2 * Copyright (c) 2014 Marvell Technology Group Ltd.
4 * Sebastian Hesselbarth <sebastian.hesselbarth@gmail.com>
5 * Alexandre Belloni <alexandre.belloni@free-electrons.com>
7 * This program is free software; you can redistribute it and/or modify it
8 * under the terms and conditions of the GNU General Public License,
9 * version 2, as published by the Free Software Foundation.
11 * This program is distributed in the hope it will be useful, but WITHOUT
12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
16 * You should have received a copy of the GNU General Public License along with
17 * this program. If not, see <http://www.gnu.org/licenses/>.
19 #include <linux/clk-provider.h>
21 #include <linux/kernel.h>
23 #include <linux/of_address.h>
24 #include <linux/slab.h>
26 #include "berlin2-avpll.h"
29 * Berlin2 SoCs comprise up to two PLLs called AVPLL built upon a
30 * VCO with 8 channels each, channel 8 is the odd-one-out and does
31 * not provide mul/div.
33 * Unfortunately, its registers are not named but just numbered. To
34 * get in at least some kind of structure, we split each AVPLL into
35 * the VCOs and each channel into separate clock drivers.
37 * Also, here and there the VCO registers are a bit different with
38 * respect to bit shifts. Make sure to add a comment for those.
40 #define NUM_CHANNELS 8
42 #define AVPLL_CTRL(x) ((x) * 0x4)
44 #define VCO_CTRL0 AVPLL_CTRL(0)
45 /* BG2/BG2CDs VCO_B has an additional shift of 4 for its VCO_CTRL0 reg */
46 #define VCO_RESET BIT(0)
47 #define VCO_POWERUP BIT(1)
48 #define VCO_INTERPOL_SHIFT 2
49 #define VCO_INTERPOL_MASK (0xf << VCO_INTERPOL_SHIFT)
50 #define VCO_REG1V45_SEL_SHIFT 6
51 #define VCO_REG1V45_SEL(x) ((x) << VCO_REG1V45_SEL_SHIFT)
52 #define VCO_REG1V45_SEL_1V40 VCO_REG1V45_SEL(0)
53 #define VCO_REG1V45_SEL_1V45 VCO_REG1V45_SEL(1)
54 #define VCO_REG1V45_SEL_1V50 VCO_REG1V45_SEL(2)
55 #define VCO_REG1V45_SEL_1V55 VCO_REG1V45_SEL(3)
56 #define VCO_REG1V45_SEL_MASK VCO_REG1V45_SEL(3)
57 #define VCO_REG0V9_SEL_SHIFT 8
58 #define VCO_REG0V9_SEL_MASK (0xf << VCO_REG0V9_SEL_SHIFT)
59 #define VCO_VTHCAL_SHIFT 12
60 #define VCO_VTHCAL(x) ((x) << VCO_VTHCAL_SHIFT)
61 #define VCO_VTHCAL_0V90 VCO_VTHCAL(0)
62 #define VCO_VTHCAL_0V95 VCO_VTHCAL(1)
63 #define VCO_VTHCAL_1V00 VCO_VTHCAL(2)
64 #define VCO_VTHCAL_1V05 VCO_VTHCAL(3)
65 #define VCO_VTHCAL_MASK VCO_VTHCAL(3)
66 #define VCO_KVCOEXT_SHIFT 14
67 #define VCO_KVCOEXT_MASK (0x3 << VCO_KVCOEXT_SHIFT)
68 #define VCO_KVCOEXT_ENABLE BIT(17)
69 #define VCO_V2IEXT_SHIFT 18
70 #define VCO_V2IEXT_MASK (0xf << VCO_V2IEXT_SHIFT)
71 #define VCO_V2IEXT_ENABLE BIT(22)
72 #define VCO_SPEED_SHIFT 23
73 #define VCO_SPEED(x) ((x) << VCO_SPEED_SHIFT)
