefer
2025 * to be correct.
2027 spin_unlock_irqrestore(&(intf->seq_lock), flags);
2029 } else {
2030 /* Unknown address type. */
2031 ipmi_inc_stat(intf, sent_invalid_commands);
2032 rv = -EINVAL;
2033 goto out_err;
2036 #ifdef DEBUG_MSGING
2038 int m;
2039 for (m = 0; m < smi_msg->data_size; m++)
2040 printk(" %2.2x", smi_msg->data[m]);
2041 printk("\n");
2043 #endif
2045 smi_send(intf, intf->handlers, smi_msg, priority);
2046 rcu_read_unlock();
2048 return 0;
2050 out_err:
2051 rcu_read_unlock();
2052 ipmi_free_smi_msg(smi_msg);
2053 ipmi_free_recv_msg(recv_msg);
2054 return rv;
2057 static int check_addr(ipmi_smi_t intf,
2058 struct ipmi_addr *addr,
2059 unsigned char *saddr,
2060 unsigned char *lun)
2062 if (addr->channel >= IPMI_MAX_CHANNELS)
2063 return -EINVAL;
2064 *lun = intf->addrinfo[addr->channel].lun;
2065 *saddr = intf->addrinfo[addr->channel].address;
2066 return 0;
2069 int ipmi_request_settime(ipmi_user_t user,
2070 struct ipmi_addr *addr,
2071 long msgid,
2072 struct kernel_ipmi_msg *msg,
2073 void *user_msg_data,
2074 int priority,
2075 int retries,
2076 unsigned int retry_time_ms)
2078 unsigned char saddr = 0, lun = 0;
2079 int rv;
2081 if (!user)
2082 return -EINVAL;
2083 rv = check_addr(user->intf, addr, &saddr, &lun);
2084 if (rv)
2085 return rv;
2086 return i_ipmi_request(user,
2087 user->intf,
2088 addr,
2089 msgid,
2090 msg,
2091 user_msg_data,
2092 NULL, NULL,
2093 priority,
2094 saddr,
2095 lun,
2096 retries,
2097 retry_time_ms);
2099 EXPORT_SYMBOL(ipmi_request_settime);
2101 int ipmi_request_supply_msgs(ipmi_user_t user,
2102 struct ipmi_addr *addr,
2103 long msgid,
2104 struct kernel_ipmi_msg *msg,
2105 void *user_msg_data,
2106 void *supplied_smi,
2107 struct ipmi_recv_msg *supplied_recv,
2108 int priority)
2110 unsigned char saddr = 0, lun = 0;
2111 int rv;
2113 if (!user)
2114 return -EINVAL;
2115 rv = check_addr(user->intf, addr, &saddr, &lun);
2116 if (rv)
2117 return rv;
2118 return i_ipmi_request(user,
2119 user->intf,
2120 addr,
2121 msgid,
2122 msg,
2123 user_msg_data,
2124 supplied_smi,
2125 supplied_recv,
2126 priority,
2127 saddr,
2128 lun,
2129 -1, 0);
2131 EXPORT_SYMBOL(ipmi_request_supply_msgs);
2133 static void bmc_device_id_handler(ipmi_smi_t intf, struct ipmi_recv_msg *msg)
2135 int rv;
2137 if ((msg->addr.addr_type != IPMI_SYSTEM_INTERFACE_ADDR_TYPE)
2138 || (msg->msg.netfn != IPMI_NETFN_APP_RESPONSE)
2139 || (msg->msg.cmd != IPMI_GET_DEVICE_ID_CMD)) {
2140 dev_warn(intf->si_dev,
2141 PFX "invalid device_id msg: addr_type=%d netfn=%x cmd=%x\n",
2142 msg->addr.addr_type, msg->msg.netfn, msg->msg.cmd);
2143 return;
2146 rv = ipmi_demangle_device_id(msg->msg.netfn, msg->msg.cmd,
2147 msg->msg.data, msg->msg.data_len, &intf->bmc->fetch_id);
2148 if (rv) {
2149 dev_warn(intf->si_dev,
2150 PFX "device id demangle failed: %d\n", rv);
2151 intf->bmc->dyn_id_set = 0;
2152 } else {
2154 * Make sure the id data is available before setting
2155 * dyn_id_set.
2157 smp_wmb();
2158 intf->bmc->dyn_id_set = 1;
2161 wake_up(&intf->waitq);
2164 static int
2165 send_get_device_id_cmd(ipmi_smi_t intf)
2167 struct ipmi_system_interface_addr si;
2168 struct kernel_ipmi_msg msg;
2170 si.addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
2171 si.channel = IPMI_BMC_CHANNEL;
2172 si.lun = 0;
2174 msg.netfn = IPMI_NETFN_APP_REQUEST;
2175 msg.cmd = IPMI_GET_DEVICE_ID_CMD;
2176 msg.data = NULL;
2177 msg.data_len = 0;
2179 return i_ipmi_request(NULL,
2180 intf,
2181 (struct ipmi_addr *) &si,
2183 &msg,
2184 intf,
2185 NULL,
2186 NULL,
2188 intf->addrinfo[0].address,
2189 intf->addrinfo[0].lun,
2190 -1, 0);
2193 static int __get_device_id(ipmi_smi_t intf, struct bmc_device *bmc)
2195 int rv;
2197 bmc->dyn_id_set = 2;
2199 intf->null_user_handler = bmc_device_id_handler;
2201 rv = send_get_device_id_cmd(intf);
2202 if (rv)
2203 return rv;
2205 wait_event(intf->waitq, bmc->dyn_id_set != 2);
2207 if (!bmc->dyn_id_set)
2208 rv = -EIO; /* Something went wrong in the fetch. */
2210 /* dyn_id_set makes the id data available. */
2211 smp_rmb();
2213 intf->null_user_handler = NULL;
2215 return rv;
2219 * Fetch the device id for the bmc/interface. You must pass in either
2220 * bmc or intf, this code will get the other one. If the data has
2221 * been recently fetched, this will just use the cached data. Otherwise
2222 * it will run a new fetch.
2224 * Except for the first time this is called (in ipmi_register_smi()),
2225 * this will always return good data;
2227 static int __bmc_get_device_id(ipmi_smi_t intf, struct bmc_device *bmc,
2228 struct ipmi_device_id *id,
2229 bool *guid_set, guid_t *guid, int intf_num)
2231 int rv = 0;
2232 int prev_dyn_id_set, prev_guid_set;
2233 bool intf_set = intf != NULL;
2235 if (!intf) {
2236 mutex_lock(&bmc->dyn_mutex);
2237 retry_bmc_lock:
2238 if (list_empty(&bmc->intfs)) {
2239 mutex_unlock(&bmc->dyn_mutex);
2240 return -ENOENT;
2242 intf = list_first_entry(&bmc->intfs, struct ipmi_smi,
2243 bmc_link);
2244 kref_get(&intf->refcount);
2245 mutex_unlock(&bmc->dyn_mutex);
2246 mutex_lock(&intf->bmc_reg_mutex);
2247 mutex_lock(&bmc->dyn_mutex);
2248 if (intf != list_first_entry(&bmc->intfs, struct ipmi_smi,
2249 bmc_link)) {
2250 mutex_unlock(&intf->bmc_reg_mutex);
2251 kref_put(&intf->refcount, intf_free);
2252 goto retry_bmc_lock;
2254 } else {
2255 mutex_lock(&intf->bmc_reg_mutex);
2256 bmc = intf->bmc;
2257 mutex_lock(&bmc->dyn_mutex);
2258 kref_get(&intf->refcount);
2261 /* If we have a valid and current ID, just return that. */
2262 if (intf->in_bmc_register ||
2263 (bmc->dyn_id_set && time_is_after_jiffies(bmc->dyn_id_expiry)))
2264 goto out_noprocessing;
2266 prev_guid_set = bmc->dyn_guid_set;
2267 __get_guid(intf);
2269 prev_dyn_id_set = bmc->dyn_id_set;
2270 rv = __get_device_id(intf, bmc);
2271 if (rv)
2272 goto out;
2275 * The guid, device id, manufacturer id, and product id should
2276 * not change on a BMC. If it does we have to do some dancing.
2278 if (!intf->bmc_registered
2279 || (!prev_guid_set && bmc->dyn_guid_set)
2280 || (!prev_dyn_id_set && bmc->dyn_id_set)
2281 || (prev_guid_set && bmc->dyn_guid_set
2282 && !guid_equal(&bmc->guid, &bmc->fetch_guid))
2283 || bmc->id.device_id != bmc->fetch_id.device_id
2284 || bmc->id.manufacturer_id != bmc->fetch_id.manufacturer_id
2285 || bmc->id.product_id != bmc->fetch_id.product_id) {
2286 struct ipmi_device_id id = bmc->fetch_id;
2287 int guid_set = bmc->dyn_guid_set;
2288 guid_t guid;
2290 guid = bmc->fetch_guid;
2291 mutex_unlock(&bmc->dyn_mutex);
2293 __ipmi_bmc_unregister(intf);
2294 /* Fill in the temporary BMC for good measure. */
2295 intf->bmc->id = id;
2296 intf->bmc->dyn_guid_set = guid_set;
2297 intf->bmc->guid = guid;
2298 if (__ipmi_bmc_register(intf, &id, guid_set, &guid, intf_num))
2299 need_waiter(intf); /* Retry later on an error. */
2300 else
2301 __scan_channels(intf, &id);
2304 if (!intf_set) {
2306 * We weren't given the interface on the
2307 * command line, so restart the operation on
2308 * the next interface for the BMC.
2310 mutex_unlock(&intf->bmc_reg_mutex);
2311 mutex_lock(&bmc->dyn_mutex);
2312 goto retry_bmc_lock;
2315 /* We have a new BMC, set it up. */
2316 bmc = intf->bmc;
2317 mutex_lock(&bmc->dyn_mutex);
2318 goto out_noprocessing;
2319 } else if (memcmp(&bmc->fetch_id, &bmc->id, sizeof(bmc->id)))
2320 /* Version info changes, scan the channels again. */
2321 __scan_channels(intf, &bmc->fetch_id);
2323 bmc->dyn_id_expiry = jiffies + IPMI_DYN_DEV_ID_EXPIRY;
2325 out:
2326 if (rv && prev_dyn_id_set) {
2327 rv = 0; /* Ignore failures if we have previous data. */
2328 bmc->dyn_id_set = prev_dyn_id_set;
2330 if (!rv) {
2331 bmc->id = bmc->fetch_id;
2332 if (bmc->dyn_guid_set)
2333 bmc->guid = bmc->fetch_guid;
2334 else if (prev_guid_set)
2336 * The guid used to be valid and it failed to fetch,
2337 * just use the cached value.
