4 * Incoming and outgoing message routing for an IPMI interface.
6 * Author: MontaVista Software, Inc.
7 * Corey Minyard <minyard@mvista.com>
10 * Copyright 2002 MontaVista Software Inc.
12 * This program is free software; you can redistribute it and/or modify it
13 * under the terms of the GNU General Public License as published by the
14 * Free Software Foundation; either version 2 of the License, or (at your
15 * option) any later version.
18 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
19 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
20 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
21 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
22 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
23 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
24 * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
25 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
26 * TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
27 * USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
29 * You should have received a copy of the GNU General Public License along
30 * with this program; if not, write to the Free Software Foundation, Inc.,
31 * 675 Mass Ave, Cambridge, MA 02139, USA.
34 #include <linux/module.h>
35 #include <linux/errno.h>
36 #include <linux/poll.h>
37 #include <linux/sched.h>
38 #include <linux/seq_file.h>
39 #include <linux/spinlock.h>
40 #include <linux/mutex.h>
41 #include <linux/slab.h>
42 #include <linux/ipmi.h>
43 #include <linux/ipmi_smi.h>
44 #include <linux/notifier.h>
45 #include <linux/init.h>
46 #include <linux/proc_fs.h>
47 #include <linux/rcupdate.h>
48 #include <linux/interrupt.h>
49 #include <linux/moduleparam.h>
50 #include <linux/workqueue.h>
51 #include <linux/uuid.h>
53 #define PFX "IPMI message handler: "
55 #define IPMI_DRIVER_VERSION "39.2"
57 static struct ipmi_recv_msg
*ipmi_alloc_recv_msg(void);
58 static int ipmi_init_msghandler(void);
59 static void smi_recv_tasklet(unsigned long);
60 static void handle_new_recv_msgs(ipmi_smi_t intf
);
61 static void need_waiter(ipmi_smi_t intf
);
62 static int handle_one_recv_msg(ipmi_smi_t intf
,
63 struct ipmi_smi_msg
*msg
);
65 static int initialized
;
67 enum ipmi_panic_event_op
{
68 IPMI_SEND_PANIC_EVENT_NONE
,
69 IPMI_SEND_PANIC_EVENT
,
70 IPMI_SEND_PANIC_EVENT_STRING
72 #ifdef CONFIG_IPMI_PANIC_STRING
73 #define IPMI_PANIC_DEFAULT IPMI_SEND_PANIC_EVENT_STRING
74 #elif defined(CONFIG_IPMI_PANIC_EVENT)
75 #define IPMI_PANIC_DEFAULT IPMI_SEND_PANIC_EVENT
77 #define IPMI_PANIC_DEFAULT IPMI_SEND_PANIC_EVENT_NONE
79 static enum ipmi_panic_event_op ipmi_send_panic_event
= IPMI_PANIC_DEFAULT
;
81 static int panic_op_write_handler(const char *val
,
82 const struct kernel_param
*kp
)
87 strncpy(valcp
, val
, 15);
92 if (strcmp(s
, "none") == 0)
93 ipmi_send_panic_event
= IPMI_SEND_PANIC_EVENT_NONE
;
94 else if (strcmp(s
, "event") == 0)
95 ipmi_send_panic_event
= IPMI_SEND_PANIC_EVENT
;
96 else if (strcmp(s
, "string") == 0)
97 ipmi_send_panic_event
= IPMI_SEND_PANIC_EVENT_STRING
;
104 static int panic_op_read_handler(char *buffer
, const struct kernel_param
*kp
)
106 switch (ipmi_send_panic_event
) {
107 case IPMI_SEND_PANIC_EVENT_NONE
:
108 strcpy(buffer
, "none");
111 case IPMI_SEND_PANIC_EVENT
:
112 strcpy(buffer
, "event");
115 case IPMI_SEND_PANIC_EVENT_STRING
:
116 strcpy(buffer
, "string");
120 strcpy(buffer
, "???");
124 return strlen(buffer
);
127 static const struct kernel_param_ops panic_op_ops
= {
128 .set
= panic_op_write_handler
,
129 .get
= panic_op_read_handler
131 module_param_cb(panic_op
, &panic_op_ops
, NULL
, 0600);
132 MODULE_PARM_DESC(panic_op
, "Sets if the IPMI driver will attempt to store panic information in the event log in the event of a panic. Set to 'none' for no, 'event' for a single event, or 'string' for a generic event and the panic string in IPMI OEM events.");
135 #ifdef CONFIG_IPMI_PROC_INTERFACE
136 static struct proc_dir_entry
*proc_ipmi_root
;
137 #endif /* CONFIG_IPMI_PROC_INTERFACE */
139 /* Remain in auto-maintenance mode for this amount of time (in ms). */
140 #define IPMI_MAINTENANCE_MODE_TIMEOUT 30000
142 #define MAX_EVENTS_IN_QUEUE 25
145 * Don't let a message sit in a queue forever, always time it with at lest
146 * the max message timer. This is in milliseconds.
148 #define MAX_MSG_TIMEOUT 60000
150 /* Call every ~1000 ms. */
151 #define IPMI_TIMEOUT_TIME 1000
153 /* How many jiffies does it take to get to the timeout time. */
154 #define IPMI_TIMEOUT_JIFFIES ((IPMI_TIMEOUT_TIME * HZ) / 1000)
157 * Request events from the queue every second (this is the number of
158 * IPMI_TIMEOUT_TIMES between event requests). Hopefully, in the
159 * future, IPMI will add a way to know immediately if an event is in
160 * the queue and this silliness can go away.
162 #define IPMI_REQUEST_EV_TIME (1000 / (IPMI_TIMEOUT_TIME))
164 /* How long should we cache dynamic device IDs? */
165 #define IPMI_DYN_DEV_ID_EXPIRY (10 * HZ)
168 * The main "user" data structure.
171 struct list_head link
;
173 /* Set to false when the user is destroyed. */
176 struct kref refcount
;
178 /* The upper layer that handles receive messages. */
179 const struct ipmi_user_hndl
*handler
;
182 /* The interface this user is bound to. */
185 /* Does this interface receive IPMI events? */
190 struct list_head link
;
198 * This is used to form a linked lised during mass deletion.
199 * Since this is in an RCU list, we cannot use the link above
200 * or change any data until the RCU period completes. So we
201 * use this next variable during mass deletion so we can have
202 * a list and don't have to wait and restart the search on
203 * every individual deletion of a command.
205 struct cmd_rcvr
*next
;
209 unsigned int inuse
: 1;
210 unsigned int broadcast
: 1;
212 unsigned long timeout
;
213 unsigned long orig_timeout
;
214 unsigned int retries_left
;
217 * To verify on an incoming send message response that this is
218 * the message that the response is for, we keep a sequence id
219 * and increment it every time we send a message.
224 * This is held so we can properly respond to the message on a
225 * timeout, and it is used to hold the temporary data for
226 * retransmission, too.
228 struct ipmi_recv_msg
*recv_msg
;
232 * Store the information in a msgid (long) to allow us to find a
233 * sequence table entry from the msgid.
235 #define STORE_SEQ_IN_MSGID(seq, seqid) \
236 ((((seq) & 0x3f) << 26) | ((seqid) & 0x3ffffff))
238 #define GET_SEQ_FROM_MSGID(msgid, seq, seqid) \
240 seq = (((msgid) >> 26) & 0x3f); \
241 seqid = ((msgid) & 0x3ffffff); \
244 #define NEXT_SEQID(seqid) (((seqid) + 1) & 0x3ffffff)
246 #define IPMI_MAX_CHANNELS 16
247 struct ipmi_channel
{
248 unsigned char medium
;
249 unsigned char protocol
;
252 struct ipmi_channel_set
{
253 struct ipmi_channel c
[IPMI_MAX_CHANNELS
];
256 struct ipmi_my_addrinfo
{
258 * My slave address. This is initialized to IPMI_BMC_SLAVE_ADDR,
259 * but may be changed by the user.
261 unsigned char address
;
264 * My LUN. This should generally stay the SMS LUN, but just in
270 #ifdef CONFIG_IPMI_PROC_INTERFACE
271 struct ipmi_proc_entry
{
273 struct ipmi_proc_entry
*next
;
278 * Note that the product id, manufacturer id, guid, and device id are
279 * immutable in this structure, so dyn_mutex is not required for
280 * accessing those. If those change on a BMC, a new BMC is allocated.
283 struct platform_device pdev
;
284 struct list_head intfs
; /* Interfaces on this BMC. */
285 struct ipmi_device_id id
;
286 struct ipmi_device_id fetch_id
;
288 unsigned long dyn_id_expiry
;
289 struct mutex dyn_mutex
; /* Protects id, intfs, & dyn* */
293 struct kref usecount
;
294 struct work_struct remove_work
;
296 #define to_bmc_device(x) container_of((x), struct bmc_device, pdev.dev)
298 static int bmc_get_device_id(ipmi_smi_t intf
, struct bmc_device
*bmc
,
299 struct ipmi_device_id
*id
,
300 bool *guid_set
, guid_t
*guid
);
303 * Various statistics for IPMI, these index stats[] in the ipmi_smi
306 enum ipmi_stat_indexes
{
307 /* Commands we got from the user that were invalid. */
308 IPMI_STAT_sent_invalid_commands
= 0,
310 /* Commands we sent to the MC. */
311 IPMI_STAT_sent_local_commands
,
313 /* Responses from the MC that were delivered to a user. */
314 IPMI_STAT_handled_local_responses
,
316 /* Responses from the MC that were not delivered to a user. */
317 IPMI_STAT_unhandled_local_responses
,
319 /* Commands we sent out to the IPMB bus. */
320 IPMI_STAT_sent_ipmb_commands
,
322 /* Commands sent on the IPMB that had errors on the SEND CMD */
323 IPMI_STAT_sent_ipmb_command_errs
,
325 /* Each retransmit increments this count. */
326 IPMI_STAT_retransmitted_ipmb_commands
,
329 * When a message times out (runs out of retransmits) this is
332 IPMI_STAT_timed_out_ipmb_commands
,
335 * This is like above, but for broadcasts. Broadcasts are
336 * *not* included in the above count (they are expected to
339 IPMI_STAT_timed_out_ipmb_broadcasts
,
341 /* Responses I have sent to the IPMB bus. */
342 IPMI_STAT_sent_ipmb_responses
,
344 /* The response was delivered to the user. */
345 IPMI_STAT_handled_ipmb_responses
,
347 /* The response had invalid data in it. */
348 IPMI_STAT_invalid_ipmb_responses
,
350 /* The response didn't have anyone waiting for it. */
351 IPMI_STAT_unhandled_ipmb_responses
,
353 /* Commands we sent out to the IPMB bus. */
354 IPMI_STAT_sent_lan_commands
,
356 /* Commands sent on the IPMB that had errors on the SEND CMD */
357 IPMI_STAT_sent_lan_command_errs
,
359 /* Each retransmit increments this count. */
360 IPMI_STAT_retransmitted_lan_commands
,
363 * When a message times out (runs out of retransmits) this is
366 IPMI_STAT_timed_out_lan_commands
,
368 /* Responses I have sent to the IPMB bus. */
369 IPMI_STAT_sent_lan_responses
,
371 /* The response was delivered to the user. */
372 IPMI_STAT_handled_lan_responses
,
374 /* The response had invalid data in it. */
375 IPMI_STAT_invalid_lan_responses
,
377 /* The response didn't have anyone waiting for it. */
378 IPMI_STAT_unhandled_lan_responses
,
380 /* The command was delivered to the user. */
381 IPMI_STAT_handled_commands
,
383 /* The command had invalid data in it. */
384 IPMI_STAT_invalid_commands
,
386 /* The command didn't have anyone waiting for it. */
387 IPMI_STAT_unhandled_commands
,
389 /* Invalid data in an event. */
390 IPMI_STAT_invalid_events
,
392 /* Events that were received with the proper format. */
395 /* Retransmissions on IPMB that failed. */
396 IPMI_STAT_dropped_rexmit_ipmb_commands
,
398 /* Retransmissions on LAN that failed. */
399 IPMI_STAT_dropped_rexmit_lan_commands
,
401 /* This *must* remain last, add new values above this. */
406 #define IPMI_IPMB_NUM_SEQ 64
408 /* What interface number are we? */
411 struct kref refcount
;
413 /* Set when the interface is being unregistered. */
416 /* Used for a list of interfaces. */
417 struct list_head link
;
420 * The list of upper layers that are using me. seq_lock
423 struct list_head users
;
425 /* Used for wake ups at startup. */
426 wait_queue_head_t waitq
;
429 * Prevents the interface from being unregistered when the
430 * interface is used by being looked up through the BMC
433 struct mutex bmc_reg_mutex
;
435 struct bmc_device tmp_bmc
;
436 struct bmc_device
*bmc
;
438 struct list_head bmc_link
;
440 bool in_bmc_register
; /* Handle recursive situations. Yuck. */
441 struct work_struct bmc_reg_work
;
444 * This is the lower-layer's sender routine. Note that you
445 * must either be holding the ipmi_interfaces_mutex or be in
446 * an umpreemptible region to use this. You must fetch the
447 * value into a local variable and make sure it is not NULL.
449 const struct ipmi_smi_handlers
*handlers
;
452 #ifdef CONFIG_IPMI_PROC_INTERFACE
453 /* A list of proc entries for this interface. */
454 struct mutex proc_entry_lock
;
455 struct ipmi_proc_entry
*proc_entries
;
457 struct proc_dir_entry
*proc_dir
;
458 char proc_dir_name
[10];
461 /* Driver-model device for the system interface. */
462 struct device
*si_dev
;
465 * A table of sequence numbers for this interface. We use the
466 * sequence numbers for IPMB messages that go out of the
467 * interface to match them up with their responses. A routine
468 * is called periodically to time the items in this list.
471 struct seq_table seq_table
[IPMI_IPMB_NUM_SEQ
];
475 * Messages queued for delivery. If delivery fails (out of memory
476 * for instance), They will stay in here to be processed later in a
477 * periodic timer interrupt. The tasklet is for handling received
478 * messages directly from the handler.
480 spinlock_t waiting_rcv_msgs_lock
;
481 struct list_head waiting_rcv_msgs
;
482 atomic_t watchdog_pretimeouts_to_deliver
;
483 struct tasklet_struct recv_tasklet
;
485 spinlock_t xmit_msgs_lock
;
486 struct list_head xmit_msgs
;
487 struct ipmi_smi_msg
*curr_msg
;
488 struct list_head hp_xmit_msgs
;
491 * The list of command receivers that are registered for commands
494 struct mutex cmd_rcvrs_mutex
;
495 struct list_head cmd_rcvrs
;
498 * Events that were queues because no one was there to receive
501 spinlock_t events_lock
; /* For dealing with event stuff. */
502 struct list_head waiting_events
;
503 unsigned int waiting_events_count
; /* How many events in queue? */
504 char delivering_events
;
505 char event_msg_printed
;
506 atomic_t event_waiters
;
507 unsigned int ticks_to_req_ev
;
508 int last_needs_timer
;
511 * The event receiver for my BMC, only really used at panic
512 * shutdown as a place to store this.
514 unsigned char event_receiver
;
515 unsigned char event_receiver_lun
;
516 unsigned char local_sel_device
;
517 unsigned char local_event_generator
;
519 /* For handling of maintenance mode. */
520 int maintenance_mode
;
521 bool maintenance_mode_enable
;
522 int auto_maintenance_timeout
;
523 spinlock_t maintenance_mode_lock
; /* Used in a timer... */
526 * A cheap hack, if this is non-null and a message to an
527 * interface comes in with a NULL user, call this routine with
528 * it. Note that the message will still be freed by the
529 * caller. This only works on the system interface.
531 * Protected by bmc_reg_mutex.
533 void (*null_user_handler
)(ipmi_smi_t intf
, struct ipmi_recv_msg
*msg
);
536 * When we are scanning the channels for an SMI, this will
537 * tell which channel we are scanning.
541 /* Channel information */
542 struct ipmi_channel_set
*channel_list
;
543 unsigned int curr_working_cset
; /* First index into the following. */
544 struct ipmi_channel_set wchannels
[2];
545 struct ipmi_my_addrinfo addrinfo
[IPMI_MAX_CHANNELS
];
548 atomic_t stats
[IPMI_NUM_STATS
];
551 * run_to_completion duplicate of smb_info, smi_info
552 * and ipmi_serial_info structures. Used to decrease numbers of
553 * parameters passed by "low" level IPMI code.
555 int run_to_completion
;
557 #define to_si_intf_from_dev(device) container_of(device, struct ipmi_smi, dev)
559 static void __get_guid(ipmi_smi_t intf
);
560 static void __ipmi_bmc_unregister(ipmi_smi_t intf
);
561 static int __ipmi_bmc_register(ipmi_smi_t intf
,
562 struct ipmi_device_id
*id
,
563 bool guid_set
, guid_t
*guid
, int intf_num
);
564 static int __scan_channels(ipmi_smi_t intf
, struct ipmi_device_id
*id
);
568 * The driver model view of the IPMI messaging driver.
570 static struct platform_driver ipmidriver
= {
573 .bus
= &platform_bus_type
577 * This mutex keeps us from adding the same BMC twice.
579 static DEFINE_MUTEX(ipmidriver_mutex
);
581 static LIST_HEAD(ipmi_interfaces
);
582 static DEFINE_MUTEX(ipmi_interfaces_mutex
);
585 * List of watchers that want to know when smi's are added and deleted.
587 static LIST_HEAD(smi_watchers
);
588 static DEFINE_MUTEX(smi_watchers_mutex
);
590 #define ipmi_inc_stat(intf, stat) \
591 atomic_inc(&(intf)->stats[IPMI_STAT_ ## stat])
592 #define ipmi_get_stat(intf, stat) \
593 ((unsigned int) atomic_read(&(intf)->stats[IPMI_STAT_ ## stat]))
595 static const char * const addr_src_to_str
[] = {
596 "invalid", "hotmod", "hardcoded", "SPMI", "ACPI", "SMBIOS", "PCI",
597 "device-tree", "platform"
600 const char *ipmi_addr_src_to_str(enum ipmi_addr_src src
)
603 src
= 0; /* Invalid */
604 return addr_src_to_str
[src
];
606 EXPORT_SYMBOL(ipmi_addr_src_to_str
);
608 static int is_lan_addr(struct ipmi_addr
*addr
)
610 return addr
->addr_type
== IPMI_LAN_ADDR_TYPE
;
613 static int is_ipmb_addr(struct ipmi_addr
*addr
)
615 return addr
->addr_type
== IPMI_IPMB_ADDR_TYPE
;
618 static int is_ipmb_bcast_addr(struct ipmi_addr
*addr
)
620 return addr
->addr_type
== IPMI_IPMB_BROADCAST_ADDR_TYPE
;
623 static void free_recv_msg_list(struct list_head
*q
)
625 struct ipmi_recv_msg
*msg
, *msg2
;
627 list_for_each_entry_safe(msg
, msg2
, q
, link
) {
628 list_del(&msg
->link
);
629 ipmi_free_recv_msg(msg
);
633 static void free_smi_msg_list(struct list_head
*q
)
635 struct ipmi_smi_msg
*msg
, *msg2
;
637 list_for_each_entry_safe(msg
, msg2
, q
, link
) {
638 list_del(&msg
->link
);
639 ipmi_free_smi_msg(msg
);
643 static void clean_up_interface_data(ipmi_smi_t intf
)
646 struct cmd_rcvr
*rcvr
, *rcvr2
;
647 struct list_head list
;
649 tasklet_kill(&intf
->recv_tasklet
);
651 free_smi_msg_list(&intf
->waiting_rcv_msgs
);
652 free_recv_msg_list(&intf
->waiting_events
);
655 * Wholesale remove all the entries from the list in the
656 * interface and wait for RCU to know that none are in use.
