Linux 4.16.11
[linux/fpc-iii.git] / drivers / dma / sun6i-dma.c
blob0cd13f17fc1107d5a36ba2a5b0d3fd9d4c027ee3
1 /*
2 * Copyright (C) 2013-2014 Allwinner Tech Co., Ltd
3 * Author: Sugar <shuge@allwinnertech.com>
5 * Copyright (C) 2014 Maxime Ripard
6 * Maxime Ripard <maxime.ripard@free-electrons.com>
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; either version 2 of the License, or
11 * (at your option) any later version.
14 #include <linux/clk.h>
15 #include <linux/delay.h>
16 #include <linux/dmaengine.h>
17 #include <linux/dmapool.h>
18 #include <linux/interrupt.h>
19 #include <linux/module.h>
20 #include <linux/of_dma.h>
21 #include <linux/of_device.h>
22 #include <linux/platform_device.h>
23 #include <linux/reset.h>
24 #include <linux/slab.h>
25 #include <linux/types.h>
27 #include "virt-dma.h"
30 * Common registers
32 #define DMA_IRQ_EN(x) ((x) * 0x04)
33 #define DMA_IRQ_HALF BIT(0)
34 #define DMA_IRQ_PKG BIT(1)
35 #define DMA_IRQ_QUEUE BIT(2)
37 #define DMA_IRQ_CHAN_NR 8
38 #define DMA_IRQ_CHAN_WIDTH 4
41 #define DMA_IRQ_STAT(x) ((x) * 0x04 + 0x10)
43 #define DMA_STAT 0x30
45 /* Offset between DMA_IRQ_EN and DMA_IRQ_STAT limits number of channels */
46 #define DMA_MAX_CHANNELS (DMA_IRQ_CHAN_NR * 0x10 / 4)
49 * sun8i specific registers
51 #define SUN8I_DMA_GATE 0x20
52 #define SUN8I_DMA_GATE_ENABLE 0x4
54 #define SUNXI_H3_SECURE_REG 0x20
55 #define SUNXI_H3_DMA_GATE 0x28
56 #define SUNXI_H3_DMA_GATE_ENABLE 0x4
58 * Channels specific registers
60 #define DMA_CHAN_ENABLE 0x00
61 #define DMA_CHAN_ENABLE_START BIT(0)
62 #define DMA_CHAN_ENABLE_STOP 0
64 #define DMA_CHAN_PAUSE 0x04
65 #define DMA_CHAN_PAUSE_PAUSE BIT(1)
66 #define DMA_CHAN_PAUSE_RESUME 0
68 #define DMA_CHAN_LLI_ADDR 0x08
70 #define DMA_CHAN_CUR_CFG 0x0c
71 #define DMA_CHAN_MAX_DRQ 0x1f
72 #define DMA_CHAN_CFG_SRC_DRQ(x) ((x) & DMA_CHAN_MAX_DRQ)
73 #define DMA_CHAN_CFG_SRC_IO_MODE BIT(5)
74 #define DMA_CHAN_CFG_SRC_LINEAR_MODE (0 << 5)
75 #define DMA_CHAN_CFG_SRC_BURST_A31(x) (((x) & 0x3) << 7)
76 #define DMA_CHAN_CFG_SRC_BURST_H3(x) (((x) & 0x3) << 6)
77 #define DMA_CHAN_CFG_SRC_WIDTH(x) (((x) & 0x3) << 9)
79 #define DMA_CHAN_CFG_DST_DRQ(x) (DMA_CHAN_CFG_SRC_DRQ(x) << 16)
80 #define DMA_CHAN_CFG_DST_IO_MODE (DMA_CHAN_CFG_SRC_IO_MODE << 16)
81 #define DMA_CHAN_CFG_DST_LINEAR_MODE (DMA_CHAN_CFG_SRC_LINEAR_MODE << 16)
82 #define DMA_CHAN_CFG_DST_BURST_A31(x) (DMA_CHAN_CFG_SRC_BURST_A31(x) << 16)
83 #define DMA_CHAN_CFG_DST_BURST_H3(x) (DMA_CHAN_CFG_SRC_BURST_H3(x) << 16)
84 #define DMA_CHAN_CFG_DST_WIDTH(x) (DMA_CHAN_CFG_SRC_WIDTH(x) << 16)
86 #define DMA_CHAN_CUR_SRC 0x10
88 #define DMA_CHAN_CUR_DST 0x14
90 #define DMA_CHAN_CUR_CNT 0x18
92 #define DMA_CHAN_CUR_PARA 0x1c
96 * Various hardware related defines
98 #define LLI_LAST_ITEM 0xfffff800
99 #define NORMAL_WAIT 8
100 #define DRQ_SDRAM 1
102 /* forward declaration */
103 struct sun6i_dma_dev;
106 * Hardware channels / ports representation
108 * The hardware is used in several SoCs, with differing numbers
109 * of channels and endpoints. This structure ties those numbers
110 * to a certain compatible string.
