Linux 4.16.11
[linux/fpc-iii.git] / drivers / clk / berlin / berlin2-avpll.c
blobcfcae468e9890062322069787e3c56a46c383556
1 /*
2 * Copyright (c) 2014 Marvell Technology Group Ltd.
4 * Sebastian Hesselbarth <sebastian.hesselbarth@gmail.com>
5 * Alexandre Belloni <alexandre.belloni@free-electrons.com>
7 * This program is free software; you can redistribute it and/or modify it
8 * under the terms and conditions of the GNU General Public License,
9 * version 2, as published by the Free Software Foundation.
11 * This program is distributed in the hope it will be useful, but WITHOUT
12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
14 * more details.
16 * You should have received a copy of the GNU General Public License along with
17 * this program. If not, see <http://www.gnu.org/licenses/>.
19 #include <linux/clk-provider.h>
20 #include <linux/io.h>
21 #include <linux/kernel.h>
22 #include <linux/of.h>
23 #include <linux/of_address.h>
24 #include <linux/slab.h>
26 #include "berlin2-avpll.h"
29 * Berlin2 SoCs comprise up to two PLLs called AVPLL built upon a
30 * VCO with 8 channels each, channel 8 is the odd-one-out and does
31 * not provide mul/div.
33 * Unfortunately, its registers are not named but just numbered. To
34 * get in at least some kind of structure, we split each AVPLL into
35 * the VCOs and each channel into separate clock drivers.
37 * Also, here and there the VCO registers are a bit different with
38 * respect to bit shifts. Make sure to add a comment for those.
40 #define NUM_CHANNELS 8
42 #define AVPLL_CTRL(x) ((x) * 0x4)
44 #define VCO_CTRL0 AVPLL_CTRL(0)
45 /* BG2/BG2CDs VCO_B has an additional shift of 4 for its VCO_CTRL0 reg */
46 #define VCO_RESET BIT(0)
47 #define VCO_POWERUP BIT(1)
48 #define VCO_INTERPOL_SHIFT 2
49 #define VCO_INTERPOL_MASK (0xf << VCO_INTERPOL_SHIFT)
50 #define VCO_REG1V45_SEL_SHIFT 6
51 #define VCO_REG1V45_SEL(x) ((x) << VCO_REG1V45_SEL_SHIFT)
52 #define VCO_REG1V45_SEL_1V40 VCO_REG1V45_SEL(0)
53 #define VCO_REG1V45_SEL_1V45 VCO_REG1V45_SEL(1)
54 #define VCO_REG1V45_SEL_1V50 VCO_REG1V45_SEL(2)
55 #define VCO_REG1V45_SEL_1V55 VCO_REG1V45_SEL(3)
56 #define VCO_REG1V45_SEL_MASK VCO_REG1V45_SEL(3)
57 #define VCO_REG0V9_SEL_SHIFT 8
58 #define VCO_REG0V9_SEL_MASK (0xf << VCO_REG0V9_SEL_SHIFT)
59 #define VCO_VTHCAL_SHIFT 12
60 #define VCO_VTHCAL(x) ((x) << VCO_VTHCAL_SHIFT)
61 #define VCO_VTHCAL_0V90 VCO_VTHCAL(0)
62 #define VCO_VTHCAL_0V95 VCO_VTHCAL(1)
63 #define VCO_VTHCAL_1V00 VCO_VTHCAL(2)
64 #define VCO_VTHCAL_1V05 VCO_VTHCAL(3)
65 #define VCO_VTHCAL_MASK VCO_VTHCAL(3)
66 #define VCO_KVCOEXT_SHIFT 14
67 #define VCO_KVCOEXT_MASK (0x3 << VCO_KVCOEXT_SHIFT)
68 #define VCO_KVCOEXT_ENABLE BIT(17)
69 #define VCO_V2IEXT_SHIFT 18
70 #define VCO_V2IEXT_MASK (0xf << VCO_V2IEXT_SHIFT)
71 #define VCO_V2IEXT_ENABLE BIT(22)
72 #define VCO_SPEED_SHIFT 23
73 #define VCO_SPEED(x) ((x) << VCO_SPEED_SHIFT)
74 #define VCO_SPEED_1G08_1G21 VCO_SPEED(0)
75 #define VCO_SPEED_1G21_1G40 VCO_SPEED(1)
76 #define VCO_SPEED_1G40_1G61 VCO_SPEED(2)
77 #define VCO_SPEED_1G61_1G86 VCO_SPEED(3)