2339 bmc->dyn_guid_set = prev_guid_set;
2341 out_noprocessing:
2342 if (!rv) {
2343 if (id)
2344 *id = bmc->id;
2346 if (guid_set)
2347 *guid_set = bmc->dyn_guid_set;
2349 if (guid && bmc->dyn_guid_set)
2350 *guid = bmc->guid;
2353 mutex_unlock(&bmc->dyn_mutex);
2354 mutex_unlock(&intf->bmc_reg_mutex);
2356 kref_put(&intf->refcount, intf_free);
2357 return rv;
2360 static int bmc_get_device_id(ipmi_smi_t intf, struct bmc_device *bmc,
2361 struct ipmi_device_id *id,
2362 bool *guid_set, guid_t *guid)
2364 return __bmc_get_device_id(intf, bmc, id, guid_set, guid, -1);
2367 #ifdef CONFIG_IPMI_PROC_INTERFACE
2368 static int smi_ipmb_proc_show(struct seq_file *m, void *v)
2370 ipmi_smi_t intf = m->private;
2371 int i;
2373 seq_printf(m, "%x", intf->addrinfo[0].address);
2374 for (i = 1; i < IPMI_MAX_CHANNELS; i++)
2375 seq_printf(m, " %x", intf->addrinfo[i].address);
2376 seq_putc(m, '\n');
2378 return 0;
2381 static int smi_ipmb_proc_open(struct inode *inode, struct file *file)
2383 return single_open(file, smi_ipmb_proc_show, PDE_DATA(inode));
2386 static const struct file_operations smi_ipmb_proc_ops = {
2387 .open = smi_ipmb_proc_open,
2388 .read = seq_read,
2389 .llseek = seq_lseek,
2390 .release = single_release,
2393 static int smi_version_proc_show(struct seq_file *m, void *v)
2395 ipmi_smi_t intf = m->private;
2396 struct ipmi_device_id id;
2397 int rv;
2399 rv = bmc_get_device_id(intf, NULL, &id, NULL, NULL);
2400 if (rv)
2401 return rv;
2403 seq_printf(m, "%u.%u\n",
2404 ipmi_version_major(&id),
2405 ipmi_version_minor(&id));
2407 return 0;
2410 static int smi_version_proc_open(struct inode *inode, struct file *file)
2412 return single_open(file, smi_version_proc_show, PDE_DATA(inode));
2415 static const struct file_operations smi_version_proc_ops = {
2416 .open = smi_version_proc_open,
2417 .read = seq_read,
2418 .llseek = seq_lseek,
2419 .release = single_release,
2422 static int smi_stats_proc_show(struct seq_file *m, void *v)
2424 ipmi_smi_t intf = m->private;
2426 seq_printf(m, "sent_invalid_commands: %u\n",
2427 ipmi_get_stat(intf, sent_invalid_commands));
2428 seq_printf(m, "sent_local_commands: %u\n",
2429 ipmi_get_stat(intf, sent_local_commands));
2430 seq_printf(m, "handled_local_responses: %u\n",
2431 ipmi_get_stat(intf, handled_local_responses));
2432 seq_printf(m, "unhandled_local_responses: %u\n",
2433 ipmi_get_stat(intf, unhandled_local_responses));
2434 seq_printf(m, "sent_ipmb_commands: %u\n",
2435 ipmi_get_stat(intf, sent_ipmb_commands));
2436 seq_printf(m, "sent_ipmb_command_errs: %u\n",
2437 ipmi_get_stat(intf, sent_ipmb_command_errs));
2438 seq_printf(m, "retransmitted_ipmb_commands: %u\n",
2439 ipmi_get_stat(intf, retransmitted_ipmb_commands));
2440 seq_printf(m, "timed_out_ipmb_commands: %u\n",
2441 ipmi_get_stat(intf, timed_out_ipmb_commands));
2442 seq_printf(m, "timed_out_ipmb_broadcasts: %u\n",
2443 ipmi_get_stat(intf, timed_out_ipmb_broadcasts));
2444 seq_printf(m, "sent_ipmb_responses: %u\n",
2445 ipmi_get_stat(intf, sent_ipmb_responses));
2446 seq_printf(m, "handled_ipmb_responses: %u\n",
2447 ipmi_get_stat(intf, handled_ipmb_responses));
2448 seq_printf(m, "invalid_ipmb_responses: %u\n",
2449 ipmi_get_stat(intf, invalid_ipmb_responses));
2450 seq_printf(m, "unhandled_ipmb_responses: %u\n",
2451 ipmi_get_stat(intf, unhandled_ipmb_responses));
2452 seq_printf(m, "sent_lan_commands: %u\n",
2453 ipmi_get_stat(intf, sent_lan_commands));
2454 seq_printf(m, "sent_lan_command_errs: %u\n",
2455 ipmi_get_stat(intf, sent_lan_command_errs));
2456 seq_printf(m, "retransmitted_lan_commands: %u\n",
2457 ipmi_get_stat(intf, retransmitted_lan_commands));
2458 seq_printf(m, "timed_out_lan_commands: %u\n",
2459 ipmi_get_stat(intf, timed_out_lan_commands));
2460 seq_printf(m, "sent_lan_responses: %u\n",
2461 ipmi_get_stat(intf, sent_lan_responses));
2462 seq_printf(m, "handled_lan_responses: %u\n",
2463 ipmi_get_stat(intf, handled_lan_responses));
2464 seq_printf(m, "invalid_lan_responses: %u\n",
2465 ipmi_get_stat(intf, invalid_lan_responses));
2466 seq_printf(m, "unhandled_lan_responses: %u\n",
2467 ipmi_get_stat(intf, unhandled_lan_responses));
2468 seq_printf(m, "handled_commands: %u\n",
2469 ipmi_get_stat(intf, handled_commands));
2470 seq_printf(m, "invalid_commands: %u\n",
2471 ipmi_get_stat(intf, invalid_commands));
2472 seq_printf(m, "unhandled_commands: %u\n",
2473 ipmi_get_stat(intf, unhandled_commands));
2474 seq_printf(m, "invalid_events: %u\n",
2475 ipmi_get_stat(intf, invalid_events));
2476 seq_printf(m, "events: %u\n",
2477 ipmi_get_stat(intf, events));
2478 seq_printf(m, "failed rexmit LAN msgs: %u\n",
2479 ipmi_get_stat(intf, dropped_rexmit_lan_commands));
2480 seq_printf(m, "failed rexmit IPMB msgs: %u\n",
2481 ipmi_get_stat(intf, dropped_rexmit_ipmb_commands));
2482 return 0;
2485 static int smi_stats_proc_open(struct inode *inode, struct file *file)
2487 return single_open(file, smi_stats_proc_show, PDE_DATA(inode));
2490 static const struct file_operations smi_stats_proc_ops = {
2491 .open = smi_stats_proc_open,
2492 .read = seq_read,
2493 .llseek = seq_lseek,
2494 .release = single_release,
2497 int ipmi_smi_add_proc_entry(ipmi_smi_t smi, char *name,
2498 const struct file_operations *proc_ops,
2499 void *data)
2501 int rv = 0;
2502 struct proc_dir_entry *file;
2503 struct ipmi_proc_entry *entry;
2505 /* Create a list element. */
2506 entry = kmalloc(sizeof(*entry), GFP_KERNEL);
2507 if (!entry)
2508 return -ENOMEM;
2509 entry->name = kstrdup(name, GFP_KERNEL);
2510 if (!entry->name) {
2511 kfree(entry);
2512 return -ENOMEM;
2515 file = proc_create_data(name, 0, smi->proc_dir, proc_ops, data);
2516 if (!file) {
2517 kfree(entry->name);
2518 kfree(entry);
2519 rv = -ENOMEM;
2520 } else {
2521 mutex_lock(&smi->proc_entry_lock);
2522 /* Stick it on the list. */
2523 entry->next = smi->proc_entries;
2524 smi->proc_entries = entry;
2525 mutex_unlock(&smi->proc_entry_lock);
2528 return rv;
2530 EXPORT_SYMBOL(ipmi_smi_add_proc_entry);
2532 static int add_proc_entries(ipmi_smi_t smi, int num)
2534 int rv = 0;
2536 sprintf(smi->proc_dir_name, "%d", num);
2537 smi->proc_dir = proc_mkdir(smi->proc_dir_name, proc_ipmi_root);
2538 if (!smi->proc_dir)
2539 rv = -ENOMEM;
2541 if (rv == 0)
2542 rv = ipmi_smi_add_proc_entry(smi, "stats",
2543 &smi_stats_proc_ops,
2544 smi);
2546 if (rv == 0)
2547 rv = ipmi_smi_add_proc_entry(smi, "ipmb",
2548 &smi_ipmb_proc_ops,
2549 smi);
2551 if (rv == 0)
2552 rv = ipmi_smi_add_proc_entry(smi, "version",
2553 &smi_version_proc_ops,
2554 smi);
2556 return rv;
2559 static void remove_proc_entries(ipmi_smi_t smi)
2561 struct ipmi_proc_entry *entry;
2563 mutex_lock(&smi->proc_entry_lock);
2564 while (smi->proc_entries) {
2565 entry = smi->proc_entries;
2566 smi->proc_entries = entry->next;
2568 remove_proc_entry(entry->name, smi->proc_dir);
2569 kfree(entry->name);
2570 kfree(entry);
2572 mutex_unlock(&smi->proc_entry_lock);
2573 remove_proc_entry(smi->proc_dir_name, proc_ipmi_root);
2575 #endif /* CONFIG_IPMI_PROC_INTERFACE */
2577 static ssize_t device_id_show(struct device *dev,
2578 struct device_attribute *attr,
2579 char *buf)
2581 struct bmc_device *bmc = to_bmc_device(dev);
2582 struct ipmi_device_id id;
2583 int rv;
2585 rv = bmc_get_device_id(NULL, bmc, &id, NULL, NULL);
2586 if (rv)
2587 return rv;
2589 return snprintf(buf, 10, "%u\n", id.device_id);
2591 static DEVICE_ATTR_RO(device_id);
2593 static ssize_t provides_device_sdrs_show(struct device *dev,
2594 struct device_attribute *attr,
2595 char *buf)
2597 struct bmc_device *bmc = to_bmc_device(dev);
2598 struct ipmi_device_id id;
2599 int rv;
2601 rv = bmc_get_device_id(NULL, bmc, &id, NULL, NULL);
2602 if (rv)
2603 return rv;
2605 return snprintf(buf, 10, "%u\n", (id.device_revision & 0x80) >> 7);
2607 static DEVICE_ATTR_RO(provides_device_sdrs);
2609 static ssize_t revision_show(struct device *dev, struct device_attribute *attr,
2610 char *buf)
2612 struct bmc_device *bmc = to_bmc_device(dev);
2613 struct ipmi_device_id id;
2614 int rv;
2616 rv = bmc_get_device_id(NULL, bmc, &id, NULL, NULL);
2617 if (rv)
2618 return rv;
2620 return snprintf(buf, 20, "%u\n", id.device_revision & 0x0F);
2622 static DEVICE_ATTR_RO(revision);
2624 static ssize_t firmware_revision_show(struct device *dev,
2625 struct device_attribute *attr,
2626 char *buf)
2628 struct bmc_device *bmc = to_bmc_device(dev);
2629 struct ipmi_device_id id;
2630 int rv;
2632 rv = bmc_get_device_id(NULL, bmc, &id, NULL, NULL);
2633 if (rv)
2634 return rv;
2636 return snprintf(buf, 20, "%u.%x\n", id.firmware_revision_1,
2637 id.firmware_revision_2);
2639 static DEVICE_ATTR_RO(firmware_revision);
2641 static ssize_t ipmi_version_show(struct device *dev,
2642 struct device_attribute *attr,
2643 char *buf)
2645 struct bmc_device *bmc = to_bmc_device(dev);
2646 struct ipmi_device_id id;
2647 int rv;
2649 rv = bmc_get_device_id(NULL, bmc, &id, NULL, NULL);
2650 if (rv)
2651 return rv;
2653 return snprintf(buf, 20, "%u.%u\n",
2654 ipmi_version_major(&id),
2655 ipmi_version_minor(&id));
2657 static DEVICE_ATTR_RO(ipmi_version);
2659 static ssize_t add_dev_support_show(struct device *dev,
2660 struct device_attribute *attr,
2661 char *buf)
2663 struct bmc_device *bmc = to_bmc_device(dev);
2664 struct ipmi_device_id id;
2665 int rv;
2667 rv = bmc_get_device_id(NULL, bmc, &id, NULL, NULL);
2668 if (rv)
2669 return rv;
2671 return snprintf(buf, 10, "0x%02x\n", id.additional_device_support);
2673 static DEVICE_ATTR(additional_device_support, S_IRUGO, add_dev_support_show,
2674 NULL);
2676 static ssize_t manufacturer_id_show(struct device *dev,
2677 struct device_attribute *attr,
2678 char *buf)
2680 struct bmc_device *bmc = to_bmc_device(dev);
2681 struct ipmi_device_id id;
2682 int rv;
2684 rv = bmc_get_device_id(NULL, bmc, &id, NULL, NULL);
2685 if (rv)
2686 return rv;
2688 return snprintf(buf, 20, "0x%6.6x\n", id.manufacturer_id);
2690 static DEVICE_ATTR_RO(manufacturer_id);
2692 static ssize_t product_id_show(struct device *dev,
2693 struct device_attribute *attr,
2694 char *buf)
2696 struct bmc_device *bmc = to_bmc_device(dev);
2697 struct ipmi_device_id id;
2698 int rv;
2700 rv = bmc_get_device_id(NULL, bmc, &id, NULL, NULL);
2701 if (rv)
2702 return rv;
2704 return snprintf(buf, 10, "0x%4.4x\n", id.product_id);
2706 static DEVICE_ATTR_RO(product_id);
2708 static ssize_t aux_firmware_rev_show(struct device *dev,
2709 struct device_attribute *attr,
2710 char *buf)
2712 struct bmc_device *bmc = to_bmc_device(dev);
2713 struct ipmi_device_id id;
2714 int rv;
2716 rv = bmc_get_device_id(NULL, bmc, &id, NULL, NULL);
2717 if (rv)
2718 return rv;
2720 return snprintf(buf, 21, "0x%02x 0x%02x 0x%02x 0x%02x\n",
2721 id.aux_firmware_revision[3],
2722 id.aux_firmware_revision[2],
2723 id.aux_firmware_revision[1],
2724 id.aux_firmware_revision[0]);
2726 static DEVICE_ATTR(aux_firmware_revision, S_IRUGO, aux_firmware_rev_show, NULL);
2728 static ssize_t guid_show(struct device *dev, struct device_attribute *attr,
2729 char *buf)
2731 struct bmc_device *bmc = to_bmc_device(dev);
2732 bool guid_set;
2733 guid_t guid;
2734 int rv;
2736 rv = bmc_get_device_id(NULL, bmc, NULL, &guid_set, &guid);
2737 if (rv)
2738 return rv;
2739 if (!guid_set)
2740 return -ENOENT;
2742 return snprintf(buf, 38, "%pUl\n", guid.b);
2744 static DEVICE_ATTR_RO(guid);
2746 static struct attribute *bmc_dev_attrs[] = {
2747 &dev_attr_device_id.attr,
2748 &dev_attr_provides_device_sdrs.attr,
2749 &dev_attr_revision.attr,
2750 &dev_attr_firmware_revision.attr,
2751 &dev_attr_ipmi_version.attr,
2752 &dev_attr_additional_device_support.attr,
2753 &dev_attr_manufacturer_id.attr,
2754 &dev_attr_product_id.attr,
2755 &dev_attr_aux_firmware_revision.attr,
2756 &dev_attr_guid.attr,
2757 NULL
2760 static umode_t bmc_dev_attr_is_visible(struct kobject *kobj,
2761 struct attribute *attr, int idx)
2763 struct device *dev = kobj_to_dev(kobj);
2764 struct bmc_device *bmc = to_bmc_device(dev);
2765 umode_t mode = attr->mode;
2766 int rv;
2768 if (attr == &dev_attr_aux_firmware_revision.attr) {
2769 struct ipmi_device_id id;
2771 rv = bmc_get_device_id(NULL, bmc, &id, NULL, NULL);
2772 return (!rv && id.aux_firmware_revision_set) ? mode : 0;
2774 if (attr == &dev_attr_guid.attr) {
2775 bool guid_set;
2777 rv = bmc_get_device_id(NULL, bmc, NULL, &guid_set, NULL);
2778 return (!rv && guid_set) ? mode : 0;
2780 return mode;
2783 static const struct attribute_group bmc_dev_attr_group = {
2784 .attrs = bmc_dev_attrs,
2785 .is_visible = bmc_dev_attr_is_visible,
2788 static const struct attribute_group *bmc_dev_attr_groups[] = {
2789 &bmc_dev_attr_group,
2790 NULL
2793 static const struct device_type bmc_device_type = {
2794 .groups = bmc_dev_attr_groups,
2797 static int __find_bmc_guid(struct device *dev, void *data)
2799 guid_t *guid = data;
2800 struct bmc_device *bmc;
2801 int rv;
2803 if (dev->type != &bmc_device_type)
2804 return 0;
2806 bmc = to_bmc_device(dev);
2807 rv = bmc->dyn_guid_set && guid_equal(&bmc->guid, guid);
2808 if (rv)
2809 rv = kref_get_unless_zero(&bmc->usecount);
2810 return rv;
2814 * Returns with the bmc's usecount incremented, if it is non-NULL.
