Linux 4.16.11
[linux/fpc-iii.git] / drivers / dma / cppi41.c
blobd9bee65a18a4aa16fed2d2d5bcdf68df6d799601
1 #include <linux/delay.h>
2 #include <linux/dmaengine.h>
3 #include <linux/dma-mapping.h>
4 #include <linux/platform_device.h>
5 #include <linux/module.h>
6 #include <linux/of.h>
7 #include <linux/slab.h>
8 #include <linux/of_dma.h>
9 #include <linux/of_irq.h>
10 #include <linux/dmapool.h>
11 #include <linux/interrupt.h>
12 #include <linux/of_address.h>
13 #include <linux/pm_runtime.h>
14 #include "dmaengine.h"
16 #define DESC_TYPE 27
17 #define DESC_TYPE_HOST 0x10
18 #define DESC_TYPE_TEARD 0x13
20 #define TD_DESC_IS_RX (1 << 16)
21 #define TD_DESC_DMA_NUM 10
23 #define DESC_LENGTH_BITS_NUM 21
25 #define DESC_TYPE_USB (5 << 26)
26 #define DESC_PD_COMPLETE (1 << 31)
28 /* DMA engine */
29 #define DMA_TDFDQ 4
30 #define DMA_TXGCR(x) (0x800 + (x) * 0x20)
31 #define DMA_RXGCR(x) (0x808 + (x) * 0x20)
32 #define RXHPCRA0 4
34 #define GCR_CHAN_ENABLE (1 << 31)
35 #define GCR_TEARDOWN (1 << 30)
36 #define GCR_STARV_RETRY (1 << 24)
37 #define GCR_DESC_TYPE_HOST (1 << 14)
39 /* DMA scheduler */
40 #define DMA_SCHED_CTRL 0
41 #define DMA_SCHED_CTRL_EN (1 << 31)
42 #define DMA_SCHED_WORD(x) ((x) * 4 + 0x800)
44 #define SCHED_ENTRY0_CHAN(x) ((x) << 0)
45 #define SCHED_ENTRY0_IS_RX (1 << 7)
47 #define SCHED_ENTRY1_CHAN(x) ((x) << 8)
48 #define SCHED_ENTRY1_IS_RX (1 << 15)
50 #define SCHED_ENTRY2_CHAN(x) ((x) << 16)
51 #define SCHED_ENTRY2_IS_RX (1 << 23)
53 #define SCHED_ENTRY3_CHAN(x) ((x) << 24)
54 #define SCHED_ENTRY3_IS_RX (1 << 31)
56 /* Queue manager */
57 /* 4 KiB of memory for descriptors, 2 for each endpoint */
58 #define ALLOC_DECS_NUM 128
59 #define DESCS_AREAS 1
60 #define TOTAL_DESCS_NUM (ALLOC_DECS_NUM * DESCS_AREAS)
61 #define QMGR_SCRATCH_SIZE (TOTAL_DESCS_NUM * 4)
63 #define QMGR_LRAM0_BASE 0x80
64 #define QMGR_LRAM_SIZE 0x84
65 #define QMGR_LRAM1_BASE 0x88
66 #define QMGR_MEMBASE(x) (0x1000 + (x) * 0x10)
67 #define QMGR_MEMCTRL(x) (0x1004 + (x) * 0x10)
68 #define QMGR_MEMCTRL_IDX_SH 16
69 #define QMGR_MEMCTRL_DESC_SH 8
71 #define QMGR_PEND(x) (0x90 + (x) * 4)
73 #define QMGR_PENDING_SLOT_Q(x) (x / 32)
74 #define QMGR_PENDING_BIT_Q(x) (x % 32)
76 #define QMGR_QUEUE_A(n) (0x2000 + (n) * 0x10)
77 #define QMGR_QUEUE_B(n) (0x2004 + (n) * 0x10)
78 #define QMGR_QUEUE_C(n) (0x2008 + (n) * 0x10)
79 #define QMGR_QUEUE_D(n) (0x200c + (n) * 0x10)
81 /* Packet Descriptor */
82 #define PD2_ZERO_LENGTH (1 << 19)
84 struct cppi41_channel {
85 struct dma_chan chan;
86 struct dma_async_tx_descriptor txd;
87 struct cppi41_dd *cdd;
88 struct cppi41_desc *desc;
89 dma_addr_t desc_phys;
90 void __iomem *gcr_reg;
91 int is_tx;
92 u32 residue;
94 unsigned int q_num;
95 unsigned int q_comp_num;
96 unsigned int port_num;
98 unsigned td_retry;
99 unsigned td_queued:1;
100 unsigned td_seen:1;
101 unsigned td_desc_seen:1;
103 struct list_head node; /* Node for pending list */
106 struct cppi41_desc {
107 u32 pd0;
108 u32 pd1;
109 u32 pd2;
110 u32 pd3;
111 u32 pd4;
112 u32 pd5;
113 u32 pd6;
114 u32 pd7;
115 } __aligned(32);
117 struct chan_queues {
118 u16 submit;
119 u16 complete;
122 struct cppi41_dd {
123 struct dma_device ddev;
125 void *qmgr_scratch;
126 dma_addr_t scratch_phys;
128 struct cppi41_desc *cd;
129 dma_addr_t descs_phys;
130 u32 first_td_desc;
131 struct cppi41_channel *chan_busy[ALLOC_DECS_NUM];
133 void __iomem *ctrl_mem;
134 void __iomem *sched_mem;
135 void __iomem *qmgr_mem;
136 unsigned int irq;
137 const struct chan_queues *queues_rx;
138 const struct chan_queues *queues_tx;
139 struct chan_queues td_queue;
140 u16 first_completion_queue;
141 u16 qmgr_num_pend;
142 u32 n_chans;
143 u8 platform;
145 struct list_head pending; /* Pending queued transfers */
146 spinlock_t lock; /* Lock for pending list */
148 /* context for suspend/resume */
149 unsigned int dma_tdfdq;
151 bool is_suspended;
154 static struct chan_queues am335x_usb_queues_tx[] = {
155 /* USB0 ENDP 1 */
156 [ 0] = { .submit = 32, .complete = 93},
157 [ 1] = { .submit = 34, .complete = 94},