78 #define VCO_SPEED_1G86_2G00 VCO_SPEED(4)
79 #define VCO_SPEED_2G00_2G22 VCO_SPEED(5)
80 #define VCO_SPEED_2G22 VCO_SPEED(6)
81 #define VCO_SPEED_MASK VCO_SPEED(0x7)
82 #define VCO_CLKDET_ENABLE BIT(26)
83 #define VCO_CTRL1 AVPLL_CTRL(1)
84 #define VCO_REFDIV_SHIFT 0
85 #define VCO_REFDIV(x) ((x) << VCO_REFDIV_SHIFT)
86 #define VCO_REFDIV_1 VCO_REFDIV(0)
87 #define VCO_REFDIV_2 VCO_REFDIV(1)
88 #define VCO_REFDIV_4 VCO_REFDIV(2)
89 #define VCO_REFDIV_3 VCO_REFDIV(3)
90 #define VCO_REFDIV_MASK VCO_REFDIV(0x3f)
91 #define VCO_FBDIV_SHIFT 6
92 #define VCO_FBDIV(x) ((x) << VCO_FBDIV_SHIFT)
93 #define VCO_FBDIV_MASK VCO_FBDIV(0xff)
94 #define VCO_ICP_SHIFT 14
95 /* PLL Charge Pump Current = 10uA * (x + 1) */
96 #define VCO_ICP(x) ((x) << VCO_ICP_SHIFT)
97 #define VCO_ICP_MASK VCO_ICP(0xf)
98 #define VCO_LOAD_CAP BIT(18)
99 #define VCO_CALIBRATION_START BIT(19)
100 #define VCO_FREQOFFSETn(x) AVPLL_CTRL(3 + (x))
101 #define VCO_FREQOFFSET_MASK 0x7ffff
102 #define VCO_CTRL10 AVPLL_CTRL(10)
103 #define VCO_POWERUP_CH1 BIT(20)
104 #define VCO_CTRL11 AVPLL_CTRL(11)
105 #define VCO_CTRL12 AVPLL_CTRL(12)
106 #define VCO_CTRL13 AVPLL_CTRL(13)
107 #define VCO_CTRL14 AVPLL_CTRL(14)
108 #define VCO_CTRL15 AVPLL_CTRL(15)
109 #define VCO_SYNC1n(x) AVPLL_CTRL(15 + (x))
110 #define VCO_SYNC1_MASK 0x1ffff
111 #define VCO_SYNC2n(x) AVPLL_CTRL(23 + (x))
112 #define VCO_SYNC2_MASK 0x1ffff
113 #define VCO_CTRL30 AVPLL_CTRL(30)
114 #define VCO_DPLL_CH1_ENABLE BIT(17)
116 struct berlin2_avpll_vco {
117 struct clk_hw hw;
118 void __iomem *base;
119 u8 flags;
122 #define to_avpll_vco(hw) container_of(hw, struct berlin2_avpll_vco, hw)
124 static int berlin2_avpll_vco_is_enabled(struct clk_hw *hw)
126 struct berlin2_avpll_vco *vco = to_avpll_vco(hw);
127 u32 reg;
129 reg = readl_relaxed(vco->base + VCO_CTRL0);
130 if (vco->flags & BERLIN2_AVPLL_BIT_QUIRK)
131 reg >>= 4;
133 return !!(reg & VCO_POWERUP);
136 static int berlin2_avpll_vco_enable(struct clk_hw *hw)
138 struct berlin2_avpll_vco *vco = to_avpll_vco(hw);
139 u32 reg;
141 reg = readl_relaxed(vco->base + VCO_CTRL0);
142 if (vco->flags & BERLIN2_AVPLL_BIT_QUIRK)
143 reg |= VCO_POWERUP << 4;
144 else
145 reg |= VCO_POWERUP;
146 writel_relaxed(reg, vco->base + VCO_CTRL0);
148 return 0;
151 static void berlin2_avpll_vco_disable(struct clk_hw *hw)
153 struct berlin2_avpll_vco *vco = to_avpll_vco(hw);
154 u32 reg;
156 reg = readl_relaxed(vco->base + VCO_CTRL0);
157 if (vco->flags & BERLIN2_AVPLL_BIT_QUIRK)
158 reg &= ~(VCO_POWERUP << 4);
159 else
160 reg &= ~VCO_POWERUP;
161 writel_relaxed(reg, vco->base + VCO_CTRL0);
164 static u8 vco_refdiv[] = { 1, 2, 4, 3 };
166 static unsigned long
167 berlin2_avpll_vco_recalc_rate(struct clk_hw *hw, unsigned long parent_rate)
169 struct berlin2_avpll_vco *vco = to_avpll_vco(hw);
170 u32 reg, refdiv, fbdiv;
171 u64 freq = parent_rate;
173 /* AVPLL VCO frequency: Fvco = (Fref / refdiv) * fbdiv */
174 reg = readl_relaxed(vco->base + VCO_CTRL1);
175 refdiv = (reg & VCO_REFDIV_MASK) >> VCO_REFDIV_SHIFT;
176 refdiv = vco_refdiv[refdiv];