658 mutex_lock(&intf
->cmd_rcvrs_mutex
);
659 INIT_LIST_HEAD(&list
);
660 list_splice_init_rcu(&intf
->cmd_rcvrs
, &list
, synchronize_rcu
);
661 mutex_unlock(&intf
->cmd_rcvrs_mutex
);
663 list_for_each_entry_safe(rcvr
, rcvr2
, &list
, link
)
666 for (i
= 0; i
< IPMI_IPMB_NUM_SEQ
; i
++) {
667 if ((intf
->seq_table
[i
].inuse
)
668 && (intf
->seq_table
[i
].recv_msg
))
669 ipmi_free_recv_msg(intf
->seq_table
[i
].recv_msg
);
673 static void intf_free(struct kref
*ref
)
675 ipmi_smi_t intf
= container_of(ref
, struct ipmi_smi
, refcount
);
677 clean_up_interface_data(intf
);
681 struct watcher_entry
{
684 struct list_head link
;
687 int ipmi_smi_watcher_register(struct ipmi_smi_watcher
*watcher
)
690 LIST_HEAD(to_deliver
);
691 struct watcher_entry
*e
, *e2
;
693 mutex_lock(&smi_watchers_mutex
);
695 mutex_lock(&ipmi_interfaces_mutex
);
697 /* Build a list of things to deliver. */
698 list_for_each_entry(intf
, &ipmi_interfaces
, link
) {
699 if (intf
->intf_num
== -1)
701 e
= kmalloc(sizeof(*e
), GFP_KERNEL
);
704 kref_get(&intf
->refcount
);
706 e
->intf_num
= intf
->intf_num
;
707 list_add_tail(&e
->link
, &to_deliver
);
710 /* We will succeed, so add it to the list. */
711 list_add(&watcher
->link
, &smi_watchers
);
713 mutex_unlock(&ipmi_interfaces_mutex
);
715 list_for_each_entry_safe(e
, e2
, &to_deliver
, link
) {
717 watcher
->new_smi(e
->intf_num
, e
->intf
->si_dev
);
718 kref_put(&e
->intf
->refcount
, intf_free
);
722 mutex_unlock(&smi_watchers_mutex
);
727 mutex_unlock(&ipmi_interfaces_mutex
);
728 mutex_unlock(&smi_watchers_mutex
);
729 list_for_each_entry_safe(e
, e2
, &to_deliver
, link
) {
731 kref_put(&e
->intf
->refcount
, intf_free
);
736 EXPORT_SYMBOL(ipmi_smi_watcher_register
);
738 int ipmi_smi_watcher_unregister(struct ipmi_smi_watcher
*watcher
)
740 mutex_lock(&smi_watchers_mutex
);
741 list_del(&(watcher
->link
));
742 mutex_unlock(&smi_watchers_mutex
);
745 EXPORT_SYMBOL(ipmi_smi_watcher_unregister
);
748 * Must be called with smi_watchers_mutex held.
751 call_smi_watchers(int i
, struct device
*dev
)
753 struct ipmi_smi_watcher
*w
;
755 list_for_each_entry(w
, &smi_watchers
, link
) {
756 if (try_module_get(w
->owner
)) {
758 module_put(w
->owner
);
764 ipmi_addr_equal(struct ipmi_addr
*addr1
, struct ipmi_addr
*addr2
)
766 if (addr1
->addr_type
!= addr2
->addr_type
)
769 if (addr1
->channel
!= addr2
->channel
)
772 if (addr1
->addr_type
== IPMI_SYSTEM_INTERFACE_ADDR_TYPE
) {
773 struct ipmi_system_interface_addr
*smi_addr1
774 = (struct ipmi_system_interface_addr
*) addr1
;
775 struct ipmi_system_interface_addr
*smi_addr2
776 = (struct ipmi_system_interface_addr
*) addr2
;
777 return (smi_addr1
->lun
== smi_addr2
->lun
);
780 if (is_ipmb_addr(addr1
) || is_ipmb_bcast_addr(addr1
)) {
781 struct ipmi_ipmb_addr
*ipmb_addr1
782 = (struct ipmi_ipmb_addr
*) addr1
;
783 struct ipmi_ipmb_addr
*ipmb_addr2
784 = (struct ipmi_ipmb_addr
*) addr2
;
786 return ((ipmb_addr1
->slave_addr
== ipmb_addr2
->slave_addr
)
787 && (ipmb_addr1
->lun
== ipmb_addr2
->lun
));
790 if (is_lan_addr(addr1
)) {
791 struct ipmi_lan_addr
*lan_addr1
792 = (struct ipmi_lan_addr
*) addr1
;
793 struct ipmi_lan_addr
*lan_addr2
794 = (struct ipmi_lan_addr
*) addr2
;
796 return ((lan_addr1
->remote_SWID
== lan_addr2
->remote_SWID
)
797 && (lan_addr1
->local_SWID
== lan_addr2
->local_SWID
)
798 && (lan_addr1
->session_handle
799 == lan_addr2
->session_handle
)
800 && (lan_addr1
->lun
== lan_addr2
->lun
));
806 int ipmi_validate_addr(struct ipmi_addr
*addr
, int len
)
808 if (len
< sizeof(struct ipmi_system_interface_addr
))
811 if (addr
->addr_type
== IPMI_SYSTEM_INTERFACE_ADDR_TYPE
) {
812 if (addr
->channel
!= IPMI_BMC_CHANNEL
)
817 if ((addr
->channel
== IPMI_BMC_CHANNEL
)
818 || (addr
->channel
>= IPMI_MAX_CHANNELS
)
819 || (addr
->channel
< 0))
822 if (is_ipmb_addr(addr
) || is_ipmb_bcast_addr(addr
)) {
823 if (len
< sizeof(struct ipmi_ipmb_addr
))
828 if (is_lan_addr(addr
)) {
829 if (len
< sizeof(struct ipmi_lan_addr
))
836 EXPORT_SYMBOL(ipmi_validate_addr
);
838 unsigned int ipmi_addr_length(int addr_type
)
840 if (addr_type
== IPMI_SYSTEM_INTERFACE_ADDR_TYPE
)
841 return sizeof(struct ipmi_system_interface_addr
);
843 if ((addr_type
== IPMI_IPMB_ADDR_TYPE
)
844 || (addr_type
== IPMI_IPMB_BROADCAST_ADDR_TYPE
))
845 return sizeof(struct ipmi_ipmb_addr
);
847 if (addr_type
== IPMI_LAN_ADDR_TYPE
)
848 return sizeof(struct ipmi_lan_addr
);
852 EXPORT_SYMBOL(ipmi_addr_length
);
854 static void deliver_response(struct ipmi_recv_msg
*msg
)
857 ipmi_smi_t intf
= msg
->user_msg_data
;
859 /* Special handling for NULL users. */
860 if (intf
->null_user_handler
) {
861 intf
->null_user_handler(intf
, msg
);
862 ipmi_inc_stat(intf
, handled_local_responses
);
864 /* No handler, so give up. */
865 ipmi_inc_stat(intf
, unhandled_local_responses
);
867 ipmi_free_recv_msg(msg
);
868 } else if (!oops_in_progress
) {
870 * If we are running in the panic context, calling the
871 * receive handler doesn't much meaning and has a deadlock
872 * risk. At this moment, simply skip it in that case.
875 ipmi_user_t user
= msg
->user
;
876 user
->handler
->ipmi_recv_hndl(msg
, user
->handler_data
);
881 deliver_err_response(struct ipmi_recv_msg
*msg
, int err
)
883 msg
->recv_type
= IPMI_RESPONSE_RECV_TYPE
;
884 msg
->msg_data
[0] = err
;
885 msg
->msg
.netfn
|= 1; /* Convert to a response. */
886 msg
->msg
.data_len
= 1;
887 msg
->msg
.data
= msg
->msg_data
;
888 deliver_response(msg
);
892 * Find the next sequence number not being used and add the given
893 * message with the given timeout to the sequence table. This must be
894 * called with the interface's seq_lock held.
896 static int intf_next_seq(ipmi_smi_t intf
,
897 struct ipmi_recv_msg
*recv_msg
,
898 unsigned long timeout
,
907 for (i
= intf
->curr_seq
; (i
+1)%IPMI_IPMB_NUM_SEQ
!= intf
->curr_seq
;
908 i
= (i
+1)%IPMI_IPMB_NUM_SEQ
) {
909 if (!intf
->seq_table
[i
].inuse
)
913 if (!intf
->seq_table
[i
].inuse
) {
914 intf
->seq_table
[i
].recv_msg
= recv_msg
;
917 * Start with the maximum timeout, when the send response
918 * comes in we will start the real timer.
920 intf
->seq_table
[i
].timeout
= MAX_MSG_TIMEOUT
;
921 intf
->seq_table
[i
].orig_timeout
= timeout
;
922 intf
->seq_table
[i
].retries_left
= retries
;
923 intf
->seq_table
[i
].broadcast
= broadcast
;
924 intf
->seq_table
[i
].inuse
= 1;
925 intf
->seq_table
[i
].seqid
= NEXT_SEQID(intf
->seq_table
[i
].seqid
);
927 *seqid
= intf
->seq_table
[i
].seqid
;
928 intf
->curr_seq
= (i
+1)%IPMI_IPMB_NUM_SEQ
;
938 * Return the receive message for the given sequence number and
939 * release the sequence number so it can be reused. Some other data
940 * is passed in to be sure the message matches up correctly (to help
941 * guard against message coming in after their timeout and the
942 * sequence number being reused).
944 static int intf_find_seq(ipmi_smi_t intf
,
949 struct ipmi_addr
*addr
,
950 struct ipmi_recv_msg
**recv_msg
)
955 if (seq
>= IPMI_IPMB_NUM_SEQ
)
958 spin_lock_irqsave(&(intf
->seq_lock
), flags
);
959 if (intf
->seq_table
[seq
].inuse
) {
960 struct ipmi_recv_msg
*msg
= intf
->seq_table
[seq
].recv_msg
;
962 if ((msg
->addr
.channel
== channel
) && (msg
->msg
.cmd
== cmd
)
963 && (msg
->msg
.netfn
== netfn
)
964 && (ipmi_addr_equal(addr
, &(msg
->addr
)))) {
966 intf
->seq_table
[seq
].inuse
= 0;
970 spin_unlock_irqrestore(&(intf
->seq_lock
), flags
);
976 /* Start the timer for a specific sequence table entry. */
977 static int intf_start_seq_timer(ipmi_smi_t intf
,
986 GET_SEQ_FROM_MSGID(msgid
, seq
, seqid
);
988 spin_lock_irqsave(&(intf
->seq_lock
), flags
);
990 * We do this verification because the user can be deleted
991 * while a message is outstanding.
993 if ((intf
->seq_table
[seq
].inuse
)
994 && (intf
->seq_table
[seq
].seqid
== seqid
)) {
995 struct seq_table
*ent
= &(intf
->seq_table
[seq
]);
996 ent
->timeout
= ent
->orig_timeout
;
999 spin_unlock_irqrestore(&(intf
->seq_lock
), flags
);
1004 /* Got an error for the send message for a specific sequence number. */
1005 static int intf_err_seq(ipmi_smi_t intf
,
1010 unsigned long flags
;
1012 unsigned long seqid
;
1013 struct ipmi_recv_msg
*msg
= NULL
;
1016 GET_SEQ_FROM_MSGID(msgid
, seq
, seqid
);
1018 spin_lock_irqsave(&(intf
->seq_lock
), flags
);
1020 * We do this verification because the user can be deleted
1021 * while a message is outstanding.
1023 if ((intf
->seq_table
[seq
].inuse
)
1024 && (intf
->seq_table
[seq
].seqid
== seqid
)) {
1025 struct seq_table
*ent
= &(intf
->seq_table
[seq
]);
1028 msg
= ent
->recv_msg
;
1031 spin_unlock_irqrestore(&(intf
->seq_lock
), flags
);
1034 deliver_err_response(msg
, err
);
1040 int ipmi_create_user(unsigned int if_num
,
1041 const struct ipmi_user_hndl
*handler
,
1045 unsigned long flags
;
1046 ipmi_user_t new_user
;
1051 * There is no module usecount here, because it's not
1052 * required. Since this can only be used by and called from
1053 * other modules, they will implicitly use this module, and
1054 * thus this can't be removed unless the other modules are
1058 if (handler
== NULL
)
1062 * Make sure the driver is actually initialized, this handles
1063 * problems with initialization order.
1066 rv
= ipmi_init_msghandler();
1071 * The init code doesn't return an error if it was turned
1072 * off, but it won't initialize. Check that.
1078 new_user
= kmalloc(sizeof(*new_user
), GFP_KERNEL
);
1082 mutex_lock(&ipmi_interfaces_mutex
);
1083 list_for_each_entry_rcu(intf
, &ipmi_interfaces
, link
) {
1084 if (intf
->intf_num
== if_num
)
1087 /* Not found, return an error */
1092 /* Note that each existing user holds a refcount to the interface. */
1093 kref_get(&intf
->refcount
);
1095 kref_init(&new_user
->refcount
);
1096 new_user
->handler
= handler
;
1097 new_user
->handler_data
= handler_data
;
1098 new_user
->intf
= intf
;
1099 new_user
->gets_events
= false;
1101 if (!try_module_get(intf
->handlers
->owner
)) {
1106 if (intf
->handlers
->inc_usecount
) {
1107 rv
= intf
->handlers
->inc_usecount(intf
->send_info
);
1109 module_put(intf
->handlers
->owner
);
1115 * Hold the lock so intf->handlers is guaranteed to be good
1118 mutex_unlock(&ipmi_interfaces_mutex
);
1120 new_user
->valid
= true;
1121 spin_lock_irqsave(&intf
->seq_lock
, flags
);
1122 list_add_rcu(&new_user
->link
, &intf
->users
);
1123 spin_unlock_irqrestore(&intf
->seq_lock
, flags
);
1124 if (handler
->ipmi_watchdog_pretimeout
) {
1125 /* User wants pretimeouts, so make sure to watch for them. */
1126 if (atomic_inc_return(&intf
->event_waiters
) == 1)
1133 kref_put(&intf
->refcount
, intf_free
);
1135 mutex_unlock(&ipmi_interfaces_mutex
);
1139 EXPORT_SYMBOL(ipmi_create_user
);
1141 int ipmi_get_smi_info(int if_num
, struct ipmi_smi_info
*data
)
1145 const struct ipmi_smi_handlers
*handlers
;
1147 mutex_lock(&ipmi_interfaces_mutex
);
1148 list_for_each_entry_rcu(intf
, &ipmi_interfaces
, link
) {
1149 if (intf
->intf_num
== if_num
)
1152 /* Not found, return an error */
1154 mutex_unlock(&ipmi_interfaces_mutex
);
1158 handlers
= intf
->handlers
;
1160 if (handlers
->get_smi_info
)
1161 rv
= handlers
->get_smi_info(intf
->send_info
, data
);
1162 mutex_unlock(&ipmi_interfaces_mutex
);
1166 EXPORT_SYMBOL(ipmi_get_smi_info
);
1168 static void free_user(struct kref
*ref
)
1170 ipmi_user_t user
= container_of(ref
, struct ipmi_user
, refcount
);
1174 int ipmi_destroy_user(ipmi_user_t user
)
1176 ipmi_smi_t intf
= user
->intf
;
1178 unsigned long flags
;
1179 struct cmd_rcvr
*rcvr
;
1180 struct cmd_rcvr
*rcvrs
= NULL
;
1182 user
->valid
= false;
1184 if (user
->handler
->ipmi_watchdog_pretimeout
)
1185 atomic_dec(&intf
->event_waiters
);
1187 if (user
->gets_events
)
1188 atomic_dec(&intf
->event_waiters
);
1190 /* Remove the user from the interface's sequence table. */
1191 spin_lock_irqsave(&intf
->seq_lock
, flags
);
1192 list_del_rcu(&user
->link
);
1194 for (i
= 0; i
< IPMI_IPMB_NUM_SEQ
; i
++) {
1195 if (intf
->seq_table
[i
].inuse
1196 && (intf
->seq_table
[i
].recv_msg
->user
== user
)) {
1197 intf
->seq_table
[i
].inuse
= 0;
1198 ipmi_free_recv_msg(intf
->seq_table
[i
].recv_msg
);
1201 spin_unlock_irqrestore(&intf
->seq_lock
, flags
);
1204 * Remove the user from the command receiver's table. First
1205 * we build a list of everything (not using the standard link,
1206 * since other things may be using it till we do
1207 * synchronize_rcu()) then free everything in that list.
1209 mutex_lock(&intf
->cmd_rcvrs_mutex
);
1210 list_for_each_entry_rcu(rcvr
, &intf
->cmd_rcvrs
, link
) {
1211 if (rcvr
->user
== user
) {
1212 list_del_rcu(&rcvr
->link
);
1217 mutex_unlock(&intf
->cmd_rcvrs_mutex
);
1225 mutex_lock(&ipmi_interfaces_mutex
);
1226 if (intf
->handlers
) {
1227 module_put(intf
->handlers
->owner
);
1228 if (intf
->handlers
->dec_usecount
)
1229 intf
->handlers
->dec_usecount(intf
->send_info
);
1231 mutex_unlock(&ipmi_interfaces_mutex
);
1233 kref_put(&intf
->refcount
, intf_free
);
1235 kref_put(&user
->refcount
, free_user
);
1239 EXPORT_SYMBOL(ipmi_destroy_user
);
1241 int ipmi_get_version(ipmi_user_t user
,
1242 unsigned char *major
,
1243 unsigned char *minor
)
1245 struct ipmi_device_id id
;
1248 rv
= bmc_get_device_id(user
->intf
, NULL
, &id
, NULL
, NULL
);
1252 *major
= ipmi_version_major(&id
);
1253 *minor
= ipmi_version_minor(&id
);
1257 EXPORT_SYMBOL(ipmi_get_version
);
1259 int ipmi_set_my_address(ipmi_user_t user
,
1260 unsigned int channel
,
1261 unsigned char address
)
1263 if (channel
>= IPMI_MAX_CHANNELS
)
1265 user
->intf
->addrinfo
[channel
].address
= address
;
1268 EXPORT_SYMBOL(ipmi_set_my_address
);
1270 int ipmi_get_my_address(ipmi_user_t user
,
1271 unsigned int channel
,
1272 unsigned char *address
)
1274 if (channel
>= IPMI_MAX_CHANNELS
)
1276 *address
= user
->intf
->addrinfo
[channel
].address
;
1279 EXPORT_SYMBOL(ipmi_get_my_address
);
1281 int ipmi_set_my_LUN(ipmi_user_t user
,
1282 unsigned int channel
,
1285 if (channel
>= IPMI_MAX_CHANNELS
)
1287 user
->intf
->addrinfo
[channel
].lun
= LUN
& 0x3;
1290 EXPORT_SYMBOL(ipmi_set_my_LUN
);
1292 int ipmi_get_my_LUN(ipmi_user_t user
,
1293 unsigned int channel
,
1294 unsigned char *address
)
1296 if (channel
>= IPMI_MAX_CHANNELS
)
1298 *address
= user
->intf
->addrinfo
[channel
].lun
;
1301 EXPORT_SYMBOL(ipmi_get_my_LUN
);
1303 int ipmi_get_maintenance_mode(ipmi_user_t user
)
1306 unsigned long flags
;
1308 spin_lock_irqsave(&user
->intf
->maintenance_mode_lock
, flags
);
1309 mode
= user
->intf
->maintenance_mode
;
1310 spin_unlock_irqrestore(&user
->intf
->maintenance_mode_lock
, flags
);
1314 EXPORT_SYMBOL(ipmi_get_maintenance_mode
);
1316 static void maintenance_mode_update(ipmi_smi_t intf
)
1318 if (intf
->handlers
->set_maintenance_mode
)
1319 intf
->handlers
->set_maintenance_mode(
1320 intf
->send_info
, intf
->maintenance_mode_enable
);
1323 int ipmi_set_maintenance_mode(ipmi_user_t user
, int mode
)
1326 unsigned long flags
;
1327 ipmi_smi_t intf
= user
->intf
;
1329 spin_lock_irqsave(&intf
->maintenance_mode_lock
, flags
);
1330 if (intf
->maintenance_mode
!= mode
) {
1332 case IPMI_MAINTENANCE_MODE_AUTO
:
1333 intf
->maintenance_mode_enable
1334 = (intf
->auto_maintenance_timeout
> 0);
1337 case IPMI_MAINTENANCE_MODE_OFF
:
1338 intf
->maintenance_mode_enable
= false;
1341 case IPMI_MAINTENANCE_MODE_ON
:
1342 intf
->maintenance_mode_enable
= true;
1349 intf
->maintenance_mode
= mode
;
1351 maintenance_mode_update(intf
);
1354 spin_unlock_irqrestore(&intf
->maintenance_mode_lock
, flags
);
1358 EXPORT_SYMBOL(ipmi_set_maintenance_mode
);
1360 int ipmi_set_gets_events(ipmi_user_t user
, bool val
)
1362 unsigned long flags
;
1363 ipmi_smi_t intf
= user
->intf
;
1364 struct ipmi_recv_msg
*msg
, *msg2
;
1365 struct list_head msgs
;
1367 INIT_LIST_HEAD(&msgs
);
1369 spin_lock_irqsave(&intf
->events_lock
, flags
);
1370 if (user
->gets_events
== val
)
1373 user
->gets_events
= val
;
1376 if (atomic_inc_return(&intf
->event_waiters
) == 1)
1379 atomic_dec(&intf
->event_waiters
);
1382 if (intf
->delivering_events
)
1384 * Another thread is delivering events for this, so
1385 * let it handle any new events.