158 [ 2] = { .submit = 36, .complete = 95},
159 [ 3] = { .submit = 38, .complete = 96},
160 [ 4] = { .submit = 40, .complete = 97},
161 [ 5] = { .submit = 42, .complete = 98},
162 [ 6] = { .submit = 44, .complete = 99},
163 [ 7] = { .submit = 46, .complete = 100},
164 [ 8] = { .submit = 48, .complete = 101},
165 [ 9] = { .submit = 50, .complete = 102},
166 [10] = { .submit = 52, .complete = 103},
167 [11] = { .submit = 54, .complete = 104},
168 [12] = { .submit = 56, .complete = 105},
169 [13] = { .submit = 58, .complete = 106},
170 [14] = { .submit = 60, .complete = 107},
172 /* USB1 ENDP1 */
173 [15] = { .submit = 62, .complete = 125},
174 [16] = { .submit = 64, .complete = 126},
175 [17] = { .submit = 66, .complete = 127},
176 [18] = { .submit = 68, .complete = 128},
177 [19] = { .submit = 70, .complete = 129},
178 [20] = { .submit = 72, .complete = 130},
179 [21] = { .submit = 74, .complete = 131},
180 [22] = { .submit = 76, .complete = 132},
181 [23] = { .submit = 78, .complete = 133},
182 [24] = { .submit = 80, .complete = 134},
183 [25] = { .submit = 82, .complete = 135},
184 [26] = { .submit = 84, .complete = 136},
185 [27] = { .submit = 86, .complete = 137},
186 [28] = { .submit = 88, .complete = 138},
187 [29] = { .submit = 90, .complete = 139},
190 static const struct chan_queues am335x_usb_queues_rx[] = {
191 /* USB0 ENDP 1 */
192 [ 0] = { .submit = 1, .complete = 109},
193 [ 1] = { .submit = 2, .complete = 110},
194 [ 2] = { .submit = 3, .complete = 111},
195 [ 3] = { .submit = 4, .complete = 112},
196 [ 4] = { .submit = 5, .complete = 113},
197 [ 5] = { .submit = 6, .complete = 114},
198 [ 6] = { .submit = 7, .complete = 115},
199 [ 7] = { .submit = 8, .complete = 116},
200 [ 8] = { .submit = 9, .complete = 117},
201 [ 9] = { .submit = 10, .complete = 118},
202 [10] = { .submit = 11, .complete = 119},
203 [11] = { .submit = 12, .complete = 120},
204 [12] = { .submit = 13, .complete = 121},
205 [13] = { .submit = 14, .complete = 122},
206 [14] = { .submit = 15, .complete = 123},
208 /* USB1 ENDP 1 */
209 [15] = { .submit = 16, .complete = 141},
210 [16] = { .submit = 17, .complete = 142},
211 [17] = { .submit = 18, .complete = 143},
212 [18] = { .submit = 19, .complete = 144},
213 [19] = { .submit = 20, .complete = 145},
214 [20] = { .submit = 21, .complete = 146},
215 [21] = { .submit = 22, .complete = 147},
216 [22] = { .submit = 23, .complete = 148},
217 [23] = { .submit = 24, .complete = 149},
218 [24] = { .submit = 25, .complete = 150},
219 [25] = { .submit = 26, .complete = 151},
220 [26] = { .submit = 27, .complete = 152},
221 [27] = { .submit = 28, .complete = 153},
222 [28] = { .submit = 29, .complete = 154},
223 [29] = { .submit = 30, .complete = 155},
226 static const struct chan_queues da8xx_usb_queues_tx[] = {
227 [0] = { .submit = 16, .complete = 24},
228 [1] = { .submit = 18, .complete = 24},
229 [2] = { .submit = 20, .complete = 24},
230 [3] = { .submit = 22, .complete = 24},
233 static const struct chan_queues da8xx_usb_queues_rx[] = {
234 [0] = { .submit = 1, .complete = 26},
235 [1] = { .submit = 3, .complete = 26},
236 [2] = { .submit = 5, .complete = 26},
237 [3] = { .submit = 7, .complete = 26},
240 struct cppi_glue_infos {
241 const struct chan_queues *queues_rx;
242 const struct chan_queues *queues_tx;
243 struct chan_queues td_queue;
244 u16 first_completion_queue;
245 u16 qmgr_num_pend;
248 static struct cppi41_channel *to_cpp41_chan(struct dma_chan *c)
250 return container_of(c, struct cppi41_channel, chan);
253 static struct cppi41_channel *desc_to_chan(struct cppi41_dd *cdd, u32 desc)
255 struct cppi41_channel *c;
256 u32 descs_size;
257 u32 desc_num;
259 descs_size = sizeof(struct cppi41_desc) * ALLOC_DECS_NUM;
261 if (!((desc >= cdd->descs_phys) &&
262 (desc < (cdd->descs_phys + descs_size)))) {
263 return NULL;
266 desc_num = (desc - cdd->descs_phys) / sizeof(struct cppi41_desc);
267 BUG_ON(desc_num >= ALLOC_DECS_NUM);
268 c = cdd->chan_busy[desc_num];
269 cdd->chan_busy[desc_num] = NULL;
