Linux 4.16.11
[linux/fpc-iii.git] / drivers / cpufreq / brcmstb-avs-cpufreq.c
blob7281a2c19c362177a57a962f8d587ef40764b92e
1 /*
2 * CPU frequency scaling for Broadcom SoCs with AVS firmware that
3 * supports DVS or DVFS
5 * Copyright (c) 2016 Broadcom
7 * This program is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License as
9 * published by the Free Software Foundation version 2.
11 * This program is distributed "as is" WITHOUT ANY WARRANTY of any
12 * kind, whether express or implied; without even the implied warranty
13 * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
18 * "AVS" is the name of a firmware developed at Broadcom. It derives
19 * its name from the technique called "Adaptive Voltage Scaling".
20 * Adaptive voltage scaling was the original purpose of this firmware.
21 * The AVS firmware still supports "AVS mode", where all it does is
22 * adaptive voltage scaling. However, on some newer Broadcom SoCs, the
23 * AVS Firmware, despite its unchanged name, also supports DFS mode and
24 * DVFS mode.
26 * In the context of this document and the related driver, "AVS" by
27 * itself always means the Broadcom firmware and never refers to the
28 * technique called "Adaptive Voltage Scaling".
30 * The Broadcom STB AVS CPUfreq driver provides voltage and frequency
31 * scaling on Broadcom SoCs using AVS firmware with support for DFS and
32 * DVFS. The AVS firmware is running on its own co-processor. The
33 * driver supports both uniprocessor (UP) and symmetric multiprocessor
34 * (SMP) systems which share clock and voltage across all CPUs.
36 * Actual voltage and frequency scaling is done solely by the AVS
37 * firmware. This driver does not change frequency or voltage itself.
38 * It provides a standard CPUfreq interface to the rest of the kernel
39 * and to userland. It interfaces with the AVS firmware to effect the
40 * requested changes and to report back the current system status in a
41 * way that is expected by existing tools.
44 #include <linux/cpufreq.h>
45 #include <linux/interrupt.h>
46 #include <linux/io.h>
47 #include <linux/module.h>
48 #include <linux/of_address.h>
49 #include <linux/platform_device.h>
50 #include <linux/semaphore.h>
52 #ifdef CONFIG_ARM_BRCMSTB_AVS_CPUFREQ_DEBUG
53 #include <linux/ctype.h>
54 #include <linux/debugfs.h>
55 #include <linux/slab.h>
56 #include <linux/uaccess.h>
57 #endif
59 /* Max number of arguments AVS calls take */
60 #define AVS_MAX_CMD_ARGS 4
62 * This macro is used to generate AVS parameter register offsets. For
63 * x >= AVS_MAX_CMD_ARGS, it returns 0 to protect against accidental memory
64 * access outside of the parameter range. (Offset 0 is the first parameter.)
66 #define AVS_PARAM_MULT(x) ((x) < AVS_MAX_CMD_ARGS ? (x) : 0)
68 /* AVS Mailbox Register offsets */
69 #define AVS_MBOX_COMMAND 0x00
70 #define AVS_MBOX_STATUS 0x04
71 #define AVS_MBOX_VOLTAGE0 0x08
72 #define AVS_MBOX_TEMP0 0x0c
73 #define AVS_MBOX_PV0 0x10
74 #define AVS_MBOX_MV0 0x14
75 #define AVS_MBOX_PARAM(x) (0x18 + AVS_PARAM_MULT(x) * sizeof(u32))
76 #define AVS_MBOX_REVISION 0x28
77 #define AVS_MBOX_PSTATE 0x2c
78 #define AVS_MBOX_HEARTBEAT 0x30
79 #define AVS_MBOX_MAGIC 0x34
80 #define AVS_MBOX_SIGMA_HVT 0x38
81 #define AVS_MBOX_SIGMA_SVT 0x3c
82 #define AVS_MBOX_VOLTAGE1 0x40
83 #define AVS_MBOX_TEMP1 0x44
84 #define AVS_MBOX_PV1 0x48
85 #define AVS_MBOX_MV1 0x4c
86 #define AVS_MBOX_FREQUENCY 0x50
88 /* AVS Commands */
89 #define AVS_CMD_AVAILABLE 0x00
90 #define AVS_CMD_DISABLE 0x10
91 #define AVS_CMD_ENABLE 0x11
92 #define AVS_CMD_S2_ENTER 0x12
93 #define AVS_CMD_S2_EXIT 0x13
94 #define AVS_CMD_BBM_ENTER 0x14
95 #define AVS_CMD_BBM_EXIT 0x15
96 #define AVS_CMD_S3_ENTER 0x16