2816 static struct bmc_device *ipmi_find_bmc_guid(struct device_driver *drv,
2817 guid_t *guid)
2819 struct device *dev;
2820 struct bmc_device *bmc = NULL;
2822 dev = driver_find_device(drv, NULL, guid, __find_bmc_guid);
2823 if (dev) {
2824 bmc = to_bmc_device(dev);
2825 put_device(dev);
2827 return bmc;
2830 struct prod_dev_id {
2831 unsigned int product_id;
2832 unsigned char device_id;
2835 static int __find_bmc_prod_dev_id(struct device *dev, void *data)
2837 struct prod_dev_id *cid = data;
2838 struct bmc_device *bmc;
2839 int rv;
2841 if (dev->type != &bmc_device_type)
2842 return 0;
2844 bmc = to_bmc_device(dev);
2845 rv = (bmc->id.product_id == cid->product_id
2846 && bmc->id.device_id == cid->device_id);
2847 if (rv)
2848 rv = kref_get_unless_zero(&bmc->usecount);
2849 return rv;
2853 * Returns with the bmc's usecount incremented, if it is non-NULL.
2855 static struct bmc_device *ipmi_find_bmc_prod_dev_id(
2856 struct device_driver *drv,
2857 unsigned int product_id, unsigned char device_id)
2859 struct prod_dev_id id = {
2860 .product_id = product_id,
2861 .device_id = device_id,
2863 struct device *dev;
2864 struct bmc_device *bmc = NULL;
2866 dev = driver_find_device(drv, NULL, &id, __find_bmc_prod_dev_id);
2867 if (dev) {
2868 bmc = to_bmc_device(dev);
2869 put_device(dev);
2871 return bmc;
2874 static DEFINE_IDA(ipmi_bmc_ida);
2876 static void
2877 release_bmc_device(struct device *dev)
2879 kfree(to_bmc_device(dev));
2882 static void cleanup_bmc_work(struct work_struct *work)
2884 struct bmc_device *bmc = container_of(work, struct bmc_device,
2885 remove_work);
2886 int id = bmc->pdev.id; /* Unregister overwrites id */
2888 platform_device_unregister(&bmc->pdev);
2889 ida_simple_remove(&ipmi_bmc_ida, id);
2892 static void
2893 cleanup_bmc_device(struct kref *ref)
2895 struct bmc_device *bmc = container_of(ref, struct bmc_device, usecount);
2898 * Remove the platform device in a work queue to avoid issues
2899 * with removing the device attributes while reading a device
2900 * attribute.
2902 schedule_work(&bmc->remove_work);
2906 * Must be called with intf->bmc_reg_mutex held.
2908 static void __ipmi_bmc_unregister(ipmi_smi_t intf)
2910 struct bmc_device *bmc = intf->bmc;
2912 if (!intf->bmc_registered)
2913 return;
2915 sysfs_remove_link(&intf->si_dev->kobj, "bmc");
2916 sysfs_remove_link(&bmc->pdev.dev.kobj, intf->my_dev_name);
2917 kfree(intf->my_dev_name);
2918 intf->my_dev_name = NULL;
2920 mutex_lock(&bmc->dyn_mutex);
2921 list_del(&intf->bmc_link);
2922 mutex_unlock(&bmc->dyn_mutex);
2923 intf->bmc = &intf->tmp_bmc;
2924 kref_put(&bmc->usecount, cleanup_bmc_device);
2925 intf->bmc_registered = false;
2928 static void ipmi_bmc_unregister(ipmi_smi_t intf)
2930 mutex_lock(&intf->bmc_reg_mutex);
2931 __ipmi_bmc_unregister(intf);
2932 mutex_unlock(&intf->bmc_reg_mutex);
2936 * Must be called with intf->bmc_reg_mutex held.
2938 static int __ipmi_bmc_register(ipmi_smi_t intf,
2939 struct ipmi_device_id *id,
2940 bool guid_set, guid_t *guid, int intf_num)
2942 int rv;
2943 struct bmc_device *bmc;
2944 struct bmc_device *old_bmc;
2947 * platform_device_register() can cause bmc_reg_mutex to
2948 * be claimed because of the is_visible functions of
2949 * the attributes. Eliminate possible recursion and
2950 * release the lock.
2952 intf->in_bmc_register = true;
2953 mutex_unlock(&intf->bmc_reg_mutex);
2956 * Try to find if there is an bmc_device struct
2957 * representing the interfaced BMC already
2959 mutex_lock(&ipmidriver_mutex);
2960 if (guid_set)
2961 old_bmc = ipmi_find_bmc_guid(&ipmidriver.driver, guid);
2962 else
2963 old_bmc = ipmi_find_bmc_prod_dev_id(&ipmidriver.driver,
2964 id->product_id,
2965 id->device_id);
2968 * If there is already an bmc_device, free the new one,
2969 * otherwise register the new BMC device
2971 if (old_bmc) {
2972 bmc = old_bmc;
2974 * Note: old_bmc already has usecount incremented by
2975 * the BMC find functions.
2977 intf->bmc = old_bmc;
2978 mutex_lock(&bmc->dyn_mutex);
2979 list_add_tail(&intf->bmc_link, &bmc->intfs);
2980 mutex_unlock(&bmc->dyn_mutex);
2982 dev_info(intf->si_dev,
2983 "ipmi: interfacing existing BMC (man_id: 0x%6.6x,"
2984 " prod_id: 0x%4.4x, dev_id: 0x%2.2x)\n",
2985 bmc->id.manufacturer_id,
2986 bmc->id.product_id,
2987 bmc->id.device_id);
2988 } else {
2989 bmc = kzalloc(sizeof(*bmc), GFP_KERNEL);
2990 if (!bmc) {
2991 rv = -ENOMEM;
2992 goto out;
2994 INIT_LIST_HEAD(&bmc->intfs);
2995 mutex_init(&bmc->dyn_mutex);
2996 INIT_WORK(&bmc->remove_work, cleanup_bmc_work);
2998 bmc->id = *id;
2999 bmc->dyn_id_set = 1;
3000 bmc->dyn_guid_set = guid_set;
3001 bmc->guid = *guid;
3002 bmc->dyn_id_expiry = jiffies + IPMI_DYN_DEV_ID_EXPIRY;
3004 bmc->pdev.name = "ipmi_bmc";
3006 rv = ida_simple_get(&ipmi_bmc_ida, 0, 0, GFP_KERNEL);
3007 if (rv < 0)
3008 goto out;
3009 bmc->pdev.dev.driver = &ipmidriver.driver;
3010 bmc->pdev.id = rv;
3011 bmc->pdev.dev.release = release_bmc_device;
3012 bmc->pdev.dev.type = &bmc_device_type;
3013 kref_init(&bmc->usecount);
3015 intf->bmc = bmc;
3016 mutex_lock(&bmc->dyn_mutex);
3017 list_add_tail(&intf->bmc_link, &bmc->intfs);
3018 mutex_unlock(&bmc->dyn_mutex);
3020 rv = platform_device_register(&bmc->pdev);
3021 if (rv) {
3022 dev_err(intf->si_dev,
3023 PFX " Unable to register bmc device: %d\n",
3024 rv);
3025 goto out_list_del;
3028 dev_info(intf->si_dev,
3029 "Found new BMC (man_id: 0x%6.6x, prod_id: 0x%4.4x, dev_id: 0x%2.2x)\n",
3030 bmc->id.manufacturer_id,
3031 bmc->id.product_id,
3032 bmc->id.device_id);
3036 * create symlink from system interface device to bmc device
3037 * and back.
3039 rv = sysfs_create_link(&intf->si_dev->kobj, &bmc->pdev.dev.kobj, "bmc");
3040 if (rv) {
3041 dev_err(intf->si_dev,
3042 PFX "Unable to create bmc symlink: %d\n", rv);
3043 goto out_put_bmc;
3046 if (intf_num == -1)
3047 intf_num = intf->intf_num;
3048 intf->my_dev_name = kasprintf(GFP_KERNEL, "ipmi%d", intf_num);
3049 if (!intf->my_dev_name) {
3050 rv = -ENOMEM;
3051 dev_err(intf->si_dev,
3052 PFX "Unable to allocate link from BMC: %d\n", rv);
3053 goto out_unlink1;
3056 rv = sysfs_create_link(&bmc->pdev.dev.kobj, &intf->si_dev->kobj,
3057 intf->my_dev_name);
3058 if (rv) {
3059 kfree(intf->my_dev_name);
3060 intf->my_dev_name = NULL;
3061 dev_err(intf->si_dev,
3062 PFX "Unable to create symlink to bmc: %d\n", rv);
3063 goto out_free_my_dev_name;
3066 intf->bmc_registered = true;
3068 out:
3069 mutex_unlock(&ipmidriver_mutex);
3070 mutex_lock(&intf->bmc_reg_mutex);
3071 intf->in_bmc_register = false;
3072 return rv;
3075 out_free_my_dev_name:
3076 kfree(intf->my_dev_name);
3077 intf->my_dev_name = NULL;
3079 out_unlink1:
3080 sysfs_remove_link(&intf->si_dev->kobj, "bmc");
3082 out_put_bmc:
3083 mutex_lock(&bmc->dyn_mutex);
3084 list_del(&intf->bmc_link);
3085 mutex_unlock(&bmc->dyn_mutex);
3086 intf->bmc = &intf->tmp_bmc;
3087 kref_put(&bmc->usecount, cleanup_bmc_device);
3088 goto out;
3090 out_list_del:
3091 mutex_lock(&bmc->dyn_mutex);
3092 list_del(&intf->bmc_link);
3093 mutex_unlock(&bmc->dyn_mutex);
3094 intf->bmc = &intf->tmp_bmc;
3095 put_device(&bmc->pdev.dev);
3096 goto out;
3099 static int
3100 send_guid_cmd(ipmi_smi_t intf, int chan)
3102 struct kernel_ipmi_msg msg;
3103 struct ipmi_system_interface_addr si;
3105 si.addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
3106 si.channel = IPMI_BMC_CHANNEL;
3107 si.lun = 0;
3109 msg.netfn = IPMI_NETFN_APP_REQUEST;
3110 msg.cmd = IPMI_GET_DEVICE_GUID_CMD;
3111 msg.data = NULL;
3112 msg.data_len = 0;
3113 return i_ipmi_request(NULL,
3114 intf,
3115 (struct ipmi_addr *) &si,
3117 &msg,
3118 intf,
3119 NULL,
3120 NULL,
3122 intf->addrinfo[0].address,
3123 intf->addrinfo[0].lun,
3124 -1, 0);
3127 static void guid_handler(ipmi_smi_t intf, struct ipmi_recv_msg *msg)
3129 struct bmc_device *bmc = intf->bmc;
3131 if ((msg->addr.addr_type != IPMI_SYSTEM_INTERFACE_ADDR_TYPE)
3132 || (msg->msg.netfn != IPMI_NETFN_APP_RESPONSE)
3133 || (msg->msg.cmd != IPMI_GET_DEVICE_GUID_CMD))
3134 /* Not for me */
3135 return;
3137 if (msg->msg.data[0] != 0) {
3138 /* Error from getting the GUID, the BMC doesn't have one. */
3139 bmc->dyn_guid_set = 0;
3140 goto out;
3143 if (msg->msg.data_len < 17) {
3144 bmc->dyn_guid_set = 0;
3145 dev_warn(intf->si_dev,
3146 PFX "The GUID response from the BMC was too short, it was %d but should have been 17. Assuming GUID is not available.\n",
3147 msg->msg.data_len);
3148 goto out;
3151 memcpy(bmc->fetch_guid.b, msg->msg.data + 1, 16);
3153 * Make sure the guid data is available before setting
3154 * dyn_guid_set.
3156 smp_wmb();
3157 bmc->dyn_guid_set = 1;
3158 out:
3159 wake_up(&intf->waitq);
3162 static void __get_guid(ipmi_smi_t intf)
3164 int rv;
3165 struct bmc_device *bmc = intf->bmc;
3167 bmc->dyn_guid_set = 2;
3168 intf->null_user_handler = guid_handler;
3169 rv = send_guid_cmd(intf, 0);
3170 if (rv)
3171 /* Send failed, no GUID available. */
3172 bmc->dyn_guid_set = 0;
3174 wait_event(intf->waitq, bmc->dyn_guid_set != 2);
3176 /* dyn_guid_set makes the guid data available. */
3177 smp_rmb();
3179 intf->null_user_handler = NULL;
3182 static int
3183 send_channel_info_cmd(ipmi_smi_t intf, int chan)
3185 struct kernel_ipmi_msg msg;
3186 unsigned char data[1];
3187 struct ipmi_system_interface_addr si;
3189 si.addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
3190 si.channel = IPMI_BMC_CHANNEL;
3191 si.lun = 0;
3193 msg.netfn = IPMI_NETFN_APP_REQUEST;
3194 msg.cmd = IPMI_GET_CHANNEL_INFO_CMD;
3195 msg.data = data;
3196 msg.data_len = 1;
3197 data[0] = chan;
3198 return i_ipmi_request(NULL,
3199 intf,
3200 (struct ipmi_addr *) &si,
3202 &msg,
3203 intf,
3204 NULL,
3205 NULL,
3207 intf->addrinfo[0].address,
3208 intf->addrinfo[0].lun,
3209 -1, 0);
3212 static void
3213 channel_handler(ipmi_smi_t intf, struct ipmi_recv_msg *msg)
3215 int rv = 0;
3216 int ch;
3217 unsigned int set = intf->curr_working_cset;
3218 struct ipmi_channel *chans;
3220 if ((msg->addr.addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE)
3221 && (msg->msg.netfn == IPMI_NETFN_APP_RESPONSE)
3222 && (msg->msg.cmd == IPMI_GET_CHANNEL_INFO_CMD)) {
3223 /* It's the one we want */
3224 if (msg->msg.data[0] != 0) {
3225 /* Got an error from the channel, just go on. */
3227 if (msg->msg.data[0] == IPMI_INVALID_COMMAND_ERR) {
3229 * If the MC does not support this
3230 * command, that is legal. We just
3231 * assume it has one IPMB at channel
3232 * zero.