112 struct sun6i_dma_config {
113 u32 nr_max_channels;
114 u32 nr_max_requests;
115 u32 nr_max_vchans;
117 * In the datasheets/user manuals of newer Allwinner SoCs, a special
118 * bit (bit 2 at register 0x20) is present.
119 * It's named "DMA MCLK interface circuit auto gating bit" in the
120 * documents, and the footnote of this register says that this bit
121 * should be set up when initializing the DMA controller.
122 * Allwinner A23/A33 user manuals do not have this bit documented,
123 * however these SoCs really have and need this bit, as seen in the
124 * BSP kernel source code.
126 void (*clock_autogate_enable)(struct sun6i_dma_dev *);
127 void (*set_burst_length)(u32 *p_cfg, s8 src_burst, s8 dst_burst);
128 u32 src_burst_lengths;
129 u32 dst_burst_lengths;
130 u32 src_addr_widths;
131 u32 dst_addr_widths;
135 * Hardware representation of the LLI
137 * The hardware will be fed the physical address of this structure,
138 * and read its content in order to start the transfer.
140 struct sun6i_dma_lli {
141 u32 cfg;
142 u32 src;
143 u32 dst;
144 u32 len;
145 u32 para;
146 u32 p_lli_next;
149 * This field is not used by the DMA controller, but will be
150 * used by the CPU to go through the list (mostly for dumping
151 * or freeing it).
153 struct sun6i_dma_lli *v_lli_next;
157 struct sun6i_desc {
158 struct virt_dma_desc vd;
159 dma_addr_t p_lli;
160 struct sun6i_dma_lli *v_lli;
163 struct sun6i_pchan {
164 u32 idx;
165 void __iomem *base;
166 struct sun6i_vchan *vchan;
167 struct sun6i_desc *desc;
168 struct sun6i_desc *done;
171 struct sun6i_vchan {
172 struct virt_dma_chan vc;
173 struct list_head node;
174 struct dma_slave_config cfg;
175 struct sun6i_pchan *phy;
176 u8 port;
177 u8 irq_type;
178 bool cyclic;
181 struct sun6i_dma_dev {
182 struct dma_device slave;
183 void __iomem *base;
184 struct clk *clk;
185 int irq;
186 spinlock_t lock;
187 struct reset_control *rstc;
188 struct tasklet_struct task;
189 atomic_t tasklet_shutdown;
190 struct list_head pending;
191 struct dma_pool *pool;
192 struct sun6i_pchan *pchans;
193 struct sun6i_vchan *vchans;
194 const struct sun6i_dma_config *cfg;
195 u32 num_pchans;
196 u32 num_vchans;
197 u32 max_request;
200 static struct device *chan2dev(struct dma_chan *chan)
202 return &chan->dev->device;
205 static inline struct sun6i_dma_dev *to_sun6i_dma_dev(struct dma_device *d)
207 return container_of(d, struct sun6i_dma_dev, slave);
210 static inline struct sun6i_vchan *to_sun6i_vchan(struct dma_chan *chan)
212 return container_of(chan, struct sun6i_vchan, vc.chan);
215 static inline struct sun6i_desc *