97 #define AVS_CMD_S3_EXIT 0x17
98 #define AVS_CMD_BALANCE 0x18
99 /* PMAP and P-STATE commands */
100 #define AVS_CMD_GET_PMAP 0x30
101 #define AVS_CMD_SET_PMAP 0x31
102 #define AVS_CMD_GET_PSTATE 0x40
103 #define AVS_CMD_SET_PSTATE 0x41
105 /* Different modes AVS supports (for GET_PMAP/SET_PMAP) */
106 #define AVS_MODE_AVS 0x0
107 #define AVS_MODE_DFS 0x1
108 #define AVS_MODE_DVS 0x2
109 #define AVS_MODE_DVFS 0x3
112 * PMAP parameter p1
113 * unused:31-24, mdiv_p0:23-16, unused:15-14, pdiv:13-10 , ndiv_int:9-0
115 #define NDIV_INT_SHIFT 0
116 #define NDIV_INT_MASK 0x3ff
117 #define PDIV_SHIFT 10
118 #define PDIV_MASK 0xf
119 #define MDIV_P0_SHIFT 16
120 #define MDIV_P0_MASK 0xff
122 * PMAP parameter p2
123 * mdiv_p4:31-24, mdiv_p3:23-16, mdiv_p2:15:8, mdiv_p1:7:0
125 #define MDIV_P1_SHIFT 0
126 #define MDIV_P1_MASK 0xff
127 #define MDIV_P2_SHIFT 8
128 #define MDIV_P2_MASK 0xff
129 #define MDIV_P3_SHIFT 16
130 #define MDIV_P3_MASK 0xff
131 #define MDIV_P4_SHIFT 24
132 #define MDIV_P4_MASK 0xff
134 /* Different P-STATES AVS supports (for GET_PSTATE/SET_PSTATE) */
135 #define AVS_PSTATE_P0 0x0
136 #define AVS_PSTATE_P1 0x1
137 #define AVS_PSTATE_P2 0x2
138 #define AVS_PSTATE_P3 0x3
139 #define AVS_PSTATE_P4 0x4
140 #define AVS_PSTATE_MAX AVS_PSTATE_P4
142 /* CPU L2 Interrupt Controller Registers */
143 #define AVS_CPU_L2_SET0 0x04
144 #define AVS_CPU_L2_INT_MASK BIT(31)
146 /* AVS Command Status Values */
147 #define AVS_STATUS_CLEAR 0x00
148 /* Command/notification accepted */
149 #define AVS_STATUS_SUCCESS 0xf0
150 /* Command/notification rejected */
151 #define AVS_STATUS_FAILURE 0xff
152 /* Invalid command/notification (unknown) */
153 #define AVS_STATUS_INVALID 0xf1
154 /* Non-AVS modes are not supported */
155 #define AVS_STATUS_NO_SUPP 0xf2
156 /* Cannot set P-State until P-Map supplied */
157 #define AVS_STATUS_NO_MAP 0xf3
158 /* Cannot change P-Map after initial P-Map set */
159 #define AVS_STATUS_MAP_SET 0xf4
160 /* Max AVS status; higher numbers are used for debugging */
161 #define AVS_STATUS_MAX 0xff
163 /* Other AVS related constants */
164 #define AVS_LOOP_LIMIT 10000
165 #define AVS_TIMEOUT 300 /* in ms; expected completion is < 10ms */
166 #define AVS_FIRMWARE_MAGIC 0xa11600d1
168 #define BRCM_AVS_CPUFREQ_PREFIX "brcmstb-avs"
169 #define BRCM_AVS_CPUFREQ_NAME BRCM_AVS_CPUFREQ_PREFIX "-cpufreq"
170 #define BRCM_AVS_CPU_DATA "brcm,avs-cpu-data-mem"
171 #define BRCM_AVS_CPU_INTR "brcm,avs-cpu-l2-intr"
172 #define BRCM_AVS_HOST_INTR "sw_intr"
174 struct pmap {
175 unsigned int mode;
176 unsigned int p1;
177 unsigned int p2;
178 unsigned int state;
181 struct private_data {
182 void __iomem *base;
183 void __iomem *avs_intr_base;
184 struct device *dev;
185 #ifdef CONFIG_ARM_BRCMSTB_AVS_CPUFREQ_DEBUG
186 struct dentry *debugfs;
187 #endif
188 struct completion done;
189 struct semaphore sem;
190 struct pmap pmap;
193 #ifdef CONFIG_ARM_BRCMSTB_AVS_CPUFREQ_DEBUG
195 enum debugfs_format {
196 DEBUGFS_NORMAL,
197 DEBUGFS_FLOAT,
198 DEBUGFS_REV,
201 struct debugfs_data {
202 struct debugfs_entry *entry;
203 struct private_data *priv;
206 struct debugfs_entry {
207 char *name;
208 u32 offset;
209 fmode_t mode;
210 enum debugfs_format format;
213 #define DEBUGFS_ENTRY(name, mode, format) { \
214 #name, AVS_MBOX_##name, mode, format \
218 * These are used for debugfs only. Otherwise we use AVS_MBOX_PARAM() directly.
220 #define AVS_MBOX_PARAM1 AVS_MBOX_PARAM(0)
221 #define AVS_MBOX_PARAM2 AVS_MBOX_PARAM(1)
222 #define AVS_MBOX_PARAM3 AVS_MBOX_PARAM(2)
223 #define AVS_MBOX_PARAM4 AVS_MBOX_PARAM(3)
226 * This table stores the name, access permissions and offset for each hardware
227 * register and is used to generate debugfs entries.