271 /* Usecount for chan_busy[], paired with push_desc_queue() */
272 pm_runtime_put(cdd->ddev.dev);
274 return c;
277 static void cppi_writel(u32 val, void *__iomem *mem)
279 __raw_writel(val, mem);
282 static u32 cppi_readl(void *__iomem *mem)
284 return __raw_readl(mem);
287 static u32 pd_trans_len(u32 val)
289 return val & ((1 << (DESC_LENGTH_BITS_NUM + 1)) - 1);
292 static u32 cppi41_pop_desc(struct cppi41_dd *cdd, unsigned queue_num)
294 u32 desc;
296 desc = cppi_readl(cdd->qmgr_mem + QMGR_QUEUE_D(queue_num));
297 desc &= ~0x1f;
298 return desc;
301 static irqreturn_t cppi41_irq(int irq, void *data)
303 struct cppi41_dd *cdd = data;
304 u16 first_completion_queue = cdd->first_completion_queue;
305 u16 qmgr_num_pend = cdd->qmgr_num_pend;
306 struct cppi41_channel *c;
307 int i;
309 for (i = QMGR_PENDING_SLOT_Q(first_completion_queue); i < qmgr_num_pend;
310 i++) {
311 u32 val;
312 u32 q_num;
314 val = cppi_readl(cdd->qmgr_mem + QMGR_PEND(i));
315 if (i == QMGR_PENDING_SLOT_Q(first_completion_queue) && val) {
316 u32 mask;
317 /* set corresponding bit for completetion Q 93 */
318 mask = 1 << QMGR_PENDING_BIT_Q(first_completion_queue);
319 /* not set all bits for queues less than Q 93 */
320 mask--;
321 /* now invert and keep only Q 93+ set */
322 val &= ~mask;
325 if (val)
326 __iormb();
328 while (val) {
329 u32 desc, len;
332 * This should never trigger, see the comments in
333 * push_desc_queue()
335 WARN_ON(cdd->is_suspended);
337 q_num = __fls(val);
338 val &= ~(1 << q_num);
339 q_num += 32 * i;
340 desc = cppi41_pop_desc(cdd, q_num);
341 c = desc_to_chan(cdd, desc);
342 if (WARN_ON(!c)) {
343 pr_err("%s() q %d desc %08x\n", __func__,
344 q_num, desc);
345 continue;
348 if (c->desc->pd2 & PD2_ZERO_LENGTH)
349 len = 0;
350 else
351 len = pd_trans_len(c->desc->pd0);
353 c->residue = pd_trans_len(c->desc->pd6) - len;
354 dma_cookie_complete(&c->txd);
355 dmaengine_desc_get_callback_invoke(&c->txd, NULL);
358 return IRQ_HANDLED;
361 static dma_cookie_t cppi41_tx_submit(struct dma_async_tx_descriptor *tx)
363 dma_cookie_t cookie;
365 cookie = dma_cookie_assign(tx);
367 return cookie;
370 static int cppi41_dma_alloc_chan_resources(struct dma_chan *chan)
372 struct cppi41_channel *c = to_cpp41_chan(chan);
373 struct cppi41_dd *cdd = c->cdd;
374 int error;
376 error = pm_runtime_get_sync(cdd->ddev.dev);
377 if (error < 0) {
378 dev_err(cdd->ddev.dev, "%s pm runtime get: %i\n",
379 __func__, error);
380 pm_runtime_put_noidle(cdd->ddev.dev);
382 return error;
385 dma_cookie_init(chan);
386 dma_async_tx_descriptor_init(&c->txd, chan);
387 c->txd.tx_submit = cppi41_tx_submit;
389 if (!c->is_tx)
390 cppi_writel(c->q_num, c->gcr_reg + RXHPCRA0);
392 pm_runtime_mark_last_busy(cdd->ddev.dev);
393 pm_runtime_put_autosuspend(cdd->ddev.dev);
395 return 0;
398 static void cppi41_dma_free_chan_resources(struct dma_chan *chan)
400 struct cppi41_channel *c = to_cpp41_chan(chan);
401 struct cppi41_dd *cdd = c->cdd;
402 int error;
404 error = pm_runtime_get_sync(cdd->ddev.dev);
405 if (error < 0) {
406 pm_runtime_put_noidle(cdd->ddev.dev);
408 return;
411 WARN_ON(!list_empty(&cdd->pending));
413 pm_runtime_mark_last_busy(cdd->ddev.dev);
414 pm_runtime_put_autosuspend(cdd->ddev.dev);
417 static enum dma_status cppi41_dma_tx_status(struct dma_chan *chan,
418 dma_cookie_t cookie, struct dma_tx_state *txstate)
420 struct cppi41_channel *c = to_cpp41_chan(chan);
421 enum dma_status ret;
423 ret = dma_cookie_status(chan, cookie, txstate);
425 dma_set_residue(txstate, c->residue);
427 return ret;
430 static void push_desc_queue(struct cppi41_channel *c)
432 struct cppi41_dd *cdd = c->cdd;
433 u32 desc_num;
434 u32 desc_phys;
435 u32 reg;
437 c->residue = 0;
439 reg = GCR_CHAN_ENABLE;
440 if (!c->is_tx) {
441 reg |= GCR_STARV_RETRY;
442 reg |= GCR_DESC_TYPE_HOST;
443 reg |= c->q_comp_num;
446 cppi_writel(reg, c->gcr_reg);
449 * We don't use writel() but __raw_writel() so we have to make sure
450 * that the DMA descriptor in coherent memory made to the main memory
451 * before starting the dma engine.