3234 intf->wchannels[set].c[0].medium
3235 = IPMI_CHANNEL_MEDIUM_IPMB;
3236 intf->wchannels[set].c[0].protocol
3237 = IPMI_CHANNEL_PROTOCOL_IPMB;
3239 intf->channel_list = intf->wchannels + set;
3240 intf->channels_ready = true;
3241 wake_up(&intf->waitq);
3242 goto out;
3244 goto next_channel;
3246 if (msg->msg.data_len < 4) {
3247 /* Message not big enough, just go on. */
3248 goto next_channel;
3250 ch = intf->curr_channel;
3251 chans = intf->wchannels[set].c;
3252 chans[ch].medium = msg->msg.data[2] & 0x7f;
3253 chans[ch].protocol = msg->msg.data[3] & 0x1f;
3255 next_channel:
3256 intf->curr_channel++;
3257 if (intf->curr_channel >= IPMI_MAX_CHANNELS) {
3258 intf->channel_list = intf->wchannels + set;
3259 intf->channels_ready = true;
3260 wake_up(&intf->waitq);
3261 } else {
3262 intf->channel_list = intf->wchannels + set;
3263 intf->channels_ready = true;
3264 rv = send_channel_info_cmd(intf, intf->curr_channel);
3267 if (rv) {
3268 /* Got an error somehow, just give up. */
3269 dev_warn(intf->si_dev,
3270 PFX "Error sending channel information for channel %d: %d\n",
3271 intf->curr_channel, rv);
3273 intf->channel_list = intf->wchannels + set;
3274 intf->channels_ready = true;
3275 wake_up(&intf->waitq);
3278 out:
3279 return;
3283 * Must be holding intf->bmc_reg_mutex to call this.
3285 static int __scan_channels(ipmi_smi_t intf, struct ipmi_device_id *id)
3287 int rv;
3289 if (ipmi_version_major(id) > 1
3290 || (ipmi_version_major(id) == 1
3291 && ipmi_version_minor(id) >= 5)) {
3292 unsigned int set;
3295 * Start scanning the channels to see what is
3296 * available.
3298 set = !intf->curr_working_cset;
3299 intf->curr_working_cset = set;
3300 memset(&intf->wchannels[set], 0,
3301 sizeof(struct ipmi_channel_set));
3303 intf->null_user_handler = channel_handler;
3304 intf->curr_channel = 0;
3305 rv = send_channel_info_cmd(intf, 0);
3306 if (rv) {
3307 dev_warn(intf->si_dev,
3308 "Error sending channel information for channel 0, %d\n",
3309 rv);
3310 return -EIO;
3313 /* Wait for the channel info to be read. */
3314 wait_event(intf->waitq, intf->channels_ready);
3315 intf->null_user_handler = NULL;
3316 } else {
3317 unsigned int set = intf->curr_working_cset;
3319 /* Assume a single IPMB channel at zero. */
3320 intf->wchannels[set].c[0].medium = IPMI_CHANNEL_MEDIUM_IPMB;
3321 intf->wchannels[set].c[0].protocol = IPMI_CHANNEL_PROTOCOL_IPMB;
3322 intf->channel_list = intf->wchannels + set;
3323 intf->channels_ready = true;
3326 return 0;
3329 static void ipmi_poll(ipmi_smi_t intf)
3331 if (intf->handlers->poll)
3332 intf->handlers->poll(intf->send_info);
3333 /* In case something came in */
3334 handle_new_recv_msgs(intf);
3337 void ipmi_poll_interface(ipmi_user_t user)
3339 ipmi_poll(user->intf);
3341 EXPORT_SYMBOL(ipmi_poll_interface);
3343 static void redo_bmc_reg(struct work_struct *work)
3345 ipmi_smi_t intf = container_of(work, struct ipmi_smi, bmc_reg_work);
3347 if (!intf->in_shutdown)
3348 bmc_get_device_id(intf, NULL, NULL, NULL, NULL);
3350 kref_put(&intf->refcount, intf_free);
3353 int ipmi_register_smi(const struct ipmi_smi_handlers *handlers,
3354 void *send_info,
3355 struct device *si_dev,
3356 unsigned char slave_addr)
3358 int i, j;
3359 int rv;
3360 ipmi_smi_t intf;
3361 ipmi_smi_t tintf;
3362 struct list_head *link;
3363 struct ipmi_device_id id;
3366 * Make sure the driver is actually initialized, this handles
3367 * problems with initialization order.
3369 if (!initialized) {
3370 rv = ipmi_init_msghandler();
3371 if (rv)
3372 return rv;
3374 * The init code doesn't return an error if it was turned
3375 * off, but it won't initialize. Check that.
3377 if (!initialized)
3378 return -ENODEV;
3381 intf = kzalloc(sizeof(*intf), GFP_KERNEL);
3382 if (!intf)
3383 return -ENOMEM;
3385 intf->bmc = &intf->tmp_bmc;
3386 INIT_LIST_HEAD(&intf->bmc->intfs);
3387 mutex_init(&intf->bmc->dyn_mutex);
3388 INIT_LIST_HEAD(&intf->bmc_link);
3389 mutex_init(&intf->bmc_reg_mutex);
3390 intf->intf_num = -1; /* Mark it invalid for now. */
3391 kref_init(&intf->refcount);
3392 INIT_WORK(&intf->bmc_reg_work, redo_bmc_reg);
3393 intf->si_dev = si_dev;
3394 for (j = 0; j < IPMI_MAX_CHANNELS; j++) {
3395 intf->addrinfo[j].address = IPMI_BMC_SLAVE_ADDR;
3396 intf->addrinfo[j].lun = 2;
3398 if (slave_addr != 0)
3399 intf->addrinfo[0].address = slave_addr;
3400 INIT_LIST_HEAD(&intf->users);
3401 intf->handlers = handlers;
3402 intf->send_info = send_info;
3403 spin_lock_init(&intf->seq_lock);
3404 for (j = 0; j < IPMI_IPMB_NUM_SEQ; j++) {
3405 intf->seq_table[j].inuse = 0;
3406 intf->seq_table[j].seqid = 0;
3408 intf->curr_seq = 0;
3409 #ifdef CONFIG_IPMI_PROC_INTERFACE
3410 mutex_init(&intf->proc_entry_lock);
3411 #endif
3412 spin_lock_init(&intf->waiting_rcv_msgs_lock);
3413 INIT_LIST_HEAD(&intf->waiting_rcv_msgs);
3414 tasklet_init(&intf->recv_tasklet,
3415 smi_recv_tasklet,
3416 (unsigned long) intf);
3417 atomic_set(&intf->watchdog_pretimeouts_to_deliver, 0);
3418 spin_lock_init(&intf->xmit_msgs_lock);
3419 INIT_LIST_HEAD(&intf->xmit_msgs);
3420 INIT_LIST_HEAD(&intf->hp_xmit_msgs);
3421 spin_lock_init(&intf->events_lock);
3422 atomic_set(&intf->event_waiters, 0);
3423 intf->ticks_to_req_ev = IPMI_REQUEST_EV_TIME;
3424 INIT_LIST_HEAD(&intf->waiting_events);
3425 intf->waiting_events_count = 0;
3426 mutex_init(&intf->cmd_rcvrs_mutex);
3427 spin_lock_init(&intf->maintenance_mode_lock);
3428 INIT_LIST_HEAD(&intf->cmd_rcvrs);
3429 init_waitqueue_head(&intf->waitq);
3430 for (i = 0; i < IPMI_NUM_STATS; i++)
3431 atomic_set(&intf->stats[i], 0);
3433 #ifdef CONFIG_IPMI_PROC_INTERFACE
3434 intf->proc_dir = NULL;
3435 #endif
3437 mutex_lock(&smi_watchers_mutex);
3438 mutex_lock(&ipmi_interfaces_mutex);
3439 /* Look for a hole in the numbers. */
3440 i = 0;
3441 link = &ipmi_interfaces;
3442 list_for_each_entry_rcu(tintf, &ipmi_interfaces, link) {
3443 if (tintf->intf_num != i) {
3444 link = &tintf->link;
3445 break;
3447 i++;
3449 /* Add the new interface in numeric order. */
3450 if (i == 0)
3451 list_add_rcu(&intf->link, &ipmi_interfaces);
3452 else
3453 list_add_tail_rcu(&intf->link, link);
3455 rv = handlers->start_processing(send_info, intf);
3456 if (rv)
3457 goto out;
3459 rv = __bmc_get_device_id(intf, NULL, &id, NULL, NULL, i);
3460 if (rv) {
3461 dev_err(si_dev, "Unable to get the device id: %d\n", rv);
3462 goto out;
3465 mutex_lock(&intf->bmc_reg_mutex);
3466 rv = __scan_channels(intf, &id);
3467 mutex_unlock(&intf->bmc_reg_mutex);
3468 if (rv)
3469 goto out;
3471 #ifdef CONFIG_IPMI_PROC_INTERFACE
3472 rv = add_proc_entries(intf, i);
3473 #endif
3475 out:
3476 if (rv) {
3477 ipmi_bmc_unregister(intf);
3478 #ifdef CONFIG_IPMI_PROC_INTERFACE
3479 if (intf->proc_dir)
3480 remove_proc_entries(intf);
3481 #endif
3482 intf->handlers = NULL;
3483 list_del_rcu(&intf->link);
3484 mutex_unlock(&ipmi_interfaces_mutex);
3485 mutex_unlock(&smi_watchers_mutex);
3486 synchronize_rcu();
3487 kref_put(&intf->refcount, intf_free);
3488 } else {
3490 * Keep memory order straight for RCU readers. Make
3491 * sure everything else is committed to memory before
3492 * setting intf_num to mark the interface valid.
3494 smp_wmb();
3495 intf->intf_num = i;
3496 mutex_unlock(&ipmi_interfaces_mutex);
3497 /* After this point the interface is legal to use. */
3498 call_smi_watchers(i, intf->si_dev);
3499 mutex_unlock(&smi_watchers_mutex);
3502 return rv;
3504 EXPORT_SYMBOL(ipmi_register_smi);
3506 static void deliver_smi_err_response(ipmi_smi_t intf,
3507 struct ipmi_smi_msg *msg,
3508 unsigned char err)
3510 msg->rsp[0] = msg->data[0] | 4;
3511 msg->rsp[1] = msg->data[1];
3512 msg->rsp[2] = err;
3513 msg->rsp_size = 3;
3514 /* It's an error, so it will never requeue, no need to check return. */
3515 handle_one_recv_msg(intf, msg);
3518 static void cleanup_smi_msgs(ipmi_smi_t intf)
3520 int i;
3521 struct seq_table *ent;
3522 struct ipmi_smi_msg *msg;
3523 struct list_head *entry;
3524 struct list_head tmplist;
3526 /* Clear out our transmit queues and hold the messages. */
3527 INIT_LIST_HEAD(&tmplist);
3528 list_splice_tail(&intf->hp_xmit_msgs, &tmplist);
3529 list_splice_tail(&intf->xmit_msgs, &tmplist);
3531 /* Current message first, to preserve order */
3532 while (intf->curr_msg && !list_empty(&intf->waiting_rcv_msgs)) {
3533 /* Wait for the message to clear out. */
3534 schedule_timeout(1);
3537 /* No need for locks, the interface is down. */
3540 * Return errors for all pending messages in queue and in the
3541 * tables waiting for remote responses.
3543 while (!list_empty(&tmplist)) {
3544 entry = tmplist.next;
3545 list_del(entry);
3546 msg = list_entry(entry, struct ipmi_smi_msg, link);
3547 deliver_smi_err_response(intf, msg, IPMI_ERR_UNSPECIFIED);
3550 for (i = 0; i < IPMI_IPMB_NUM_SEQ; i++) {
3551 ent = &(intf->seq_table[i]);
3552 if (!ent->inuse)
3553 continue;
3554 deliver_err_response(ent->recv_msg, IPMI_ERR_UNSPECIFIED);
3558 int ipmi_unregister_smi(ipmi_smi_t intf)
3560 struct ipmi_smi_watcher *w;
3561 int intf_num = intf->intf_num;
3562 ipmi_user_t user;
3564 mutex_lock(&smi_watchers_mutex);
3565 mutex_lock(&ipmi_interfaces_mutex);
3566 intf->intf_num = -1;
3567 intf->in_shutdown = true;
3568 list_del_rcu(&intf->link);
3569 mutex_unlock(&ipmi_interfaces_mutex);
3570 synchronize_rcu();
3572 cleanup_smi_msgs(intf);
3574 /* Clean up the effects of users on the lower-level software. */
3575 mutex_lock(&ipmi_interfaces_mutex);
3576 rcu_read_lock();
3577 list_for_each_entry_rcu(user, &intf->users, link) {
3578 module_put(intf->handlers->owner);
3579 if (intf->handlers->dec_usecount)
3580 intf->handlers->dec_usecount(intf->send_info);
3582 rcu_read_unlock();
3583 intf->handlers = NULL;
3584 mutex_unlock(&ipmi_interfaces_mutex);
3586 #ifdef CONFIG_IPMI_PROC_INTERFACE
3587 remove_proc_entries(intf);
3588 #endif
3589 ipmi_bmc_unregister(intf);
3592 * Call all the watcher interfaces to tell them that
3593 * an interface is gone.
3595 list_for_each_entry(w, &smi_watchers, link)
3596 w->smi_gone(intf_num);
3597 mutex_unlock(&smi_watchers_mutex);
3599 kref_put(&intf->refcount, intf_free);
3600 return 0;
3602 EXPORT_SYMBOL(ipmi_unregister_smi);
3604 static int handle_ipmb_get_msg_rsp(ipmi_smi_t intf,
3605 struct ipmi_smi_msg *msg)
3607 struct ipmi_ipmb_addr ipmb_addr;
3608 struct ipmi_recv_msg *recv_msg;
3611 * This is 11, not 10, because the response must contain a
3612 * completion code.
3614 if (msg->rsp_size < 11) {
3615 /* Message not big enough, just ignore it. */
3616 ipmi_inc_stat(intf, invalid_ipmb_responses);
3617 return 0;
3620 if (msg->rsp[2] != 0) {
3621 /* An error getting the response, just ignore it. */
3622 return 0;
3625 ipmb_addr.addr_type = IPMI_IPMB_ADDR_TYPE;
3626 ipmb_addr.slave_addr = msg->rsp[6];
3627 ipmb_addr.channel = msg->rsp[3] & 0x0f;
3628 ipmb_addr.lun = msg->rsp[7] & 3;
3631 * It's a response from a remote entity. Look up the sequence
3632 * number and handle the response.