229 static struct debugfs_entry debugfs_entries[] = {
230 DEBUGFS_ENTRY(COMMAND, S_IWUSR, DEBUGFS_NORMAL),
231 DEBUGFS_ENTRY(STATUS, S_IWUSR, DEBUGFS_NORMAL),
232 DEBUGFS_ENTRY(VOLTAGE0, 0, DEBUGFS_FLOAT),
233 DEBUGFS_ENTRY(TEMP0, 0, DEBUGFS_FLOAT),
234 DEBUGFS_ENTRY(PV0, 0, DEBUGFS_FLOAT),
235 DEBUGFS_ENTRY(MV0, 0, DEBUGFS_FLOAT),
236 DEBUGFS_ENTRY(PARAM1, S_IWUSR, DEBUGFS_NORMAL),
237 DEBUGFS_ENTRY(PARAM2, S_IWUSR, DEBUGFS_NORMAL),
238 DEBUGFS_ENTRY(PARAM3, S_IWUSR, DEBUGFS_NORMAL),
239 DEBUGFS_ENTRY(PARAM4, S_IWUSR, DEBUGFS_NORMAL),
240 DEBUGFS_ENTRY(REVISION, 0, DEBUGFS_REV),
241 DEBUGFS_ENTRY(PSTATE, 0, DEBUGFS_NORMAL),
242 DEBUGFS_ENTRY(HEARTBEAT, 0, DEBUGFS_NORMAL),
243 DEBUGFS_ENTRY(MAGIC, S_IWUSR, DEBUGFS_NORMAL),
244 DEBUGFS_ENTRY(SIGMA_HVT, 0, DEBUGFS_NORMAL),
245 DEBUGFS_ENTRY(SIGMA_SVT, 0, DEBUGFS_NORMAL),
246 DEBUGFS_ENTRY(VOLTAGE1, 0, DEBUGFS_FLOAT),
247 DEBUGFS_ENTRY(TEMP1, 0, DEBUGFS_FLOAT),
248 DEBUGFS_ENTRY(PV1, 0, DEBUGFS_FLOAT),
249 DEBUGFS_ENTRY(MV1, 0, DEBUGFS_FLOAT),
250 DEBUGFS_ENTRY(FREQUENCY, 0, DEBUGFS_NORMAL),
253 static int brcm_avs_target_index(struct cpufreq_policy *, unsigned int);
255 static char *__strtolower(char *s)
257 char *p;
259 for (p = s; *p; p++)
260 *p = tolower(*p);
262 return s;
265 #endif /* CONFIG_ARM_BRCMSTB_AVS_CPUFREQ_DEBUG */
267 static void __iomem *__map_region(const char *name)
269 struct device_node *np;
270 void __iomem *ptr;
272 np = of_find_compatible_node(NULL, NULL, name);
273 if (!np)
274 return NULL;
276 ptr = of_iomap(np, 0);
277 of_node_put(np);
279 return ptr;
282 static int __issue_avs_command(struct private_data *priv, int cmd, bool is_send,
283 u32 args[])
285 unsigned long time_left = msecs_to_jiffies(AVS_TIMEOUT);
286 void __iomem *base = priv->base;
287 unsigned int i;
288 int ret;
289 u32 val;
291 ret = down_interruptible(&priv->sem);
292 if (ret)
293 return ret;
296 * Make sure no other command is currently running: cmd is 0 if AVS
297 * co-processor is idle. Due to the guard above, we should almost never
298 * have to wait here.
300 for (i = 0, val = 1; val != 0 && i < AVS_LOOP_LIMIT; i++)
301 val = readl(base + AVS_MBOX_COMMAND);
303 /* Give the caller a chance to retry if AVS is busy. */
304 if (i == AVS_LOOP_LIMIT) {
305 ret = -EAGAIN;
306 goto out;
309 /* Clear status before we begin. */
310 writel(AVS_STATUS_CLEAR, base + AVS_MBOX_STATUS);
312 /* We need to send arguments for this command. */
313 if (args && is_send) {
314 for (i = 0; i < AVS_MAX_CMD_ARGS; i++)
315 writel(args[i], base + AVS_MBOX_PARAM(i));
318 /* Protect from spurious interrupts. */
319 reinit_completion(&priv->done);
321 /* Now issue the command & tell firmware to wake up to process it. */
322 writel(cmd, base + AVS_MBOX_COMMAND);
323 writel(AVS_CPU_L2_INT_MASK, priv->avs_intr_base + AVS_CPU_L2_SET0);
325 /* Wait for AVS co-processor to finish processing the command. */
326 time_left = wait_for_completion_timeout(&priv->done, time_left);
329 * If the AVS status is not in the expected range, it means AVS didn't
330 * complete our command in time, and we return an error. Also, if there
331 * is no "time left", we timed out waiting for the interrupt.