1389 /* Deliver any queued events. */
1390 while (user
->gets_events
&& !list_empty(&intf
->waiting_events
)) {
1391 list_for_each_entry_safe(msg
, msg2
, &intf
->waiting_events
, link
)
1392 list_move_tail(&msg
->link
, &msgs
);
1393 intf
->waiting_events_count
= 0;
1394 if (intf
->event_msg_printed
) {
1395 dev_warn(intf
->si_dev
,
1396 PFX
"Event queue no longer full\n");
1397 intf
->event_msg_printed
= 0;
1400 intf
->delivering_events
= 1;
1401 spin_unlock_irqrestore(&intf
->events_lock
, flags
);
1403 list_for_each_entry_safe(msg
, msg2
, &msgs
, link
) {
1405 kref_get(&user
->refcount
);
1406 deliver_response(msg
);
1409 spin_lock_irqsave(&intf
->events_lock
, flags
);
1410 intf
->delivering_events
= 0;
1414 spin_unlock_irqrestore(&intf
->events_lock
, flags
);
1418 EXPORT_SYMBOL(ipmi_set_gets_events
);
1420 static struct cmd_rcvr
*find_cmd_rcvr(ipmi_smi_t intf
,
1421 unsigned char netfn
,
1425 struct cmd_rcvr
*rcvr
;
1427 list_for_each_entry_rcu(rcvr
, &intf
->cmd_rcvrs
, link
) {
1428 if ((rcvr
->netfn
== netfn
) && (rcvr
->cmd
== cmd
)
1429 && (rcvr
->chans
& (1 << chan
)))
1435 static int is_cmd_rcvr_exclusive(ipmi_smi_t intf
,
1436 unsigned char netfn
,
1440 struct cmd_rcvr
*rcvr
;
1442 list_for_each_entry_rcu(rcvr
, &intf
->cmd_rcvrs
, link
) {
1443 if ((rcvr
->netfn
== netfn
) && (rcvr
->cmd
== cmd
)
1444 && (rcvr
->chans
& chans
))
1450 int ipmi_register_for_cmd(ipmi_user_t user
,
1451 unsigned char netfn
,
1455 ipmi_smi_t intf
= user
->intf
;
1456 struct cmd_rcvr
*rcvr
;
1460 rcvr
= kmalloc(sizeof(*rcvr
), GFP_KERNEL
);
1464 rcvr
->netfn
= netfn
;
1465 rcvr
->chans
= chans
;
1468 mutex_lock(&intf
->cmd_rcvrs_mutex
);
1469 /* Make sure the command/netfn is not already registered. */
1470 if (!is_cmd_rcvr_exclusive(intf
, netfn
, cmd
, chans
)) {
1475 if (atomic_inc_return(&intf
->event_waiters
) == 1)
1478 list_add_rcu(&rcvr
->link
, &intf
->cmd_rcvrs
);
1481 mutex_unlock(&intf
->cmd_rcvrs_mutex
);
1487 EXPORT_SYMBOL(ipmi_register_for_cmd
);
1489 int ipmi_unregister_for_cmd(ipmi_user_t user
,
1490 unsigned char netfn
,
1494 ipmi_smi_t intf
= user
->intf
;
1495 struct cmd_rcvr
*rcvr
;
1496 struct cmd_rcvr
*rcvrs
= NULL
;
1497 int i
, rv
= -ENOENT
;
1499 mutex_lock(&intf
->cmd_rcvrs_mutex
);
1500 for (i
= 0; i
< IPMI_NUM_CHANNELS
; i
++) {
1501 if (((1 << i
) & chans
) == 0)
1503 rcvr
= find_cmd_rcvr(intf
, netfn
, cmd
, i
);
1506 if (rcvr
->user
== user
) {
1508 rcvr
->chans
&= ~chans
;
1509 if (rcvr
->chans
== 0) {
1510 list_del_rcu(&rcvr
->link
);
1516 mutex_unlock(&intf
->cmd_rcvrs_mutex
);
1519 atomic_dec(&intf
->event_waiters
);
1526 EXPORT_SYMBOL(ipmi_unregister_for_cmd
);
1528 static unsigned char
1529 ipmb_checksum(unsigned char *data
, int size
)
1531 unsigned char csum
= 0;
1533 for (; size
> 0; size
--, data
++)
1539 static inline void format_ipmb_msg(struct ipmi_smi_msg
*smi_msg
,
1540 struct kernel_ipmi_msg
*msg
,
1541 struct ipmi_ipmb_addr
*ipmb_addr
,
1543 unsigned char ipmb_seq
,
1545 unsigned char source_address
,
1546 unsigned char source_lun
)
1550 /* Format the IPMB header data. */
1551 smi_msg
->data
[0] = (IPMI_NETFN_APP_REQUEST
<< 2);
1552 smi_msg
->data
[1] = IPMI_SEND_MSG_CMD
;
1553 smi_msg
->data
[2] = ipmb_addr
->channel
;
1555 smi_msg
->data
[3] = 0;
1556 smi_msg
->data
[i
+3] = ipmb_addr
->slave_addr
;
1557 smi_msg
->data
[i
+4] = (msg
->netfn
<< 2) | (ipmb_addr
->lun
& 0x3);
1558 smi_msg
->data
[i
+5] = ipmb_checksum(&(smi_msg
->data
[i
+3]), 2);
1559 smi_msg
->data
[i
+6] = source_address
;
1560 smi_msg
->data
[i
+7] = (ipmb_seq
<< 2) | source_lun
;
1561 smi_msg
->data
[i
+8] = msg
->cmd
;
1563 /* Now tack on the data to the message. */
1564 if (msg
->data_len
> 0)
1565 memcpy(&(smi_msg
->data
[i
+9]), msg
->data
,
1567 smi_msg
->data_size
= msg
->data_len
+ 9;
1569 /* Now calculate the checksum and tack it on. */
1570 smi_msg
->data
[i
+smi_msg
->data_size
]
1571 = ipmb_checksum(&(smi_msg
->data
[i
+6]),
1572 smi_msg
->data_size
-6);
1575 * Add on the checksum size and the offset from the
1578 smi_msg
->data_size
+= 1 + i
;
1580 smi_msg
->msgid
= msgid
;
1583 static inline void format_lan_msg(struct ipmi_smi_msg
*smi_msg
,
1584 struct kernel_ipmi_msg
*msg
,
1585 struct ipmi_lan_addr
*lan_addr
,
1587 unsigned char ipmb_seq
,
1588 unsigned char source_lun
)
1590 /* Format the IPMB header data. */
1591 smi_msg
->data
[0] = (IPMI_NETFN_APP_REQUEST
<< 2);
1592 smi_msg
->data
[1] = IPMI_SEND_MSG_CMD
;
1593 smi_msg
->data
[2] = lan_addr
->channel
;
1594 smi_msg
->data
[3] = lan_addr
->session_handle
;
1595 smi_msg
->data
[4] = lan_addr
->remote_SWID
;
1596 smi_msg
->data
[5] = (msg
->netfn
<< 2) | (lan_addr
->lun
& 0x3);
1597 smi_msg
->data
[6] = ipmb_checksum(&(smi_msg
->data
[4]), 2);
1598 smi_msg
->data
[7] = lan_addr
->local_SWID
;
1599 smi_msg
->data
[8] = (ipmb_seq
<< 2) | source_lun
;
1600 smi_msg
->data
[9] = msg
->cmd
;
1602 /* Now tack on the data to the message. */
1603 if (msg
->data_len
> 0)
1604 memcpy(&(smi_msg
->data
[10]), msg
->data
,
1606 smi_msg
->data_size
= msg
->data_len
+ 10;
1608 /* Now calculate the checksum and tack it on. */
1609 smi_msg
->data
[smi_msg
->data_size
]
1610 = ipmb_checksum(&(smi_msg
->data
[7]),
1611 smi_msg
->data_size
-7);
1614 * Add on the checksum size and the offset from the
1617 smi_msg
->data_size
+= 1;
1619 smi_msg
->msgid
= msgid
;
1622 static struct ipmi_smi_msg
*smi_add_send_msg(ipmi_smi_t intf
,
1623 struct ipmi_smi_msg
*smi_msg
,
1626 if (intf
->curr_msg
) {
1628 list_add_tail(&smi_msg
->link
, &intf
->hp_xmit_msgs
);
1630 list_add_tail(&smi_msg
->link
, &intf
->xmit_msgs
);
1633 intf
->curr_msg
= smi_msg
;
1640 static void smi_send(ipmi_smi_t intf
, const struct ipmi_smi_handlers
*handlers
,
1641 struct ipmi_smi_msg
*smi_msg
, int priority
)
1643 int run_to_completion
= intf
->run_to_completion
;
1645 if (run_to_completion
) {
1646 smi_msg
= smi_add_send_msg(intf
, smi_msg
, priority
);
1648 unsigned long flags
;
1650 spin_lock_irqsave(&intf
->xmit_msgs_lock
, flags
);
1651 smi_msg
= smi_add_send_msg(intf
, smi_msg
, priority
);
1652 spin_unlock_irqrestore(&intf
->xmit_msgs_lock
, flags
);
1656 handlers
->sender(intf
->send_info
, smi_msg
);
1660 * Separate from ipmi_request so that the user does not have to be
1661 * supplied in certain circumstances (mainly at panic time). If
1662 * messages are supplied, they will be freed, even if an error
1665 static int i_ipmi_request(ipmi_user_t user
,
1667 struct ipmi_addr
*addr
,
1669 struct kernel_ipmi_msg
*msg
,
1670 void *user_msg_data
,
1672 struct ipmi_recv_msg
*supplied_recv
,
1674 unsigned char source_address
,
1675 unsigned char source_lun
,
1677 unsigned int retry_time_ms
)
1680 struct ipmi_smi_msg
*smi_msg
;
1681 struct ipmi_recv_msg
*recv_msg
;
1682 unsigned long flags
;
1686 recv_msg
= supplied_recv
;
1688 recv_msg
= ipmi_alloc_recv_msg();
1689 if (recv_msg
== NULL
)
1692 recv_msg
->user_msg_data
= user_msg_data
;
1695 smi_msg
= (struct ipmi_smi_msg
*) supplied_smi
;
1697 smi_msg
= ipmi_alloc_smi_msg();
1698 if (smi_msg
== NULL
) {
1699 ipmi_free_recv_msg(recv_msg
);
1705 if (intf
->in_shutdown
) {
1710 recv_msg
->user
= user
;
1712 kref_get(&user
->refcount
);
1713 recv_msg
->msgid
= msgid
;
1715 * Store the message to send in the receive message so timeout
1716 * responses can get the proper response data.
1718 recv_msg
->msg
= *msg
;
1720 if (addr
->addr_type
== IPMI_SYSTEM_INTERFACE_ADDR_TYPE
) {
1721 struct ipmi_system_interface_addr
*smi_addr
;
1723 if (msg
->netfn
& 1) {
1724 /* Responses are not allowed to the SMI. */
1729 smi_addr
= (struct ipmi_system_interface_addr
*) addr
;
1730 if (smi_addr
->lun
> 3) {
1731 ipmi_inc_stat(intf
, sent_invalid_commands
);
1736 memcpy(&recv_msg
->addr
, smi_addr
, sizeof(*smi_addr
));
1738 if ((msg
->netfn
== IPMI_NETFN_APP_REQUEST
)
1739 && ((msg
->cmd
== IPMI_SEND_MSG_CMD
)
1740 || (msg
->cmd
== IPMI_GET_MSG_CMD
)
1741 || (msg
->cmd
== IPMI_READ_EVENT_MSG_BUFFER_CMD
))) {
1743 * We don't let the user do these, since we manage
1744 * the sequence numbers.
1746 ipmi_inc_stat(intf
, sent_invalid_commands
);
1751 if (((msg
->netfn
== IPMI_NETFN_APP_REQUEST
)
1752 && ((msg
->cmd
== IPMI_COLD_RESET_CMD
)
1753 || (msg
->cmd
== IPMI_WARM_RESET_CMD
)))
1754 || (msg
->netfn
== IPMI_NETFN_FIRMWARE_REQUEST
)) {
1755 spin_lock_irqsave(&intf
->maintenance_mode_lock
, flags
);
1756 intf
->auto_maintenance_timeout
1757 = IPMI_MAINTENANCE_MODE_TIMEOUT
;
1758 if (!intf
->maintenance_mode
1759 && !intf
->maintenance_mode_enable
) {
1760 intf
->maintenance_mode_enable
= true;
1761 maintenance_mode_update(intf
);
1763 spin_unlock_irqrestore(&intf
->maintenance_mode_lock
,
1767 if ((msg
->data_len
+ 2) > IPMI_MAX_MSG_LENGTH
) {
1768 ipmi_inc_stat(intf
, sent_invalid_commands
);
1773 smi_msg
->data
[0] = (msg
->netfn
<< 2) | (smi_addr
->lun
& 0x3);
1774 smi_msg
->data
[1] = msg
->cmd
;
1775 smi_msg
->msgid
= msgid
;
1776 smi_msg
->user_data
= recv_msg
;
1777 if (msg
->data_len
> 0)
1778 memcpy(&(smi_msg
->data
[2]), msg
->data
, msg
->data_len
);
1779 smi_msg
->data_size
= msg
->data_len
+ 2;
1780 ipmi_inc_stat(intf
, sent_local_commands
);
1781 } else if (is_ipmb_addr(addr
) || is_ipmb_bcast_addr(addr
)) {
1782 struct ipmi_ipmb_addr
*ipmb_addr
;
1783 unsigned char ipmb_seq
;
1786 struct ipmi_channel
*chans
;
1788 if (addr
->channel
>= IPMI_MAX_CHANNELS
) {
1789 ipmi_inc_stat(intf
, sent_invalid_commands
);
1794 chans
= READ_ONCE(intf
->channel_list
)->c
;
1796 if (chans
[addr
->channel
].medium
!= IPMI_CHANNEL_MEDIUM_IPMB
) {
1797 ipmi_inc_stat(intf
, sent_invalid_commands
);
1803 if (addr
->addr_type
== IPMI_IPMB_BROADCAST_ADDR_TYPE
)
1804 retries
= 0; /* Don't retry broadcasts. */
1808 if (addr
->addr_type
== IPMI_IPMB_BROADCAST_ADDR_TYPE
) {
1810 * Broadcasts add a zero at the beginning of the
1811 * message, but otherwise is the same as an IPMB
1814 addr
->addr_type
= IPMI_IPMB_ADDR_TYPE
;
1819 /* Default to 1 second retries. */
1820 if (retry_time_ms
== 0)
1821 retry_time_ms
= 1000;
1824 * 9 for the header and 1 for the checksum, plus
1825 * possibly one for the broadcast.
1827 if ((msg
->data_len
+ 10 + broadcast
) > IPMI_MAX_MSG_LENGTH
) {
1828 ipmi_inc_stat(intf
, sent_invalid_commands
);
1833 ipmb_addr
= (struct ipmi_ipmb_addr
*) addr
;
1834 if (ipmb_addr
->lun
> 3) {
1835 ipmi_inc_stat(intf
, sent_invalid_commands
);
1840 memcpy(&recv_msg
->addr
, ipmb_addr
, sizeof(*ipmb_addr
));
1842 if (recv_msg
->msg
.netfn
& 0x1) {
1844 * It's a response, so use the user's sequence
1847 ipmi_inc_stat(intf
, sent_ipmb_responses
);
1848 format_ipmb_msg(smi_msg
, msg
, ipmb_addr
, msgid
,
1850 source_address
, source_lun
);
1853 * Save the receive message so we can use it
1854 * to deliver the response.
1856 smi_msg
->user_data
= recv_msg
;
1858 /* It's a command, so get a sequence for it. */
1860 spin_lock_irqsave(&(intf
->seq_lock
), flags
);
1863 * Create a sequence number with a 1 second
1864 * timeout and 4 retries.
1866 rv
= intf_next_seq(intf
,
1875 * We have used up all the sequence numbers,
1876 * probably, so abort.
1878 spin_unlock_irqrestore(&(intf
->seq_lock
),
1883 ipmi_inc_stat(intf
, sent_ipmb_commands
);
1886 * Store the sequence number in the message,
1887 * so that when the send message response
1888 * comes back we can start the timer.
1890 format_ipmb_msg(smi_msg
, msg
, ipmb_addr
,
1891 STORE_SEQ_IN_MSGID(ipmb_seq
, seqid
),
1892 ipmb_seq
, broadcast
,
1893 source_address
, source_lun
);
1896 * Copy the message into the recv message data, so we
1897 * can retransmit it later if necessary.
1899 memcpy(recv_msg
->msg_data
, smi_msg
->data
,
1900 smi_msg
->data_size
);
1901 recv_msg
->msg
.data
= recv_msg
->msg_data
;
1902 recv_msg
->msg
.data_len
= smi_msg
->data_size
;
1905 * We don't unlock until here, because we need
1906 * to copy the completed message into the
1907 * recv_msg before we release the lock.
1908 * Otherwise, race conditions may bite us. I
1909 * know that's pretty paranoid, but I prefer
1912 spin_unlock_irqrestore(&(intf
->seq_lock
), flags
);
1914 } else if (is_lan_addr(addr
)) {
1915 struct ipmi_lan_addr
*lan_addr
;
1916 unsigned char ipmb_seq
;
1918 struct ipmi_channel
*chans
;
1920 if (addr
->channel
>= IPMI_MAX_CHANNELS
) {
1921 ipmi_inc_stat(intf
, sent_invalid_commands
);
1926 chans
= READ_ONCE(intf
->channel_list
)->c
;
1928 if ((chans
[addr
->channel
].medium
1929 != IPMI_CHANNEL_MEDIUM_8023LAN
)
1930 && (chans
[addr
->channel
].medium
1931 != IPMI_CHANNEL_MEDIUM_ASYNC
)) {
1932 ipmi_inc_stat(intf
, sent_invalid_commands
);
1939 /* Default to 1 second retries. */
1940 if (retry_time_ms
== 0)
1941 retry_time_ms
= 1000;
1943 /* 11 for the header and 1 for the checksum. */
1944 if ((msg
->data_len
+ 12) > IPMI_MAX_MSG_LENGTH
) {
1945 ipmi_inc_stat(intf
, sent_invalid_commands
);
1950 lan_addr
= (struct ipmi_lan_addr
*) addr
;
1951 if (lan_addr
->lun
> 3) {
1952 ipmi_inc_stat(intf
, sent_invalid_commands
);
1957 memcpy(&recv_msg
->addr
, lan_addr
, sizeof(*lan_addr
));
1959 if (recv_msg
->msg
.netfn
& 0x1) {
1961 * It's a response, so use the user's sequence
1964 ipmi_inc_stat(intf
, sent_lan_responses
);
1965 format_lan_msg(smi_msg
, msg
, lan_addr
, msgid
,
1969 * Save the receive message so we can use it
1970 * to deliver the response.
1972 smi_msg
->user_data
= recv_msg
;
1974 /* It's a command, so get a sequence for it. */
1976 spin_lock_irqsave(&(intf
->seq_lock
), flags
);
1979 * Create a sequence number with a 1 second
1980 * timeout and 4 retries.
1982 rv
= intf_next_seq(intf
,
1991 * We have used up all the sequence numbers,
1992 * probably, so abort.
1994 spin_unlock_irqrestore(&(intf
->seq_lock
),
1999 ipmi_inc_stat(intf
, sent_lan_commands
);
2002 * Store the sequence number in the message,
2003 * so that when the send message response
2004 * comes back we can start the timer.
2006 format_lan_msg(smi_msg
, msg
, lan_addr
,
2007 STORE_SEQ_IN_MSGID(ipmb_seq
, seqid
),
2008 ipmb_seq
, source_lun
);
2011 * Copy the message into the recv message data, so we
2012 * can retransmit it later if necessary.
2014 memcpy(recv_msg
->msg_data
, smi_msg
->data
,
2015 smi_msg
->data_size
);
2016 recv_msg
->msg
.data
= recv_msg
->msg_data
;
2017 recv_msg
->msg
.data_len
= smi_msg
->data_size
;
2020 * We don't unlock until here, because we need
2021 * to copy the completed message into the
2022 * recv_msg before we release the lock.