453 __iowmb();
456 * DMA transfers can take at least 200ms to complete with USB mass
457 * storage connected. To prevent autosuspend timeouts, we must use
458 * pm_runtime_get/put() when chan_busy[] is modified. This will get
459 * cleared in desc_to_chan() or cppi41_stop_chan() depending on the
460 * outcome of the transfer.
462 pm_runtime_get(cdd->ddev.dev);
464 desc_phys = lower_32_bits(c->desc_phys);
465 desc_num = (desc_phys - cdd->descs_phys) / sizeof(struct cppi41_desc);
466 WARN_ON(cdd->chan_busy[desc_num]);
467 cdd->chan_busy[desc_num] = c;
469 reg = (sizeof(struct cppi41_desc) - 24) / 4;
470 reg |= desc_phys;
471 cppi_writel(reg, cdd->qmgr_mem + QMGR_QUEUE_D(c->q_num));
475 * Caller must hold cdd->lock to prevent push_desc_queue()
476 * getting called out of order. We have both cppi41_dma_issue_pending()
477 * and cppi41_runtime_resume() call this function.
479 static void cppi41_run_queue(struct cppi41_dd *cdd)
481 struct cppi41_channel *c, *_c;
483 list_for_each_entry_safe(c, _c, &cdd->pending, node) {
484 push_desc_queue(c);
485 list_del(&c->node);
489 static void cppi41_dma_issue_pending(struct dma_chan *chan)
491 struct cppi41_channel *c = to_cpp41_chan(chan);
492 struct cppi41_dd *cdd = c->cdd;
493 unsigned long flags;
494 int error;
496 error = pm_runtime_get(cdd->ddev.dev);
497 if ((error != -EINPROGRESS) && error < 0) {
498 pm_runtime_put_noidle(cdd->ddev.dev);
499 dev_err(cdd->ddev.dev, "Failed to pm_runtime_get: %i\n",
500 error);
502 return;
505 spin_lock_irqsave(&cdd->lock, flags);
506 list_add_tail(&c->node, &cdd->pending);
507 if (!cdd->is_suspended)
508 cppi41_run_queue(cdd);
509 spin_unlock_irqrestore(&cdd->lock, flags);
511 pm_runtime_mark_last_busy(cdd->ddev.dev);
512 pm_runtime_put_autosuspend(cdd->ddev.dev);
515 static u32 get_host_pd0(u32 length)
517 u32 reg;
519 reg = DESC_TYPE_HOST << DESC_TYPE;
520 reg |= length;
522 return reg;
525 static u32 get_host_pd1(struct cppi41_channel *c)
527 u32 reg;
529 reg = 0;
531 return reg;
534 static u32 get_host_pd2(struct cppi41_channel *c)
536 u32 reg;
538 reg = DESC_TYPE_USB;
539 reg |= c->q_comp_num;
541 return reg;
544 static u32 get_host_pd3(u32 length)
546 u32 reg;
548 /* PD3 = packet size */
549 reg = length;
551 return reg;
554 static u32 get_host_pd6(u32 length)
556 u32 reg;
558 /* PD6 buffer size */
559 reg = DESC_PD_COMPLETE;
560 reg |= length;
562 return reg;
565 static u32 get_host_pd4_or_7(u32 addr)
567 u32 reg;
569 reg = addr;
571 return reg;
574 static u32 get_host_pd5(void)
576 u32 reg;
578 reg = 0;
580 return reg;
583 static struct dma_async_tx_descriptor *cppi41_dma_prep_slave_sg(
584 struct dma_chan *chan, struct scatterlist *sgl, unsigned sg_len,
585 enum dma_transfer_direction dir, unsigned long tx_flags, void *context)
587 struct cppi41_channel *c = to_cpp41_chan(chan);
588 struct cppi41_desc *d;
589 struct scatterlist *sg;
590 unsigned int i;
592 d = c->desc;
593 for_each_sg(sgl, sg, sg_len, i) {
594 u32 addr;
595 u32 len;
597 /* We need to use more than one desc once musb supports sg */
598 addr = lower_32_bits(sg_dma_address(sg));
599 len = sg_dma_len(sg);
601 d->pd0 = get_host_pd0(len);
602 d->pd1 = get_host_pd1(c);
603 d->pd2 = get_host_pd2(c);
604 d->pd3 = get_host_pd3(len);
605 d->pd4 = get_host_pd4_or_7(addr);
606 d->pd5 = get_host_pd5();
607 d->pd6 = get_host_pd6(len);
608 d->pd7 = get_host_pd4_or_7(addr);
610 d++;
613 return &c->txd;
616 static void cppi41_compute_td_desc(struct cppi41_desc *d)
618 d->pd0 = DESC_TYPE_TEARD << DESC_TYPE;
621 static int cppi41_tear_down_chan(struct cppi41_channel *c)
623 struct dmaengine_result abort_result;
624 struct cppi41_dd *cdd = c->cdd;
625 struct cppi41_desc *td;
626 u32 reg;
627 u32 desc_phys;
628 u32 td_desc_phys;
630 td = cdd->cd;
631 td += cdd->first_td_desc;
633 td_desc_phys = cdd->descs_phys;
634 td_desc_phys += cdd->first_td_desc * sizeof(struct cppi41_desc);
636 if (!c->td_queued) {
637 cppi41_compute_td_desc(td);
638 __iowmb();
640 reg = (sizeof(struct cppi41_desc) - 24) / 4;
641 reg |= td_desc_phys;
642 cppi_writel(reg, cdd->qmgr_mem +
643 QMGR_QUEUE_D(cdd->td_queue.submit));
645 reg = GCR_CHAN_ENABLE;
646 if (!c->is_tx) {
647 reg |= GCR_STARV_RETRY;
648 reg |= GCR_DESC_TYPE_HOST;
649 reg |= cdd->td_queue.complete;
651 reg |= GCR_TEARDOWN;
652 cppi_writel(reg, c->gcr_reg);
653 c->td_queued = 1;
654 c->td_retry = 500;
657 if (!c->td_seen || !c->td_desc_seen) {
659 desc_phys = cppi41_pop_desc(cdd, cdd->td_queue.complete);
660 if (!desc_phys && c->is_tx)
661 desc_phys = cppi41_pop_desc(cdd, c->q_comp_num);
663 if (desc_phys == c->desc_phys) {
664 c->td_desc_seen = 1;
666 } else if (desc_phys == td_desc_phys) {
667 u32 pd0;
669 __iormb();
670 pd0 = td->pd0;
671 WARN_ON((pd0 >> DESC_TYPE) != DESC_TYPE_TEARD);
672 WARN_ON(!c->is_tx && !(pd0 & TD_DESC_IS_RX));
673 WARN_ON((pd0 & 0x1f) != c->port_num);
674 c->td_seen = 1;
675 } else if (desc_phys) {
676 WARN_ON_ONCE(1);
679 c->td_retry--;
681 * If the TX descriptor / channel is in use, the caller needs to poke
682 * his TD bit multiple times. After that he hardware releases the
683 * transfer descriptor followed by TD descriptor. Waiting seems not to
684 * cause any difference.