333 val = readl(base + AVS_MBOX_STATUS);
334 if (time_left == 0 || val == 0 || val > AVS_STATUS_MAX) {
335 dev_err(priv->dev, "AVS command %#x didn't complete in time\n",
336 cmd);
337 dev_err(priv->dev, " Time left: %u ms, AVS status: %#x\n",
338 jiffies_to_msecs(time_left), val);
339 ret = -ETIMEDOUT;
340 goto out;
343 /* This command returned arguments, so we read them back. */
344 if (args && !is_send) {
345 for (i = 0; i < AVS_MAX_CMD_ARGS; i++)
346 args[i] = readl(base + AVS_MBOX_PARAM(i));
349 /* Clear status to tell AVS co-processor we are done. */
350 writel(AVS_STATUS_CLEAR, base + AVS_MBOX_STATUS);
352 /* Convert firmware errors to errno's as much as possible. */
353 switch (val) {
354 case AVS_STATUS_INVALID:
355 ret = -EINVAL;
356 break;
357 case AVS_STATUS_NO_SUPP:
358 ret = -ENOTSUPP;
359 break;
360 case AVS_STATUS_NO_MAP:
361 ret = -ENOENT;
362 break;
363 case AVS_STATUS_MAP_SET:
364 ret = -EEXIST;
365 break;
366 case AVS_STATUS_FAILURE:
367 ret = -EIO;
368 break;
371 out:
372 up(&priv->sem);
374 return ret;
377 static irqreturn_t irq_handler(int irq, void *data)
379 struct private_data *priv = data;
381 /* AVS command completed execution. Wake up __issue_avs_command(). */
382 complete(&priv->done);
384 return IRQ_HANDLED;
387 static char *brcm_avs_mode_to_string(unsigned int mode)
389 switch (mode) {
390 case AVS_MODE_AVS:
391 return "AVS";
392 case AVS_MODE_DFS:
393 return "DFS";
394 case AVS_MODE_DVS:
395 return "DVS";
396 case AVS_MODE_DVFS:
397 return "DVFS";
399 return NULL;
402 static void brcm_avs_parse_p1(u32 p1, unsigned int *mdiv_p0, unsigned int *pdiv,
403 unsigned int *ndiv)
405 *mdiv_p0 = (p1 >> MDIV_P0_SHIFT) & MDIV_P0_MASK;
406 *pdiv = (p1 >> PDIV_SHIFT) & PDIV_MASK;
407 *ndiv = (p1 >> NDIV_INT_SHIFT) & NDIV_INT_MASK;
410 static void brcm_avs_parse_p2(u32 p2, unsigned int *mdiv_p1,
411 unsigned int *mdiv_p2, unsigned int *mdiv_p3,
412 unsigned int *mdiv_p4)
414 *mdiv_p4 = (p2 >> MDIV_P4_SHIFT) & MDIV_P4_MASK;
415 *mdiv_p3 = (p2 >> MDIV_P3_SHIFT) & MDIV_P3_MASK;
416 *mdiv_p2 = (p2 >> MDIV_P2_SHIFT) & MDIV_P2_MASK;
417 *mdiv_p1 = (p2 >> MDIV_P1_SHIFT) & MDIV_P1_MASK;
420 static int brcm_avs_get_pmap(struct private_data *priv, struct pmap *pmap)
422 u32 args[AVS_MAX_CMD_ARGS];
423 int ret;
425 ret = __issue_avs_command(priv, AVS_CMD_GET_PMAP, false, args);
426 if (ret || !pmap)
427 return ret;
429 pmap->mode = args[0];
430 pmap->p1 = args[1];
431 pmap->p2 = args[2];
432 pmap->state = args[3];
434 return 0;
437 static int brcm_avs_set_pmap(struct private_data *priv, struct pmap *pmap)
439 u32 args[AVS_MAX_CMD_ARGS];
441 args[0] = pmap->mode;
442 args[1] = pmap->p1;
443 args[2] = pmap->p2;
444 args[3] = pmap->state;
446 return __issue_avs_command(priv, AVS_CMD_SET_PMAP, true, args);
449 static int brcm_avs_get_pstate(struct private_data *priv, unsigned int *pstate)
451 u32 args[AVS_MAX_CMD_ARGS];
452 int ret;
454 ret = __issue_avs_command(priv, AVS_CMD_GET_PSTATE, false, args);
455 if (ret)
456 return ret;
457 *pstate = args[0];
459 return 0;
462 static int brcm_avs_set_pstate(struct private_data *priv, unsigned int pstate)
464 u32 args[AVS_MAX_CMD_ARGS];
466 args[0] = pstate;
468 return __issue_avs_command(priv, AVS_CMD_SET_PSTATE, true, args);
471 static unsigned long brcm_avs_get_voltage(void __iomem *base)
473 return readl(base + AVS_MBOX_VOLTAGE1);
476 static unsigned long brcm_avs_get_frequency(void __iomem *base)
478 return readl(base + AVS_MBOX_FREQUENCY) * 1000; /* in kHz */
482 * We determine which frequencies are supported by cycling through all P-states
483 * and reading back what frequency we are running at for each P-state.