3634 if (intf_find_seq(intf,
3635 msg->rsp[7] >> 2,
3636 msg->rsp[3] & 0x0f,
3637 msg->rsp[8],
3638 (msg->rsp[4] >> 2) & (~1),
3639 (struct ipmi_addr *) &(ipmb_addr),
3640 &recv_msg)) {
3642 * We were unable to find the sequence number,
3643 * so just nuke the message.
3645 ipmi_inc_stat(intf, unhandled_ipmb_responses);
3646 return 0;
3649 memcpy(recv_msg->msg_data,
3650 &(msg->rsp[9]),
3651 msg->rsp_size - 9);
3653 * The other fields matched, so no need to set them, except
3654 * for netfn, which needs to be the response that was
3655 * returned, not the request value.
3657 recv_msg->msg.netfn = msg->rsp[4] >> 2;
3658 recv_msg->msg.data = recv_msg->msg_data;
3659 recv_msg->msg.data_len = msg->rsp_size - 10;
3660 recv_msg->recv_type = IPMI_RESPONSE_RECV_TYPE;
3661 ipmi_inc_stat(intf, handled_ipmb_responses);
3662 deliver_response(recv_msg);
3664 return 0;
3667 static int handle_ipmb_get_msg_cmd(ipmi_smi_t intf,
3668 struct ipmi_smi_msg *msg)
3670 struct cmd_rcvr *rcvr;
3671 int rv = 0;
3672 unsigned char netfn;
3673 unsigned char cmd;
3674 unsigned char chan;
3675 ipmi_user_t user = NULL;
3676 struct ipmi_ipmb_addr *ipmb_addr;
3677 struct ipmi_recv_msg *recv_msg;
3679 if (msg->rsp_size < 10) {
3680 /* Message not big enough, just ignore it. */
3681 ipmi_inc_stat(intf, invalid_commands);
3682 return 0;
3685 if (msg->rsp[2] != 0) {
3686 /* An error getting the response, just ignore it. */
3687 return 0;
3690 netfn = msg->rsp[4] >> 2;
3691 cmd = msg->rsp[8];
3692 chan = msg->rsp[3] & 0xf;
3694 rcu_read_lock();
3695 rcvr = find_cmd_rcvr(intf, netfn, cmd, chan);
3696 if (rcvr) {
3697 user = rcvr->user;
3698 kref_get(&user->refcount);
3699 } else
3700 user = NULL;
3701 rcu_read_unlock();
3703 if (user == NULL) {
3704 /* We didn't find a user, deliver an error response. */
3705 ipmi_inc_stat(intf, unhandled_commands);
3707 msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
3708 msg->data[1] = IPMI_SEND_MSG_CMD;
3709 msg->data[2] = msg->rsp[3];
3710 msg->data[3] = msg->rsp[6];
3711 msg->data[4] = ((netfn + 1) << 2) | (msg->rsp[7] & 0x3);
3712 msg->data[5] = ipmb_checksum(&(msg->data[3]), 2);
3713 msg->data[6] = intf->addrinfo[msg->rsp[3] & 0xf].address;
3714 /* rqseq/lun */
3715 msg->data[7] = (msg->rsp[7] & 0xfc) | (msg->rsp[4] & 0x3);
3716 msg->data[8] = msg->rsp[8]; /* cmd */
3717 msg->data[9] = IPMI_INVALID_CMD_COMPLETION_CODE;
3718 msg->data[10] = ipmb_checksum(&(msg->data[6]), 4);
3719 msg->data_size = 11;
3721 #ifdef DEBUG_MSGING
3723 int m;
3724 printk("Invalid command:");
3725 for (m = 0; m < msg->data_size; m++)
3726 printk(" %2.2x", msg->data[m]);
3727 printk("\n");
3729 #endif
3730 rcu_read_lock();
3731 if (!intf->in_shutdown) {
3732 smi_send(intf, intf->handlers, msg, 0);
3734 * We used the message, so return the value
3735 * that causes it to not be freed or
3736 * queued.
3738 rv = -1;
3740 rcu_read_unlock();
3741 } else {
3742 /* Deliver the message to the user. */
3743 ipmi_inc_stat(intf, handled_commands);
3745 recv_msg = ipmi_alloc_recv_msg();
3746 if (!recv_msg) {
3748 * We couldn't allocate memory for the
3749 * message, so requeue it for handling
3750 * later.
3752 rv = 1;
3753 kref_put(&user->refcount, free_user);
3754 } else {
3755 /* Extract the source address from the data. */
3756 ipmb_addr = (struct ipmi_ipmb_addr *) &recv_msg->addr;
3757 ipmb_addr->addr_type = IPMI_IPMB_ADDR_TYPE;
3758 ipmb_addr->slave_addr = msg->rsp[6];
3759 ipmb_addr->lun = msg->rsp[7] & 3;
3760 ipmb_addr->channel = msg->rsp[3] & 0xf;
3763 * Extract the rest of the message information
3764 * from the IPMB header.
3766 recv_msg->user = user;
3767 recv_msg->recv_type = IPMI_CMD_RECV_TYPE;
3768 recv_msg->msgid = msg->rsp[7] >> 2;
3769 recv_msg->msg.netfn = msg->rsp[4] >> 2;
3770 recv_msg->msg.cmd = msg->rsp[8];
3771 recv_msg->msg.data = recv_msg->msg_data;
3774 * We chop off 10, not 9 bytes because the checksum
3775 * at the end also needs to be removed.
3777 recv_msg->msg.data_len = msg->rsp_size - 10;
3778 memcpy(recv_msg->msg_data,
3779 &(msg->rsp[9]),
3780 msg->rsp_size - 10);
3781 deliver_response(recv_msg);
3785 return rv;
3788 static int handle_lan_get_msg_rsp(ipmi_smi_t intf,
3789 struct ipmi_smi_msg *msg)
3791 struct ipmi_lan_addr lan_addr;
3792 struct ipmi_recv_msg *recv_msg;
3796 * This is 13, not 12, because the response must contain a
3797 * completion code.
3799 if (msg->rsp_size < 13) {
3800 /* Message not big enough, just ignore it. */
3801 ipmi_inc_stat(intf, invalid_lan_responses);
3802 return 0;
3805 if (msg->rsp[2] != 0) {
3806 /* An error getting the response, just ignore it. */
3807 return 0;
3810 lan_addr.addr_type = IPMI_LAN_ADDR_TYPE;
3811 lan_addr.session_handle = msg->rsp[4];
3812 lan_addr.remote_SWID = msg->rsp[8];
3813 lan_addr.local_SWID = msg->rsp[5];
3814 lan_addr.channel = msg->rsp[3] & 0x0f;
3815 lan_addr.privilege = msg->rsp[3] >> 4;
3816 lan_addr.lun = msg->rsp[9] & 3;
3819 * It's a response from a remote entity. Look up the sequence
3820 * number and handle the response.
3822 if (intf_find_seq(intf,
3823 msg->rsp[9] >> 2,
3824 msg->rsp[3] & 0x0f,
3825 msg->rsp[10],
3826 (msg->rsp[6] >> 2) & (~1),
3827 (struct ipmi_addr *) &(lan_addr),
3828 &recv_msg)) {
3830 * We were unable to find the sequence number,
3831 * so just nuke the message.
3833 ipmi_inc_stat(intf, unhandled_lan_responses);
3834 return 0;
3837 memcpy(recv_msg->msg_data,
3838 &(msg->rsp[11]),
3839 msg->rsp_size - 11);
3841 * The other fields matched, so no need to set them, except
3842 * for netfn, which needs to be the response that was
3843 * returned, not the request value.
3845 recv_msg->msg.netfn = msg->rsp[6] >> 2;
3846 recv_msg->msg.data = recv_msg->msg_data;
3847 recv_msg->msg.data_len = msg->rsp_size - 12;
3848 recv_msg->recv_type = IPMI_RESPONSE_RECV_TYPE;
3849 ipmi_inc_stat(intf, handled_lan_responses);
3850 deliver_response(recv_msg);
3852 return 0;
3855 static int handle_lan_get_msg_cmd(ipmi_smi_t intf,
3856 struct ipmi_smi_msg *msg)
3858 struct cmd_rcvr *rcvr;
3859 int rv = 0;
3860 unsigned char netfn;
3861 unsigned char cmd;
3862 unsigned char chan;
3863 ipmi_user_t user = NULL;
3864 struct ipmi_lan_addr *lan_addr;
3865 struct ipmi_recv_msg *recv_msg;
3867 if (msg->rsp_size < 12) {
3868 /* Message not big enough, just ignore it. */
3869 ipmi_inc_stat(intf, invalid_commands);
3870 return 0;
3873 if (msg->rsp[2] != 0) {
3874 /* An error getting the response, just ignore it. */
3875 return 0;
3878 netfn = msg->rsp[6] >> 2;
3879 cmd = msg->rsp[10];
3880 chan = msg->rsp[3] & 0xf;
3882 rcu_read_lock();
3883 rcvr = find_cmd_rcvr(intf, netfn, cmd, chan);
3884 if (rcvr) {
3885 user = rcvr->user;
3886 kref_get(&user->refcount);
3887 } else
3888 user = NULL;
3889 rcu_read_unlock();
3891 if (user == NULL) {
3892 /* We didn't find a user, just give up. */
3893 ipmi_inc_stat(intf, unhandled_commands);
3896 * Don't do anything with these messages, just allow
3897 * them to be freed.
3899 rv = 0;
3900 } else {
3901 /* Deliver the message to the user. */
3902 ipmi_inc_stat(intf, handled_commands);
3904 recv_msg = ipmi_alloc_recv_msg();
3905 if (!recv_msg) {
3907 * We couldn't allocate memory for the
3908 * message, so requeue it for handling later.
3910 rv = 1;
3911 kref_put(&user->refcount, free_user);
3912 } else {
3913 /* Extract the source address from the data. */
3914 lan_addr = (struct ipmi_lan_addr *) &recv_msg->addr;
3915 lan_addr->addr_type = IPMI_LAN_ADDR_TYPE;
3916 lan_addr->session_handle = msg->rsp[4];
3917 lan_addr->remote_SWID = msg->rsp[8];
3918 lan_addr->local_SWID = msg->rsp[5];
3919 lan_addr->lun = msg->rsp[9] & 3;
3920 lan_addr->channel = msg->rsp[3] & 0xf;
3921 lan_addr->privilege = msg->rsp[3] >> 4;
3924 * Extract the rest of the message information
3925 * from the IPMB header.
3927 recv_msg->user = user;
3928 recv_msg->recv_type = IPMI_CMD_RECV_TYPE;
3929 recv_msg->msgid = msg->rsp[9] >> 2;
3930 recv_msg->msg.netfn = msg->rsp[6] >> 2;
3931 recv_msg->msg.cmd = msg->rsp[10];
3932 recv_msg->msg.data = recv_msg->msg_data;
3935 * We chop off 12, not 11 bytes because the checksum
3936 * at the end also needs to be removed.
3938 recv_msg->msg.data_len = msg->rsp_size - 12;
3939 memcpy(recv_msg->msg_data,
3940 &(msg->rsp[11]),
3941 msg->rsp_size - 12);
3942 deliver_response(recv_msg);
3946 return rv;
3950 * This routine will handle "Get Message" command responses with
3951 * channels that use an OEM Medium. The message format belongs to
3952 * the OEM. See IPMI 2.0 specification, Chapter 6 and
3953 * Chapter 22, sections 22.6 and 22.24 for more details.
3955 static int handle_oem_get_msg_cmd(ipmi_smi_t intf,
3956 struct ipmi_smi_msg *msg)
3958 struct cmd_rcvr *rcvr;
3959 int rv = 0;
3960 unsigned char netfn;
3961 unsigned char cmd;
3962 unsigned char chan;
3963 ipmi_user_t user = NULL;
3964 struct ipmi_system_interface_addr *smi_addr;
3965 struct ipmi_recv_msg *recv_msg;
3968 * We expect the OEM SW to perform error checking
3969 * so we just do some basic sanity checks
3971 if (msg->rsp_size < 4) {
3972 /* Message not big enough, just ignore it. */
3973 ipmi_inc_stat(intf, invalid_commands);
3974 return 0;
3977 if (msg->rsp[2] != 0) {
3978 /* An error getting the response, just ignore it. */
3979 return 0;
3983 * This is an OEM Message so the OEM needs to know how
3984 * handle the message. We do no interpretation.
3986 netfn = msg->rsp[0] >> 2;
3987 cmd = msg->rsp[1];
3988 chan = msg->rsp[3] & 0xf;
3990 rcu_read_lock();
3991 rcvr = find_cmd_rcvr(intf, netfn, cmd, chan);
3992 if (rcvr) {
3993 user = rcvr->user;
3994 kref_get(&user->refcount);
3995 } else
3996 user = NULL;
3997 rcu_read_unlock();
3999 if (user == NULL) {
4000 /* We didn't find a user, just give up. */
4001 ipmi_inc_stat(intf, unhandled_commands);
4004 * Don't do anything with these messages, just allow
4005 * them to be freed.
4008 rv = 0;
4009 } else {
4010 /* Deliver the message to the user. */
4011 ipmi_inc_stat(intf, handled_commands);
4013 recv_msg = ipmi_alloc_recv_msg();
4014 if (!recv_msg) {
4016 * We couldn't allocate memory for the
4017 * message, so requeue it for handling
4018 * later.