685 * RX seems to be thrown out right away. However once the TearDown
686 * descriptor gets through we are done. If we have seens the transfer
687 * descriptor before the TD we fetch it from enqueue, it has to be
688 * there waiting for us.
690 if (!c->td_seen && c->td_retry) {
691 udelay(1);
692 return -EAGAIN;
694 WARN_ON(!c->td_retry);
696 if (!c->td_desc_seen) {
697 desc_phys = cppi41_pop_desc(cdd, c->q_num);
698 if (!desc_phys)
699 desc_phys = cppi41_pop_desc(cdd, c->q_comp_num);
700 WARN_ON(!desc_phys);
703 c->td_queued = 0;
704 c->td_seen = 0;
705 c->td_desc_seen = 0;
706 cppi_writel(0, c->gcr_reg);
708 /* Invoke the callback to do the necessary clean-up */
709 abort_result.result = DMA_TRANS_ABORTED;
710 dma_cookie_complete(&c->txd);
711 dmaengine_desc_get_callback_invoke(&c->txd, &abort_result);
713 return 0;
716 static int cppi41_stop_chan(struct dma_chan *chan)
718 struct cppi41_channel *c = to_cpp41_chan(chan);
719 struct cppi41_dd *cdd = c->cdd;
720 u32 desc_num;
721 u32 desc_phys;
722 int ret;
724 desc_phys = lower_32_bits(c->desc_phys);
725 desc_num = (desc_phys - cdd->descs_phys) / sizeof(struct cppi41_desc);
726 if (!cdd->chan_busy[desc_num])
727 return 0;
729 ret = cppi41_tear_down_chan(c);
730 if (ret)
731 return ret;
733 WARN_ON(!cdd->chan_busy[desc_num]);
734 cdd->chan_busy[desc_num] = NULL;
736 /* Usecount for chan_busy[], paired with push_desc_queue() */
737 pm_runtime_put(cdd->ddev.dev);
739 return 0;
742 static int cppi41_add_chans(struct device *dev, struct cppi41_dd *cdd)
744 struct cppi41_channel *cchan, *chans;
745 int i;
746 u32 n_chans = cdd->n_chans;
749 * The channels can only be used as TX or as RX. So we add twice
750 * that much dma channels because USB can only do RX or TX.
752 n_chans *= 2;
754 chans = devm_kcalloc(dev, n_chans, sizeof(*chans), GFP_KERNEL);
755 if (!chans)
756 return -ENOMEM;
758 for (i = 0; i < n_chans; i++) {
759 cchan = &chans[i];
761 cchan->cdd = cdd;
762 if (i & 1) {
763 cchan->gcr_reg = cdd->ctrl_mem + DMA_TXGCR(i >> 1);
764 cchan->is_tx = 1;
765 } else {
766 cchan->gcr_reg = cdd->ctrl_mem + DMA_RXGCR(i >> 1);
767 cchan->is_tx = 0;
769 cchan->port_num = i >> 1;
770 cchan->desc = &cdd->cd[i];
771 cchan->desc_phys = cdd->descs_phys;
772 cchan->desc_phys += i * sizeof(struct cppi41_desc);
773 cchan->chan.device = &cdd->ddev;
774 list_add_tail(&cchan->chan.device_node, &cdd->ddev.channels);
776 cdd->first_td_desc = n_chans;
778 return 0;
781 static void purge_descs(struct device *dev, struct cppi41_dd *cdd)
783 unsigned int mem_decs;
784 int i;
786 mem_decs = ALLOC_DECS_NUM * sizeof(struct cppi41_desc);
788 for (i = 0; i < DESCS_AREAS; i++) {
790 cppi_writel(0, cdd->qmgr_mem + QMGR_MEMBASE(i));
791 cppi_writel(0, cdd->qmgr_mem + QMGR_MEMCTRL(i));
793 dma_free_coherent(dev, mem_decs, cdd->cd,
794 cdd->descs_phys);
798 static void disable_sched(struct cppi41_dd *cdd)
800 cppi_writel(0, cdd->sched_mem + DMA_SCHED_CTRL);
803 static void deinit_cppi41(struct device *dev, struct cppi41_dd *cdd)
805 disable_sched(cdd);
807 purge_descs(dev, cdd);
809 cppi_writel(0, cdd->qmgr_mem + QMGR_LRAM0_BASE);
810 cppi_writel(0, cdd->qmgr_mem + QMGR_LRAM0_BASE);
811 dma_free_coherent(dev, QMGR_SCRATCH_SIZE, cdd->qmgr_scratch,
812 cdd->scratch_phys);
815 static int init_descs(struct device *dev, struct cppi41_dd *cdd)
817 unsigned int desc_size;
818 unsigned int mem_decs;
819 int i;
820 u32 reg;
821 u32 idx;
823 BUILD_BUG_ON(sizeof(struct cppi41_desc) &
824 (sizeof(struct cppi41_desc) - 1));
825 BUILD_BUG_ON(sizeof(struct cppi41_desc) < 32);
826 BUILD_BUG_ON(ALLOC_DECS_NUM < 32);
828 desc_size = sizeof(struct cppi41_desc);