485 static struct cpufreq_frequency_table *
486 brcm_avs_get_freq_table(struct device *dev, struct private_data *priv)
488 struct cpufreq_frequency_table *table;
489 unsigned int pstate;
490 int i, ret;
492 /* Remember P-state for later */
493 ret = brcm_avs_get_pstate(priv, &pstate);
494 if (ret)
495 return ERR_PTR(ret);
497 table = devm_kzalloc(dev, (AVS_PSTATE_MAX + 1) * sizeof(*table),
498 GFP_KERNEL);
499 if (!table)
500 return ERR_PTR(-ENOMEM);
502 for (i = AVS_PSTATE_P0; i <= AVS_PSTATE_MAX; i++) {
503 ret = brcm_avs_set_pstate(priv, i);
504 if (ret)
505 return ERR_PTR(ret);
506 table[i].frequency = brcm_avs_get_frequency(priv->base);
507 table[i].driver_data = i;
509 table[i].frequency = CPUFREQ_TABLE_END;
511 /* Restore P-state */
512 ret = brcm_avs_set_pstate(priv, pstate);
513 if (ret)
514 return ERR_PTR(ret);
516 return table;
519 #ifdef CONFIG_ARM_BRCMSTB_AVS_CPUFREQ_DEBUG
521 #define MANT(x) (unsigned int)(abs((x)) / 1000)
522 #define FRAC(x) (unsigned int)(abs((x)) - abs((x)) / 1000 * 1000)
524 static int brcm_avs_debug_show(struct seq_file *s, void *data)
526 struct debugfs_data *dbgfs = s->private;
527 void __iomem *base;
528 u32 val, offset;
530 if (!dbgfs) {
531 seq_puts(s, "No device pointer\n");
532 return 0;
535 base = dbgfs->priv->base;
536 offset = dbgfs->entry->offset;
537 val = readl(base + offset);
538 switch (dbgfs->entry->format) {
539 case DEBUGFS_NORMAL:
540 seq_printf(s, "%u\n", val);
541 break;
542 case DEBUGFS_FLOAT:
543 seq_printf(s, "%d.%03d\n", MANT(val), FRAC(val));
544 break;
545 case DEBUGFS_REV:
546 seq_printf(s, "%c.%c.%c.%c\n", (val >> 24 & 0xff),
547 (val >> 16 & 0xff), (val >> 8 & 0xff),
548 val & 0xff);
549 break;
551 seq_printf(s, "0x%08x\n", val);
553 return 0;
556 #undef MANT
557 #undef FRAC
559 static ssize_t brcm_avs_seq_write(struct file *file, const char __user *buf,
560 size_t size, loff_t *ppos)
562 struct seq_file *s = file->private_data;
563 struct debugfs_data *dbgfs = s->private;
564 struct private_data *priv = dbgfs->priv;
565 void __iomem *base, *avs_intr_base;
566 bool use_issue_command = false;
567 unsigned long val, offset;
568 char str[128];
569 int ret;
570 char *str_ptr = str;
572 if (size >= sizeof(str))
573 return -E2BIG;
575 memset(str, 0, sizeof(str));
576 ret = copy_from_user(str, buf, size);
577 if (ret)
578 return ret;
580 base = priv->base;
581 avs_intr_base = priv->avs_intr_base;
582 offset = dbgfs->entry->offset;
584 * Special case writing to "command" entry only: if the string starts
585 * with a 'c', we use the driver's __issue_avs_command() function.
586 * Otherwise, we perform a raw write. This should allow testing of raw
587 * access as well as using the higher level function. (Raw access
588 * doesn't clear the firmware return status after issuing the command.)
590 if (str_ptr[0] == 'c' && offset == AVS_MBOX_COMMAND) {
591 use_issue_command = true;
592 str_ptr++;
594 if (kstrtoul(str_ptr, 0, &val) != 0)
595 return -EINVAL;
598 * Setting the P-state is a special case. We need to update the CPU
599 * frequency we report.
601 if (val == AVS_CMD_SET_PSTATE) {
602 struct cpufreq_policy *policy;
603 unsigned int pstate;
605 policy = cpufreq_cpu_get(smp_processor_id());
606 /* Read back the P-state we are about to set */
607 pstate = readl(base + AVS_MBOX_PARAM(0));
608 if (use_issue_command) {
609 ret = brcm_avs_target_index(policy, pstate);
610 return ret ? ret : size;
612 policy->cur = policy->freq_table[pstate].frequency;
615 if (use_issue_command) {
616 ret = __issue_avs_command(priv, val, false, NULL);
617 } else {
618 /* Locking here is not perfect, but is only for debug. */
619 ret = down_interruptible(&priv->sem);
620 if (ret)
621 return ret;
623 writel(val, base + offset);
624 /* We have to wake up the firmware to process a command. */
625 if (offset == AVS_MBOX_COMMAND)
626 writel(AVS_CPU_L2_INT_MASK,
627 avs_intr_base + AVS_CPU_L2_SET0);
628 up(&priv->sem);
631 return ret ? ret : size;
634 static struct debugfs_entry *__find_debugfs_entry(const char *name)
636 int i;
638 for (i = 0; i < ARRAY_SIZE(debugfs_entries); i++)
639 if (strcasecmp(debugfs_entries[i].name, name) == 0)
640 return &debugfs_entries[i];
642 return NULL;
645 static int brcm_avs_debug_open(struct inode *inode, struct file *file)
647 struct debugfs_data *data;
648 fmode_t fmode;
649 int ret;
652 * seq_open(), which is called by single_open(), clears "write" access.