74 #define VCO_SPEED_1G08_1G21 VCO_SPEED(0)
75 #define VCO_SPEED_1G21_1G40 VCO_SPEED(1)
76 #define VCO_SPEED_1G40_1G61 VCO_SPEED(2)
77 #define VCO_SPEED_1G61_1G86 VCO_SPEED(3)
78 #define VCO_SPEED_1G86_2G00 VCO_SPEED(4)
79 #define VCO_SPEED_2G00_2G22 VCO_SPEED(5)
80 #define VCO_SPEED_2G22 VCO_SPEED(6)
81 #define VCO_SPEED_MASK VCO_SPEED(0x7)
82 #define VCO_CLKDET_ENABLE BIT(26)
83 #define VCO_CTRL1 AVPLL_CTRL(1)
84 #define VCO_REFDIV_SHIFT 0
85 #define VCO_REFDIV(x) ((x) << VCO_REFDIV_SHIFT)
86 #define VCO_REFDIV_1 VCO_REFDIV(0)
87 #define VCO_REFDIV_2 VCO_REFDIV(1)
88 #define VCO_REFDIV_4 VCO_REFDIV(2)
89 #define VCO_REFDIV_3 VCO_REFDIV(3)
90 #define VCO_REFDIV_MASK VCO_REFDIV(0x3f)
91 #define VCO_FBDIV_SHIFT 6
92 #define VCO_FBDIV(x) ((x) << VCO_FBDIV_SHIFT)
93 #define VCO_FBDIV_MASK VCO_FBDIV(0xff)
94 #define VCO_ICP_SHIFT 14
95 /* PLL Charge Pump Current = 10uA * (x + 1) */
96 #define VCO_ICP(x) ((x) << VCO_ICP_SHIFT)
97 #define VCO_ICP_MASK VCO_ICP(0xf)
98 #define VCO_LOAD_CAP BIT(18)
99 #define VCO_CALIBRATION_START BIT(19)
100 #define VCO_FREQOFFSETn(x) AVPLL_CTRL(3 + (x))
101 #define VCO_FREQOFFSET_MASK 0x7ffff
102 #define VCO_CTRL10 AVPLL_CTRL(10)
103 #define VCO_POWERUP_CH1 BIT(20)
104 #define VCO_CTRL11 AVPLL_CTRL(11)
105 #define VCO_CTRL12 AVPLL_CTRL(12)
106 #define VCO_CTRL13 AVPLL_CTRL(13)
107 #define VCO_CTRL14 AVPLL_CTRL(14)
108 #define VCO_CTRL15 AVPLL_CTRL(15)
109 #define VCO_SYNC1n(x) AVPLL_CTRL(15 + (x))
110 #define VCO_SYNC1_MASK 0x1ffff
111 #define VCO_SYNC2n(x) AVPLL_CTRL(23 + (x))
112 #define VCO_SYNC2_MASK 0x1ffff
113 #define VCO_CTRL30 AVPLL_CTRL(30)
114 #define VCO_DPLL_CH1_ENABLE BIT(17)
116 struct berlin2_avpll_vco
{
122 #define to_avpll_vco(hw) container_of(hw, struct berlin2_avpll_vco, hw)
124 static int berlin2_avpll_vco_is_enabled(struct clk_hw
*hw
)
126 struct berlin2_avpll_vco
*vco
= to_avpll_vco(hw
);
129 reg
= readl_relaxed(vco
->base
+ VCO_CTRL0
);
130 if (vco
->flags
& BERLIN2_AVPLL_BIT_QUIRK
)
133 return !!(reg
& VCO_POWERUP
);
136 static int berlin2_avpll_vco_enable(struct clk_hw
*hw
)
138 struct berlin2_avpll_vco
*vco
= to_avpll_vco(hw
);
141 reg
= readl_relaxed(vco
->base
+ VCO_CTRL0
);
142 if (vco
->flags
& BERLIN2_AVPLL_BIT_QUIRK
)
143 reg
|= VCO_POWERUP
<< 4;
146 writel_relaxed(reg
, vco
->base
+ VCO_CTRL0
);
151 static void berlin2_avpll_vco_disable(struct clk_hw
*hw
)
153 struct berlin2_avpll_vco
*vco
= to_avpll_vco(hw
);
156 reg
= readl_relaxed(vco
->base
+ VCO_CTRL0
);
157 if (vco
->flags
& BERLIN2_AVPLL_BIT_QUIRK
)
158 reg
&= ~(VCO_POWERUP
<< 4);
161 writel_relaxed(reg
, vco
->base
+ VCO_CTRL0
);
164 static u8 vco_refdiv
[] = { 1, 2, 4, 3 };
167 berlin2_avpll_vco_recalc_rate(struct clk_hw
*hw
, unsigned long parent_rate