829 mem_decs = ALLOC_DECS_NUM * desc_size;
831 idx = 0;
832 for (i = 0; i < DESCS_AREAS; i++) {
834 reg = idx << QMGR_MEMCTRL_IDX_SH;
835 reg |= (ilog2(desc_size) - 5) << QMGR_MEMCTRL_DESC_SH;
836 reg |= ilog2(ALLOC_DECS_NUM) - 5;
838 BUILD_BUG_ON(DESCS_AREAS != 1);
839 cdd->cd = dma_alloc_coherent(dev, mem_decs,
840 &cdd->descs_phys, GFP_KERNEL);
841 if (!cdd->cd)
842 return -ENOMEM;
844 cppi_writel(cdd->descs_phys, cdd->qmgr_mem + QMGR_MEMBASE(i));
845 cppi_writel(reg, cdd->qmgr_mem + QMGR_MEMCTRL(i));
847 idx += ALLOC_DECS_NUM;
849 return 0;
852 static void init_sched(struct cppi41_dd *cdd)
854 unsigned ch;
855 unsigned word;
856 u32 reg;
858 word = 0;
859 cppi_writel(0, cdd->sched_mem + DMA_SCHED_CTRL);
860 for (ch = 0; ch < cdd->n_chans; ch += 2) {
862 reg = SCHED_ENTRY0_CHAN(ch);
863 reg |= SCHED_ENTRY1_CHAN(ch) | SCHED_ENTRY1_IS_RX;
865 reg |= SCHED_ENTRY2_CHAN(ch + 1);
866 reg |= SCHED_ENTRY3_CHAN(ch + 1) | SCHED_ENTRY3_IS_RX;
867 cppi_writel(reg, cdd->sched_mem + DMA_SCHED_WORD(word));
868 word++;
870 reg = cdd->n_chans * 2 - 1;
871 reg |= DMA_SCHED_CTRL_EN;
872 cppi_writel(reg, cdd->sched_mem + DMA_SCHED_CTRL);
875 static int init_cppi41(struct device *dev, struct cppi41_dd *cdd)
877 int ret;
879 BUILD_BUG_ON(QMGR_SCRATCH_SIZE > ((1 << 14) - 1));
880 cdd->qmgr_scratch = dma_alloc_coherent(dev, QMGR_SCRATCH_SIZE,
881 &cdd->scratch_phys, GFP_KERNEL);
882 if (!cdd->qmgr_scratch)
883 return -ENOMEM;
885 cppi_writel(cdd->scratch_phys, cdd->qmgr_mem + QMGR_LRAM0_BASE);
886 cppi_writel(TOTAL_DESCS_NUM, cdd->qmgr_mem + QMGR_LRAM_SIZE);
887 cppi_writel(0, cdd->qmgr_mem + QMGR_LRAM1_BASE);
889 ret = init_descs(dev, cdd);
890 if (ret)
891 goto err_td;
893 cppi_writel(cdd->td_queue.submit, cdd->ctrl_mem + DMA_TDFDQ);
894 init_sched(cdd);
896 return 0;
897 err_td:
898 deinit_cppi41(dev, cdd);
899 return ret;
902 static struct platform_driver cpp41_dma_driver;
904 * The param format is:
905 * X Y
906 * X: Port
907 * Y: 0 = RX else TX
909 #define INFO_PORT 0
910 #define INFO_IS_TX 1
912 static bool cpp41_dma_filter_fn(struct dma_chan *chan, void *param)
914 struct cppi41_channel *cchan;
915 struct cppi41_dd *cdd;
916 const struct chan_queues *queues;
917 u32 *num = param;
919 if (chan->device->dev->driver != &cpp41_dma_driver.driver)
920 return false;
922 cchan = to_cpp41_chan(chan);
924 if (cchan->port_num != num[INFO_PORT])
925 return false;
927 if (cchan->is_tx && !num[INFO_IS_TX])
928 return false;
929 cdd = cchan->cdd;
930 if (cchan->is_tx)
931 queues = cdd->queues_tx;
932 else
933 queues = cdd->queues_rx;
935 BUILD_BUG_ON(ARRAY_SIZE(am335x_usb_queues_rx) !=
936 ARRAY_SIZE(am335x_usb_queues_tx));
937 if (WARN_ON(cchan->port_num >= ARRAY_SIZE(am335x_usb_queues_rx)))
938 return false;
940 cchan->q_num = queues[cchan->port_num].submit;
941 cchan->q_comp_num = queues[cchan->port_num].complete;
942 return true;
945 static struct of_dma_filter_info cpp41_dma_info = {
946 .filter_fn = cpp41_dma_filter_fn,
949 static struct dma_chan *cppi41_dma_xlate(struct of_phandle_args *dma_spec,
950 struct of_dma *ofdma)
952 int count = dma_spec->args_count;
953 struct of_dma_filter_info *info = ofdma->of_dma_data;
955 if (!info || !info->filter_fn)
956 return NULL;
958 if (count != 2)
959 return NULL;
961 return dma_request_channel(info->dma_cap, info->filter_fn,
962 &dma_spec->args[0]);
965 static const struct cppi_glue_infos am335x_usb_infos = {
966 .queues_rx = am335x_usb_queues_rx,
967 .queues_tx = am335x_usb_queues_tx,
968 .td_queue = { .submit = 31, .complete = 0 },
969 .first_completion_queue = 93,
970 .qmgr_num_pend = 5,
973 static const struct cppi_glue_infos da8xx_usb_infos = {