2023 * Otherwise, race conditions may bite us. I
2024 * know that's pretty paranoid, but I prefer
2027 spin_unlock_irqrestore(&(intf
->seq_lock
), flags
);
2030 /* Unknown address type. */
2031 ipmi_inc_stat(intf
, sent_invalid_commands
);
2039 for (m
= 0; m
< smi_msg
->data_size
; m
++)
2040 printk(" %2.2x", smi_msg
->data
[m
]);
2045 smi_send(intf
, intf
->handlers
, smi_msg
, priority
);
2052 ipmi_free_smi_msg(smi_msg
);
2053 ipmi_free_recv_msg(recv_msg
);
2057 static int check_addr(ipmi_smi_t intf
,
2058 struct ipmi_addr
*addr
,
2059 unsigned char *saddr
,
2062 if (addr
->channel
>= IPMI_MAX_CHANNELS
)
2064 *lun
= intf
->addrinfo
[addr
->channel
].lun
;
2065 *saddr
= intf
->addrinfo
[addr
->channel
].address
;
2069 int ipmi_request_settime(ipmi_user_t user
,
2070 struct ipmi_addr
*addr
,
2072 struct kernel_ipmi_msg
*msg
,
2073 void *user_msg_data
,
2076 unsigned int retry_time_ms
)
2078 unsigned char saddr
= 0, lun
= 0;
2083 rv
= check_addr(user
->intf
, addr
, &saddr
, &lun
);
2086 return i_ipmi_request(user
,
2099 EXPORT_SYMBOL(ipmi_request_settime
);
2101 int ipmi_request_supply_msgs(ipmi_user_t user
,
2102 struct ipmi_addr
*addr
,
2104 struct kernel_ipmi_msg
*msg
,
2105 void *user_msg_data
,
2107 struct ipmi_recv_msg
*supplied_recv
,
2110 unsigned char saddr
= 0, lun
= 0;
2115 rv
= check_addr(user
->intf
, addr
, &saddr
, &lun
);
2118 return i_ipmi_request(user
,
2131 EXPORT_SYMBOL(ipmi_request_supply_msgs
);
2133 static void bmc_device_id_handler(ipmi_smi_t intf
, struct ipmi_recv_msg
*msg
)
2137 if ((msg
->addr
.addr_type
!= IPMI_SYSTEM_INTERFACE_ADDR_TYPE
)
2138 || (msg
->msg
.netfn
!= IPMI_NETFN_APP_RESPONSE
)
2139 || (msg
->msg
.cmd
!= IPMI_GET_DEVICE_ID_CMD
)) {
2140 dev_warn(intf
->si_dev
,
2141 PFX
"invalid device_id msg: addr_type=%d netfn=%x cmd=%x\n",
2142 msg
->addr
.addr_type
, msg
->msg
.netfn
, msg
->msg
.cmd
);
2146 rv
= ipmi_demangle_device_id(msg
->msg
.netfn
, msg
->msg
.cmd
,
2147 msg
->msg
.data
, msg
->msg
.data_len
, &intf
->bmc
->fetch_id
);
2149 dev_warn(intf
->si_dev
,
2150 PFX
"device id demangle failed: %d\n", rv
);
2151 intf
->bmc
->dyn_id_set
= 0;
2154 * Make sure the id data is available before setting
2158 intf
->bmc
->dyn_id_set
= 1;
2161 wake_up(&intf
->waitq
);
2165 send_get_device_id_cmd(ipmi_smi_t intf
)
2167 struct ipmi_system_interface_addr si
;
2168 struct kernel_ipmi_msg msg
;
2170 si
.addr_type
= IPMI_SYSTEM_INTERFACE_ADDR_TYPE
;
2171 si
.channel
= IPMI_BMC_CHANNEL
;
2174 msg
.netfn
= IPMI_NETFN_APP_REQUEST
;
2175 msg
.cmd
= IPMI_GET_DEVICE_ID_CMD
;
2179 return i_ipmi_request(NULL
,
2181 (struct ipmi_addr
*) &si
,
2188 intf
->addrinfo
[0].address
,
2189 intf
->addrinfo
[0].lun
,
2193 static int __get_device_id(ipmi_smi_t intf
, struct bmc_device
*bmc
)
2197 bmc
->dyn_id_set
= 2;
2199 intf
->null_user_handler
= bmc_device_id_handler
;
2201 rv
= send_get_device_id_cmd(intf
);
2205 wait_event(intf
->waitq
, bmc
->dyn_id_set
!= 2);
2207 if (!bmc
->dyn_id_set
)
2208 rv
= -EIO
; /* Something went wrong in the fetch. */
2210 /* dyn_id_set makes the id data available. */
2213 intf
->null_user_handler
= NULL
;
2219 * Fetch the device id for the bmc/interface. You must pass in either
2220 * bmc or intf, this code will get the other one. If the data has
2221 * been recently fetched, this will just use the cached data. Otherwise
2222 * it will run a new fetch.
2224 * Except for the first time this is called (in ipmi_register_smi()),
2225 * this will always return good data;
2227 static int __bmc_get_device_id(ipmi_smi_t intf
, struct bmc_device
*bmc
,
2228 struct ipmi_device_id
*id
,
2229 bool *guid_set
, guid_t
*guid
, int intf_num
)
2232 int prev_dyn_id_set
, prev_guid_set
;
2233 bool intf_set
= intf
!= NULL
;
2236 mutex_lock(&bmc
->dyn_mutex
);
2238 if (list_empty(&bmc
->intfs
)) {
2239 mutex_unlock(&bmc
->dyn_mutex
);
2242 intf
= list_first_entry(&bmc
->intfs
, struct ipmi_smi
,
2244 kref_get(&intf
->refcount
);
2245 mutex_unlock(&bmc
->dyn_mutex
);
2246 mutex_lock(&intf
->bmc_reg_mutex
);
2247 mutex_lock(&bmc
->dyn_mutex
);
2248 if (intf
!= list_first_entry(&bmc
->intfs
, struct ipmi_smi
,
2250 mutex_unlock(&intf
->bmc_reg_mutex
);
2251 kref_put(&intf
->refcount
, intf_free
);
2252 goto retry_bmc_lock
;
2255 mutex_lock(&intf
->bmc_reg_mutex
);
2257 mutex_lock(&bmc
->dyn_mutex
);
2258 kref_get(&intf
->refcount
);
2261 /* If we have a valid and current ID, just return that. */
2262 if (intf
->in_bmc_register
||
2263 (bmc
->dyn_id_set
&& time_is_after_jiffies(bmc
->dyn_id_expiry
)))
2264 goto out_noprocessing
;
2266 prev_guid_set
= bmc
->dyn_guid_set
;
2269 prev_dyn_id_set
= bmc
->dyn_id_set
;
2270 rv
= __get_device_id(intf
, bmc
);
2275 * The guid, device id, manufacturer id, and product id should
2276 * not change on a BMC. If it does we have to do some dancing.
2278 if (!intf
->bmc_registered
2279 || (!prev_guid_set
&& bmc
->dyn_guid_set
)
2280 || (!prev_dyn_id_set
&& bmc
->dyn_id_set
)
2281 || (prev_guid_set
&& bmc
->dyn_guid_set
2282 && !guid_equal(&bmc
->guid
, &bmc
->fetch_guid
))
2283 || bmc
->id
.device_id
!= bmc
->fetch_id
.device_id
2284 || bmc
->id
.manufacturer_id
!= bmc
->fetch_id
.manufacturer_id
2285 || bmc
->id
.product_id
!= bmc
->fetch_id
.product_id
) {
2286 struct ipmi_device_id id
= bmc
->fetch_id
;
2287 int guid_set
= bmc
->dyn_guid_set
;
2290 guid
= bmc
->fetch_guid
;
2291 mutex_unlock(&bmc
->dyn_mutex
);
2293 __ipmi_bmc_unregister(intf
);
2294 /* Fill in the temporary BMC for good measure. */
2296 intf
->bmc
->dyn_guid_set
= guid_set
;
2297 intf
->bmc
->guid
= guid
;
2298 if (__ipmi_bmc_register(intf
, &id
, guid_set
, &guid
, intf_num
))
2299 need_waiter(intf
); /* Retry later on an error. */
2301 __scan_channels(intf
, &id
);
2306 * We weren't given the interface on the
2307 * command line, so restart the operation on
2308 * the next interface for the BMC.
2310 mutex_unlock(&intf
->bmc_reg_mutex
);
2311 mutex_lock(&bmc
->dyn_mutex
);
2312 goto retry_bmc_lock
;
2315 /* We have a new BMC, set it up. */
2317 mutex_lock(&bmc
->dyn_mutex
);
2318 goto out_noprocessing
;
2319 } else if (memcmp(&bmc
->fetch_id
, &bmc
->id
, sizeof(bmc
->id
)))
2320 /* Version info changes, scan the channels again. */
2321 __scan_channels(intf
, &bmc
->fetch_id
);
2323 bmc
->dyn_id_expiry
= jiffies
+ IPMI_DYN_DEV_ID_EXPIRY
;
2326 if (rv
&& prev_dyn_id_set
) {
2327 rv
= 0; /* Ignore failures if we have previous data. */
2328 bmc
->dyn_id_set
= prev_dyn_id_set
;
2331 bmc
->id
= bmc
->fetch_id
;
2332 if (bmc
->dyn_guid_set
)
2333 bmc
->guid
= bmc
->fetch_guid
;
2334 else if (prev_guid_set
)
2336 * The guid used to be valid and it failed to fetch,
2337 * just use the cached value.
2339 bmc
->dyn_guid_set
= prev_guid_set
;
2347 *guid_set
= bmc
->dyn_guid_set
;
2349 if (guid
&& bmc
->dyn_guid_set
)
2353 mutex_unlock(&bmc
->dyn_mutex
);
2354 mutex_unlock(&intf
->bmc_reg_mutex
);
2356 kref_put(&intf
->refcount
, intf_free
);
2360 static int bmc_get_device_id(ipmi_smi_t intf
, struct bmc_device
*bmc
,
2361 struct ipmi_device_id
*id
,
2362 bool *guid_set
, guid_t
*guid
)
2364 return __bmc_get_device_id(intf
, bmc
, id
, guid_set
, guid
, -1);
2367 #ifdef CONFIG_IPMI_PROC_INTERFACE
2368 static int smi_ipmb_proc_show(struct seq_file
*m
, void *v
)
2370 ipmi_smi_t intf
= m
->private;
2373 seq_printf(m
, "%x", intf
->addrinfo
[0].address
);
2374 for (i
= 1; i
< IPMI_MAX_CHANNELS
; i
++)
2375 seq_printf(m
, " %x", intf
->addrinfo
[i
].address
);
2381 static int smi_ipmb_proc_open(struct inode
*inode
, struct file
*file
)
2383 return single_open(file
, smi_ipmb_proc_show
, PDE_DATA(inode
));
2386 static const struct file_operations smi_ipmb_proc_ops
= {
2387 .open
= smi_ipmb_proc_open
,
2389 .llseek
= seq_lseek
,
2390 .release
= single_release
,
2393 static int smi_version_proc_show(struct seq_file
*m
, void *v
)
2395 ipmi_smi_t intf
= m
->private;
2396 struct ipmi_device_id id
;
2399 rv
= bmc_get_device_id(intf
, NULL
, &id
, NULL
, NULL
);
2403 seq_printf(m
, "%u.%u\n",
2404 ipmi_version_major(&id
),
2405 ipmi_version_minor(&id
));
2410 static int smi_version_proc_open(struct inode
*inode
, struct file
*file
)
2412 return single_open(file
, smi_version_proc_show
, PDE_DATA(inode
));
2415 static const struct file_operations smi_version_proc_ops
= {
2416 .open
= smi_version_proc_open
,
2418 .llseek
= seq_lseek
,
2419 .release
= single_release
,
2422 static int smi_stats_proc_show(struct seq_file
*m
, void *v
)
2424 ipmi_smi_t intf
= m
->private;
2426 seq_printf(m
, "sent_invalid_commands: %u\n",
2427 ipmi_get_stat(intf
, sent_invalid_commands
));
2428 seq_printf(m
, "sent_local_commands: %u\n",
2429 ipmi_get_stat(intf
, sent_local_commands
));
2430 seq_printf(m
, "handled_local_responses: %u\n",
2431 ipmi_get_stat(intf
, handled_local_responses
));
2432 seq_printf(m
, "unhandled_local_responses: %u\n",
2433 ipmi_get_stat(intf
, unhandled_local_responses
));
2434 seq_printf(m
, "sent_ipmb_commands: %u\n",
2435 ipmi_get_stat(intf
, sent_ipmb_commands
));
2436 seq_printf(m
, "sent_ipmb_command_errs: %u\n",
2437 ipmi_get_stat(intf
, sent_ipmb_command_errs
));
2438 seq_printf(m
, "retransmitted_ipmb_commands: %u\n",
2439 ipmi_get_stat(intf
, retransmitted_ipmb_commands
));
2440 seq_printf(m
, "timed_out_ipmb_commands: %u\n",
2441 ipmi_get_stat(intf
, timed_out_ipmb_commands
));
2442 seq_printf(m
, "timed_out_ipmb_broadcasts: %u\n",
2443 ipmi_get_stat(intf
, timed_out_ipmb_broadcasts
));
2444 seq_printf(m
, "sent_ipmb_responses: %u\n",
2445 ipmi_get_stat(intf
, sent_ipmb_responses
));
2446 seq_printf(m
, "handled_ipmb_responses: %u\n",
2447 ipmi_get_stat(intf
, handled_ipmb_responses
));
2448 seq_printf(m
, "invalid_ipmb_responses: %u\n",
2449 ipmi_get_stat(intf
, invalid_ipmb_responses
));
2450 seq_printf(m
, "unhandled_ipmb_responses: %u\n",
2451 ipmi_get_stat(intf
, unhandled_ipmb_responses
));
2452 seq_printf(m
, "sent_lan_commands: %u\n",
2453 ipmi_get_stat(intf
, sent_lan_commands
));
2454 seq_printf(m
, "sent_lan_command_errs: %u\n",
2455 ipmi_get_stat(intf
, sent_lan_command_errs
));
2456 seq_printf(m
, "retransmitted_lan_commands: %u\n",
2457 ipmi_get_stat(intf
, retransmitted_lan_commands
));
2458 seq_printf(m
, "timed_out_lan_commands: %u\n",
2459 ipmi_get_stat(intf
, timed_out_lan_commands
));
2460 seq_printf(m
, "sent_lan_responses: %u\n",
2461 ipmi_get_stat(intf
, sent_lan_responses
));
2462 seq_printf(m
, "handled_lan_responses: %u\n",
2463 ipmi_get_stat(intf
, handled_lan_responses
));
2464 seq_printf(m
, "invalid_lan_responses: %u\n",
2465 ipmi_get_stat(intf
, invalid_lan_responses
));
2466 seq_printf(m
, "unhandled_lan_responses: %u\n",
2467 ipmi_get_stat(intf
, unhandled_lan_responses
));
2468 seq_printf(m
, "handled_commands: %u\n",
2469 ipmi_get_stat(intf
, handled_commands
));
2470 seq_printf(m
, "invalid_commands: %u\n",
2471 ipmi_get_stat(intf
, invalid_commands
));
2472 seq_printf(m
, "unhandled_commands: %u\n",
2473 ipmi_get_stat(intf
, unhandled_commands
));
2474 seq_printf(m
, "invalid_events: %u\n",
2475 ipmi_get_stat(intf
, invalid_events
));
2476 seq_printf(m
, "events: %u\n",
2477 ipmi_get_stat(intf
, events
));
2478 seq_printf(m
, "failed rexmit LAN msgs: %u\n",
2479 ipmi_get_stat(intf
, dropped_rexmit_lan_commands
));
2480 seq_printf(m
, "failed rexmit IPMB msgs: %u\n",
2481 ipmi_get_stat(intf
, dropped_rexmit_ipmb_commands
));
2485 static int smi_stats_proc_open(struct inode
*inode
, struct file
*file
)
2487 return single_open(file
, smi_stats_proc_show
, PDE_DATA(inode
));
2490 static const struct file_operations smi_stats_proc_ops
= {
2491 .open
= smi_stats_proc_open
,
2493 .llseek
= seq_lseek
,
2494 .release
= single_release
,
2497 int ipmi_smi_add_proc_entry(ipmi_smi_t smi
, char *name
,
2498 const struct file_operations
*proc_ops
,
2502 struct proc_dir_entry
*file
;
2503 struct ipmi_proc_entry
*entry
;
2505 /* Create a list element. */
2506 entry
= kmalloc(sizeof(*entry
), GFP_KERNEL
);
2509 entry
->name
= kstrdup(name
, GFP_KERNEL
);
2515 file
= proc_create_data(name
, 0, smi
->proc_dir
, proc_ops
, data
);
2521 mutex_lock(&smi
->proc_entry_lock
);
2522 /* Stick it on the list. */
2523 entry
->next
= smi
->proc_entries
;
2524 smi
->proc_entries
= entry
;
2525 mutex_unlock(&smi
->proc_entry_lock
);
2530 EXPORT_SYMBOL(ipmi_smi_add_proc_entry
);
2532 static int add_proc_entries(ipmi_smi_t smi
, int num
)
2536 sprintf(smi
->proc_dir_name
, "%d", num
);
2537 smi
->proc_dir
= proc_mkdir(smi
->proc_dir_name
, proc_ipmi_root
);
2542 rv
= ipmi_smi_add_proc_entry(smi
, "stats",
2543 &smi_stats_proc_ops
,
2547 rv
= ipmi_smi_add_proc_entry(smi
, "ipmb",
2552 rv
= ipmi_smi_add_proc_entry(smi
, "version",
2553 &smi_version_proc_ops
,
2559 static void remove_proc_entries(ipmi_smi_t smi
)
2561 struct ipmi_proc_entry
*entry
;
2563 mutex_lock(&smi
->proc_entry_lock
);
2564 while (smi
->proc_entries
) {
2565 entry
= smi
->proc_entries
;
2566 smi
->proc_entries
= entry
->next
;
2568 remove_proc_entry(entry
->name
, smi
->proc_dir
);
2572 mutex_unlock(&smi
->proc_entry_lock
);
2573 remove_proc_entry(smi
->proc_dir_name
, proc_ipmi_root
);
2575 #endif /* CONFIG_IPMI_PROC_INTERFACE */
2577 static ssize_t
device_id_show(struct device
*dev
,
2578 struct device_attribute
*attr
,
2581 struct bmc_device
*bmc
= to_bmc_device(dev
);
2582 struct ipmi_device_id id
;
2585 rv
= bmc_get_device_id(NULL
, bmc
, &id
, NULL
, NULL
);
2589 return snprintf(buf
, 10, "%u\n", id
.device_id
);
2591 static DEVICE_ATTR_RO(device_id
);
2593 static ssize_t
provides_device_sdrs_show(struct device
*dev
,
2594 struct device_attribute
*attr
,
2597 struct bmc_device
*bmc
= to_bmc_device(dev
);
2598 struct ipmi_device_id id
;
2601 rv
= bmc_get_device_id(NULL
, bmc
, &id
, NULL
, NULL
);
2605 return snprintf(buf
, 10, "%u\n", (id
.device_revision
& 0x80) >> 7);
2607 static DEVICE_ATTR_RO(provides_device_sdrs
);
2609 static ssize_t
revision_show(struct device
*dev
, struct device_attribute
*attr
,
2612 struct bmc_device
*bmc
= to_bmc_device(dev
);
2613 struct ipmi_device_id id
;
2616 rv
= bmc_get_device_id(NULL
, bmc
, &id
, NULL
, NULL
);
2620 return snprintf(buf
, 20, "%u\n", id
.device_revision
& 0x0F);
2622 static DEVICE_ATTR_RO(revision
);
2624 static ssize_t
firmware_revision_show(struct device
*dev
,
2625 struct device_attribute
*attr
,
2628 struct bmc_device
*bmc
= to_bmc_device(dev
);
2629 struct ipmi_device_id id
;
2632 rv
= bmc_get_device_id(NULL
, bmc
, &id
, NULL
, NULL
);
2636 return snprintf(buf
, 20, "%u.%x\n", id
.firmware_revision_1
,
2637 id
.firmware_revision_2
);
2639 static DEVICE_ATTR_RO(firmware_revision
);
2641 static ssize_t
ipmi_version_show(struct device
*dev
,
2642 struct device_attribute
*attr
,
2645 struct bmc_device
*bmc
= to_bmc_device(dev
);
2646 struct ipmi_device_id id
;
2649 rv
= bmc_get_device_id(NULL
, bmc
, &id
, NULL
, NULL
);
2653 return snprintf(buf
, 20, "%u.%u\n",
2654 ipmi_version_major(&id
),
2655 ipmi_version_minor(&id
));
2657 static DEVICE_ATTR_RO(ipmi_version
);
2659 static ssize_t
add_dev_support_show(struct device
*dev
,
2660 struct device_attribute
*attr
,
2663 struct bmc_device
*bmc
= to_bmc_device(dev
);
2664 struct ipmi_device_id id
;
2667 rv
= bmc_get_device_id(NULL
, bmc
, &id
, NULL
, NULL
);
2671 return snprintf(buf
, 10, "0x%02x\n", id
.additional_device_support
);
2673 static DEVICE_ATTR(additional_device_support
, S_IRUGO
, add_dev_support_show
,
2676 static ssize_t
manufacturer_id_show(struct device
*dev
,
2677 struct device_attribute
*attr
,
2680 struct bmc_device
*bmc
= to_bmc_device(dev
);
2681 struct ipmi_device_id id
;
2684 rv
= bmc_get_device_id(NULL
, bmc
, &id
, NULL
, NULL
);
2688 return snprintf(buf
, 20, "0x%6.6x\n", id
.manufacturer_id
);
2690 static DEVICE_ATTR_RO(manufacturer_id
);
2692 static ssize_t
product_id_show(struct device
*dev
,
2693 struct device_attribute
*attr
,
2696 struct bmc_device
*bmc
= to_bmc_device(dev
);
2697 struct ipmi_device_id id
;
2700 rv
= bmc_get_device_id(NULL
, bmc
, &id
, NULL
, NULL
);
2704 return snprintf(buf
, 10, "0x%4.4x\n", id
.product_id
);
2706 static DEVICE_ATTR_RO(product_id
);
2708 static ssize_t
aux_firmware_rev_show(struct device
*dev
,
2709 struct device_attribute
*attr
,
2712 struct bmc_device
*bmc
= to_bmc_device(dev
);
2713 struct ipmi_device_id id
;
2716 rv
= bmc_get_device_id(NULL
, bmc
, &id
, NULL
, NULL
);
2720 return snprintf(buf
, 21, "0x%02x 0x%02x 0x%02x 0x%02x\n",
2721 id
.aux_firmware_revision
[3],
2722 id
.aux_firmware_revision
[2],
2723 id
.aux_firmware_revision
[1],
2724 id
.aux_firmware_revision
[0]);
2726 static DEVICE_ATTR(aux_firmware_revision
, S_IRUGO
, aux_firmware_rev_show
, NULL
);
2728 static ssize_t
guid_show(struct device
*dev
, struct device_attribute
*attr
,
2731 struct bmc_device
*bmc
= to_bmc_device(dev
);
2736 rv
= bmc_get_device_id(NULL
, bmc
, NULL
, &guid_set
, &guid
);
2742 return snprintf(buf
, 38, "%pUl\n", guid
.b
);
2744 static DEVICE_ATTR_RO(guid
);
2746 static struct attribute
*bmc_dev_attrs
[] = {
2747 &dev_attr_device_id
.attr
,
2748 &dev_attr_provides_device_sdrs
.attr
,
2749 &dev_attr_revision
.attr
,
2750 &dev_attr_firmware_revision
.attr
,
2751 &dev_attr_ipmi_version
.attr
,
2752 &dev_attr_additional_device_support
.attr
,
2753 &dev_attr_manufacturer_id
.attr
,
2754 &dev_attr_product_id
.attr
,
2755 &dev_attr_aux_firmware_revision
.attr
,
2756 &dev_attr_guid
.attr
,
2760 static umode_t
bmc_dev_attr_is_visible(struct kobject
*kobj
,
2761 struct attribute
*attr
, int idx
)
2763 struct device
*dev
= kobj_to_dev(kobj
);
2764 struct bmc_device
*bmc
= to_bmc_device(dev
);
2765 umode_t mode
= attr
->mode
;
2768 if (attr
== &dev_attr_aux_firmware_revision
.attr
) {
2769 struct ipmi_device_id id
;
2771 rv
= bmc_get_device_id(NULL
, bmc
, &id
, NULL
, NULL
);
2772 return (!rv
&& id
.aux_firmware_revision_set
) ? mode
: 0;
2774 if (attr
== &dev_attr_guid
.attr
) {
2777 rv
= bmc_get_device_id(NULL
, bmc
, NULL
, &guid_set
, NULL
);
2778 return (!rv
&& guid_set
) ? mode
: 0;
2783 static const struct attribute_group bmc_dev_attr_group
= {
2784 .attrs
= bmc_dev_attrs
,
2785 .is_visible
= bmc_dev_attr_is_visible
,
2788 static const struct attribute_group
*bmc_dev_attr_groups
[] = {
2789 &bmc_dev_attr_group
,
2793 static const struct device_type bmc_device_type
= {
2794 .groups
= bmc_dev_attr_groups
,
2797 static int __find_bmc_guid(struct device
*dev
, void *data
)
2799 guid_t
*guid
= data
;
2800 struct bmc_device
*bmc
;
2803 if (dev
->type
!= &bmc_device_type
)
2806 bmc
= to_bmc_device(dev
);
2807 rv
= bmc
->dyn_guid_set
&& guid_equal(&bmc
->guid
, guid
);
2809 rv
= kref_get_unless_zero(&bmc
->usecount
);
2814 * Returns with the bmc's usecount incremented, if it is non-NULL.