653 * We need write access to some files, so we preserve our access mode
654 * and restore it.
656 fmode = file->f_mode;
658 * Check access permissions even for root. We don't want to be writing
659 * to read-only registers. Access for regular users has already been
660 * checked by the VFS layer.
662 if ((fmode & FMODE_WRITER) && !(inode->i_mode & S_IWUSR))
663 return -EACCES;
665 data = kmalloc(sizeof(*data), GFP_KERNEL);
666 if (!data)
667 return -ENOMEM;
669 * We use the same file system operations for all our debug files. To
670 * produce specific output, we look up the file name upon opening a
671 * debugfs entry and map it to a memory offset. This offset is then used
672 * in the generic "show" function to read a specific register.
674 data->entry = __find_debugfs_entry(file->f_path.dentry->d_iname);
675 data->priv = inode->i_private;
677 ret = single_open(file, brcm_avs_debug_show, data);
678 if (ret)
679 kfree(data);
680 file->f_mode = fmode;
682 return ret;
685 static int brcm_avs_debug_release(struct inode *inode, struct file *file)
687 struct seq_file *seq_priv = file->private_data;
688 struct debugfs_data *data = seq_priv->private;
690 kfree(data);
691 return single_release(inode, file);
694 static const struct file_operations brcm_avs_debug_ops = {
695 .open = brcm_avs_debug_open,
696 .read = seq_read,
697 .write = brcm_avs_seq_write,
698 .llseek = seq_lseek,
699 .release = brcm_avs_debug_release,
702 static void brcm_avs_cpufreq_debug_init(struct platform_device *pdev)
704 struct private_data *priv = platform_get_drvdata(pdev);
705 struct dentry *dir;
706 int i;
708 if (!priv)
709 return;
711 dir = debugfs_create_dir(BRCM_AVS_CPUFREQ_NAME, NULL);
712 if (IS_ERR_OR_NULL(dir))
713 return;
714 priv->debugfs = dir;
716 for (i = 0; i < ARRAY_SIZE(debugfs_entries); i++) {
718 * The DEBUGFS_ENTRY macro generates uppercase strings. We
719 * convert them to lowercase before creating the debugfs
720 * entries.
722 char *entry = __strtolower(debugfs_entries[i].name);
723 fmode_t mode = debugfs_entries[i].mode;
725 if (!debugfs_create_file(entry, S_IFREG | S_IRUGO | mode,
726 dir, priv, &brcm_avs_debug_ops)) {
727 priv->debugfs = NULL;
728 debugfs_remove_recursive(dir);
729 break;
734 static void brcm_avs_cpufreq_debug_exit(struct platform_device *pdev)
736 struct private_data *priv = platform_get_drvdata(pdev);
738 if (priv && priv->debugfs) {
739 debugfs_remove_recursive(priv->debugfs);
740 priv->debugfs = NULL;
744 #else
746 static void brcm_avs_cpufreq_debug_init(struct platform_device *pdev) {}
747 static void brcm_avs_cpufreq_debug_exit(struct platform_device *pdev) {}
749 #endif /* CONFIG_ARM_BRCMSTB_AVS_CPUFREQ_DEBUG */
752 * To ensure the right firmware is running we need to
753 * - check the MAGIC matches what we expect
754 * - brcm_avs_get_pmap() doesn't return -ENOTSUPP or -EINVAL
755 * We need to set up our interrupt handling before calling brcm_avs_get_pmap()!
757 static bool brcm_avs_is_firmware_loaded(struct private_data *priv)
759 u32 magic;
760 int rc;
762 rc = brcm_avs_get_pmap(priv, NULL);
763 magic = readl(priv->base + AVS_MBOX_MAGIC);
765 return (magic == AVS_FIRMWARE_MAGIC) && (rc != -ENOTSUPP) &&
766 (rc != -EINVAL);
769 static unsigned int brcm_avs_cpufreq_get(unsigned int cpu)
771 struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
772 struct private_data *priv = policy->driver_data;
774 return brcm_avs_get_frequency(priv->base);
777 static int brcm_avs_target_index(struct cpufreq_policy *policy,
778 unsigned int index)
780 return brcm_avs_set_pstate(policy->driver_data,
781 policy->freq_table[index].driver_data);
784 static int brcm_avs_suspend(struct cpufreq_policy *policy)
786 struct private_data *priv = policy->driver_data;
787 int ret;
789 ret = brcm_avs_get_pmap(priv, &priv->pmap);
790 if (ret)
791 return ret;
794 * We can't use the P-state returned by brcm_avs_get_pmap(), since
795 * that's the initial P-state from when the P-map was downloaded to the
796 * AVS co-processor, not necessarily the P-state we are running at now.