177 fbdiv = (reg & VCO_FBDIV_MASK) >> VCO_FBDIV_SHIFT;
178 freq *= fbdiv;
179 do_div(freq, refdiv);
181 return (unsigned long)freq;
184 static const struct clk_ops berlin2_avpll_vco_ops = {
185 .is_enabled = berlin2_avpll_vco_is_enabled,
186 .enable = berlin2_avpll_vco_enable,
187 .disable = berlin2_avpll_vco_disable,
188 .recalc_rate = berlin2_avpll_vco_recalc_rate,
191 int __init berlin2_avpll_vco_register(void __iomem *base,
192 const char *name, const char *parent_name,
193 u8 vco_flags, unsigned long flags)
195 struct berlin2_avpll_vco *vco;
196 struct clk_init_data init;
198 vco = kzalloc(sizeof(*vco), GFP_KERNEL);
199 if (!vco)
200 return -ENOMEM;
202 vco->base = base;
203 vco->flags = vco_flags;
204 vco->hw.init = &init;
205 init.name = name;
206 init.ops = &berlin2_avpll_vco_ops;
207 init.parent_names = &parent_name;
208 init.num_parents = 1;
209 init.flags = flags;
211 return clk_hw_register(NULL, &vco->hw);
214 struct berlin2_avpll_channel {
215 struct clk_hw hw;
216 void __iomem *base;
217 u8 flags;
218 u8 index;
221 #define to_avpll_channel(hw) container_of(hw, struct berlin2_avpll_channel, hw)
223 static int berlin2_avpll_channel_is_enabled(struct clk_hw *hw)
225 struct berlin2_avpll_channel *ch = to_avpll_channel(hw);
226 u32 reg;
228 if (ch->index == 7)
229 return 1;
231 reg = readl_relaxed(ch->base + VCO_CTRL10);
232 reg &= VCO_POWERUP_CH1 << ch->index;
234 return !!reg;
237 static int berlin2_avpll_channel_enable(struct clk_hw *hw)
239 struct berlin2_avpll_channel *ch = to_avpll_channel(hw);
240 u32 reg;
242 reg = readl_relaxed(ch->base + VCO_CTRL10);
243 reg |= VCO_POWERUP_CH1 << ch->index;
244 writel_relaxed(reg, ch->base + VCO_CTRL10);
246 return 0;
249 static void berlin2_avpll_channel_disable(struct clk_hw *hw)
251 struct berlin2_avpll_channel *ch = to_avpll_channel(hw);
252 u32 reg;
254 reg = readl_relaxed(ch->base + VCO_CTRL10);
255 reg &= ~(VCO_POWERUP_CH1 << ch->index);
256 writel_relaxed(reg, ch->base + VCO_CTRL10);
259 static const u8 div_hdmi[] = { 1, 2, 4, 6 };
260 static const u8 div_av1[] = { 1, 2, 5, 5 };
262 static unsigned long
263 berlin2_avpll_channel_recalc_rate(struct clk_hw *hw, unsigned long parent_rate)
265 struct berlin2_avpll_channel *ch = to_avpll_channel(hw);
266 u32 reg, div_av2, div_av3, divider = 1;
267 u64 freq = parent_rate;
269 reg = readl_relaxed(ch->base + VCO_CTRL30);
270 if ((reg & (VCO_DPLL_CH1_ENABLE << ch->index)) == 0)
271 goto skip_div;
274 * Fch = (Fref * sync2) /
275 * (sync1 * div_hdmi * div_av1 * div_av2 * div_av3)
278 reg = readl_relaxed(ch->base + VCO_SYNC1n(ch->index));
279 /* BG2/BG2CDs SYNC1 reg on AVPLL_B channel 1 is shifted by 4 */
280 if (ch->flags & BERLIN2_AVPLL_BIT_QUIRK && ch->index == 0)
281 reg >>= 4;
282 divider = reg & VCO_SYNC1_MASK;
284 reg = readl_relaxed(ch->base + VCO_SYNC2n(ch->index));
285 freq *= reg & VCO_SYNC2_MASK;
287 /* Channel 8 has no dividers */
288 if (ch->index == 7)
289 goto skip_div;
292 * HDMI divider start at VCO_CTRL11, bit 7; MSB is enable, lower 2 bit
293 * determine divider.