2816 static struct bmc_device
*ipmi_find_bmc_guid(struct device_driver
*drv
,
2820 struct bmc_device
*bmc
= NULL
;
2822 dev
= driver_find_device(drv
, NULL
, guid
, __find_bmc_guid
);
2824 bmc
= to_bmc_device(dev
);
2830 struct prod_dev_id
{
2831 unsigned int product_id
;
2832 unsigned char device_id
;
2835 static int __find_bmc_prod_dev_id(struct device
*dev
, void *data
)
2837 struct prod_dev_id
*cid
= data
;
2838 struct bmc_device
*bmc
;
2841 if (dev
->type
!= &bmc_device_type
)
2844 bmc
= to_bmc_device(dev
);
2845 rv
= (bmc
->id
.product_id
== cid
->product_id
2846 && bmc
->id
.device_id
== cid
->device_id
);
2848 rv
= kref_get_unless_zero(&bmc
->usecount
);
2853 * Returns with the bmc's usecount incremented, if it is non-NULL.
2855 static struct bmc_device
*ipmi_find_bmc_prod_dev_id(
2856 struct device_driver
*drv
,
2857 unsigned int product_id
, unsigned char device_id
)
2859 struct prod_dev_id id
= {
2860 .product_id
= product_id
,
2861 .device_id
= device_id
,
2864 struct bmc_device
*bmc
= NULL
;
2866 dev
= driver_find_device(drv
, NULL
, &id
, __find_bmc_prod_dev_id
);
2868 bmc
= to_bmc_device(dev
);
2874 static DEFINE_IDA(ipmi_bmc_ida
);
2877 release_bmc_device(struct device
*dev
)
2879 kfree(to_bmc_device(dev
));
2882 static void cleanup_bmc_work(struct work_struct
*work
)
2884 struct bmc_device
*bmc
= container_of(work
, struct bmc_device
,
2886 int id
= bmc
->pdev
.id
; /* Unregister overwrites id */
2888 platform_device_unregister(&bmc
->pdev
);
2889 ida_simple_remove(&ipmi_bmc_ida
, id
);
2893 cleanup_bmc_device(struct kref
*ref
)
2895 struct bmc_device
*bmc
= container_of(ref
, struct bmc_device
, usecount
);
2898 * Remove the platform device in a work queue to avoid issues
2899 * with removing the device attributes while reading a device
2902 schedule_work(&bmc
->remove_work
);
2906 * Must be called with intf->bmc_reg_mutex held.
2908 static void __ipmi_bmc_unregister(ipmi_smi_t intf
)
2910 struct bmc_device
*bmc
= intf
->bmc
;
2912 if (!intf
->bmc_registered
)
2915 sysfs_remove_link(&intf
->si_dev
->kobj
, "bmc");
2916 sysfs_remove_link(&bmc
->pdev
.dev
.kobj
, intf
->my_dev_name
);
2917 kfree(intf
->my_dev_name
);
2918 intf
->my_dev_name
= NULL
;
2920 mutex_lock(&bmc
->dyn_mutex
);
2921 list_del(&intf
->bmc_link
);
2922 mutex_unlock(&bmc
->dyn_mutex
);
2923 intf
->bmc
= &intf
->tmp_bmc
;
2924 kref_put(&bmc
->usecount
, cleanup_bmc_device
);
2925 intf
->bmc_registered
= false;
2928 static void ipmi_bmc_unregister(ipmi_smi_t intf
)
2930 mutex_lock(&intf
->bmc_reg_mutex
);
2931 __ipmi_bmc_unregister(intf
);
2932 mutex_unlock(&intf
->bmc_reg_mutex
);
2936 * Must be called with intf->bmc_reg_mutex held.
2938 static int __ipmi_bmc_register(ipmi_smi_t intf
,
2939 struct ipmi_device_id
*id
,
2940 bool guid_set
, guid_t
*guid
, int intf_num
)
2943 struct bmc_device
*bmc
;
2944 struct bmc_device
*old_bmc
;
2947 * platform_device_register() can cause bmc_reg_mutex to
2948 * be claimed because of the is_visible functions of
2949 * the attributes. Eliminate possible recursion and
2952 intf
->in_bmc_register
= true;
2953 mutex_unlock(&intf
->bmc_reg_mutex
);
2956 * Try to find if there is an bmc_device struct
2957 * representing the interfaced BMC already
2959 mutex_lock(&ipmidriver_mutex
);
2961 old_bmc
= ipmi_find_bmc_guid(&ipmidriver
.driver
, guid
);
2963 old_bmc
= ipmi_find_bmc_prod_dev_id(&ipmidriver
.driver
,
2968 * If there is already an bmc_device, free the new one,
2969 * otherwise register the new BMC device
2974 * Note: old_bmc already has usecount incremented by
2975 * the BMC find functions.
2977 intf
->bmc
= old_bmc
;
2978 mutex_lock(&bmc
->dyn_mutex
);
2979 list_add_tail(&intf
->bmc_link
, &bmc
->intfs
);
2980 mutex_unlock(&bmc
->dyn_mutex
);
2982 dev_info(intf
->si_dev
,
2983 "ipmi: interfacing existing BMC (man_id: 0x%6.6x,"
2984 " prod_id: 0x%4.4x, dev_id: 0x%2.2x)\n",
2985 bmc
->id
.manufacturer_id
,
2989 bmc
= kzalloc(sizeof(*bmc
), GFP_KERNEL
);
2994 INIT_LIST_HEAD(&bmc
->intfs
);
2995 mutex_init(&bmc
->dyn_mutex
);
2996 INIT_WORK(&bmc
->remove_work
, cleanup_bmc_work
);
2999 bmc
->dyn_id_set
= 1;
3000 bmc
->dyn_guid_set
= guid_set
;
3002 bmc
->dyn_id_expiry
= jiffies
+ IPMI_DYN_DEV_ID_EXPIRY
;
3004 bmc
->pdev
.name
= "ipmi_bmc";
3006 rv
= ida_simple_get(&ipmi_bmc_ida
, 0, 0, GFP_KERNEL
);
3009 bmc
->pdev
.dev
.driver
= &ipmidriver
.driver
;
3011 bmc
->pdev
.dev
.release
= release_bmc_device
;
3012 bmc
->pdev
.dev
.type
= &bmc_device_type
;
3013 kref_init(&bmc
->usecount
);
3016 mutex_lock(&bmc
->dyn_mutex
);
3017 list_add_tail(&intf
->bmc_link
, &bmc
->intfs
);
3018 mutex_unlock(&bmc
->dyn_mutex
);
3020 rv
= platform_device_register(&bmc
->pdev
);
3022 dev_err(intf
->si_dev
,
3023 PFX
" Unable to register bmc device: %d\n",
3028 dev_info(intf
->si_dev
,
3029 "Found new BMC (man_id: 0x%6.6x, prod_id: 0x%4.4x, dev_id: 0x%2.2x)\n",
3030 bmc
->id
.manufacturer_id
,
3036 * create symlink from system interface device to bmc device
3039 rv
= sysfs_create_link(&intf
->si_dev
->kobj
, &bmc
->pdev
.dev
.kobj
, "bmc");
3041 dev_err(intf
->si_dev
,
3042 PFX
"Unable to create bmc symlink: %d\n", rv
);
3047 intf_num
= intf
->intf_num
;
3048 intf
->my_dev_name
= kasprintf(GFP_KERNEL
, "ipmi%d", intf_num
);
3049 if (!intf
->my_dev_name
) {
3051 dev_err(intf
->si_dev
,
3052 PFX
"Unable to allocate link from BMC: %d\n", rv
);
3056 rv
= sysfs_create_link(&bmc
->pdev
.dev
.kobj
, &intf
->si_dev
->kobj
,
3059 kfree(intf
->my_dev_name
);
3060 intf
->my_dev_name
= NULL
;
3061 dev_err(intf
->si_dev
,
3062 PFX
"Unable to create symlink to bmc: %d\n", rv
);
3063 goto out_free_my_dev_name
;
3066 intf
->bmc_registered
= true;
3069 mutex_unlock(&ipmidriver_mutex
);
3070 mutex_lock(&intf
->bmc_reg_mutex
);
3071 intf
->in_bmc_register
= false;
3075 out_free_my_dev_name
:
3076 kfree(intf
->my_dev_name
);
3077 intf
->my_dev_name
= NULL
;
3080 sysfs_remove_link(&intf
->si_dev
->kobj
, "bmc");
3083 mutex_lock(&bmc
->dyn_mutex
);
3084 list_del(&intf
->bmc_link
);
3085 mutex_unlock(&bmc
->dyn_mutex
);
3086 intf
->bmc
= &intf
->tmp_bmc
;
3087 kref_put(&bmc
->usecount
, cleanup_bmc_device
);
3091 mutex_lock(&bmc
->dyn_mutex
);
3092 list_del(&intf
->bmc_link
);
3093 mutex_unlock(&bmc
->dyn_mutex
);
3094 intf
->bmc
= &intf
->tmp_bmc
;
3095 put_device(&bmc
->pdev
.dev
);
3100 send_guid_cmd(ipmi_smi_t intf
, int chan
)
3102 struct kernel_ipmi_msg msg
;
3103 struct ipmi_system_interface_addr si
;
3105 si
.addr_type
= IPMI_SYSTEM_INTERFACE_ADDR_TYPE
;
3106 si
.channel
= IPMI_BMC_CHANNEL
;
3109 msg
.netfn
= IPMI_NETFN_APP_REQUEST
;
3110 msg
.cmd
= IPMI_GET_DEVICE_GUID_CMD
;
3113 return i_ipmi_request(NULL
,
3115 (struct ipmi_addr
*) &si
,
3122 intf
->addrinfo
[0].address
,
3123 intf
->addrinfo
[0].lun
,
3127 static void guid_handler(ipmi_smi_t intf
, struct ipmi_recv_msg
*msg
)
3129 struct bmc_device
*bmc
= intf
->bmc
;
3131 if ((msg
->addr
.addr_type
!= IPMI_SYSTEM_INTERFACE_ADDR_TYPE
)
3132 || (msg
->msg
.netfn
!= IPMI_NETFN_APP_RESPONSE
)
3133 || (msg
->msg
.cmd
!= IPMI_GET_DEVICE_GUID_CMD
))
3137 if (msg
->msg
.data
[0] != 0) {
3138 /* Error from getting the GUID, the BMC doesn't have one. */
3139 bmc
->dyn_guid_set
= 0;
3143 if (msg
->msg
.data_len
< 17) {
3144 bmc
->dyn_guid_set
= 0;
3145 dev_warn(intf
->si_dev
,
3146 PFX
"The GUID response from the BMC was too short, it was %d but should have been 17. Assuming GUID is not available.\n",
3151 memcpy(bmc
->fetch_guid
.b
, msg
->msg
.data
+ 1, 16);
3153 * Make sure the guid data is available before setting
3157 bmc
->dyn_guid_set
= 1;
3159 wake_up(&intf
->waitq
);
3162 static void __get_guid(ipmi_smi_t intf
)
3165 struct bmc_device
*bmc
= intf
->bmc
;
3167 bmc
->dyn_guid_set
= 2;
3168 intf
->null_user_handler
= guid_handler
;
3169 rv
= send_guid_cmd(intf
, 0);
3171 /* Send failed, no GUID available. */
3172 bmc
->dyn_guid_set
= 0;
3174 wait_event(intf
->waitq
, bmc
->dyn_guid_set
!= 2);
3176 /* dyn_guid_set makes the guid data available. */
3179 intf
->null_user_handler
= NULL
;
3183 send_channel_info_cmd(ipmi_smi_t intf
, int chan
)
3185 struct kernel_ipmi_msg msg
;
3186 unsigned char data
[1];
3187 struct ipmi_system_interface_addr si
;
3189 si
.addr_type
= IPMI_SYSTEM_INTERFACE_ADDR_TYPE
;
3190 si
.channel
= IPMI_BMC_CHANNEL
;
3193 msg
.netfn
= IPMI_NETFN_APP_REQUEST
;
3194 msg
.cmd
= IPMI_GET_CHANNEL_INFO_CMD
;
3198 return i_ipmi_request(NULL
,
3200 (struct ipmi_addr
*) &si
,
3207 intf
->addrinfo
[0].address
,
3208 intf
->addrinfo
[0].lun
,
3213 channel_handler(ipmi_smi_t intf
, struct ipmi_recv_msg
*msg
)
3217 unsigned int set
= intf
->curr_working_cset
;
3218 struct ipmi_channel
*chans
;
3220 if ((msg
->addr
.addr_type
== IPMI_SYSTEM_INTERFACE_ADDR_TYPE
)
3221 && (msg
->msg
.netfn
== IPMI_NETFN_APP_RESPONSE
)
3222 && (msg
->msg
.cmd
== IPMI_GET_CHANNEL_INFO_CMD
)) {
3223 /* It's the one we want */
3224 if (msg
->msg
.data
[0] != 0) {
3225 /* Got an error from the channel, just go on. */
3227 if (msg
->msg
.data
[0] == IPMI_INVALID_COMMAND_ERR
) {
3229 * If the MC does not support this
3230 * command, that is legal. We just
3231 * assume it has one IPMB at channel
3234 intf
->wchannels
[set
].c
[0].medium
3235 = IPMI_CHANNEL_MEDIUM_IPMB
;
3236 intf
->wchannels
[set
].c
[0].protocol
3237 = IPMI_CHANNEL_PROTOCOL_IPMB
;
3239 intf
->channel_list
= intf
->wchannels
+ set
;
3240 intf
->channels_ready
= true;
3241 wake_up(&intf
->waitq
);
3246 if (msg
->msg
.data_len
< 4) {
3247 /* Message not big enough, just go on. */
3250 ch
= intf
->curr_channel
;
3251 chans
= intf
->wchannels
[set
].c
;
3252 chans
[ch
].medium
= msg
->msg
.data
[2] & 0x7f;
3253 chans
[ch
].protocol
= msg
->msg
.data
[3] & 0x1f;
3256 intf
->curr_channel
++;
3257 if (intf
->curr_channel
>= IPMI_MAX_CHANNELS
) {
3258 intf
->channel_list
= intf
->wchannels
+ set
;
3259 intf
->channels_ready
= true;
3260 wake_up(&intf
->waitq
);
3262 intf
->channel_list
= intf
->wchannels
+ set
;
3263 intf
->channels_ready
= true;
3264 rv
= send_channel_info_cmd(intf
, intf
->curr_channel
);
3268 /* Got an error somehow, just give up. */
3269 dev_warn(intf
->si_dev
,
3270 PFX
"Error sending channel information for channel %d: %d\n",
3271 intf
->curr_channel
, rv
);
3273 intf
->channel_list
= intf
->wchannels
+ set
;
3274 intf
->channels_ready
= true;
3275 wake_up(&intf
->waitq
);
3283 * Must be holding intf->bmc_reg_mutex to call this.
3285 static int __scan_channels(ipmi_smi_t intf
, struct ipmi_device_id
*id
)
3289 if (ipmi_version_major(id
) > 1
3290 || (ipmi_version_major(id
) == 1
3291 && ipmi_version_minor(id
) >= 5)) {
3295 * Start scanning the channels to see what is
3298 set
= !intf
->curr_working_cset
;
3299 intf
->curr_working_cset
= set
;
3300 memset(&intf
->wchannels
[set
], 0,
3301 sizeof(struct ipmi_channel_set
));
3303 intf
->null_user_handler
= channel_handler
;
3304 intf
->curr_channel
= 0;
3305 rv
= send_channel_info_cmd(intf
, 0);
3307 dev_warn(intf
->si_dev
,
3308 "Error sending channel information for channel 0, %d\n",
3313 /* Wait for the channel info to be read. */
3314 wait_event(intf
->waitq
, intf
->channels_ready
);
3315 intf
->null_user_handler
= NULL
;
3317 unsigned int set
= intf
->curr_working_cset
;
3319 /* Assume a single IPMB channel at zero. */
3320 intf
->wchannels
[set
].c
[0].medium
= IPMI_CHANNEL_MEDIUM_IPMB
;
3321 intf
->wchannels
[set
].c
[0].protocol
= IPMI_CHANNEL_PROTOCOL_IPMB
;
3322 intf
->channel_list
= intf
->wchannels
+ set
;
3323 intf
->channels_ready
= true;
3329 static void ipmi_poll(ipmi_smi_t intf
)
3331 if (intf
->handlers
->poll
)
3332 intf
->handlers
->poll(intf
->send_info
);
3333 /* In case something came in */
3334 handle_new_recv_msgs(intf
);
3337 void ipmi_poll_interface(ipmi_user_t user
)
3339 ipmi_poll(user
->intf
);
3341 EXPORT_SYMBOL(ipmi_poll_interface
);
3343 static void redo_bmc_reg(struct work_struct
*work
)
3345 ipmi_smi_t intf
= container_of(work
, struct ipmi_smi
, bmc_reg_work
);
3347 if (!intf
->in_shutdown
)
3348 bmc_get_device_id(intf
, NULL
, NULL
, NULL
, NULL
);
3350 kref_put(&intf
->refcount
, intf_free
);
3353 int ipmi_register_smi(const struct ipmi_smi_handlers
*handlers
,
3355 struct device
*si_dev
,
3356 unsigned char slave_addr
)
3362 struct list_head
*link
;
3363 struct ipmi_device_id id
;
3366 * Make sure the driver is actually initialized, this handles
3367 * problems with initialization order.