4020 rv = 1;
4021 kref_put(&user->refcount, free_user);
4022 } else {
4024 * OEM Messages are expected to be delivered via
4025 * the system interface to SMS software. We might
4026 * need to visit this again depending on OEM
4027 * requirements
4029 smi_addr = ((struct ipmi_system_interface_addr *)
4030 &(recv_msg->addr));
4031 smi_addr->addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
4032 smi_addr->channel = IPMI_BMC_CHANNEL;
4033 smi_addr->lun = msg->rsp[0] & 3;
4035 recv_msg->user = user;
4036 recv_msg->user_msg_data = NULL;
4037 recv_msg->recv_type = IPMI_OEM_RECV_TYPE;
4038 recv_msg->msg.netfn = msg->rsp[0] >> 2;
4039 recv_msg->msg.cmd = msg->rsp[1];
4040 recv_msg->msg.data = recv_msg->msg_data;
4043 * The message starts at byte 4 which follows the
4044 * the Channel Byte in the "GET MESSAGE" command
4046 recv_msg->msg.data_len = msg->rsp_size - 4;
4047 memcpy(recv_msg->msg_data,
4048 &(msg->rsp[4]),
4049 msg->rsp_size - 4);
4050 deliver_response(recv_msg);
4054 return rv;
4057 static void copy_event_into_recv_msg(struct ipmi_recv_msg *recv_msg,
4058 struct ipmi_smi_msg *msg)
4060 struct ipmi_system_interface_addr *smi_addr;
4062 recv_msg->msgid = 0;
4063 smi_addr = (struct ipmi_system_interface_addr *) &(recv_msg->addr);
4064 smi_addr->addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
4065 smi_addr->channel = IPMI_BMC_CHANNEL;
4066 smi_addr->lun = msg->rsp[0] & 3;
4067 recv_msg->recv_type = IPMI_ASYNC_EVENT_RECV_TYPE;
4068 recv_msg->msg.netfn = msg->rsp[0] >> 2;
4069 recv_msg->msg.cmd = msg->rsp[1];
4070 memcpy(recv_msg->msg_data, &(msg->rsp[3]), msg->rsp_size - 3);
4071 recv_msg->msg.data = recv_msg->msg_data;
4072 recv_msg->msg.data_len = msg->rsp_size - 3;
4075 static int handle_read_event_rsp(ipmi_smi_t intf,
4076 struct ipmi_smi_msg *msg)
4078 struct ipmi_recv_msg *recv_msg, *recv_msg2;
4079 struct list_head msgs;
4080 ipmi_user_t user;
4081 int rv = 0;
4082 int deliver_count = 0;
4083 unsigned long flags;
4085 if (msg->rsp_size < 19) {
4086 /* Message is too small to be an IPMB event. */
4087 ipmi_inc_stat(intf, invalid_events);
4088 return 0;
4091 if (msg->rsp[2] != 0) {
4092 /* An error getting the event, just ignore it. */
4093 return 0;
4096 INIT_LIST_HEAD(&msgs);
4098 spin_lock_irqsave(&intf->events_lock, flags);
4100 ipmi_inc_stat(intf, events);
4103 * Allocate and fill in one message for every user that is
4104 * getting events.
4106 rcu_read_lock();
4107 list_for_each_entry_rcu(user, &intf->users, link) {
4108 if (!user->gets_events)
4109 continue;
4111 recv_msg = ipmi_alloc_recv_msg();
4112 if (!recv_msg) {
4113 rcu_read_unlock();
4114 list_for_each_entry_safe(recv_msg, recv_msg2, &msgs,
4115 link) {
4116 list_del(&recv_msg->link);
4117 ipmi_free_recv_msg(recv_msg);
4120 * We couldn't allocate memory for the
4121 * message, so requeue it for handling
4122 * later.
4124 rv = 1;
4125 goto out;
4128 deliver_count++;
4130 copy_event_into_recv_msg(recv_msg, msg);
4131 recv_msg->user = user;
4132 kref_get(&user->refcount);
4133 list_add_tail(&(recv_msg->link), &msgs);
4135 rcu_read_unlock();
4137 if (deliver_count) {
4138 /* Now deliver all the messages. */
4139 list_for_each_entry_safe(recv_msg, recv_msg2, &msgs, link) {
4140 list_del(&recv_msg->link);
4141 deliver_response(recv_msg);
4143 } else if (intf->waiting_events_count < MAX_EVENTS_IN_QUEUE) {
4145 * No one to receive the message, put it in queue if there's
4146 * not already too many things in the queue.
4148 recv_msg = ipmi_alloc_recv_msg();
4149 if (!recv_msg) {
4151 * We couldn't allocate memory for the
4152 * message, so requeue it for handling
4153 * later.
4155 rv = 1;
4156 goto out;
4159 copy_event_into_recv_msg(recv_msg, msg);
4160 list_add_tail(&(recv_msg->link), &(intf->waiting_events));
4161 intf->waiting_events_count++;
4162 } else if (!intf->event_msg_printed) {
4164 * There's too many things in the queue, discard this
4165 * message.
4167 dev_warn(intf->si_dev,
4168 PFX "Event queue full, discarding incoming events\n");
4169 intf->event_msg_printed = 1;
4172 out:
4173 spin_unlock_irqrestore(&(intf->events_lock), flags);
4175 return rv;
4178 static int handle_bmc_rsp(ipmi_smi_t intf,
4179 struct ipmi_smi_msg *msg)
4181 struct ipmi_recv_msg *recv_msg;
4182 struct ipmi_user *user;
4184 recv_msg = (struct ipmi_recv_msg *) msg->user_data;
4185 if (recv_msg == NULL) {
4186 dev_warn(intf->si_dev,
4187 "IPMI message received with no owner. This could be because of a malformed message, or because of a hardware error. Contact your hardware vender for assistance\n");
4188 return 0;
4191 user = recv_msg->user;
4192 /* Make sure the user still exists. */
4193 if (user && !user->valid) {
4194 /* The user for the message went away, so give up. */
4195 ipmi_inc_stat(intf, unhandled_local_responses);
4196 ipmi_free_recv_msg(recv_msg);
4197 } else {
4198 struct ipmi_system_interface_addr *smi_addr;
4200 ipmi_inc_stat(intf, handled_local_responses);
4201 recv_msg->recv_type = IPMI_RESPONSE_RECV_TYPE;
4202 recv_msg->msgid = msg->msgid;
4203 smi_addr = ((struct ipmi_system_interface_addr *)
4204 &(recv_msg->addr));
4205 smi_addr->addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
4206 smi_addr->channel = IPMI_BMC_CHANNEL;
4207 smi_addr->lun = msg->rsp[0] & 3;
4208 recv_msg->msg.netfn = msg->rsp[0] >> 2;
4209 recv_msg->msg.cmd = msg->rsp[1];
4210 memcpy(recv_msg->msg_data,
4211 &(msg->rsp[2]),
4212 msg->rsp_size - 2);
4213 recv_msg->msg.data = recv_msg->msg_data;
4214 recv_msg->msg.data_len = msg->rsp_size - 2;
4215 deliver_response(recv_msg);
4218 return 0;
4222 * Handle a received message. Return 1 if the message should be requeued,
4223 * 0 if the message should be freed, or -1 if the message should not
4224 * be freed or requeued.
4226 static int handle_one_recv_msg(ipmi_smi_t intf,
4227 struct ipmi_smi_msg *msg)
4229 int requeue;
4230 int chan;
4232 #ifdef DEBUG_MSGING
4233 int m;
4234 printk("Recv:");
4235 for (m = 0; m < msg->rsp_size; m++)
4236 printk(" %2.2x", msg->rsp[m]);
4237 printk("\n");
4238 #endif
4239 if (msg->rsp_size < 2) {
4240 /* Message is too small to be correct. */
4241 dev_warn(intf->si_dev,
4242 PFX "BMC returned to small a message for netfn %x cmd %x, got %d bytes\n",
4243 (msg->data[0] >> 2) | 1, msg->data[1], msg->rsp_size);
4245 /* Generate an error response for the message. */
4246 msg->rsp[0] = msg->data[0] | (1 << 2);
4247 msg->rsp[1] = msg->data[1];
4248 msg->rsp[2] = IPMI_ERR_UNSPECIFIED;
4249 msg->rsp_size = 3;
4250 } else if (((msg->rsp[0] >> 2) != ((msg->data[0] >> 2) | 1))
4251 || (msg->rsp[1] != msg->data[1])) {
4253 * The NetFN and Command in the response is not even
4254 * marginally correct.
4256 dev_warn(intf->si_dev,
4257 PFX "BMC returned incorrect response, expected netfn %x cmd %x, got netfn %x cmd %x\n",
4258 (msg->data[0] >> 2) | 1, msg->data[1],
4259 msg->rsp[0] >> 2, msg->rsp[1]);
4261 /* Generate an error response for the message. */
4262 msg->rsp[0] = msg->data[0] | (1 << 2);
4263 msg->rsp[1] = msg->data[1];
4264 msg->rsp[2] = IPMI_ERR_UNSPECIFIED;
4265 msg->rsp_size = 3;
4268 if ((msg->rsp[0] == ((IPMI_NETFN_APP_REQUEST|1) << 2))
4269 && (msg->rsp[1] == IPMI_SEND_MSG_CMD)
4270 && (msg->user_data != NULL)) {
4272 * It's a response to a response we sent. For this we
4273 * deliver a send message response to the user.
4275 struct ipmi_recv_msg *recv_msg = msg->user_data;
4277 requeue = 0;
4278 if (msg->rsp_size < 2)
4279 /* Message is too small to be correct. */
4280 goto out;
4282 chan = msg->data[2] & 0x0f;
4283 if (chan >= IPMI_MAX_CHANNELS)
4284 /* Invalid channel number */
4285 goto out;
4287 if (!recv_msg)
4288 goto out;
4290 /* Make sure the user still exists. */
4291 if (!recv_msg->user || !recv_msg->user->valid)
4292 goto out;
4294 recv_msg->recv_type = IPMI_RESPONSE_RESPONSE_TYPE;
4295 recv_msg->msg.data = recv_msg->msg_data;
4296 recv_msg->msg.data_len = 1;
4297 recv_msg->msg_data[0] = msg->rsp[2];
4298 deliver_response(recv_msg);
4299 } else if ((msg->rsp[0] == ((IPMI_NETFN_APP_REQUEST|1) << 2))
4300 && (msg->rsp[1] == IPMI_GET_MSG_CMD)) {
4301 struct ipmi_channel *chans;
4303 /* It's from the receive queue. */
4304 chan = msg->rsp[3] & 0xf;
4305 if (chan >= IPMI_MAX_CHANNELS) {
4306 /* Invalid channel number */
4307 requeue = 0;
4308 goto out;
4312 * We need to make sure the channels have been initialized.
4313 * The channel_handler routine will set the "curr_channel"
4314 * equal to or greater than IPMI_MAX_CHANNELS when all the
4315 * channels for this interface have been initialized.
4317 if (!intf->channels_ready) {
4318 requeue = 0; /* Throw the message away */
4319 goto out;
4322 chans = READ_ONCE(intf->channel_list)->c;
4324 switch (chans[chan].medium) {
4325 case IPMI_CHANNEL_MEDIUM_IPMB:
4326 if (msg->rsp[4] & 0x04) {
4328 * It's a response, so find the
4329 * requesting message and send it up.
4331 requeue = handle_ipmb_get_msg_rsp(intf, msg);
4332 } else {
4334 * It's a command to the SMS from some other
4335 * entity. Handle that.
4337 requeue = handle_ipmb_get_msg_cmd(intf, msg);
4339 break;
4341 case IPMI_CHANNEL_MEDIUM_8023LAN:
4342 case IPMI_CHANNEL_MEDIUM_ASYNC:
4343 if (msg->rsp[6] & 0x04) {
4345 * It's a response, so find the
4346 * requesting message and send it up.
4348 requeue = handle_lan_get_msg_rsp(intf, msg);
4349 } else {
4351 * It's a command to the SMS from some other
4352 * entity. Handle that.
4354 requeue = handle_lan_get_msg_cmd(intf, msg);
4356 break;
4358 default:
4359 /* Check for OEM Channels. Clients had better
4360 register for these commands. */
4361 if ((chans[chan].medium >= IPMI_CHANNEL_MEDIUM_OEM_MIN)
4362 && (chans[chan].medium
4363 <= IPMI_CHANNEL_MEDIUM_OEM_MAX)) {
4364 requeue = handle_oem_get_msg_cmd(intf, msg);
4365 } else {
4367 * We don't handle the channel type, so just
4368 * free the message.
4370 requeue = 0;
4374 } else if ((msg->rsp[0] == ((IPMI_NETFN_APP_REQUEST|1) << 2))
4375 && (msg->rsp[1] == IPMI_READ_EVENT_MSG_BUFFER_CMD)) {
4376 /* It's an asynchronous event. */
4377 requeue = handle_read_event_rsp(intf, msg);
4378 } else {
4379 /* It's a response from the local BMC. */
4380 requeue = handle_bmc_rsp(intf, msg);
4383 out:
4384 return requeue;
4388 * If there are messages in the queue or pretimeouts, handle them.
4390 static void handle_new_recv_msgs(ipmi_smi_t intf)
4392 struct ipmi_smi_msg *smi_msg;
4393 unsigned long flags = 0;
4394 int rv;
4395 int run_to_completion = intf->run_to_completion;
4397 /* See if any waiting messages need to be processed. */
4398 if (!run_to_completion)
4399 spin_lock_irqsave(&intf->waiting_rcv_msgs_lock, flags);
4400 while (!list_empty(&intf->waiting_rcv_msgs)) {
4401 smi_msg = list_entry(intf->waiting_rcv_msgs.next,
4402 struct ipmi_smi_msg, link);
4403 list_del(&smi_msg->link);
4404 if (!run_to_completion)
4405 spin_unlock_irqrestore(&intf->waiting_rcv_msgs_lock,
4406 flags);
4407 rv = handle_one_recv_msg(intf, smi_msg);
4408 if (!run_to_completion)
4409 spin_lock_irqsave(&intf->waiting_rcv_msgs_lock, flags);
4410 if (rv > 0) {
4412 * To preserve message order, quit if we
4413 * can't handle a message. Add the message
4414 * back at the head, this is safe because this
4415 * tasklet is the only thing that pulls the
4416 * messages.
4418 list_add(&smi_msg->link, &intf->waiting_rcv_msgs);
4419 break;
4420 } else {
4421 if (rv == 0)
4422 /* Message handled */
4423 ipmi_free_smi_msg(smi_msg);
4424 /* If rv < 0, fatal error, del but don't free. */
4427 if (!run_to_completion)
4428 spin_unlock_irqrestore(&intf->waiting_rcv_msgs_lock, flags);
4431 * If the pretimout count is non-zero, decrement one from it and
4432 * deliver pretimeouts to all the users.