)
169 struct berlin2_avpll_vco
*vco
= to_avpll_vco(hw
);
170 u32 reg
, refdiv
, fbdiv
;
171 u64 freq
= parent_rate
;
173 /* AVPLL VCO frequency: Fvco = (Fref / refdiv) * fbdiv */
174 reg
= readl_relaxed(vco
->base
+ VCO_CTRL1
);
175 refdiv
= (reg
& VCO_REFDIV_MASK
) >> VCO_REFDIV_SHIFT
;
176 refdiv
= vco_refdiv
[refdiv
];
177 fbdiv
= (reg
& VCO_FBDIV_MASK
) >> VCO_FBDIV_SHIFT
;
179 do_div(freq
, refdiv
);
181 return (unsigned long)freq
;
184 static const struct clk_ops berlin2_avpll_vco_ops
= {
185 .is_enabled
= berlin2_avpll_vco_is_enabled
,
186 .enable
= berlin2_avpll_vco_enable
,
187 .disable
= berlin2_avpll_vco_disable
,
188 .recalc_rate
= berlin2_avpll_vco_recalc_rate
,
191 int __init
berlin2_avpll_vco_register(void __iomem
*base
,
192 const char *name
, const char *parent_name
,
193 u8 vco_flags
, unsigned long flags
)
195 struct berlin2_avpll_vco
*vco
;
196 struct clk_init_data init
;
198 vco
= kzalloc(sizeof(*vco
), GFP_KERNEL
);
203 vco
->flags
= vco_flags
;
204 vco
->hw
.init
= &init
;
206 init
.ops
= &berlin2_avpll_vco_ops
;
207 init
.parent_names
= &parent_name
;
208 init
.num_parents
= 1;
211 return clk_hw_register(NULL
, &vco
->hw
);
214 struct berlin2_avpll_channel
{
221 #define to_avpll_channel(hw) container_of(hw, struct berlin2_avpll_channel, hw)
223 static int berlin2_avpll_channel_is_enabled(struct clk_hw
*hw
)
225 struct berlin2_avpll_channel
*ch
= to_avpll_channel(hw
);
231 reg
= readl_relaxed(ch
->base
+ VCO_CTRL10
);
232 reg
&= VCO_POWERUP_CH1
<< ch
->index
;
237 static int berlin2_avpll_channel_enable(struct clk_hw
*hw
)
239 struct berlin2_avpll_channel
*ch
= to_avpll_channel(hw
);
242 reg
= readl_relaxed(ch
->base
+ VCO_CTRL10
);
243 reg
|= VCO_POWERUP_CH1
<< ch
->index
;
244 writel_relaxed(reg
, ch
->base
+ VCO_CTRL10
);
249 static void berlin2_avpll_channel_disable(struct clk_hw
*hw
)
251 struct berlin2_avpll_channel
*ch
= to_avpll_channel(hw
);
254 reg
= readl_relaxed(ch
->base
+ VCO_CTRL10
);
255 reg
&= ~(VCO_POWERUP_CH1
<< ch
->index
);
256 writel_relaxed(reg
, ch
->base
+ VCO_CTRL10
);
259 static const u8 div_hdmi
[] = { 1, 2, 4, 6 };
260 static const u8 div_av1
[] = { 1, 2, 5, 5 };
263 berlin2_avpll_channel_recalc_rate(struct clk_hw
*hw
, unsigned long parent_rate
)
265 struct berlin2_avpll_channel
*ch
= to_avpll_channel(hw
);
266 u32 reg
, div_av2
, div_av3
, divider
= 1;
267 u64 freq
= parent_rate
;
269 reg
= readl_relaxed(ch
->base
+ VCO_CTRL30
);
270 if ((reg
& (VCO_DPLL_CH1_ENABLE
<< ch
->index
)) == 0)
274 * Fch = (Fref * sync2) /
275 * (sync1 * div_hdmi * div_av1 * div_av2 * div_av3)
278 reg
= readl_relaxed(ch
->base
+ VCO_SYNC1n(ch
->index
));
279 /* BG2/BG2CDs SYNC1 reg on AVPLL_B channel 1 is shifted by 4 */
