2 * SHA-256 routines supporting the Power 7+ Nest Accelerators driver
4 * Copyright (C) 2011-2012 International Business Machines Inc.
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; version 2 only.
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19 * Author: Kent Yoder <yoder1@us.ibm.com>
22 #include <crypto/internal/hash.h>
23 #include <crypto/sha.h>
24 #include <linux/module.h>
26 #include <asm/byteorder.h>
28 #include "nx_csbcpb.h"
32 static int nx_crypto_ctx_sha256_init(struct crypto_tfm
*tfm
)
34 struct nx_crypto_ctx
*nx_ctx
= crypto_tfm_ctx(tfm
);
37 err
= nx_crypto_ctx_sha_init(tfm
);
41 nx_ctx_init(nx_ctx
, HCOP_FC_SHA
);
43 nx_ctx
->ap
= &nx_ctx
->props
[NX_PROPS_SHA256
];
45 NX_CPB_SET_DIGEST_SIZE(nx_ctx
->csbcpb
, NX_DS_SHA256
);
50 static int nx_sha256_init(struct shash_desc
*desc
) {
51 struct sha256_state
*sctx
= shash_desc_ctx(desc
);
53 memset(sctx
, 0, sizeof *sctx
);
55 sctx
->state
[0] = __cpu_to_be32(SHA256_H0
);
56 sctx
->state
[1] = __cpu_to_be32(SHA256_H1
);
57 sctx
->state
[2] = __cpu_to_be32(SHA256_H2
);
58 sctx
->state
[3] = __cpu_to_be32(SHA256_H3
);
59 sctx
->state
[4] = __cpu_to_be32(SHA256_H4
);
60 sctx
->state
[5] = __cpu_to_be32(SHA256_H5
);
61 sctx
->state
[6] = __cpu_to_be32(SHA256_H6
);
62 sctx
->state
[7] = __cpu_to_be32(SHA256_H7
);
68 static int nx_sha256_update(struct shash_desc
*desc
, const u8
*data
,
71 struct sha256_state
*sctx
= shash_desc_ctx(desc
);
72 struct nx_crypto_ctx
*nx_ctx
= crypto_tfm_ctx(&desc
->tfm
->base
);
73 struct nx_csbcpb
*csbcpb
= (struct nx_csbcpb
*)nx_ctx
->csbcpb
;
75 u64 to_process
= 0, leftover
, total
;
76 unsigned long irq_flags
;
80 u64 buf_len
= (sctx
->count
% SHA256_BLOCK_SIZE
);
82 spin_lock_irqsave(&nx_ctx
->lock
, irq_flags
);
84 /* 2 cases for total data len:
85 * 1: < SHA256_BLOCK_SIZE: copy into state, return 0
86 * 2: >= SHA256_BLOCK_SIZE: process X blocks, copy in leftover
88 total
= (sctx
->count
% SHA256_BLOCK_SIZE
) + len
;
89 if (total
< SHA256_BLOCK_SIZE
) {
90 memcpy(sctx
->buf
+ buf_len
, data
, len
);
95 memcpy(csbcpb
->cpb
.sha256
.message_digest
, sctx
->state
, SHA256_DIGEST_SIZE
);
96 NX_CPB_FDM(csbcpb
) |= NX_FDM_INTERMEDIATE
;
97 NX_CPB_FDM(csbcpb
) |= NX_FDM_CONTINUATION
;
99 max_sg_len
= min_t(u64
, nx_ctx
->ap
->sglen
,
100 nx_driver
.of
.max_sg_len
/sizeof(struct nx_sg
));
101 max_sg_len
= min_t(u64
, max_sg_len
,
102 nx_ctx
->ap
->databytelen
/NX_PAGE_SIZE
);
104 data_len
= SHA256_DIGEST_SIZE
;
105 out_sg
= nx_build_sg_list(nx_ctx
->out_sg
, (u8
*)sctx
->state
,
106 &data_len
, max_sg_len
);
107 nx_ctx
->op
.outlen
= (nx_ctx
->out_sg
- out_sg
) * sizeof(struct nx_sg
);
109 if (data_len
!= SHA256_DIGEST_SIZE
) {
116 struct nx_sg
*in_sg
= nx_ctx
->in_sg
;
120 in_sg
= nx_build_sg_list(in_sg
,
125 if (data_len
!= buf_len
) {
129 used_sgs
= in_sg
- nx_ctx
->in_sg
;
132 /* to_process: SHA256_BLOCK_SIZE aligned chunk to be
133 * processed in this iteration. This value is restricted
134 * by sg list limits and number of sgs we already used
135 * for leftover data. (see above)
136 * In ideal case, we could allow NX_PAGE_SIZE * max_sg_len,
137 * but because data may not be aligned, we need to account
139 to_process
= min_t(u64
, total
,
140 (max_sg_len
- 1 - used_sgs
) * NX_PAGE_SIZE
);
141 to_process
= to_process
& ~(SHA256_BLOCK_SIZE
- 1);
143 data_len
= to_process
- buf_len
;
144 in_sg
= nx_build_sg_list(in_sg
, (u8
*) data
,
145 &data_len
, max_sg_len
);
147 nx_ctx
->op
.inlen
= (nx_ctx
->in_sg
- in_sg
) * sizeof(struct nx_sg
);
149 to_process
= data_len
+ buf_len
;
150 leftover
= total
- to_process
;
153 * we've hit the nx chip previously and we're updating
154 * again, so copy over the partial digest.