216 to_sun6i_desc(struct dma_async_tx_descriptor *tx)
218 return container_of(tx, struct sun6i_desc, vd.tx);
221 static inline void sun6i_dma_dump_com_regs(struct sun6i_dma_dev *sdev)
223 dev_dbg(sdev->slave.dev, "Common register:\n"
224 "\tmask0(%04x): 0x%08x\n"
225 "\tmask1(%04x): 0x%08x\n"
226 "\tpend0(%04x): 0x%08x\n"
227 "\tpend1(%04x): 0x%08x\n"
228 "\tstats(%04x): 0x%08x\n",
229 DMA_IRQ_EN(0), readl(sdev->base + DMA_IRQ_EN(0)),
230 DMA_IRQ_EN(1), readl(sdev->base + DMA_IRQ_EN(1)),
231 DMA_IRQ_STAT(0), readl(sdev->base + DMA_IRQ_STAT(0)),
232 DMA_IRQ_STAT(1), readl(sdev->base + DMA_IRQ_STAT(1)),
233 DMA_STAT, readl(sdev->base + DMA_STAT));
236 static inline void sun6i_dma_dump_chan_regs(struct sun6i_dma_dev *sdev,
237 struct sun6i_pchan *pchan)
239 phys_addr_t reg = virt_to_phys(pchan->base);
241 dev_dbg(sdev->slave.dev, "Chan %d reg: %pa\n"
242 "\t___en(%04x): \t0x%08x\n"
243 "\tpause(%04x): \t0x%08x\n"
244 "\tstart(%04x): \t0x%08x\n"
245 "\t__cfg(%04x): \t0x%08x\n"
246 "\t__src(%04x): \t0x%08x\n"
247 "\t__dst(%04x): \t0x%08x\n"
248 "\tcount(%04x): \t0x%08x\n"
249 "\t_para(%04x): \t0x%08x\n\n",
250 pchan->idx, &reg,
251 DMA_CHAN_ENABLE,
252 readl(pchan->base + DMA_CHAN_ENABLE),
253 DMA_CHAN_PAUSE,
254 readl(pchan->base + DMA_CHAN_PAUSE),
255 DMA_CHAN_LLI_ADDR,
256 readl(pchan->base + DMA_CHAN_LLI_ADDR),
257 DMA_CHAN_CUR_CFG,
258 readl(pchan->base + DMA_CHAN_CUR_CFG),
259 DMA_CHAN_CUR_SRC,
260 readl(pchan->base + DMA_CHAN_CUR_SRC),
261 DMA_CHAN_CUR_DST,
262 readl(pchan->base + DMA_CHAN_CUR_DST),
263 DMA_CHAN_CUR_CNT,
264 readl(pchan->base + DMA_CHAN_CUR_CNT),
265 DMA_CHAN_CUR_PARA,
266 readl(pchan->base + DMA_CHAN_CUR_PARA));
269 static inline s8 convert_burst(u32 maxburst)
271 switch (maxburst) {
272 case 1:
273 return 0;
274 case 4:
275 return 1;
276 case 8:
277 return 2;
278 case 16:
279 return 3;
280 default:
281 return -EINVAL;
285 static inline s8 convert_buswidth(enum dma_slave_buswidth addr_width)
287 return ilog2(addr_width);
290 static void sun6i_enable_clock_autogate_a23(struct sun6i_dma_dev *sdev)
292 writel(SUN8I_DMA_GATE_ENABLE, sdev->base + SUN8I_DMA_GATE);
295 static void sun6i_enable_clock_autogate_h3(struct sun6i_dma_dev *sdev)
297 writel(SUNXI_H3_DMA_GATE_ENABLE, sdev->base + SUNXI_H3_DMA_GATE);
300 static void sun6i_set_burst_length_a31(u32 *p_cfg, s8 src_burst, s8 dst_burst)
302 *p_cfg |= DMA_CHAN_CFG_SRC_BURST_A31(src_burst) |
303 DMA_CHAN_CFG_DST_BURST_A31(dst_burst);
306 static void sun6i_set_burst_length_h3(u32 *p_cfg, s8 src_burst, s8 dst_burst)
308 *p_cfg |= DMA_CHAN_CFG_SRC_BURST_H3(src_burst) |
309 DMA_CHAN_CFG_DST_BURST_H3(dst_burst);