280 if (ch
->flags
& BERLIN2_AVPLL_BIT_QUIRK
&& ch
->index
== 0)
282 divider
= reg
& VCO_SYNC1_MASK
;
284 reg
= readl_relaxed(ch
->base
+ VCO_SYNC2n(ch
->index
));
285 freq
*= reg
& VCO_SYNC2_MASK
;
287 /* Channel 8 has no dividers */
292 * HDMI divider start at VCO_CTRL11, bit 7; MSB is enable, lower 2 bit
295 reg
= readl_relaxed(ch
->base
+ VCO_CTRL11
) >> 7;
296 reg
= (reg
>> (ch
->index
* 3));
298 divider
*= div_hdmi
[reg
& 0x3];
301 * AV1 divider start at VCO_CTRL11, bit 28; MSB is enable, lower 2 bit
304 if (ch
->index
== 0) {
305 reg
= readl_relaxed(ch
->base
+ VCO_CTRL11
);
308 reg
= readl_relaxed(ch
->base
+ VCO_CTRL12
);
309 reg
>>= (ch
->index
-1) * 3;
312 divider
*= div_av1
[reg
& 0x3];
315 * AV2 divider start at VCO_CTRL12, bit 18; each 7 bits wide,
316 * zero is not a valid value.
319 reg
= readl_relaxed(ch
->base
+ VCO_CTRL12
);
320 reg
>>= 18 + (ch
->index
* 7);
321 } else if (ch
->index
< 7) {
322 reg
= readl_relaxed(ch
->base
+ VCO_CTRL13
);
323 reg
>>= (ch
->index
- 2) * 7;
325 reg
= readl_relaxed(ch
->base
+ VCO_CTRL14
);
327 div_av2
= reg
& 0x7f;
332 * AV3 divider start at VCO_CTRL14, bit 7; each 4 bits wide.
333 * AV2/AV3 form a fractional divider, where only specfic values for AV3
334 * are allowed. AV3 != 0 divides by AV2/2, AV3=0 is bypass.
337 reg
= readl_relaxed(ch
->base
+ VCO_CTRL14
);
338 reg
>>= 7 + (ch
->index
* 4);
340 reg
= readl_relaxed(ch
->base
+ VCO_CTRL15
);
343 if (div_av2
&& div_av3
)
347 do_div(freq
, divider
);
348 return (unsigned long)freq
;
351 static const struct clk_ops berlin2_avpll_channel_ops
= {
352 .is_enabled
= berlin2_avpll_channel_is_enabled
,
353 .enable
= berlin2_avpll_channel_enable
,
354 .disable
= berlin2_avpll_channel_disable
,
355 .recalc_rate
= berlin2_avpll_channel_recalc_rate
,
359 * Another nice quirk:
360 * On some production SoCs, AVPLL channels are scrambled with respect
361 * to the channel numbering in the registers but still referenced by
362 * their original channel numbers. We deal with it by having a flag
363 * and a translation table for the index.
365 static const u8 quirk_index
[] __initconst
= { 0, 6, 5, 4, 3, 2, 1, 7 };
367 int __init
berlin2_avpll_channel_register(void __iomem
*base
,
368 const char *name
, u8 index
, const char *parent_name
,
369 u8 ch_flags
, unsigned long flags
)
371 struct berlin2_avpll_channel
*ch
;
372 struct clk_init_data init
;
374 ch
= kzalloc(sizeof(*ch
), GFP_KERNEL
);
379 if (ch_flags
& BERLIN2_AVPLL_SCRAMBLE_QUIRK
)
380 ch
->index
= quirk_index
[index
];
384 ch
->flags
= ch_flags
;
387 init
.ops
= &berlin2_avpll_channel_ops
;
388 init
.parent_names
= &parent_name
;
389 init
.num_parents
= 1;
392 return clk_hw_register(NULL
, &ch
->hw
);