3370 rv
= ipmi_init_msghandler();
3374 * The init code doesn't return an error if it was turned
3375 * off, but it won't initialize. Check that.
3381 intf
= kzalloc(sizeof(*intf
), GFP_KERNEL
);
3385 intf
->bmc
= &intf
->tmp_bmc
;
3386 INIT_LIST_HEAD(&intf
->bmc
->intfs
);
3387 mutex_init(&intf
->bmc
->dyn_mutex
);
3388 INIT_LIST_HEAD(&intf
->bmc_link
);
3389 mutex_init(&intf
->bmc_reg_mutex
);
3390 intf
->intf_num
= -1; /* Mark it invalid for now. */
3391 kref_init(&intf
->refcount
);
3392 INIT_WORK(&intf
->bmc_reg_work
, redo_bmc_reg
);
3393 intf
->si_dev
= si_dev
;
3394 for (j
= 0; j
< IPMI_MAX_CHANNELS
; j
++) {
3395 intf
->addrinfo
[j
].address
= IPMI_BMC_SLAVE_ADDR
;
3396 intf
->addrinfo
[j
].lun
= 2;
3398 if (slave_addr
!= 0)
3399 intf
->addrinfo
[0].address
= slave_addr
;
3400 INIT_LIST_HEAD(&intf
->users
);
3401 intf
->handlers
= handlers
;
3402 intf
->send_info
= send_info
;
3403 spin_lock_init(&intf
->seq_lock
);
3404 for (j
= 0; j
< IPMI_IPMB_NUM_SEQ
; j
++) {
3405 intf
->seq_table
[j
].inuse
= 0;
3406 intf
->seq_table
[j
].seqid
= 0;
3409 #ifdef CONFIG_IPMI_PROC_INTERFACE
3410 mutex_init(&intf
->proc_entry_lock
);
3412 spin_lock_init(&intf
->waiting_rcv_msgs_lock
);
3413 INIT_LIST_HEAD(&intf
->waiting_rcv_msgs
);
3414 tasklet_init(&intf
->recv_tasklet
,
3416 (unsigned long) intf
);
3417 atomic_set(&intf
->watchdog_pretimeouts_to_deliver
, 0);
3418 spin_lock_init(&intf
->xmit_msgs_lock
);
3419 INIT_LIST_HEAD(&intf
->xmit_msgs
);
3420 INIT_LIST_HEAD(&intf
->hp_xmit_msgs
);
3421 spin_lock_init(&intf
->events_lock
);
3422 atomic_set(&intf
->event_waiters
, 0);
3423 intf
->ticks_to_req_ev
= IPMI_REQUEST_EV_TIME
;
3424 INIT_LIST_HEAD(&intf
->waiting_events
);
3425 intf
->waiting_events_count
= 0;
3426 mutex_init(&intf
->cmd_rcvrs_mutex
);
3427 spin_lock_init(&intf
->maintenance_mode_lock
);
3428 INIT_LIST_HEAD(&intf
->cmd_rcvrs
);
3429 init_waitqueue_head(&intf
->waitq
);
3430 for (i
= 0; i
< IPMI_NUM_STATS
; i
++)
3431 atomic_set(&intf
->stats
[i
], 0);
3433 #ifdef CONFIG_IPMI_PROC_INTERFACE
3434 intf
->proc_dir
= NULL
;
3437 mutex_lock(&smi_watchers_mutex
);
3438 mutex_lock(&ipmi_interfaces_mutex
);
3439 /* Look for a hole in the numbers. */
3441 link
= &ipmi_interfaces
;
3442 list_for_each_entry_rcu(tintf
, &ipmi_interfaces
, link
) {
3443 if (tintf
->intf_num
!= i
) {
3444 link
= &tintf
->link
;
3449 /* Add the new interface in numeric order. */
3451 list_add_rcu(&intf
->link
, &ipmi_interfaces
);
3453 list_add_tail_rcu(&intf
->link
, link
);
3455 rv
= handlers
->start_processing(send_info
, intf
);
3459 rv
= __bmc_get_device_id(intf
, NULL
, &id
, NULL
, NULL
, i
);
3461 dev_err(si_dev
, "Unable to get the device id: %d\n", rv
);
3465 mutex_lock(&intf
->bmc_reg_mutex
);
3466 rv
= __scan_channels(intf
, &id
);
3467 mutex_unlock(&intf
->bmc_reg_mutex
);
3471 #ifdef CONFIG_IPMI_PROC_INTERFACE
3472 rv
= add_proc_entries(intf
, i
);
3477 ipmi_bmc_unregister(intf
);
3478 #ifdef CONFIG_IPMI_PROC_INTERFACE
3480 remove_proc_entries(intf
);
3482 intf
->handlers
= NULL
;
3483 list_del_rcu(&intf
->link
);
3484 mutex_unlock(&ipmi_interfaces_mutex
);
3485 mutex_unlock(&smi_watchers_mutex
);
3487 kref_put(&intf
->refcount
, intf_free
);
3490 * Keep memory order straight for RCU readers. Make
3491 * sure everything else is committed to memory before
3492 * setting intf_num to mark the interface valid.
3496 mutex_unlock(&ipmi_interfaces_mutex
);
3497 /* After this point the interface is legal to use. */
3498 call_smi_watchers(i
, intf
->si_dev
);
3499 mutex_unlock(&smi_watchers_mutex
);
3504 EXPORT_SYMBOL(ipmi_register_smi
);
3506 static void deliver_smi_err_response(ipmi_smi_t intf
,
3507 struct ipmi_smi_msg
*msg
,
3510 msg
->rsp
[0] = msg
->data
[0] | 4;
3511 msg
->rsp
[1] = msg
->data
[1];
3514 /* It's an error, so it will never requeue, no need to check return. */
3515 handle_one_recv_msg(intf
, msg
);
3518 static void cleanup_smi_msgs(ipmi_smi_t intf
)
3521 struct seq_table
*ent
;
3522 struct ipmi_smi_msg
*msg
;
3523 struct list_head
*entry
;
3524 struct list_head tmplist
;
3526 /* Clear out our transmit queues and hold the messages. */
3527 INIT_LIST_HEAD(&tmplist
);
3528 list_splice_tail(&intf
->hp_xmit_msgs
, &tmplist
);
3529 list_splice_tail(&intf
->xmit_msgs
, &tmplist
);
3531 /* Current message first, to preserve order */
3532 while (intf
->curr_msg
&& !list_empty(&intf
->waiting_rcv_msgs
)) {
3533 /* Wait for the message to clear out. */
3534 schedule_timeout(1);
3537 /* No need for locks, the interface is down. */
3540 * Return errors for all pending messages in queue and in the
3541 * tables waiting for remote responses.
3543 while (!list_empty(&tmplist
)) {
3544 entry
= tmplist
.next
;
3546 msg
= list_entry(entry
, struct ipmi_smi_msg
, link
);
3547 deliver_smi_err_response(intf
, msg
, IPMI_ERR_UNSPECIFIED
);
3550 for (i
= 0; i
< IPMI_IPMB_NUM_SEQ
; i
++) {
3551 ent
= &(intf
->seq_table
[i
]);
3554 deliver_err_response(ent
->recv_msg
, IPMI_ERR_UNSPECIFIED
);
3558 int ipmi_unregister_smi(ipmi_smi_t intf
)
3560 struct ipmi_smi_watcher
*w
;
3561 int intf_num
= intf
->intf_num
;
3564 mutex_lock(&smi_watchers_mutex
);
3565 mutex_lock(&ipmi_interfaces_mutex
);
3566 intf
->intf_num
= -1;
3567 intf
->in_shutdown
= true;
3568 list_del_rcu(&intf
->link
);
3569 mutex_unlock(&ipmi_interfaces_mutex
);
3572 cleanup_smi_msgs(intf
);
3574 /* Clean up the effects of users on the lower-level software. */
3575 mutex_lock(&ipmi_interfaces_mutex
);
3577 list_for_each_entry_rcu(user
, &intf
->users
, link
) {
3578 module_put(intf
->handlers
->owner
);
3579 if (intf
->handlers
->dec_usecount
)
3580 intf
->handlers
->dec_usecount(intf
->send_info
);
3583 intf
->handlers
= NULL
;
3584 mutex_unlock(&ipmi_interfaces_mutex
);
3586 #ifdef CONFIG_IPMI_PROC_INTERFACE
3587 remove_proc_entries(intf
);
3589 ipmi_bmc_unregister(intf
);
3592 * Call all the watcher interfaces to tell them that
3593 * an interface is gone.
3595 list_for_each_entry(w
, &smi_watchers
, link
)
3596 w
->smi_gone(intf_num
);
3597 mutex_unlock(&smi_watchers_mutex
);
3599 kref_put(&intf
->refcount
, intf_free
);
3602 EXPORT_SYMBOL(ipmi_unregister_smi
);
3604 static int handle_ipmb_get_msg_rsp(ipmi_smi_t intf
,
3605 struct ipmi_smi_msg
*msg
)
3607 struct ipmi_ipmb_addr ipmb_addr
;
3608 struct ipmi_recv_msg
*recv_msg
;
3611 * This is 11, not 10, because the response must contain a
3614 if (msg
->rsp_size
< 11) {
3615 /* Message not big enough, just ignore it. */
3616 ipmi_inc_stat(intf
, invalid_ipmb_responses
);
3620 if (msg
->rsp
[2] != 0) {
3621 /* An error getting the response, just ignore it. */
3625 ipmb_addr
.addr_type
= IPMI_IPMB_ADDR_TYPE
;
3626 ipmb_addr
.slave_addr
= msg
->rsp
[6];
3627 ipmb_addr
.channel
= msg
->rsp
[3] & 0x0f;
3628 ipmb_addr
.lun
= msg
->rsp
[7] & 3;
3631 * It's a response from a remote entity. Look up the sequence
3632 * number and handle the response.
3634 if (intf_find_seq(intf
,
3638 (msg
->rsp
[4] >> 2) & (~1),
3639 (struct ipmi_addr
*) &(ipmb_addr
),
3642 * We were unable to find the sequence number,
3643 * so just nuke the message.
3645 ipmi_inc_stat(intf
, unhandled_ipmb_responses
);
3649 memcpy(recv_msg
->msg_data
,
3653 * The other fields matched, so no need to set them, except
3654 * for netfn, which needs to be the response that was
3655 * returned, not the request value.
3657 recv_msg
->msg
.netfn
= msg
->rsp
[4] >> 2;
3658 recv_msg
->msg
.data
= recv_msg
->msg_data
;
3659 recv_msg
->msg
.data_len
= msg
->rsp_size
- 10;
3660 recv_msg
->recv_type
= IPMI_RESPONSE_RECV_TYPE
;
3661 ipmi_inc_stat(intf
, handled_ipmb_responses
);
3662 deliver_response(recv_msg
);
3667 static int handle_ipmb_get_msg_cmd(ipmi_smi_t intf
,
3668 struct ipmi_smi_msg
*msg
)
3670 struct cmd_rcvr
*rcvr
;
3672 unsigned char netfn
;
3675 ipmi_user_t user
= NULL
;
3676 struct ipmi_ipmb_addr
*ipmb_addr
;
3677 struct ipmi_recv_msg
*recv_msg
;
3679 if (msg
->rsp_size
< 10) {
3680 /* Message not big enough, just ignore it. */
3681 ipmi_inc_stat(intf
, invalid_commands
);
3685 if (msg
->rsp
[2] != 0) {
3686 /* An error getting the response, just ignore it. */
3690 netfn
= msg
->rsp
[4] >> 2;
3692 chan
= msg
->rsp
[3] & 0xf;
3695 rcvr
= find_cmd_rcvr(intf
, netfn
, cmd
, chan
);
3698 kref_get(&user
->refcount
);
3704 /* We didn't find a user, deliver an error response. */
3705 ipmi_inc_stat(intf
, unhandled_commands
);
3707 msg
->data
[0] = (IPMI_NETFN_APP_REQUEST
<< 2);
3708 msg
->data
[1] = IPMI_SEND_MSG_CMD
;
3709 msg
->data
[2] = msg
->rsp
[3];
3710 msg
->data
[3] = msg
->rsp
[6];
3711 msg
->data
[4] = ((netfn
+ 1) << 2) | (msg
->rsp
[7] & 0x3);
3712 msg
->data
[5] = ipmb_checksum(&(msg
->data
[3]), 2);
3713 msg
->data
[6] = intf
->addrinfo
[msg
->rsp
[3] & 0xf].address
;
3715 msg
->data
[7] = (msg
->rsp
[7] & 0xfc) | (msg
->rsp
[4] & 0x3);
3716 msg
->data
[8] = msg
->rsp
[8]; /* cmd */
3717 msg
->data
[9] = IPMI_INVALID_CMD_COMPLETION_CODE
;
3718 msg
->data
[10] = ipmb_checksum(&(msg
->data
[6]), 4);
3719 msg
->data_size
= 11;
3724 printk("Invalid command:");
3725 for (m
= 0; m
< msg
->data_size
; m
++)
3726 printk(" %2.2x", msg
->data
[m
]);
3731 if (!intf
->in_shutdown
) {
3732 smi_send(intf
, intf
->handlers
, msg
, 0);
3734 * We used the message, so return the value
3735 * that causes it to not be freed or
3742 /* Deliver the message to the user. */
3743 ipmi_inc_stat(intf
, handled_commands
);
3745 recv_msg
= ipmi_alloc_recv_msg();
3748 * We couldn't allocate memory for the
3749 * message, so requeue it for handling
3753 kref_put(&user
->refcount
, free_user
);
3755 /* Extract the source address from the data. */
3756 ipmb_addr
= (struct ipmi_ipmb_addr
*) &recv_msg
->addr
;
3757 ipmb_addr
->addr_type
= IPMI_IPMB_ADDR_TYPE
;
3758 ipmb_addr
->slave_addr
= msg
->rsp
[6];
3759 ipmb_addr
->lun
= msg
->rsp
[7] & 3;
3760 ipmb_addr
->channel
= msg
->rsp
[3] & 0xf;
3763 * Extract the rest of the message information
3764 * from the IPMB header.
3766 recv_msg
->user
= user
;
3767 recv_msg
->recv_type
= IPMI_CMD_RECV_TYPE
;
3768 recv_msg
->msgid
= msg
->rsp
[7] >> 2;
3769 recv_msg
->msg
.netfn
= msg
->rsp
[4] >> 2;
3770 recv_msg
->msg
.cmd
= msg
->rsp
[8];
3771 recv_msg
->msg
.data
= recv_msg
->msg_data
;
3774 * We chop off 10, not 9 bytes because the checksum
3775 * at the end also needs to be removed.
3777 recv_msg
->msg
.data_len
= msg
->rsp_size
- 10;
3778 memcpy(recv_msg
->msg_data
,
3780 msg
->rsp_size
- 10);
3781 deliver_response(recv_msg
);
3788 static int handle_lan_get_msg_rsp(ipmi_smi_t intf
,
3789 struct ipmi_smi_msg
*msg
)
3791 struct ipmi_lan_addr lan_addr
;
3792 struct ipmi_recv_msg
*recv_msg
;
3796 * This is 13, not 12, because the response must contain a
3799 if (msg
->rsp_size
< 13) {
3800 /* Message not big enough, just ignore it. */
3801 ipmi_inc_stat(intf
, invalid_lan_responses
);
3805 if (msg
->rsp
[2] != 0) {
3806 /* An error getting the response, just ignore it. */
3810 lan_addr
.addr_type
= IPMI_LAN_ADDR_TYPE
;
3811 lan_addr
.session_handle
= msg
->rsp
[4];
3812 lan_addr
.remote_SWID
= msg
->rsp
[8];
3813 lan_addr
.local_SWID
= msg
->rsp
[5];
3814 lan_addr
.channel
= msg
->rsp
[3] & 0x0f;
3815 lan_addr
.privilege
= msg
->rsp
[3] >> 4;
3816 lan_addr
.lun
= msg
->rsp
[9] & 3;
3819 * It's a response from a remote entity. Look up the sequence
3820 * number and handle the response.
3822 if (intf_find_seq(intf
,
3826 (msg
->rsp
[6] >> 2) & (~1),
3827 (struct ipmi_addr
*) &(lan_addr
),
3830 * We were unable to find the sequence number,
3831 * so just nuke the message.
3833 ipmi_inc_stat(intf
, unhandled_lan_responses
);
3837 memcpy(recv_msg
->msg_data
,
3839 msg
->rsp_size
- 11);
3841 * The other fields matched, so no need to set them, except
3842 * for netfn, which needs to be the response that was
3843 * returned, not the request value.
3845 recv_msg
->msg
.netfn
= msg
->rsp
[6] >> 2;
3846 recv_msg
->msg
.data
= recv_msg
->msg_data
;
3847 recv_msg
->msg
.data_len
= msg
->rsp_size
- 12;
3848 recv_msg
->recv_type
= IPMI_RESPONSE_RECV_TYPE
;
3849 ipmi_inc_stat(intf
, handled_lan_responses
);
3850 deliver_response(recv_msg
);
3855 static int handle_lan_get_msg_cmd(ipmi_smi_t intf
,
3856 struct ipmi_smi_msg
*msg
)
3858 struct cmd_rcvr
*rcvr
;
3860 unsigned char netfn
;
3863 ipmi_user_t user
= NULL
;
3864 struct ipmi_lan_addr
*lan_addr
;
3865 struct ipmi_recv_msg
*recv_msg
;
3867 if (msg
->rsp_size
< 12) {
3868 /* Message not big enough, just ignore it. */
3869 ipmi_inc_stat(intf
, invalid_commands
);
3873 if (msg
->rsp
[2] != 0) {
3874 /* An error getting the response, just ignore it. */
3878 netfn
= msg
->rsp
[6] >> 2;
3880 chan
= msg
->rsp
[3] & 0xf;
3883 rcvr
= find_cmd_rcvr(intf
, netfn
, cmd
, chan
);
3886 kref_get(&user
->refcount
);
3892 /* We didn't find a user, just give up. */
3893 ipmi_inc_stat(intf
, unhandled_commands
);
3896 * Don't do anything with these messages, just allow
3901 /* Deliver the message to the user. */
3902 ipmi_inc_stat(intf
, handled_commands
);
3904 recv_msg
= ipmi_alloc_recv_msg();
3907 * We couldn't allocate memory for the
3908 * message, so requeue it for handling later.
3911 kref_put(&user
->refcount
, free_user
);
3913 /* Extract the source address from the data. */
3914 lan_addr
= (struct ipmi_lan_addr
*) &recv_msg
->addr
;
3915 lan_addr
->addr_type
= IPMI_LAN_ADDR_TYPE
;
3916 lan_addr
->session_handle
= msg
->rsp
[4];
3917 lan_addr
->remote_SWID
= msg
->rsp
[8];
3918 lan_addr
->local_SWID
= msg
->rsp
[5];
3919 lan_addr
->lun
= msg
->rsp
[9] & 3;
3920 lan_addr
->channel
= msg
->rsp
[3] & 0xf;
3921 lan_addr
->privilege
= msg
->rsp
[3] >> 4;
3924 * Extract the rest of the message information
3925 * from the IPMB header.
3927 recv_msg
->user
= user
;
3928 recv_msg
->recv_type
= IPMI_CMD_RECV_TYPE
;
3929 recv_msg
->msgid
= msg
->rsp
[9] >> 2;
3930 recv_msg
->msg
.netfn
= msg
->rsp
[6] >> 2;
3931 recv_msg
->msg
.cmd
= msg
->rsp
[10];
3932 recv_msg
->msg
.data
= recv_msg
->msg_data
;
3935 * We chop off 12, not 11 bytes because the checksum
3936 * at the end also needs to be removed.
3938 recv_msg
->msg
.data_len
= msg
->rsp_size
- 12;
3939 memcpy(recv_msg
->msg_data
,
3941 msg
->rsp_size
- 12);
3942 deliver_response(recv_msg
);
3950 * This routine will handle "Get Message" command responses with
3951 * channels that use an OEM Medium. The message format belongs to
3952 * the OEM. See IPMI 2.0 specification, Chapter 6 and
3953 * Chapter 22, sections 22.6 and 22.24 for more details.
3955 static int handle_oem_get_msg_cmd(ipmi_smi_t intf
,
3956 struct ipmi_smi_msg
*msg
)
3958 struct cmd_rcvr
*rcvr
;
3960 unsigned char netfn
;
3963 ipmi_user_t user
= NULL
;
3964 struct ipmi_system_interface_addr
*smi_addr
;
3965 struct ipmi_recv_msg
*recv_msg
;
3968 * We expect the OEM SW to perform error checking
3969 * so we just do some basic sanity checks
3971 if (msg
->rsp_size
< 4) {
3972 /* Message not big enough, just ignore it. */
3973 ipmi_inc_stat(intf
, invalid_commands
);
3977 if (msg
->rsp
[2] != 0) {
3978 /* An error getting the response, just ignore it. */
3983 * This is an OEM Message so the OEM needs to know how
3984 * handle the message. We do no interpretation.