974 .queues_rx = da8xx_usb_queues_rx,
975 .queues_tx = da8xx_usb_queues_tx,
976 .td_queue = { .submit = 31, .complete = 0 },
977 .first_completion_queue = 24,
978 .qmgr_num_pend = 2,
981 static const struct of_device_id cppi41_dma_ids[] = {
982 { .compatible = "ti,am3359-cppi41", .data = &am335x_usb_infos},
983 { .compatible = "ti,da830-cppi41", .data = &da8xx_usb_infos},
986 MODULE_DEVICE_TABLE(of, cppi41_dma_ids);
988 static const struct cppi_glue_infos *get_glue_info(struct device *dev)
990 const struct of_device_id *of_id;
992 of_id = of_match_node(cppi41_dma_ids, dev->of_node);
993 if (!of_id)
994 return NULL;
995 return of_id->data;
998 #define CPPI41_DMA_BUSWIDTHS (BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) | \
999 BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) | \
1000 BIT(DMA_SLAVE_BUSWIDTH_3_BYTES) | \
1001 BIT(DMA_SLAVE_BUSWIDTH_4_BYTES))
1003 static int cppi41_dma_probe(struct platform_device *pdev)
1005 struct cppi41_dd *cdd;
1006 struct device *dev = &pdev->dev;
1007 const struct cppi_glue_infos *glue_info;
1008 struct resource *mem;
1009 int index;
1010 int irq;
1011 int ret;
1013 glue_info = get_glue_info(dev);
1014 if (!glue_info)
1015 return -EINVAL;
1017 cdd = devm_kzalloc(&pdev->dev, sizeof(*cdd), GFP_KERNEL);
1018 if (!cdd)
1019 return -ENOMEM;
1021 dma_cap_set(DMA_SLAVE, cdd->ddev.cap_mask);
1022 cdd->ddev.device_alloc_chan_resources = cppi41_dma_alloc_chan_resources;
1023 cdd->ddev.device_free_chan_resources = cppi41_dma_free_chan_resources;
1024 cdd->ddev.device_tx_status = cppi41_dma_tx_status;
1025 cdd->ddev.device_issue_pending = cppi41_dma_issue_pending;
1026 cdd->ddev.device_prep_slave_sg = cppi41_dma_prep_slave_sg;
1027 cdd->ddev.device_terminate_all = cppi41_stop_chan;
1028 cdd->ddev.directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV);
1029 cdd->ddev.src_addr_widths = CPPI41_DMA_BUSWIDTHS;
1030 cdd->ddev.dst_addr_widths = CPPI41_DMA_BUSWIDTHS;
1031 cdd->ddev.residue_granularity = DMA_RESIDUE_GRANULARITY_BURST;
1032 cdd->ddev.dev = dev;
1033 INIT_LIST_HEAD(&cdd->ddev.channels);
1034 cpp41_dma_info.dma_cap = cdd->ddev.cap_mask;
1036 index = of_property_match_string(dev->of_node,
1037 "reg-names", "controller");
1038 if (index < 0)
1039 return index;
1041 mem = platform_get_resource(pdev, IORESOURCE_MEM, index);
1042 cdd->ctrl_mem = devm_ioremap_resource(dev, mem);
1043 if (IS_ERR(cdd->ctrl_mem))
1044 return PTR_ERR(cdd->ctrl_mem);
1046 mem = platform_get_resource(pdev, IORESOURCE_MEM, index + 1);
1047 cdd->sched_mem = devm_ioremap_resource(dev, mem);
1048 if (IS_ERR(cdd->sched_mem))
1049 return PTR_ERR(cdd->sched_mem);
1051 mem = platform_get_resource(pdev, IORESOURCE_MEM, index + 2);
1052 cdd->qmgr_mem = devm_ioremap_resource(dev, mem);
1053 if (IS_ERR(cdd->qmgr_mem))
1054 return PTR_ERR(cdd->qmgr_mem);
1056 spin_lock_init(&cdd->lock);
1057 INIT_LIST_HEAD(&cdd->pending);
1059 platform_set_drvdata(pdev, cdd);
1061 pm_runtime_enable(dev);
1062 pm_runtime_set_autosuspend_delay(dev, 100);
1063 pm_runtime_use_autosuspend(dev);
1064 ret = pm_runtime_get_sync(dev);
1065 if (ret < 0)
1066 goto err_get_sync;
1068 cdd->queues_rx = glue_info->queues_rx;
1069 cdd->queues_tx = glue_info->queues_tx;
1070 cdd->td_queue = glue_info->td_queue;
1071 cdd->qmgr_num_pend = glue_info->qmgr_num_pend;
1072 cdd->first_completion_queue = glue_info->first_completion_queue;
1074 ret = of_property_read_u32(dev->of_node,
1075 "#dma-channels", &cdd->n_chans);
1076 if (ret)
1077 goto err_get_n_chans;
1079 ret = init_cppi41(dev, cdd);
1080 if (ret)
1081 goto err_init_cppi;
1083 ret = cppi41_add_chans(dev, cdd);
1084 if (ret)