4434 if (atomic_add_unless(&intf->watchdog_pretimeouts_to_deliver, -1, 0)) {
4435 ipmi_user_t user;
4437 rcu_read_lock();
4438 list_for_each_entry_rcu(user, &intf->users, link) {
4439 if (user->handler->ipmi_watchdog_pretimeout)
4440 user->handler->ipmi_watchdog_pretimeout(
4441 user->handler_data);
4443 rcu_read_unlock();
4447 static void smi_recv_tasklet(unsigned long val)
4449 unsigned long flags = 0; /* keep us warning-free. */
4450 ipmi_smi_t intf = (ipmi_smi_t) val;
4451 int run_to_completion = intf->run_to_completion;
4452 struct ipmi_smi_msg *newmsg = NULL;
4455 * Start the next message if available.
4457 * Do this here, not in the actual receiver, because we may deadlock
4458 * because the lower layer is allowed to hold locks while calling
4459 * message delivery.
4462 rcu_read_lock();
4464 if (!run_to_completion)
4465 spin_lock_irqsave(&intf->xmit_msgs_lock, flags);
4466 if (intf->curr_msg == NULL && !intf->in_shutdown) {
4467 struct list_head *entry = NULL;
4469 /* Pick the high priority queue first. */
4470 if (!list_empty(&intf->hp_xmit_msgs))
4471 entry = intf->hp_xmit_msgs.next;
4472 else if (!list_empty(&intf->xmit_msgs))
4473 entry = intf->xmit_msgs.next;
4475 if (entry) {
4476 list_del(entry);
4477 newmsg = list_entry(entry, struct ipmi_smi_msg, link);
4478 intf->curr_msg = newmsg;
4481 if (!run_to_completion)
4482 spin_unlock_irqrestore(&intf->xmit_msgs_lock, flags);
4483 if (newmsg)
4484 intf->handlers->sender(intf->send_info, newmsg);
4486 rcu_read_unlock();
4488 handle_new_recv_msgs(intf);
4491 /* Handle a new message from the lower layer. */
4492 void ipmi_smi_msg_received(ipmi_smi_t intf,
4493 struct ipmi_smi_msg *msg)
4495 unsigned long flags = 0; /* keep us warning-free. */
4496 int run_to_completion = intf->run_to_completion;
4498 if ((msg->data_size >= 2)
4499 && (msg->data[0] == (IPMI_NETFN_APP_REQUEST << 2))
4500 && (msg->data[1] == IPMI_SEND_MSG_CMD)
4501 && (msg->user_data == NULL)) {
4503 if (intf->in_shutdown)
4504 goto free_msg;
4507 * This is the local response to a command send, start
4508 * the timer for these. The user_data will not be
4509 * NULL if this is a response send, and we will let
4510 * response sends just go through.
4514 * Check for errors, if we get certain errors (ones
4515 * that mean basically we can try again later), we
4516 * ignore them and start the timer. Otherwise we
4517 * report the error immediately.
4519 if ((msg->rsp_size >= 3) && (msg->rsp[2] != 0)
4520 && (msg->rsp[2] != IPMI_NODE_BUSY_ERR)
4521 && (msg->rsp[2] != IPMI_LOST_ARBITRATION_ERR)
4522 && (msg->rsp[2] != IPMI_BUS_ERR)
4523 && (msg->rsp[2] != IPMI_NAK_ON_WRITE_ERR)) {
4524 int ch = msg->rsp[3] & 0xf;
4525 struct ipmi_channel *chans;
4527 /* Got an error sending the message, handle it. */
4529 chans = READ_ONCE(intf->channel_list)->c;
4530 if ((chans[ch].medium == IPMI_CHANNEL_MEDIUM_8023LAN)
4531 || (chans[ch].medium == IPMI_CHANNEL_MEDIUM_ASYNC))
4532 ipmi_inc_stat(intf, sent_lan_command_errs);
4533 else
4534 ipmi_inc_stat(intf, sent_ipmb_command_errs);
4535 intf_err_seq(intf, msg->msgid, msg->rsp[2]);
4536 } else
4537 /* The message was sent, start the timer. */
4538 intf_start_seq_timer(intf, msg->msgid);
4540 free_msg:
4541 ipmi_free_smi_msg(msg);
4542 } else {
4544 * To preserve message order, we keep a queue and deliver from
4545 * a tasklet.
4547 if (!run_to_completion)
4548 spin_lock_irqsave(&intf->waiting_rcv_msgs_lock, flags);
4549 list_add_tail(&msg->link, &intf->waiting_rcv_msgs);
4550 if (!run_to_completion)
4551 spin_unlock_irqrestore(&intf->waiting_rcv_msgs_lock,
4552 flags);
4555 if (!run_to_completion)
4556 spin_lock_irqsave(&intf->xmit_msgs_lock, flags);
4558 * We can get an asynchronous event or receive message in addition
4559 * to commands we send.
4561 if (msg == intf->curr_msg)
4562 intf->curr_msg = NULL;
4563 if (!run_to_completion)
4564 spin_unlock_irqrestore(&intf->xmit_msgs_lock, flags);
4566 if (run_to_completion)
4567 smi_recv_tasklet((unsigned long) intf);
4568 else
4569 tasklet_schedule(&intf->recv_tasklet);
4571 EXPORT_SYMBOL(ipmi_smi_msg_received);
4573 void ipmi_smi_watchdog_pretimeout(ipmi_smi_t intf)
4575 if (intf->in_shutdown)
4576 return;
4578 atomic_set(&intf->watchdog_pretimeouts_to_deliver, 1);
4579 tasklet_schedule(&intf->recv_tasklet);
4581 EXPORT_SYMBOL(ipmi_smi_watchdog_pretimeout);
4583 static struct ipmi_smi_msg *
4584 smi_from_recv_msg(ipmi_smi_t intf, struct ipmi_recv_msg *recv_msg,
4585 unsigned char seq, long seqid)
4587 struct ipmi_smi_msg *smi_msg = ipmi_alloc_smi_msg();
4588 if (!smi_msg)
4590 * If we can't allocate the message, then just return, we
4591 * get 4 retries, so this should be ok.
4593 return NULL;
4595 memcpy(smi_msg->data, recv_msg->msg.data, recv_msg->msg.data_len);
4596 smi_msg->data_size = recv_msg->msg.data_len;
4597 smi_msg->msgid = STORE_SEQ_IN_MSGID(seq, seqid);
4599 #ifdef DEBUG_MSGING
4601 int m;
4602 printk("Resend: ");
4603 for (m = 0; m < smi_msg->data_size; m++)
4604 printk(" %2.2x", smi_msg->data[m]);
4605 printk("\n");
4607 #endif
4608 return smi_msg;
4611 static void check_msg_timeout(ipmi_smi_t intf, struct seq_table *ent,
4612 struct list_head *timeouts,
4613 unsigned long timeout_period,
4614 int slot, unsigned long *flags,
4615 unsigned int *waiting_msgs)
4617 struct ipmi_recv_msg *msg;
4618 const struct ipmi_smi_handlers *handlers;
4620 if (intf->in_shutdown)
4621 return;
4623 if (!ent->inuse)
4624 return;
4626 if (timeout_period < ent->timeout) {
4627 ent->timeout -= timeout_period;
4628 (*waiting_msgs)++;
4629 return;
4632 if (ent->retries_left == 0) {
4633 /* The message has used all its retries. */
4634 ent->inuse = 0;
4635 msg = ent->recv_msg;
4636 list_add_tail(&msg->link, timeouts);
4637 if (ent->broadcast)
4638 ipmi_inc_stat(intf, timed_out_ipmb_broadcasts);
4639 else if (is_lan_addr(&ent->recv_msg->addr))
4640 ipmi_inc_stat(intf, timed_out_lan_commands);
4641 else
4642 ipmi_inc_stat(intf, timed_out_ipmb_commands);
4643 } else {
4644 struct ipmi_smi_msg *smi_msg;
4645 /* More retries, send again. */
4647 (*waiting_msgs)++;
4650 * Start with the max timer, set to normal timer after
4651 * the message is sent.
4653 ent->timeout = MAX_MSG_TIMEOUT;
4654 ent->retries_left--;
4655 smi_msg = smi_from_recv_msg(intf, ent->recv_msg, slot,
4656 ent->seqid);
4657 if (!smi_msg) {
4658 if (is_lan_addr(&ent->recv_msg->addr))
4659 ipmi_inc_stat(intf,
4660 dropped_rexmit_lan_commands);
4661 else
4662 ipmi_inc_stat(intf,
4663 dropped_rexmit_ipmb_commands);
4664 return;
4667 spin_unlock_irqrestore(&intf->seq_lock, *flags);
4670 * Send the new message. We send with a zero
4671 * priority. It timed out, I doubt time is that
4672 * critical now, and high priority messages are really
4673 * only for messages to the local MC, which don't get
4674 * resent.
4676 handlers = intf->handlers;
4677 if (handlers) {
4678 if (is_lan_addr(&ent->recv_msg->addr))
4679 ipmi_inc_stat(intf,
4680 retransmitted_lan_commands);
4681 else
4682 ipmi_inc_stat(intf,
4683 retransmitted_ipmb_commands);
4685 smi_send(intf, handlers, smi_msg, 0);
4686 } else
4687 ipmi_free_smi_msg(smi_msg);
4689 spin_lock_irqsave(&intf->seq_lock, *flags);
4693 static unsigned int ipmi_timeout_handler(ipmi_smi_t intf,
4694 unsigned long timeout_period)
4696 struct list_head timeouts;
4697 struct ipmi_recv_msg *msg, *msg2;
4698 unsigned long flags;
4699 int i;
4700 unsigned int waiting_msgs = 0;
4702 if (!intf->bmc_registered) {
4703 kref_get(&intf->refcount);
4704 if (!schedule_work(&intf->bmc_reg_work)) {
4705 kref_put(&intf->refcount, intf_free);
4706 waiting_msgs++;
4711 * Go through the seq table and find any messages that
4712 * have timed out, putting them in the timeouts
4713 * list.
4715 INIT_LIST_HEAD(&timeouts);
4716 spin_lock_irqsave(&intf->seq_lock, flags);
4717 for (i = 0; i < IPMI_IPMB_NUM_SEQ; i++)
4718 check_msg_timeout(intf, &(intf->seq_table[i]),
4719 &timeouts, timeout_period, i,
4720 &flags, &waiting_msgs);
4721 spin_unlock_irqrestore(&intf->seq_lock, flags);
4723 list_for_each_entry_safe(msg, msg2, &timeouts, link)
4724 deliver_err_response(msg, IPMI_TIMEOUT_COMPLETION_CODE);
4727 * Maintenance mode handling. Check the timeout
4728 * optimistically before we claim the lock. It may
4729 * mean a timeout gets missed occasionally, but that
4730 * only means the timeout gets extended by one period
4731 * in that case. No big deal, and it avoids the lock
4732 * most of the time.
4734 if (intf->auto_maintenance_timeout > 0) {
4735 spin_lock_irqsave(&intf->maintenance_mode_lock, flags);
4736 if (intf->auto_maintenance_timeout > 0) {
4737 intf->auto_maintenance_timeout
4738 -= timeout_period;
4739 if (!intf->maintenance_mode
4740 && (intf->auto_maintenance_timeout <= 0)) {
4741 intf->maintenance_mode_enable = false;
4742 maintenance_mode_update(intf);
4745 spin_unlock_irqrestore(&intf->maintenance_mode_lock,
4746 flags);
4749 tasklet_schedule(&intf->recv_tasklet);
4751 return waiting_msgs;
4754 static void ipmi_request_event(ipmi_smi_t intf)
4756 /* No event requests when in maintenance mode. */
4757 if (intf->maintenance_mode_enable)
4758 return;
4760 if (!intf->in_shutdown)
4761 intf->handlers->request_events(intf->send_info);
4764 static struct timer_list ipmi_timer;
4766 static atomic_t stop_operation;
4768 static void ipmi_timeout(struct timer_list *unused)
4770 ipmi_smi_t intf;
4771 int nt = 0;
4773 if (atomic_read(&stop_operation))
4774 return;
4776 rcu_read_lock();
4777 list_for_each_entry_rcu(intf, &ipmi_interfaces, link) {
4778 int lnt = 0;
4780 if (atomic_read(&intf->event_waiters)) {
4781 intf->ticks_to_req_ev--;
4782 if (intf->ticks_to_req_ev == 0) {
4783 ipmi_request_event(intf);
4784 intf->ticks_to_req_ev = IPMI_REQUEST_EV_TIME;
4786 lnt++;
4789 lnt += ipmi_timeout_handler(intf, IPMI_TIMEOUT_TIME);
4791 lnt = !!lnt;
4792 if (lnt != intf->last_needs_timer &&
4793 intf->handlers->set_need_watch)
4794 intf->handlers->set_need_watch(intf->send_info, lnt);
4795 intf->last_needs_timer = lnt;
4797 nt += lnt;
4799 rcu_read_unlock();
4801 if (nt)
4802 mod_timer(&ipmi_timer, jiffies + IPMI_TIMEOUT_JIFFIES);
4805 static void need_waiter(ipmi_smi_t intf)
4807 /* Racy, but worst case we start the timer twice. */
4808 if (!timer_pending(&ipmi_timer))
4809 mod_timer(&ipmi_timer, jiffies + IPMI_TIMEOUT_JIFFIES);
4812 static atomic_t smi_msg_inuse_count = ATOMIC_INIT(0);
4813 static atomic_t recv_msg_inuse_count = ATOMIC_INIT(0);
4815 static void free_smi_msg(struct ipmi_smi_msg *msg)
4817 atomic_dec(&smi_msg_inuse_count);
4818 kfree(msg);
4821 struct ipmi_smi_msg *ipmi_alloc_smi_msg(void)
4823 struct ipmi_smi_msg *rv;
4824 rv = kmalloc(sizeof(struct ipmi_smi_msg), GFP_ATOMIC);
4825 if (rv) {
4826 rv->done = free_smi_msg;
4827 rv->user_data = NULL;
4828 atomic_inc(&smi_msg_inuse_count);
4830 return rv;
4832 EXPORT_SYMBOL(ipmi_alloc_smi_msg);
4834 static void free_recv_msg(struct ipmi_recv_msg *msg)
4836 atomic_dec(&recv_msg_inuse_count);
4837 kfree(msg);
4840 static struct ipmi_recv_msg *ipmi_alloc_recv_msg(void)
4842 struct ipmi_recv_msg *rv;
4844 rv = kmalloc(sizeof(struct ipmi_recv_msg), GFP_ATOMIC);
4845 if (rv) {
4846 rv->user = NULL;
4847 rv->done = free_recv_msg;
4848 atomic_inc(&recv_msg_inuse_count);
4850 return rv;
4853 void ipmi_free_recv_msg(struct ipmi_recv_msg *msg)
4855 if (msg->user)
4856 kref_put(&msg->user->refcount, free_user);
4857 msg->done(msg);
4859 EXPORT_SYMBOL(ipmi_free_recv_msg);
4861 static atomic_t panic_done_count = ATOMIC_INIT(0);
4863 static void dummy_smi_done_handler(struct ipmi_smi_msg *msg)
4865 atomic_dec(&panic_done_count);
4868 static void dummy_recv_done_handler(struct ipmi_recv_msg *msg)
4870 atomic_dec(&panic_done_count);
4874 * Inside a panic, send a message and wait for a response.