3986 netfn
= msg
->rsp
[0] >> 2;
3988 chan
= msg
->rsp
[3] & 0xf;
3991 rcvr
= find_cmd_rcvr(intf
, netfn
, cmd
, chan
);
3994 kref_get(&user
->refcount
);
4000 /* We didn't find a user, just give up. */
4001 ipmi_inc_stat(intf
, unhandled_commands
);
4004 * Don't do anything with these messages, just allow
4010 /* Deliver the message to the user. */
4011 ipmi_inc_stat(intf
, handled_commands
);
4013 recv_msg
= ipmi_alloc_recv_msg();
4016 * We couldn't allocate memory for the
4017 * message, so requeue it for handling
4021 kref_put(&user
->refcount
, free_user
);
4024 * OEM Messages are expected to be delivered via
4025 * the system interface to SMS software. We might
4026 * need to visit this again depending on OEM
4029 smi_addr
= ((struct ipmi_system_interface_addr
*)
4031 smi_addr
->addr_type
= IPMI_SYSTEM_INTERFACE_ADDR_TYPE
;
4032 smi_addr
->channel
= IPMI_BMC_CHANNEL
;
4033 smi_addr
->lun
= msg
->rsp
[0] & 3;
4035 recv_msg
->user
= user
;
4036 recv_msg
->user_msg_data
= NULL
;
4037 recv_msg
->recv_type
= IPMI_OEM_RECV_TYPE
;
4038 recv_msg
->msg
.netfn
= msg
->rsp
[0] >> 2;
4039 recv_msg
->msg
.cmd
= msg
->rsp
[1];
4040 recv_msg
->msg
.data
= recv_msg
->msg_data
;
4043 * The message starts at byte 4 which follows the
4044 * the Channel Byte in the "GET MESSAGE" command
4046 recv_msg
->msg
.data_len
= msg
->rsp_size
- 4;
4047 memcpy(recv_msg
->msg_data
,
4050 deliver_response(recv_msg
);
4057 static void copy_event_into_recv_msg(struct ipmi_recv_msg
*recv_msg
,
4058 struct ipmi_smi_msg
*msg
)
4060 struct ipmi_system_interface_addr
*smi_addr
;
4062 recv_msg
->msgid
= 0;
4063 smi_addr
= (struct ipmi_system_interface_addr
*) &(recv_msg
->addr
);
4064 smi_addr
->addr_type
= IPMI_SYSTEM_INTERFACE_ADDR_TYPE
;
4065 smi_addr
->channel
= IPMI_BMC_CHANNEL
;
4066 smi_addr
->lun
= msg
->rsp
[0] & 3;
4067 recv_msg
->recv_type
= IPMI_ASYNC_EVENT_RECV_TYPE
;
4068 recv_msg
->msg
.netfn
= msg
->rsp
[0] >> 2;
4069 recv_msg
->msg
.cmd
= msg
->rsp
[1];
4070 memcpy(recv_msg
->msg_data
, &(msg
->rsp
[3]), msg
->rsp_size
- 3);
4071 recv_msg
->msg
.data
= recv_msg
->msg_data
;
4072 recv_msg
->msg
.data_len
= msg
->rsp_size
- 3;
4075 static int handle_read_event_rsp(ipmi_smi_t intf
,
4076 struct ipmi_smi_msg
*msg
)
4078 struct ipmi_recv_msg
*recv_msg
, *recv_msg2
;
4079 struct list_head msgs
;
4082 int deliver_count
= 0;
4083 unsigned long flags
;
4085 if (msg
->rsp_size
< 19) {
4086 /* Message is too small to be an IPMB event. */
4087 ipmi_inc_stat(intf
, invalid_events
);
4091 if (msg
->rsp
[2] != 0) {
4092 /* An error getting the event, just ignore it. */
4096 INIT_LIST_HEAD(&msgs
);
4098 spin_lock_irqsave(&intf
->events_lock
, flags
);
4100 ipmi_inc_stat(intf
, events
);
4103 * Allocate and fill in one message for every user that is
4107 list_for_each_entry_rcu(user
, &intf
->users
, link
) {
4108 if (!user
->gets_events
)
4111 recv_msg
= ipmi_alloc_recv_msg();
4114 list_for_each_entry_safe(recv_msg
, recv_msg2
, &msgs
,
4116 list_del(&recv_msg
->link
);
4117 ipmi_free_recv_msg(recv_msg
);
4120 * We couldn't allocate memory for the
4121 * message, so requeue it for handling
4130 copy_event_into_recv_msg(recv_msg
, msg
);
4131 recv_msg
->user
= user
;
4132 kref_get(&user
->refcount
);
4133 list_add_tail(&(recv_msg
->link
), &msgs
);
4137 if (deliver_count
) {
4138 /* Now deliver all the messages. */
4139 list_for_each_entry_safe(recv_msg
, recv_msg2
, &msgs
, link
) {
4140 list_del(&recv_msg
->link
);
4141 deliver_response(recv_msg
);
4143 } else if (intf
->waiting_events_count
< MAX_EVENTS_IN_QUEUE
) {
4145 * No one to receive the message, put it in queue if there's
4146 * not already too many things in the queue.
4148 recv_msg
= ipmi_alloc_recv_msg();
4151 * We couldn't allocate memory for the
4152 * message, so requeue it for handling
4159 copy_event_into_recv_msg(recv_msg
, msg
);
4160 list_add_tail(&(recv_msg
->link
), &(intf
->waiting_events
));
4161 intf
->waiting_events_count
++;
4162 } else if (!intf
->event_msg_printed
) {
4164 * There's too many things in the queue, discard this
4167 dev_warn(intf
->si_dev
,
4168 PFX
"Event queue full, discarding incoming events\n");
4169 intf
->event_msg_printed
= 1;
4173 spin_unlock_irqrestore(&(intf
->events_lock
), flags
);
4178 static int handle_bmc_rsp(ipmi_smi_t intf
,
4179 struct ipmi_smi_msg
*msg
)
4181 struct ipmi_recv_msg
*recv_msg
;
4182 struct ipmi_user
*user
;
4184 recv_msg
= (struct ipmi_recv_msg
*) msg
->user_data
;
4185 if (recv_msg
== NULL
) {
4186 dev_warn(intf
->si_dev
,
4187 "IPMI message received with no owner. This could be because of a malformed message, or because of a hardware error. Contact your hardware vender for assistance\n");
4191 user
= recv_msg
->user
;
4192 /* Make sure the user still exists. */
4193 if (user
&& !user
->valid
) {
4194 /* The user for the message went away, so give up. */
4195 ipmi_inc_stat(intf
, unhandled_local_responses
);
4196 ipmi_free_recv_msg(recv_msg
);
4198 struct ipmi_system_interface_addr
*smi_addr
;
4200 ipmi_inc_stat(intf
, handled_local_responses
);
4201 recv_msg
->recv_type
= IPMI_RESPONSE_RECV_TYPE
;
4202 recv_msg
->msgid
= msg
->msgid
;
4203 smi_addr
= ((struct ipmi_system_interface_addr
*)
4205 smi_addr
->addr_type
= IPMI_SYSTEM_INTERFACE_ADDR_TYPE
;
4206 smi_addr
->channel
= IPMI_BMC_CHANNEL
;
4207 smi_addr
->lun
= msg
->rsp
[0] & 3;
4208 recv_msg
->msg
.netfn
= msg
->rsp
[0] >> 2;
4209 recv_msg
->msg
.cmd
= msg
->rsp
[1];
4210 memcpy(recv_msg
->msg_data
,
4213 recv_msg
->msg
.data
= recv_msg
->msg_data
;
4214 recv_msg
->msg
.data_len
= msg
->rsp_size
- 2;
4215 deliver_response(recv_msg
);
4222 * Handle a received message. Return 1 if the message should be requeued,
4223 * 0 if the message should be freed, or -1 if the message should not
4224 * be freed or requeued.
4226 static int handle_one_recv_msg(ipmi_smi_t intf
,
4227 struct ipmi_smi_msg
*msg
)
4235 for (m
= 0; m
< msg
->rsp_size
; m
++)
4236 printk(" %2.2x", msg
->rsp
[m
]);
4239 if (msg
->rsp_size
< 2) {
4240 /* Message is too small to be correct. */
4241 dev_warn(intf
->si_dev
,
4242 PFX
"BMC returned to small a message for netfn %x cmd %x, got %d bytes\n",
4243 (msg
->data
[0] >> 2) | 1, msg
->data
[1], msg
->rsp_size
);
4245 /* Generate an error response for the message. */
4246 msg
->rsp
[0] = msg
->data
[0] | (1 << 2);
4247 msg
->rsp
[1] = msg
->data
[1];
4248 msg
->rsp
[2] = IPMI_ERR_UNSPECIFIED
;
4250 } else if (((msg
->rsp
[0] >> 2) != ((msg
->data
[0] >> 2) | 1))
4251 || (msg
->rsp
[1] != msg
->data
[1])) {
4253 * The NetFN and Command in the response is not even
4254 * marginally correct.
4256 dev_warn(intf
->si_dev
,
4257 PFX
"BMC returned incorrect response, expected netfn %x cmd %x, got netfn %x cmd %x\n",
4258 (msg
->data
[0] >> 2) | 1, msg
->data
[1],
4259 msg
->rsp
[0] >> 2, msg
->rsp
[1]);
4261 /* Generate an error response for the message. */
4262 msg
->rsp
[0] = msg
->data
[0] | (1 << 2);
4263 msg
->rsp
[1] = msg
->data
[1];
4264 msg
->rsp
[2] = IPMI_ERR_UNSPECIFIED
;
4268 if ((msg
->rsp
[0] == ((IPMI_NETFN_APP_REQUEST
|1) << 2))
4269 && (msg
->rsp
[1] == IPMI_SEND_MSG_CMD
)
4270 && (msg
->user_data
!= NULL
)) {
4272 * It's a response to a response we sent. For this we
4273 * deliver a send message response to the user.
4275 struct ipmi_recv_msg
*recv_msg
= msg
->user_data
;
4278 if (msg
->rsp_size
< 2)
4279 /* Message is too small to be correct. */
4282 chan
= msg
->data
[2] & 0x0f;
4283 if (chan
>= IPMI_MAX_CHANNELS
)
4284 /* Invalid channel number */
4290 /* Make sure the user still exists. */
4291 if (!recv_msg
->user
|| !recv_msg
->user
->valid
)
4294 recv_msg
->recv_type
= IPMI_RESPONSE_RESPONSE_TYPE
;
4295 recv_msg
->msg
.data
= recv_msg
->msg_data
;
4296 recv_msg
->msg
.data_len
= 1;
4297 recv_msg
->msg_data
[0] = msg
->rsp
[2];
4298 deliver_response(recv_msg
);
4299 } else if ((msg
->rsp
[0] == ((IPMI_NETFN_APP_REQUEST
|1) << 2))
4300 && (msg
->rsp
[1] == IPMI_GET_MSG_CMD
)) {
4301 struct ipmi_channel
*chans
;
4303 /* It's from the receive queue. */
4304 chan
= msg
->rsp
[3] & 0xf;
4305 if (chan
>= IPMI_MAX_CHANNELS
) {
4306 /* Invalid channel number */
4312 * We need to make sure the channels have been initialized.
4313 * The channel_handler routine will set the "curr_channel"
4314 * equal to or greater than IPMI_MAX_CHANNELS when all the
4315 * channels for this interface have been initialized.
4317 if (!intf
->channels_ready
) {
4318 requeue
= 0; /* Throw the message away */
4322 chans
= READ_ONCE(intf
->channel_list
)->c
;
4324 switch (chans
[chan
].medium
) {
4325 case IPMI_CHANNEL_MEDIUM_IPMB
:
4326 if (msg
->rsp
[4] & 0x04) {
4328 * It's a response, so find the
4329 * requesting message and send it up.
4331 requeue
= handle_ipmb_get_msg_rsp(intf
, msg
);
4334 * It's a command to the SMS from some other
4335 * entity. Handle that.
4337 requeue
= handle_ipmb_get_msg_cmd(intf
, msg
);
4341 case IPMI_CHANNEL_MEDIUM_8023LAN
:
4342 case IPMI_CHANNEL_MEDIUM_ASYNC
:
4343 if (msg
->rsp
[6] & 0x04) {
4345 * It's a response, so find the
4346 * requesting message and send it up.
4348 requeue
= handle_lan_get_msg_rsp(intf
, msg
);
4351 * It's a command to the SMS from some other
4352 * entity. Handle that.
4354 requeue
= handle_lan_get_msg_cmd(intf
, msg
);
4359 /* Check for OEM Channels. Clients had better
4360 register for these commands. */
4361 if ((chans
[chan
].medium
>= IPMI_CHANNEL_MEDIUM_OEM_MIN
)
4362 && (chans
[chan
].medium
4363 <= IPMI_CHANNEL_MEDIUM_OEM_MAX
)) {
4364 requeue
= handle_oem_get_msg_cmd(intf
, msg
);
4367 * We don't handle the channel type, so just
4374 } else if ((msg
->rsp
[0] == ((IPMI_NETFN_APP_REQUEST
|1) << 2))
4375 && (msg
->rsp
[1] == IPMI_READ_EVENT_MSG_BUFFER_CMD
)) {
4376 /* It's an asynchronous event. */
4377 requeue
= handle_read_event_rsp(intf
, msg
);
4379 /* It's a response from the local BMC. */
4380 requeue
= handle_bmc_rsp(intf
, msg
);
4388 * If there are messages in the queue or pretimeouts, handle them.
4390 static void handle_new_recv_msgs(ipmi_smi_t intf
)
4392 struct ipmi_smi_msg
*smi_msg
;
4393 unsigned long flags
= 0;
4395 int run_to_completion
= intf
->run_to_completion
;
4397 /* See if any waiting messages need to be processed. */
4398 if (!run_to_completion
)
4399 spin_lock_irqsave(&intf
->waiting_rcv_msgs_lock
, flags
);
4400 while (!list_empty(&intf
->waiting_rcv_msgs
)) {
4401 smi_msg
= list_entry(intf
->waiting_rcv_msgs
.next
,
4402 struct ipmi_smi_msg
, link
);
4403 list_del(&smi_msg
->link
);
4404 if (!run_to_completion
)
4405 spin_unlock_irqrestore(&intf
->waiting_rcv_msgs_lock
,
4407 rv
= handle_one_recv_msg(intf
, smi_msg
);
4408 if (!run_to_completion
)
4409 spin_lock_irqsave(&intf
->waiting_rcv_msgs_lock
, flags
);
4412 * To preserve message order, quit if we
4413 * can't handle a message. Add the message
4414 * back at the head, this is safe because this
4415 * tasklet is the only thing that pulls the
4418 list_add(&smi_msg
->link
, &intf
->waiting_rcv_msgs
);
4422 /* Message handled */
4423 ipmi_free_smi_msg(smi_msg
);
4424 /* If rv < 0, fatal error, del but don't free. */
4427 if (!run_to_completion
)
4428 spin_unlock_irqrestore(&intf
->waiting_rcv_msgs_lock
, flags
);
4431 * If the pretimout count is non-zero, decrement one from it and
4432 * deliver pretimeouts to all the users.
4434 if (atomic_add_unless(&intf
->watchdog_pretimeouts_to_deliver
, -1, 0)) {
4438 list_for_each_entry_rcu(user
, &intf
->users
, link
) {
4439 if (user
->handler
->ipmi_watchdog_pretimeout
)
4440 user
->handler
->ipmi_watchdog_pretimeout(
4441 user
->handler_data
);
4447 static void smi_recv_tasklet(unsigned long val
)
4449 unsigned long flags
= 0; /* keep us warning-free. */
4450 ipmi_smi_t intf
= (ipmi_smi_t
) val
;
4451 int run_to_completion
= intf
->run_to_completion
;
4452 struct ipmi_smi_msg
*newmsg
= NULL
;
4455 * Start the next message if available.
4457 * Do this here, not in the actual receiver, because we may deadlock
4458 * because the lower layer is allowed to hold locks while calling
4464 if (!run_to_completion
)
4465 spin_lock_irqsave(&intf
->xmit_msgs_lock
, flags
);
4466 if (intf
->curr_msg
== NULL
&& !intf
->in_shutdown
) {
4467 struct list_head
*entry
= NULL
;
4469 /* Pick the high priority queue first. */
4470 if (!list_empty(&intf
->hp_xmit_msgs
))
4471 entry
= intf
->hp_xmit_msgs
.next
;
4472 else if (!list_empty(&intf
->xmit_msgs
))
4473 entry
= intf
->xmit_msgs
.next
;
4477 newmsg
= list_entry(entry
, struct ipmi_smi_msg
, link
);
4478 intf
->curr_msg
= newmsg
;
4481 if (!run_to_completion
)
4482 spin_unlock_irqrestore(&intf
->xmit_msgs_lock
, flags
);
4484 intf
->handlers
->sender(intf
->send_info
, newmsg
);
4488 handle_new_recv_msgs(intf
);
4491 /* Handle a new message from the lower layer. */
4492 void ipmi_smi_msg_received(ipmi_smi_t intf
,
4493 struct ipmi_smi_msg
*msg
)
4495 unsigned long flags
= 0; /* keep us warning-free. */
4496 int run_to_completion
= intf
->run_to_completion
;
4498 if ((msg
->data_size
>= 2)
4499 && (msg
->data
[0] == (IPMI_NETFN_APP_REQUEST
<< 2))
4500 && (msg
->data
[1] == IPMI_SEND_MSG_CMD
)
4501 && (msg
->user_data
== NULL
)) {
4503 if (intf
->in_shutdown
)
4507 * This is the local response to a command send, start
4508 * the timer for these. The user_data will not be
4509 * NULL if this is a response send, and we will let
4510 * response sends just go through.
4514 * Check for errors, if we get certain errors (ones
4515 * that mean basically we can try again later), we
4516 * ignore them and start the timer. Otherwise we
4517 * report the error immediately.
4519 if ((msg
->rsp_size
>= 3) && (msg
->rsp
[2] != 0)
4520 && (msg
->rsp
[2] != IPMI_NODE_BUSY_ERR
)
4521 && (msg
->rsp
[2] != IPMI_LOST_ARBITRATION_ERR
)
4522 && (msg
->rsp
[2] != IPMI_BUS_ERR
)
4523 && (msg
->rsp
[2] != IPMI_NAK_ON_WRITE_ERR
)) {
4524 int ch
= msg
->rsp
[3] & 0xf;
4525 struct ipmi_channel
*chans
;
4527 /* Got an error sending the message, handle it. */
4529 chans
= READ_ONCE(intf
->channel_list
)->c
;
4530 if ((chans
[ch
].medium
== IPMI_CHANNEL_MEDIUM_8023LAN
)
4531 || (chans
[ch
].medium
== IPMI_CHANNEL_MEDIUM_ASYNC
))
4532 ipmi_inc_stat(intf
, sent_lan_command_errs
);
4534 ipmi_inc_stat(intf
, sent_ipmb_command_errs
);
4535 intf_err_seq(intf
, msg
->msgid
, msg
->rsp
[2]);
4537 /* The message was sent, start the timer. */
4538 intf_start_seq_timer(intf
, msg
->msgid
);
4541 ipmi_free_smi_msg(msg
);
4544 * To preserve message order, we keep a queue and deliver from
4547 if (!run_to_completion
)
4548 spin_lock_irqsave(&intf
->waiting_rcv_msgs_lock
, flags
);
4549 list_add_tail(&msg
->link
, &intf
->waiting_rcv_msgs
);
4550 if (!run_to_completion
)
4551 spin_unlock_irqrestore(&intf
->waiting_rcv_msgs_lock
,
4555 if (!run_to_completion
)
4556 spin_lock_irqsave(&intf
->xmit_msgs_lock
, flags
);
4558 * We can get an asynchronous event or receive message in addition
4559 * to commands we send.
4561 if (msg
== intf
->curr_msg
)
4562 intf
->curr_msg
= NULL
;
4563 if (!run_to_completion
)
4564 spin_unlock_irqrestore(&intf
->xmit_msgs_lock
, flags
);
4566 if (run_to_completion
)
4567 smi_recv_tasklet((unsigned long) intf
);
4569 tasklet_schedule(&intf
->recv_tasklet
);
4571 EXPORT_SYMBOL(ipmi_smi_msg_received
);
4573 void ipmi_smi_watchdog_pretimeout(ipmi_smi_t intf
)
4575 if (intf
->in_shutdown
)
4578 atomic_set(&intf
->watchdog_pretimeouts_to_deliver
, 1);
4579 tasklet_schedule(&intf
->recv_tasklet
);
4581 EXPORT_SYMBOL(ipmi_smi_watchdog_pretimeout
);
4583 static struct ipmi_smi_msg
*
4584 smi_from_recv_msg(ipmi_smi_t intf
, struct ipmi_recv_msg
*recv_msg
,
4585 unsigned char seq
, long seqid
)
4587 struct ipmi_smi_msg
*smi_msg
= ipmi_alloc_smi_msg();
4590 * If we can't allocate the message, then just return, we
4591 * get 4 retries, so this should be ok.