797 * So, we get the current P-state explicitly.
799 return brcm_avs_get_pstate(priv, &priv->pmap.state);
802 static int brcm_avs_resume(struct cpufreq_policy *policy)
804 struct private_data *priv = policy->driver_data;
805 int ret;
807 ret = brcm_avs_set_pmap(priv, &priv->pmap);
808 if (ret == -EEXIST) {
809 struct platform_device *pdev = cpufreq_get_driver_data();
810 struct device *dev = &pdev->dev;
812 dev_warn(dev, "PMAP was already set\n");
813 ret = 0;
816 return ret;
820 * All initialization code that we only want to execute once goes here. Setup
821 * code that can be re-tried on every core (if it failed before) can go into
822 * brcm_avs_cpufreq_init().
824 static int brcm_avs_prepare_init(struct platform_device *pdev)
826 struct private_data *priv;
827 struct device *dev;
828 int host_irq, ret;
830 dev = &pdev->dev;
831 priv = devm_kzalloc(dev, sizeof(*priv), GFP_KERNEL);
832 if (!priv)
833 return -ENOMEM;
835 priv->dev = dev;
836 sema_init(&priv->sem, 1);
837 init_completion(&priv->done);
838 platform_set_drvdata(pdev, priv);
840 priv->base = __map_region(BRCM_AVS_CPU_DATA);
841 if (!priv->base) {
842 dev_err(dev, "Couldn't find property %s in device tree.\n",
843 BRCM_AVS_CPU_DATA);
844 return -ENOENT;
847 priv->avs_intr_base = __map_region(BRCM_AVS_CPU_INTR);
848 if (!priv->avs_intr_base) {
849 dev_err(dev, "Couldn't find property %s in device tree.\n",
850 BRCM_AVS_CPU_INTR);
851 ret = -ENOENT;
852 goto unmap_base;
855 host_irq = platform_get_irq_byname(pdev, BRCM_AVS_HOST_INTR);
856 if (host_irq < 0) {
857 dev_err(dev, "Couldn't find interrupt %s -- %d\n",
858 BRCM_AVS_HOST_INTR, host_irq);
859 ret = host_irq;
860 goto unmap_intr_base;
863 ret = devm_request_irq(dev, host_irq, irq_handler, IRQF_TRIGGER_RISING,
864 BRCM_AVS_HOST_INTR, priv);
865 if (ret) {
866 dev_err(dev, "IRQ request failed: %s (%d) -- %d\n",
867 BRCM_AVS_HOST_INTR, host_irq, ret);
868 goto unmap_intr_base;
871 if (brcm_avs_is_firmware_loaded(priv))
872 return 0;
874 dev_err(dev, "AVS firmware is not loaded or doesn't support DVFS\n");
875 ret = -ENODEV;
877 unmap_intr_base:
878 iounmap(priv->avs_intr_base);
879 unmap_base:
880 iounmap(priv->base);
882 return ret;
885 static int brcm_avs_cpufreq_init(struct cpufreq_policy *policy)
887 struct cpufreq_frequency_table *freq_table;
888 struct platform_device *pdev;
889 struct private_data *priv;
890 struct device *dev;
891 int ret;
893 pdev = cpufreq_get_driver_data();
894 priv = platform_get_drvdata(pdev);
895 policy->driver_data = priv;
896 dev = &pdev->dev;
898 freq_table = brcm_avs_get_freq_table(dev, priv);
899 if (IS_ERR(freq_table)) {
900 ret = PTR_ERR(freq_table);
901 dev_err(dev, "Couldn't determine frequency table (%d).\n", ret);
902 return ret;
905 ret = cpufreq_table_validate_and_show(policy, freq_table);
906 if (ret) {
907 dev_err(dev, "invalid frequency table: %d\n", ret);
908 return ret;
911 /* All cores share the same clock and thus the same policy. */
912 cpumask_setall(policy->cpus);
914 ret = __issue_avs_command(priv, AVS_CMD_ENABLE, false, NULL);
915 if (!ret) {
916 unsigned int pstate;
918 ret = brcm_avs_get_pstate(priv, &pstate);
919 if (!ret) {
920 policy->cur = freq_table[pstate].frequency;
921 dev_info(dev, "registered\n");
922 return 0;
926 dev_err(dev, "couldn't initialize driver (%d)\n", ret);
928 return ret;
931 static ssize_t show_brcm_avs_pstate(struct cpufreq_policy *policy, char *buf)
933 struct private_data *priv = policy->driver_data;
934 unsigned int pstate;
936 if (brcm_avs_get_pstate(priv, &pstate))
937 return sprintf(buf, "<unknown>\n");