4876 static void ipmi_panic_request_and_wait(ipmi_smi_t intf,
4877 struct ipmi_addr *addr,
4878 struct kernel_ipmi_msg *msg)
4880 struct ipmi_smi_msg smi_msg;
4881 struct ipmi_recv_msg recv_msg;
4882 int rv;
4884 smi_msg.done = dummy_smi_done_handler;
4885 recv_msg.done = dummy_recv_done_handler;
4886 atomic_add(2, &panic_done_count);
4887 rv = i_ipmi_request(NULL,
4888 intf,
4889 addr,
4891 msg,
4892 intf,
4893 &smi_msg,
4894 &recv_msg,
4896 intf->addrinfo[0].address,
4897 intf->addrinfo[0].lun,
4898 0, 1); /* Don't retry, and don't wait. */
4899 if (rv)
4900 atomic_sub(2, &panic_done_count);
4901 else if (intf->handlers->flush_messages)
4902 intf->handlers->flush_messages(intf->send_info);
4904 while (atomic_read(&panic_done_count) != 0)
4905 ipmi_poll(intf);
4908 static void event_receiver_fetcher(ipmi_smi_t intf, struct ipmi_recv_msg *msg)
4910 if ((msg->addr.addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE)
4911 && (msg->msg.netfn == IPMI_NETFN_SENSOR_EVENT_RESPONSE)
4912 && (msg->msg.cmd == IPMI_GET_EVENT_RECEIVER_CMD)
4913 && (msg->msg.data[0] == IPMI_CC_NO_ERROR)) {
4914 /* A get event receiver command, save it. */
4915 intf->event_receiver = msg->msg.data[1];
4916 intf->event_receiver_lun = msg->msg.data[2] & 0x3;
4920 static void device_id_fetcher(ipmi_smi_t intf, struct ipmi_recv_msg *msg)
4922 if ((msg->addr.addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE)
4923 && (msg->msg.netfn == IPMI_NETFN_APP_RESPONSE)
4924 && (msg->msg.cmd == IPMI_GET_DEVICE_ID_CMD)
4925 && (msg->msg.data[0] == IPMI_CC_NO_ERROR)) {
4927 * A get device id command, save if we are an event
4928 * receiver or generator.
4930 intf->local_sel_device = (msg->msg.data[6] >> 2) & 1;
4931 intf->local_event_generator = (msg->msg.data[6] >> 5) & 1;
4935 static void send_panic_events(char *str)
4937 struct kernel_ipmi_msg msg;
4938 ipmi_smi_t intf;
4939 unsigned char data[16];
4940 struct ipmi_system_interface_addr *si;
4941 struct ipmi_addr addr;
4943 if (ipmi_send_panic_event == IPMI_SEND_PANIC_EVENT_NONE)
4944 return;
4946 si = (struct ipmi_system_interface_addr *) &addr;
4947 si->addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
4948 si->channel = IPMI_BMC_CHANNEL;
4949 si->lun = 0;
4951 /* Fill in an event telling that we have failed. */
4952 msg.netfn = 0x04; /* Sensor or Event. */
4953 msg.cmd = 2; /* Platform event command. */
4954 msg.data = data;
4955 msg.data_len = 8;
4956 data[0] = 0x41; /* Kernel generator ID, IPMI table 5-4 */
4957 data[1] = 0x03; /* This is for IPMI 1.0. */
4958 data[2] = 0x20; /* OS Critical Stop, IPMI table 36-3 */
4959 data[4] = 0x6f; /* Sensor specific, IPMI table 36-1 */
4960 data[5] = 0xa1; /* Runtime stop OEM bytes 2 & 3. */
4963 * Put a few breadcrumbs in. Hopefully later we can add more things
4964 * to make the panic events more useful.
4966 if (str) {
4967 data[3] = str[0];
4968 data[6] = str[1];
4969 data[7] = str[2];
4972 /* For every registered interface, send the event. */
4973 list_for_each_entry_rcu(intf, &ipmi_interfaces, link) {
4974 if (!intf->handlers || !intf->handlers->poll)
4975 /* Interface is not ready or can't run at panic time. */
4976 continue;
4978 /* Send the event announcing the panic. */
4979 ipmi_panic_request_and_wait(intf, &addr, &msg);
4983 * On every interface, dump a bunch of OEM event holding the
4984 * string.
4986 if (ipmi_send_panic_event != IPMI_SEND_PANIC_EVENT_STRING || !str)
4987 return;
4989 /* For every registered interface, send the event. */
4990 list_for_each_entry_rcu(intf, &ipmi_interfaces, link) {
4991 char *p = str;
4992 struct ipmi_ipmb_addr *ipmb;
4993 int j;
4995 if (intf->intf_num == -1)
4996 /* Interface was not ready yet. */
4997 continue;
5000 * intf_num is used as an marker to tell if the
5001 * interface is valid. Thus we need a read barrier to
5002 * make sure data fetched before checking intf_num
5003 * won't be used.
5005 smp_rmb();
5008 * First job here is to figure out where to send the
5009 * OEM events. There's no way in IPMI to send OEM
5010 * events using an event send command, so we have to
5011 * find the SEL to put them in and stick them in
5012 * there.
5015 /* Get capabilities from the get device id. */
5016 intf->local_sel_device = 0;
5017 intf->local_event_generator = 0;
5018 intf->event_receiver = 0;
5020 /* Request the device info from the local MC. */
5021 msg.netfn = IPMI_NETFN_APP_REQUEST;
5022 msg.cmd = IPMI_GET_DEVICE_ID_CMD;
5023 msg.data = NULL;
5024 msg.data_len = 0;
5025 intf->null_user_handler = device_id_fetcher;
5026 ipmi_panic_request_and_wait(intf, &addr, &msg);
5028 if (intf->local_event_generator) {
5029 /* Request the event receiver from the local MC. */
5030 msg.netfn = IPMI_NETFN_SENSOR_EVENT_REQUEST;
5031 msg.cmd = IPMI_GET_EVENT_RECEIVER_CMD;
5032 msg.data = NULL;
5033 msg.data_len = 0;
5034 intf->null_user_handler = event_receiver_fetcher;
5035 ipmi_panic_request_and_wait(intf, &addr, &msg);
5037 intf->null_user_handler = NULL;
5040 * Validate the event receiver. The low bit must not
5041 * be 1 (it must be a valid IPMB address), it cannot
5042 * be zero, and it must not be my address.
5044 if (((intf->event_receiver & 1) == 0)
5045 && (intf->event_receiver != 0)
5046 && (intf->event_receiver != intf->addrinfo[0].address)) {
5048 * The event receiver is valid, send an IPMB
5049 * message.
5051 ipmb = (struct ipmi_ipmb_addr *) &addr;
5052 ipmb->addr_type = IPMI_IPMB_ADDR_TYPE;
5053 ipmb->channel = 0; /* FIXME - is this right? */
5054 ipmb->lun = intf->event_receiver_lun;
5055 ipmb->slave_addr = intf->event_receiver;
5056 } else if (intf->local_sel_device) {
5058 * The event receiver was not valid (or was
5059 * me), but I am an SEL device, just dump it
5060 * in my SEL.
5062 si = (struct ipmi_system_interface_addr *) &addr;
5063 si->addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
5064 si->channel = IPMI_BMC_CHANNEL;
5065 si->lun = 0;
5066 } else
5067 continue; /* No where to send the event. */
5069 msg.netfn = IPMI_NETFN_STORAGE_REQUEST; /* Storage. */
5070 msg.cmd = IPMI_ADD_SEL_ENTRY_CMD;
5071 msg.data = data;
5072 msg.data_len = 16;
5074 j = 0;
5075 while (*p) {
5076 int size = strlen(p);
5078 if (size > 11)
5079 size = 11;
5080 data[0] = 0;
5081 data[1] = 0;
5082 data[2] = 0xf0; /* OEM event without timestamp. */
5083 data[3] = intf->addrinfo[0].address;
5084 data[4] = j++; /* sequence # */
5086 * Always give 11 bytes, so strncpy will fill
5087 * it with zeroes for me.
5089 strncpy(data+5, p, 11);
5090 p += size;
5092 ipmi_panic_request_and_wait(intf, &addr, &msg);
5097 static int has_panicked;
5099 static int panic_event(struct notifier_block *this,
5100 unsigned long event,
5101 void *ptr)
5103 ipmi_smi_t intf;
5105 if (has_panicked)
5106 return NOTIFY_DONE;
5107 has_panicked = 1;
5109 /* For every registered interface, set it to run to completion. */
5110 list_for_each_entry_rcu(intf, &ipmi_interfaces, link) {
5111 if (!intf->handlers)
5112 /* Interface is not ready. */
5113 continue;
5116 * If we were interrupted while locking xmit_msgs_lock or
5117 * waiting_rcv_msgs_lock, the corresponding list may be
5118 * corrupted. In this case, drop items on the list for
5119 * the safety.
5121 if (!spin_trylock(&intf->xmit_msgs_lock)) {
5122 INIT_LIST_HEAD(&intf->xmit_msgs);
5123 INIT_LIST_HEAD(&intf->hp_xmit_msgs);
5124 } else
5125 spin_unlock(&intf->xmit_msgs_lock);
5127 if (!spin_trylock(&intf->waiting_rcv_msgs_lock))
5128 INIT_LIST_HEAD(&intf->waiting_rcv_msgs);
5129 else
5130 spin_unlock(&intf->waiting_rcv_msgs_lock);
5132 intf->run_to_completion = 1;
5133 if (intf->handlers->set_run_to_completion)
5134 intf->handlers->set_run_to_completion(intf->send_info,
5138 send_panic_events(ptr);
5140 return NOTIFY_DONE;
5143 static struct notifier_block panic_block = {
5144 .notifier_call = panic_event,
5145 .next = NULL,
5146 .priority = 200 /* priority: INT_MAX >= x >= 0 */
5149 static int ipmi_init_msghandler(void)
5151 int rv;
5153 if (initialized)
5154 return 0;
5156 rv = driver_register(&ipmidriver.driver);
5157 if (rv) {
5158 pr_err(PFX "Could not register IPMI driver\n");
5159 return rv;
5162 pr_info("ipmi message handler version " IPMI_DRIVER_VERSION "\n");
5164 #ifdef CONFIG_IPMI_PROC_INTERFACE
5165 proc_ipmi_root = proc_mkdir("ipmi", NULL);
5166 if (!proc_ipmi_root) {
5167 pr_err(PFX "Unable to create IPMI proc dir");
5168 driver_unregister(&ipmidriver.driver);
5169 return -ENOMEM;
5172 #endif /* CONFIG_IPMI_PROC_INTERFACE */
5174 timer_setup(&ipmi_timer, ipmi_timeout, 0);
5175 mod_timer(&ipmi_timer, jiffies + IPMI_TIMEOUT_JIFFIES);
5177 atomic_notifier_chain_register(&panic_notifier_list, &panic_block);
5179 initialized = 1;
5181 return 0;
5184 static int __init ipmi_init_msghandler_mod(void)
5186 ipmi_init_msghandler();
5187 return 0;
5190 static void __exit cleanup_ipmi(void)
5192 int count;
5194 if (!initialized)
5195 return;
5197 atomic_notifier_chain_unregister(&panic_notifier_list, &panic_block);
5200 * This can't be called if any interfaces exist, so no worry
5201 * about shutting down the interfaces.
5205 * Tell the timer to stop, then wait for it to stop. This
5206 * avoids problems with race conditions removing the timer
5207 * here.
5209 atomic_inc(&stop_operation);
5210 del_timer_sync(&ipmi_timer);
5212 #ifdef CONFIG_IPMI_PROC_INTERFACE
5213 proc_remove(proc_ipmi_root);
5214 #endif /* CONFIG_IPMI_PROC_INTERFACE */
5216 driver_unregister(&ipmidriver.driver);
5218 initialized = 0;
5220 /* Check for buffer leaks. */
5221 count = atomic_read(&smi_msg_inuse_count);
5222 if (count != 0)
5223 pr_warn(PFX "SMI message count %d at exit\n", count);
5224 count = atomic_read(&recv_msg_inuse_count);
5225 if (count != 0)
5226 pr_warn(PFX "recv message count %d at exit\n", count);
5228 module_exit(cleanup_ipmi);
5230 module_init(ipmi_init_msghandler_mod);
5231 MODULE_LICENSE("GPL");
5232 MODULE_AUTHOR("Corey Minyard <minyard@mvista.com>");
5233 MODULE_DESCRIPTION("Incoming and outgoing message routing for an IPMI"
5234 " interface.");
5235 MODULE_VERSION(IPMI_DRIVER_VERSION);
5236 MODULE_SOFTDEP("post: ipmi_devintf");