295 reg = readl_relaxed(ch->base + VCO_CTRL11) >> 7;
296 reg = (reg >> (ch->index * 3));
297 if (reg & BIT(2))
298 divider *= div_hdmi[reg & 0x3];
301 * AV1 divider start at VCO_CTRL11, bit 28; MSB is enable, lower 2 bit
302 * determine divider.
304 if (ch->index == 0) {
305 reg = readl_relaxed(ch->base + VCO_CTRL11);
306 reg >>= 28;
307 } else {
308 reg = readl_relaxed(ch->base + VCO_CTRL12);
309 reg >>= (ch->index-1) * 3;
311 if (reg & BIT(2))
312 divider *= div_av1[reg & 0x3];
315 * AV2 divider start at VCO_CTRL12, bit 18; each 7 bits wide,
316 * zero is not a valid value.
318 if (ch->index < 2) {
319 reg = readl_relaxed(ch->base + VCO_CTRL12);
320 reg >>= 18 + (ch->index * 7);
321 } else if (ch->index < 7) {
322 reg = readl_relaxed(ch->base + VCO_CTRL13);
323 reg >>= (ch->index - 2) * 7;
324 } else {
325 reg = readl_relaxed(ch->base + VCO_CTRL14);
327 div_av2 = reg & 0x7f;
328 if (div_av2)
329 divider *= div_av2;
332 * AV3 divider start at VCO_CTRL14, bit 7; each 4 bits wide.
333 * AV2/AV3 form a fractional divider, where only specfic values for AV3
334 * are allowed. AV3 != 0 divides by AV2/2, AV3=0 is bypass.
336 if (ch->index < 6) {
337 reg = readl_relaxed(ch->base + VCO_CTRL14);
338 reg >>= 7 + (ch->index * 4);
339 } else {
340 reg = readl_relaxed(ch->base + VCO_CTRL15);
342 div_av3 = reg & 0xf;
343 if (div_av2 && div_av3)
344 freq *= 2;
346 skip_div:
347 do_div(freq, divider);
348 return (unsigned long)freq;
351 static const struct clk_ops berlin2_avpll_channel_ops = {
352 .is_enabled = berlin2_avpll_channel_is_enabled,
353 .enable = berlin2_avpll_channel_enable,
354 .disable = berlin2_avpll_channel_disable,
355 .recalc_rate = berlin2_avpll_channel_recalc_rate,
359 * Another nice quirk:
360 * On some production SoCs, AVPLL channels are scrambled with respect
361 * to the channel numbering in the registers but still referenced by
362 * their original channel numbers. We deal with it by having a flag
363 * and a translation table for the index.
365 static const u8 quirk_index[] __initconst = { 0, 6, 5, 4, 3, 2, 1, 7 };
367 int __init berlin2_avpll_channel_register(void __iomem *base,
368 const char *name, u8 index, const char *parent_name,
369 u8 ch_flags, unsigned long flags)
371 struct berlin2_avpll_channel *ch;
372 struct clk_init_data init;
374 ch = kzalloc(sizeof(*ch), GFP_KERNEL);
375 if (!ch)
376 return -ENOMEM;
378 ch->base = base;
379 if (ch_flags & BERLIN2_AVPLL_SCRAMBLE_QUIRK)
380 ch->index = quirk_index[index];
381 else
382 ch->index = index;
384 ch->flags = ch_flags;
385 ch->hw.init = &init;
386 init.name = name;
387 init.ops = &berlin2_avpll_channel_ops;
388 init.parent_names = &parent_name;
389 init.num_parents = 1;
390 init.flags = flags;
392 return clk_hw_register(NULL, &ch->hw);