939 return sprintf(buf, "%u\n", pstate);
942 static ssize_t show_brcm_avs_mode(struct cpufreq_policy *policy, char *buf)
944 struct private_data *priv = policy->driver_data;
945 struct pmap pmap;
947 if (brcm_avs_get_pmap(priv, &pmap))
948 return sprintf(buf, "<unknown>\n");
950 return sprintf(buf, "%s %u\n", brcm_avs_mode_to_string(pmap.mode),
951 pmap.mode);
954 static ssize_t show_brcm_avs_pmap(struct cpufreq_policy *policy, char *buf)
956 unsigned int mdiv_p0, mdiv_p1, mdiv_p2, mdiv_p3, mdiv_p4;
957 struct private_data *priv = policy->driver_data;
958 unsigned int ndiv, pdiv;
959 struct pmap pmap;
961 if (brcm_avs_get_pmap(priv, &pmap))
962 return sprintf(buf, "<unknown>\n");
964 brcm_avs_parse_p1(pmap.p1, &mdiv_p0, &pdiv, &ndiv);
965 brcm_avs_parse_p2(pmap.p2, &mdiv_p1, &mdiv_p2, &mdiv_p3, &mdiv_p4);
967 return sprintf(buf, "0x%08x 0x%08x %u %u %u %u %u %u %u %u %u\n",
968 pmap.p1, pmap.p2, ndiv, pdiv, mdiv_p0, mdiv_p1, mdiv_p2,
969 mdiv_p3, mdiv_p4, pmap.mode, pmap.state);
972 static ssize_t show_brcm_avs_voltage(struct cpufreq_policy *policy, char *buf)
974 struct private_data *priv = policy->driver_data;
976 return sprintf(buf, "0x%08lx\n", brcm_avs_get_voltage(priv->base));
979 static ssize_t show_brcm_avs_frequency(struct cpufreq_policy *policy, char *buf)
981 struct private_data *priv = policy->driver_data;
983 return sprintf(buf, "0x%08lx\n", brcm_avs_get_frequency(priv->base));
986 cpufreq_freq_attr_ro(brcm_avs_pstate);
987 cpufreq_freq_attr_ro(brcm_avs_mode);
988 cpufreq_freq_attr_ro(brcm_avs_pmap);
989 cpufreq_freq_attr_ro(brcm_avs_voltage);
990 cpufreq_freq_attr_ro(brcm_avs_frequency);
992 static struct freq_attr *brcm_avs_cpufreq_attr[] = {
993 &cpufreq_freq_attr_scaling_available_freqs,
994 &brcm_avs_pstate,
995 &brcm_avs_mode,
996 &brcm_avs_pmap,
997 &brcm_avs_voltage,
998 &brcm_avs_frequency,
999 NULL
1002 static struct cpufreq_driver brcm_avs_driver = {
1003 .flags = CPUFREQ_NEED_INITIAL_FREQ_CHECK,
1004 .verify = cpufreq_generic_frequency_table_verify,
1005 .target_index = brcm_avs_target_index,
1006 .get = brcm_avs_cpufreq_get,
1007 .suspend = brcm_avs_suspend,
1008 .resume = brcm_avs_resume,
1009 .init = brcm_avs_cpufreq_init,
1010 .attr = brcm_avs_cpufreq_attr,
1011 .name = BRCM_AVS_CPUFREQ_PREFIX,
1014 static int brcm_avs_cpufreq_probe(struct platform_device *pdev)
1016 int ret;
1018 ret = brcm_avs_prepare_init(pdev);
1019 if (ret)
1020 return ret;
1022 brcm_avs_driver.driver_data = pdev;
1023 ret = cpufreq_register_driver(&brcm_avs_driver);
1024 if (!ret)
1025 brcm_avs_cpufreq_debug_init(pdev);
1027 return ret;
1030 static int brcm_avs_cpufreq_remove(struct platform_device *pdev)
1032 struct private_data *priv;
1033 int ret;
1035 ret = cpufreq_unregister_driver(&brcm_avs_driver);
1036 if (ret)
1037 return ret;
1039 brcm_avs_cpufreq_debug_exit(pdev);
1041 priv = platform_get_drvdata(pdev);
1042 iounmap(priv->base);
1043 iounmap(priv->avs_intr_base);
1045 return 0;
1048 static const struct of_device_id brcm_avs_cpufreq_match[] = {
1049 { .compatible = BRCM_AVS_CPU_DATA },
1052 MODULE_DEVICE_TABLE(of, brcm_avs_cpufreq_match);
1054 static struct platform_driver brcm_avs_cpufreq_platdrv = {
1055 .driver = {
1056 .name = BRCM_AVS_CPUFREQ_NAME,
1057 .of_match_table = brcm_avs_cpufreq_match,
1059 .probe = brcm_avs_cpufreq_probe,
1060 .remove = brcm_avs_cpufreq_remove,
1062 module_platform_driver(brcm_avs_cpufreq_platdrv);
1064 MODULE_AUTHOR("Markus Mayer <mmayer@broadcom.com>");
1065 MODULE_DESCRIPTION("CPUfreq driver for Broadcom STB AVS");
1066 MODULE_LICENSE("GPL");