1085 goto err_chans;
1087 irq = irq_of_parse_and_map(dev->of_node, 0);
1088 if (!irq) {
1089 ret = -EINVAL;
1090 goto err_chans;
1093 ret = devm_request_irq(&pdev->dev, irq, cppi41_irq, IRQF_SHARED,
1094 dev_name(dev), cdd);
1095 if (ret)
1096 goto err_chans;
1097 cdd->irq = irq;
1099 ret = dma_async_device_register(&cdd->ddev);
1100 if (ret)
1101 goto err_chans;
1103 ret = of_dma_controller_register(dev->of_node,
1104 cppi41_dma_xlate, &cpp41_dma_info);
1105 if (ret)
1106 goto err_of;
1108 pm_runtime_mark_last_busy(dev);
1109 pm_runtime_put_autosuspend(dev);
1111 return 0;
1112 err_of:
1113 dma_async_device_unregister(&cdd->ddev);
1114 err_chans:
1115 deinit_cppi41(dev, cdd);
1116 err_init_cppi:
1117 pm_runtime_dont_use_autosuspend(dev);
1118 err_get_n_chans:
1119 err_get_sync:
1120 pm_runtime_put_sync(dev);
1121 pm_runtime_disable(dev);
1122 return ret;
1125 static int cppi41_dma_remove(struct platform_device *pdev)
1127 struct cppi41_dd *cdd = platform_get_drvdata(pdev);
1128 int error;
1130 error = pm_runtime_get_sync(&pdev->dev);
1131 if (error < 0)
1132 dev_err(&pdev->dev, "%s could not pm_runtime_get: %i\n",
1133 __func__, error);
1134 of_dma_controller_free(pdev->dev.of_node);
1135 dma_async_device_unregister(&cdd->ddev);
1137 devm_free_irq(&pdev->dev, cdd->irq, cdd);
1138 deinit_cppi41(&pdev->dev, cdd);
1139 pm_runtime_dont_use_autosuspend(&pdev->dev);
1140 pm_runtime_put_sync(&pdev->dev);
1141 pm_runtime_disable(&pdev->dev);
1142 return 0;
1145 static int __maybe_unused cppi41_suspend(struct device *dev)
1147 struct cppi41_dd *cdd = dev_get_drvdata(dev);
1149 cdd->dma_tdfdq = cppi_readl(cdd->ctrl_mem + DMA_TDFDQ);
1150 disable_sched(cdd);
1152 return 0;
1155 static int __maybe_unused cppi41_resume(struct device *dev)
1157 struct cppi41_dd *cdd = dev_get_drvdata(dev);
1158 struct cppi41_channel *c;
1159 int i;
1161 for (i = 0; i < DESCS_AREAS; i++)
1162 cppi_writel(cdd->descs_phys, cdd->qmgr_mem + QMGR_MEMBASE(i));
1164 list_for_each_entry(c, &cdd->ddev.channels, chan.device_node)
1165 if (!c->is_tx)
1166 cppi_writel(c->q_num, c->gcr_reg + RXHPCRA0);
1168 init_sched(cdd);
1170 cppi_writel(cdd->dma_tdfdq, cdd->ctrl_mem + DMA_TDFDQ);
1171 cppi_writel(cdd->scratch_phys, cdd->qmgr_mem + QMGR_LRAM0_BASE);
1172 cppi_writel(QMGR_SCRATCH_SIZE, cdd->qmgr_mem + QMGR_LRAM_SIZE);
1173 cppi_writel(0, cdd->qmgr_mem + QMGR_LRAM1_BASE);
1175 return 0;
1178 static int __maybe_unused cppi41_runtime_suspend(struct device *dev)
1180 struct cppi41_dd *cdd = dev_get_drvdata(dev);
1181 unsigned long flags;
1183 spin_lock_irqsave(&cdd->lock, flags);
1184 cdd->is_suspended = true;
1185 WARN_ON(!list_empty(&cdd->pending));
1186 spin_unlock_irqrestore(&cdd->lock, flags);
1188 return 0;
1191 static int __maybe_unused cppi41_runtime_resume(struct device *dev)
1193 struct cppi41_dd *cdd = dev_get_drvdata(dev);
1194 unsigned long flags;
1196 spin_lock_irqsave(&cdd->lock, flags);
1197 cdd->is_suspended = false;
1198 cppi41_run_queue(cdd);
1199 spin_unlock_irqrestore(&cdd->lock, flags);
1201 return 0;
1204 static const struct dev_pm_ops cppi41_pm_ops = {
1205 SET_LATE_SYSTEM_SLEEP_PM_OPS(cppi41_suspend, cppi41_resume)
1206 SET_RUNTIME_PM_OPS(cppi41_runtime_suspend,
1207 cppi41_runtime_resume,
1208 NULL)
1211 static struct platform_driver cpp41_dma_driver = {
1212 .probe = cppi41_dma_probe,
1213 .remove = cppi41_dma_remove,
1214 .driver = {
1215 .name = "cppi41-dma-engine",
1216 .pm = &cppi41_pm_ops,
1217 .of_match_table = of_match_ptr(cppi41_dma_ids),
1221 module_platform_driver(cpp41_dma_driver);
1222 MODULE_LICENSE("GPL");
1223 MODULE_AUTHOR("Sebastian Andrzej Siewior <bigeasy@linutronix.de>");