4595 memcpy(smi_msg
->data
, recv_msg
->msg
.data
, recv_msg
->msg
.data_len
);
4596 smi_msg
->data_size
= recv_msg
->msg
.data_len
;
4597 smi_msg
->msgid
= STORE_SEQ_IN_MSGID(seq
, seqid
);
4603 for (m
= 0; m
< smi_msg
->data_size
; m
++)
4604 printk(" %2.2x", smi_msg
->data
[m
]);
4611 static void check_msg_timeout(ipmi_smi_t intf
, struct seq_table
*ent
,
4612 struct list_head
*timeouts
,
4613 unsigned long timeout_period
,
4614 int slot
, unsigned long *flags
,
4615 unsigned int *waiting_msgs
)
4617 struct ipmi_recv_msg
*msg
;
4618 const struct ipmi_smi_handlers
*handlers
;
4620 if (intf
->in_shutdown
)
4626 if (timeout_period
< ent
->timeout
) {
4627 ent
->timeout
-= timeout_period
;
4632 if (ent
->retries_left
== 0) {
4633 /* The message has used all its retries. */
4635 msg
= ent
->recv_msg
;
4636 list_add_tail(&msg
->link
, timeouts
);
4638 ipmi_inc_stat(intf
, timed_out_ipmb_broadcasts
);
4639 else if (is_lan_addr(&ent
->recv_msg
->addr
))
4640 ipmi_inc_stat(intf
, timed_out_lan_commands
);
4642 ipmi_inc_stat(intf
, timed_out_ipmb_commands
);
4644 struct ipmi_smi_msg
*smi_msg
;
4645 /* More retries, send again. */
4650 * Start with the max timer, set to normal timer after
4651 * the message is sent.
4653 ent
->timeout
= MAX_MSG_TIMEOUT
;
4654 ent
->retries_left
--;
4655 smi_msg
= smi_from_recv_msg(intf
, ent
->recv_msg
, slot
,
4658 if (is_lan_addr(&ent
->recv_msg
->addr
))
4660 dropped_rexmit_lan_commands
);
4663 dropped_rexmit_ipmb_commands
);
4667 spin_unlock_irqrestore(&intf
->seq_lock
, *flags
);
4670 * Send the new message. We send with a zero
4671 * priority. It timed out, I doubt time is that
4672 * critical now, and high priority messages are really
4673 * only for messages to the local MC, which don't get
4676 handlers
= intf
->handlers
;
4678 if (is_lan_addr(&ent
->recv_msg
->addr
))
4680 retransmitted_lan_commands
);
4683 retransmitted_ipmb_commands
);
4685 smi_send(intf
, handlers
, smi_msg
, 0);
4687 ipmi_free_smi_msg(smi_msg
);
4689 spin_lock_irqsave(&intf
->seq_lock
, *flags
);
4693 static unsigned int ipmi_timeout_handler(ipmi_smi_t intf
,
4694 unsigned long timeout_period
)
4696 struct list_head timeouts
;
4697 struct ipmi_recv_msg
*msg
, *msg2
;
4698 unsigned long flags
;
4700 unsigned int waiting_msgs
= 0;
4702 if (!intf
->bmc_registered
) {
4703 kref_get(&intf
->refcount
);
4704 if (!schedule_work(&intf
->bmc_reg_work
)) {
4705 kref_put(&intf
->refcount
, intf_free
);
4711 * Go through the seq table and find any messages that
4712 * have timed out, putting them in the timeouts
4715 INIT_LIST_HEAD(&timeouts
);
4716 spin_lock_irqsave(&intf
->seq_lock
, flags
);
4717 for (i
= 0; i
< IPMI_IPMB_NUM_SEQ
; i
++)
4718 check_msg_timeout(intf
, &(intf
->seq_table
[i
]),
4719 &timeouts
, timeout_period
, i
,
4720 &flags
, &waiting_msgs
);
4721 spin_unlock_irqrestore(&intf
->seq_lock
, flags
);
4723 list_for_each_entry_safe(msg
, msg2
, &timeouts
, link
)
4724 deliver_err_response(msg
, IPMI_TIMEOUT_COMPLETION_CODE
);
4727 * Maintenance mode handling. Check the timeout
4728 * optimistically before we claim the lock. It may
4729 * mean a timeout gets missed occasionally, but that
4730 * only means the timeout gets extended by one period
4731 * in that case. No big deal, and it avoids the lock
4734 if (intf
->auto_maintenance_timeout
> 0) {
4735 spin_lock_irqsave(&intf
->maintenance_mode_lock
, flags
);
4736 if (intf
->auto_maintenance_timeout
> 0) {
4737 intf
->auto_maintenance_timeout
4739 if (!intf
->maintenance_mode
4740 && (intf
->auto_maintenance_timeout
<= 0)) {
4741 intf
->maintenance_mode_enable
= false;
4742 maintenance_mode_update(intf
);
4745 spin_unlock_irqrestore(&intf
->maintenance_mode_lock
,
4749 tasklet_schedule(&intf
->recv_tasklet
);
4751 return waiting_msgs
;
4754 static void ipmi_request_event(ipmi_smi_t intf
)
4756 /* No event requests when in maintenance mode. */
4757 if (intf
->maintenance_mode_enable
)
4760 if (!intf
->in_shutdown
)
4761 intf
->handlers
->request_events(intf
->send_info
);
4764 static struct timer_list ipmi_timer
;
4766 static atomic_t stop_operation
;
4768 static void ipmi_timeout(struct timer_list
*unused
)
4773 if (atomic_read(&stop_operation
))
4777 list_for_each_entry_rcu(intf
, &ipmi_interfaces
, link
) {
4780 if (atomic_read(&intf
->event_waiters
)) {
4781 intf
->ticks_to_req_ev
--;
4782 if (intf
->ticks_to_req_ev
== 0) {
4783 ipmi_request_event(intf
);
4784 intf
->ticks_to_req_ev
= IPMI_REQUEST_EV_TIME
;
4789 lnt
+= ipmi_timeout_handler(intf
, IPMI_TIMEOUT_TIME
);
4792 if (lnt
!= intf
->last_needs_timer
&&
4793 intf
->handlers
->set_need_watch
)
4794 intf
->handlers
->set_need_watch(intf
->send_info
, lnt
);
4795 intf
->last_needs_timer
= lnt
;
4802 mod_timer(&ipmi_timer
, jiffies
+ IPMI_TIMEOUT_JIFFIES
);
4805 static void need_waiter(ipmi_smi_t intf
)
4807 /* Racy, but worst case we start the timer twice. */
4808 if (!timer_pending(&ipmi_timer
))
4809 mod_timer(&ipmi_timer
, jiffies
+ IPMI_TIMEOUT_JIFFIES
);
4812 static atomic_t smi_msg_inuse_count
= ATOMIC_INIT(0);
4813 static atomic_t recv_msg_inuse_count
= ATOMIC_INIT(0);
4815 static void free_smi_msg(struct ipmi_smi_msg
*msg
)
4817 atomic_dec(&smi_msg_inuse_count
);
4821 struct ipmi_smi_msg
*ipmi_alloc_smi_msg(void)
4823 struct ipmi_smi_msg
*rv
;
4824 rv
= kmalloc(sizeof(struct ipmi_smi_msg
), GFP_ATOMIC
);
4826 rv
->done
= free_smi_msg
;
4827 rv
->user_data
= NULL
;
4828 atomic_inc(&smi_msg_inuse_count
);
4832 EXPORT_SYMBOL(ipmi_alloc_smi_msg
);
4834 static void free_recv_msg(struct ipmi_recv_msg
*msg
)
4836 atomic_dec(&recv_msg_inuse_count
);
4840 static struct ipmi_recv_msg
*ipmi_alloc_recv_msg(void)
4842 struct ipmi_recv_msg
*rv
;
4844 rv
= kmalloc(sizeof(struct ipmi_recv_msg
), GFP_ATOMIC
);
4847 rv
->done
= free_recv_msg
;
4848 atomic_inc(&recv_msg_inuse_count
);
4853 void ipmi_free_recv_msg(struct ipmi_recv_msg
*msg
)
4856 kref_put(&msg
->user
->refcount
, free_user
);
4859 EXPORT_SYMBOL(ipmi_free_recv_msg
);
4861 static atomic_t panic_done_count
= ATOMIC_INIT(0);
4863 static void dummy_smi_done_handler(struct ipmi_smi_msg
*msg
)
4865 atomic_dec(&panic_done_count
);
4868 static void dummy_recv_done_handler(struct ipmi_recv_msg
*msg
)
4870 atomic_dec(&panic_done_count
);
4874 * Inside a panic, send a message and wait for a response.
4876 static void ipmi_panic_request_and_wait(ipmi_smi_t intf
,
4877 struct ipmi_addr
*addr
,
4878 struct kernel_ipmi_msg
*msg
)
4880 struct ipmi_smi_msg smi_msg
;
4881 struct ipmi_recv_msg recv_msg
;
4884 smi_msg
.done
= dummy_smi_done_handler
;
4885 recv_msg
.done
= dummy_recv_done_handler
;
4886 atomic_add(2, &panic_done_count
);
4887 rv
= i_ipmi_request(NULL
,
4896 intf
->addrinfo
[0].address
,
4897 intf
->addrinfo
[0].lun
,
4898 0, 1); /* Don't retry, and don't wait. */
4900 atomic_sub(2, &panic_done_count
);
4901 else if (intf
->handlers
->flush_messages
)
4902 intf
->handlers
->flush_messages(intf
->send_info
);
4904 while (atomic_read(&panic_done_count
) != 0)
4908 static void event_receiver_fetcher(ipmi_smi_t intf
, struct ipmi_recv_msg
*msg
)
4910 if ((msg
->addr
.addr_type
== IPMI_SYSTEM_INTERFACE_ADDR_TYPE
)
4911 && (msg
->msg
.netfn
== IPMI_NETFN_SENSOR_EVENT_RESPONSE
)
4912 && (msg
->msg
.cmd
== IPMI_GET_EVENT_RECEIVER_CMD
)
4913 && (msg
->msg
.data
[0] == IPMI_CC_NO_ERROR
)) {
4914 /* A get event receiver command, save it. */
4915 intf
->event_receiver
= msg
->msg
.data
[1];
4916 intf
->event_receiver_lun
= msg
->msg
.data
[2] & 0x3;
4920 static void device_id_fetcher(ipmi_smi_t intf
, struct ipmi_recv_msg
*msg
)
4922 if ((msg
->addr
.addr_type
== IPMI_SYSTEM_INTERFACE_ADDR_TYPE
)
4923 && (msg
->msg
.netfn
== IPMI_NETFN_APP_RESPONSE
)
4924 && (msg
->msg
.cmd
== IPMI_GET_DEVICE_ID_CMD
)
4925 && (msg
->msg
.data
[0] == IPMI_CC_NO_ERROR
)) {
4927 * A get device id command, save if we are an event
4928 * receiver or generator.
4930 intf
->local_sel_device
= (msg
->msg
.data
[6] >> 2) & 1;
4931 intf
->local_event_generator
= (msg
->msg
.data
[6] >> 5) & 1;
4935 static void send_panic_events(char *str
)
4937 struct kernel_ipmi_msg msg
;
4939 unsigned char data
[16];
4940 struct ipmi_system_interface_addr
*si
;
4941 struct ipmi_addr addr
;
4943 if (ipmi_send_panic_event
== IPMI_SEND_PANIC_EVENT_NONE
)
4946 si
= (struct ipmi_system_interface_addr
*) &addr
;
4947 si
->addr_type
= IPMI_SYSTEM_INTERFACE_ADDR_TYPE
;
4948 si
->channel
= IPMI_BMC_CHANNEL
;
4951 /* Fill in an event telling that we have failed. */
4952 msg
.netfn
= 0x04; /* Sensor or Event. */
4953 msg
.cmd
= 2; /* Platform event command. */
4956 data
[0] = 0x41; /* Kernel generator ID, IPMI table 5-4 */
4957 data
[1] = 0x03; /* This is for IPMI 1.0. */
4958 data
[2] = 0x20; /* OS Critical Stop, IPMI table 36-3 */
4959 data
[4] = 0x6f; /* Sensor specific, IPMI table 36-1 */
4960 data
[5] = 0xa1; /* Runtime stop OEM bytes 2 & 3. */
4963 * Put a few breadcrumbs in. Hopefully later we can add more things
4964 * to make the panic events more useful.
4972 /* For every registered interface, send the event. */
4973 list_for_each_entry_rcu(intf
, &ipmi_interfaces
, link
) {
4974 if (!intf
->handlers
|| !intf
->handlers
->poll
)
4975 /* Interface is not ready or can't run at panic time. */
4978 /* Send the event announcing the panic. */
4979 ipmi_panic_request_and_wait(intf
, &addr
, &msg
);
4983 * On every interface, dump a bunch of OEM event holding the
4986 if (ipmi_send_panic_event
!= IPMI_SEND_PANIC_EVENT_STRING
|| !str
)
4989 /* For every registered interface, send the event. */
4990 list_for_each_entry_rcu(intf
, &ipmi_interfaces
, link
) {
4992 struct ipmi_ipmb_addr
*ipmb
;
4995 if (intf
->intf_num
== -1)
4996 /* Interface was not ready yet. */
5000 * intf_num is used as an marker to tell if the
5001 * interface is valid. Thus we need a read barrier to
5002 * make sure data fetched before checking intf_num
5008 * First job here is to figure out where to send the
5009 * OEM events. There's no way in IPMI to send OEM
5010 * events using an event send command, so we have to
5011 * find the SEL to put them in and stick them in
5015 /* Get capabilities from the get device id. */
5016 intf
->local_sel_device
= 0;
5017 intf
->local_event_generator
= 0;
5018 intf
->event_receiver
= 0;
5020 /* Request the device info from the local MC. */
5021 msg
.netfn
= IPMI_NETFN_APP_REQUEST
;
5022 msg
.cmd
= IPMI_GET_DEVICE_ID_CMD
;
5025 intf
->null_user_handler
= device_id_fetcher
;
5026 ipmi_panic_request_and_wait(intf
, &addr
, &msg
);
5028 if (intf
->local_event_generator
) {
5029 /* Request the event receiver from the local MC. */
5030 msg
.netfn
= IPMI_NETFN_SENSOR_EVENT_REQUEST
;
5031 msg
.cmd
= IPMI_GET_EVENT_RECEIVER_CMD
;
5034 intf
->null_user_handler
= event_receiver_fetcher
;
5035 ipmi_panic_request_and_wait(intf
, &addr
, &msg
);
5037 intf
->null_user_handler
= NULL
;
5040 * Validate the event receiver. The low bit must not
5041 * be 1 (it must be a valid IPMB address), it cannot
5042 * be zero, and it must not be my address.
5044 if (((intf
->event_receiver
& 1) == 0)
5045 && (intf
->event_receiver
!= 0)
5046 && (intf
->event_receiver
!= intf
->addrinfo
[0].address
)) {
5048 * The event receiver is valid, send an IPMB
5051 ipmb
= (struct ipmi_ipmb_addr
*) &addr
;
5052 ipmb
->addr_type
= IPMI_IPMB_ADDR_TYPE
;
5053 ipmb
->channel
= 0; /* FIXME - is this right? */
5054 ipmb
->lun
= intf
->event_receiver_lun
;
5055 ipmb
->slave_addr
= intf
->event_receiver
;
5056 } else if (intf
->local_sel_device
) {
5058 * The event receiver was not valid (or was
5059 * me), but I am an SEL device, just dump it
5062 si
= (struct ipmi_system_interface_addr
*) &addr
;
5063 si
->addr_type
= IPMI_SYSTEM_INTERFACE_ADDR_TYPE
;
5064 si
->channel
= IPMI_BMC_CHANNEL
;
5067 continue; /* No where to send the event. */
5069 msg
.netfn
= IPMI_NETFN_STORAGE_REQUEST
; /* Storage. */
5070 msg
.cmd
= IPMI_ADD_SEL_ENTRY_CMD
;
5076 int size
= strlen(p
);
5082 data
[2] = 0xf0; /* OEM event without timestamp. */
5083 data
[3] = intf
->addrinfo
[0].address
;
5084 data
[4] = j
++; /* sequence # */
5086 * Always give 11 bytes, so strncpy will fill
5087 * it with zeroes for me.
5089 strncpy(data
+5, p
, 11);
5092 ipmi_panic_request_and_wait(intf
, &addr
, &msg
);
5097 static int has_panicked
;
5099 static int panic_event(struct notifier_block
*this,
5100 unsigned long event
,
5109 /* For every registered interface, set it to run to completion. */
5110 list_for_each_entry_rcu(intf
, &ipmi_interfaces
, link
) {
5111 if (!intf
->handlers
)
5112 /* Interface is not ready. */
5116 * If we were interrupted while locking xmit_msgs_lock or
5117 * waiting_rcv_msgs_lock, the corresponding list may be
5118 * corrupted. In this case, drop items on the list for
5121 if (!spin_trylock(&intf
->xmit_msgs_lock
)) {
5122 INIT_LIST_HEAD(&intf
->xmit_msgs
);
5123 INIT_LIST_HEAD(&intf
->hp_xmit_msgs
);
5125 spin_unlock(&intf
->xmit_msgs_lock
);
5127 if (!spin_trylock(&intf
->waiting_rcv_msgs_lock
))
5128 INIT_LIST_HEAD(&intf
->waiting_rcv_msgs
);
5130 spin_unlock(&intf
->waiting_rcv_msgs_lock
);
5132 intf
->run_to_completion
= 1;
5133 if (intf
->handlers
->set_run_to_completion
)
5134 intf
->handlers
->set_run_to_completion(intf
->send_info
,
5138 send_panic_events(ptr
);
5143 static struct notifier_block panic_block
= {
5144 .notifier_call
= panic_event
,
5146 .priority
= 200 /* priority: INT_MAX >= x >= 0 */
5149 static int ipmi_init_msghandler(void)
5156 rv
= driver_register(&ipmidriver
.driver
);
5158 pr_err(PFX
"Could not register IPMI driver\n");
5162 pr_info("ipmi message handler version " IPMI_DRIVER_VERSION
"\n");
5164 #ifdef CONFIG_IPMI_PROC_INTERFACE
5165 proc_ipmi_root
= proc_mkdir("ipmi", NULL
);
5166 if (!proc_ipmi_root
) {
5167 pr_err(PFX
"Unable to create IPMI proc dir");
5168 driver_unregister(&ipmidriver
.driver
);
5172 #endif /* CONFIG_IPMI_PROC_INTERFACE */
5174 timer_setup(&ipmi_timer
, ipmi_timeout
, 0);
5175 mod_timer(&ipmi_timer
, jiffies
+ IPMI_TIMEOUT_JIFFIES
);
5177 atomic_notifier_chain_register(&panic_notifier_list
, &panic_block
);
5184 static int __init
ipmi_init_msghandler_mod(void)
5186 ipmi_init_msghandler();
5190 static void __exit
cleanup_ipmi(void)
5197 atomic_notifier_chain_unregister(&panic_notifier_list
, &panic_block
);
5200 * This can't be called if any interfaces exist, so no worry
5201 * about shutting down the interfaces.
5205 * Tell the timer to stop, then wait for it to stop. This
5206 * avoids problems with race conditions removing the timer
5209 atomic_inc(&stop_operation
);
5210 del_timer_sync(&ipmi_timer
);
5212 #ifdef CONFIG_IPMI_PROC_INTERFACE
5213 proc_remove(proc_ipmi_root
);
5214 #endif /* CONFIG_IPMI_PROC_INTERFACE */
5216 driver_unregister(&ipmidriver
.driver
);
5220 /* Check for buffer leaks. */
5221 count
= atomic_read(&smi_msg_inuse_count
);
5223 pr_warn(PFX
"SMI message count %d at exit\n", count
);
5224 count
= atomic_read(&recv_msg_inuse_count
);
5226 pr_warn(PFX
"recv message count %d at exit\n", count
);
5228 module_exit(cleanup_ipmi
);
5230 module_init(ipmi_init_msghandler_mod
);
5231 MODULE_LICENSE("GPL");
5232 MODULE_AUTHOR("Corey Minyard <minyard@mvista.com>");
5233 MODULE_DESCRIPTION("Incoming and outgoing message routing for an IPMI"
5235 MODULE_VERSION(IPMI_DRIVER_VERSION
);
5236 MODULE_SOFTDEP("post: ipmi_devintf");