312 static size_t sun6i_get_chan_size(struct sun6i_pchan *pchan)
314 struct sun6i_desc *txd = pchan->desc;
315 struct sun6i_dma_lli *lli;
316 size_t bytes;
317 dma_addr_t pos;
319 pos = readl(pchan->base + DMA_CHAN_LLI_ADDR);
320 bytes = readl(pchan->base + DMA_CHAN_CUR_CNT);
322 if (pos == LLI_LAST_ITEM)
323 return bytes;
325 for (lli = txd->v_lli; lli; lli = lli->v_lli_next) {
326 if (lli->p_lli_next == pos) {
327 for (lli = lli->v_lli_next; lli; lli = lli->v_lli_next)
328 bytes += lli->len;
329 break;
333 return bytes;
336 static void *sun6i_dma_lli_add(struct sun6i_dma_lli *prev,
337 struct sun6i_dma_lli *next,
338 dma_addr_t next_phy,
339 struct sun6i_desc *txd)
341 if ((!prev && !txd) || !next)
342 return NULL;
344 if (!prev) {
345 txd->p_lli = next_phy;
346 txd->v_lli = next;
347 } else {
348 prev->p_lli_next = next_phy;
349 prev->v_lli_next = next;
352 next->p_lli_next = LLI_LAST_ITEM;
353 next->v_lli_next = NULL;
355 return next;
358 static inline void sun6i_dma_dump_lli(struct sun6i_vchan *vchan,
359 struct sun6i_dma_lli *lli)
361 phys_addr_t p_lli = virt_to_phys(lli);
363 dev_dbg(chan2dev(&vchan->vc.chan),
364 "\n\tdesc: p - %pa v - 0x%p\n"
365 "\t\tc - 0x%08x s - 0x%08x d - 0x%08x\n"
366 "\t\tl - 0x%08x p - 0x%08x n - 0x%08x\n",
367 &p_lli, lli,
368 lli->cfg, lli->src, lli->dst,
369 lli->len, lli->para, lli->p_lli_next);
372 static void sun6i_dma_free_desc(struct virt_dma_desc *vd)
374 struct sun6i_desc *txd = to_sun6i_desc(&vd->tx);
375 struct sun6i_dma_dev *sdev = to_sun6i_dma_dev(vd->tx.chan->device);
376 struct sun6i_dma_lli *v_lli, *v_next;
377 dma_addr_t p_lli, p_next;
379 if (unlikely(!txd))
380 return;
382 p_lli = txd->p_lli;
383 v_lli = txd->v_lli;
385 while (v_lli) {
386 v_next = v_lli->v_lli_next;
387 p_next = v_lli->p_lli_next;
389 dma_pool_free(sdev->pool, v_lli, p_lli);
391 v_lli = v_next;
392 p_lli = p_next;
395 kfree(txd);
398 static int sun6i_dma_start_desc(struct sun6i_vchan *vchan)
400 struct sun6i_dma_dev *sdev = to_sun6i_dma_dev(vchan->vc.chan.device);
401 struct virt_dma_desc *desc = vchan_next_desc(&vchan->vc);
402 struct sun6i_pchan *pchan = vchan->phy;
403 u32 irq_val, irq_reg, irq_offset;
405 if (!pchan)
406 return -EAGAIN;
408 if (!desc) {
409 pchan->desc = NULL;
410 pchan->done = NULL;
411 return -EAGAIN;
414 list_del(&desc->node);
416 pchan->desc = to_sun6i_desc(&desc->tx);
417 pchan->done = NULL;
419 sun6i_dma_dump_lli(vchan, pchan->desc->v_lli);
421 irq_reg = pchan->idx / DMA_IRQ_CHAN_NR;
422 irq_offset = pchan->idx % DMA_IRQ_CHAN_NR;
424 vchan->irq_type = vchan->cyclic ? DMA_IRQ_PKG : DMA_IRQ_QUEUE;