156 memcpy(csbcpb
->cpb
.sha256
.input_partial_digest
,
157 csbcpb
->cpb
.sha256
.message_digest
,
160 if (!nx_ctx
->op
.inlen
|| !nx_ctx
->op
.outlen
) {
165 rc
= nx_hcall_sync(nx_ctx
, &nx_ctx
->op
,
166 desc
->flags
& CRYPTO_TFM_REQ_MAY_SLEEP
);
170 atomic_inc(&(nx_ctx
->stats
->sha256_ops
));
173 data
+= to_process
- buf_len
;
176 } while (leftover
>= SHA256_BLOCK_SIZE
);
178 /* copy the leftover back into the state struct */
180 memcpy(sctx
->buf
, data
, leftover
);
183 memcpy(sctx
->state
, csbcpb
->cpb
.sha256
.message_digest
, SHA256_DIGEST_SIZE
);
185 spin_unlock_irqrestore(&nx_ctx
->lock
, irq_flags
);
189 static int nx_sha256_final(struct shash_desc
*desc
, u8
*out
)
191 struct sha256_state
*sctx
= shash_desc_ctx(desc
);
192 struct nx_crypto_ctx
*nx_ctx
= crypto_tfm_ctx(&desc
->tfm
->base
);
193 struct nx_csbcpb
*csbcpb
= (struct nx_csbcpb
*)nx_ctx
->csbcpb
;
194 struct nx_sg
*in_sg
, *out_sg
;
195 unsigned long irq_flags
;
200 spin_lock_irqsave(&nx_ctx
->lock
, irq_flags
);
202 max_sg_len
= min_t(u64
, nx_ctx
->ap
->sglen
,
203 nx_driver
.of
.max_sg_len
/sizeof(struct nx_sg
));
204 max_sg_len
= min_t(u64
, max_sg_len
,
205 nx_ctx
->ap
->databytelen
/NX_PAGE_SIZE
);
207 /* final is represented by continuing the operation and indicating that
208 * this is not an intermediate operation */
209 if (sctx
->count
>= SHA256_BLOCK_SIZE
) {
210 /* we've hit the nx chip previously, now we're finalizing,
211 * so copy over the partial digest */
212 memcpy(csbcpb
->cpb
.sha256
.input_partial_digest
, sctx
->state
, SHA256_DIGEST_SIZE
);
213 NX_CPB_FDM(csbcpb
) &= ~NX_FDM_INTERMEDIATE
;
214 NX_CPB_FDM(csbcpb
) |= NX_FDM_CONTINUATION
;
216 NX_CPB_FDM(csbcpb
) &= ~NX_FDM_INTERMEDIATE
;
217 NX_CPB_FDM(csbcpb
) &= ~NX_FDM_CONTINUATION
;
220 csbcpb
->cpb
.sha256
.message_bit_length
= (u64
) (sctx
->count
* 8);
222 len
= sctx
->count
& (SHA256_BLOCK_SIZE
- 1);
223 in_sg
= nx_build_sg_list(nx_ctx
->in_sg
, (u8
*) sctx
->buf
,
226 if (len
!= (sctx
->count
& (SHA256_BLOCK_SIZE
- 1))) {
231 len
= SHA256_DIGEST_SIZE
;
232 out_sg
= nx_build_sg_list(nx_ctx
->out_sg
, out
, &len
, max_sg_len
);
234 if (len
!= SHA256_DIGEST_SIZE
) {
239 nx_ctx
->op
.inlen
= (nx_ctx
->in_sg
- in_sg
) * sizeof(struct nx_sg
);
240 nx_ctx
->op
.outlen
= (nx_ctx
->out_sg
- out_sg
) * sizeof(struct nx_sg
);
241 if (!nx_ctx
->op
.outlen
) {
246 rc
= nx_hcall_sync(nx_ctx
, &nx_ctx
->op
,
247 desc
->flags
& CRYPTO_TFM_REQ_MAY_SLEEP
);
251 atomic_inc(&(nx_ctx
->stats
->sha256_ops
));
253 atomic64_add(sctx
->count
, &(nx_ctx
->stats
->sha256_bytes
));
254 memcpy(out
, csbcpb
->cpb
.sha256
.message_digest
, SHA256_DIGEST_SIZE
);
256 spin_unlock_irqrestore(&nx_ctx
->lock
, irq_flags
);
260 static int nx_sha256_export(struct shash_desc
*desc
, void *out
)
262 struct sha256_state
*sctx
= shash_desc_ctx(desc
);
264 memcpy(out
, sctx
, sizeof(*sctx
));
269 static int nx_sha256_import(struct shash_desc
*desc
, const void *in
)
271 struct sha256_state
*sctx
= shash_desc_ctx(desc
);
273 memcpy(sctx
, in
, sizeof(*sctx
));
278 struct shash_alg nx_shash_sha256_alg
= {
279 .digestsize
= SHA256_DIGEST_SIZE
,
280 .init
= nx_sha256_init
,
281 .update
= nx_sha256_update
,
282 .final
= nx_sha256_final
,
283 .export
= nx_sha256_export
,
284 .import
= nx_sha256_import
,
285 .descsize
= sizeof(struct sha256_state
),
286 .statesize
= sizeof(struct sha256_state
),
288 .cra_name
= "sha256",
289 .cra_driver_name
= "sha256-nx",
291 .cra_flags
= CRYPTO_ALG_TYPE_SHASH
,
292 .cra_blocksize
= SHA256_BLOCK_SIZE
,
293 .cra_module
= THIS_MODULE
,
294 .cra_ctxsize
= sizeof(struct nx_crypto_ctx
),
295 .cra_init
= nx_crypto_ctx_sha256_init
,
296 .cra_exit
= nx_crypto_ctx_exit
,