426 irq_val = readl(sdev->base + DMA_IRQ_EN(irq_reg));
427 irq_val &= ~((DMA_IRQ_HALF | DMA_IRQ_PKG | DMA_IRQ_QUEUE) <<
428 (irq_offset * DMA_IRQ_CHAN_WIDTH));
429 irq_val |= vchan->irq_type << (irq_offset * DMA_IRQ_CHAN_WIDTH);
430 writel(irq_val, sdev->base + DMA_IRQ_EN(irq_reg));
432 writel(pchan->desc->p_lli, pchan->base + DMA_CHAN_LLI_ADDR);
433 writel(DMA_CHAN_ENABLE_START, pchan->base + DMA_CHAN_ENABLE);
435 sun6i_dma_dump_com_regs(sdev);
436 sun6i_dma_dump_chan_regs(sdev, pchan);
438 return 0;
441 static void sun6i_dma_tasklet(unsigned long data)
443 struct sun6i_dma_dev *sdev = (struct sun6i_dma_dev *)data;
444 struct sun6i_vchan *vchan;
445 struct sun6i_pchan *pchan;
446 unsigned int pchan_alloc = 0;
447 unsigned int pchan_idx;
449 list_for_each_entry(vchan, &sdev->slave.channels, vc.chan.device_node) {
450 spin_lock_irq(&vchan->vc.lock);
452 pchan = vchan->phy;
454 if (pchan && pchan->done) {
455 if (sun6i_dma_start_desc(vchan)) {
457 * No current txd associated with this channel
459 dev_dbg(sdev->slave.dev, "pchan %u: free\n",
460 pchan->idx);
462 /* Mark this channel free */
463 vchan->phy = NULL;
464 pchan->vchan = NULL;
467 spin_unlock_irq(&vchan->vc.lock);
470 spin_lock_irq(&sdev->lock);
471 for (pchan_idx = 0; pchan_idx < sdev->num_pchans; pchan_idx++) {
472 pchan = &sdev->pchans[pchan_idx];
474 if (pchan->vchan || list_empty(&sdev->pending))
475 continue;
477 vchan = list_first_entry(&sdev->pending,
478 struct sun6i_vchan, node);
480 /* Remove from pending channels */
481 list_del_init(&vchan->node);
482 pchan_alloc |= BIT(pchan_idx);
484 /* Mark this channel allocated */
485 pchan->vchan = vchan;
486 vchan->phy = pchan;
487 dev_dbg(sdev->slave.dev, "pchan %u: alloc vchan %p\n",
488 pchan->idx, &vchan->vc);
490 spin_unlock_irq(&sdev->lock);
492 for (pchan_idx = 0; pchan_idx < sdev->num_pchans; pchan_idx++) {
493 if (!(pchan_alloc & BIT(pchan_idx)))
494 continue;
496 pchan = sdev->pchans + pchan_idx;
497 vchan = pchan->vchan;
498 if (vchan) {
499 spin_lock_irq(&vchan->vc.lock);
500 sun6i_dma_start_desc(vchan);
501 spin_unlock_irq(&vchan->vc.lock);
506 static irqreturn_t sun6i_dma_interrupt(int irq, void *dev_id)
508 struct sun6i_dma_dev *sdev = dev_id;
509 struct sun6i_vchan *vchan;
510 struct sun6i_pchan *pchan;
511 int i, j, ret = IRQ_NONE;
512 u32 status;
514 for (i = 0; i < sdev->num_pchans / DMA_IRQ_CHAN_NR; i++) {
515 status = readl(sdev->base + DMA_IRQ_STAT(i));
516 if (!status)
517 continue;
519 dev_dbg(sdev->slave.dev, "DMA irq status %s: 0x%x\n",
520 i ? "high" : "low", status);
522 writel(status, sdev->base + DMA_IRQ_STAT(i));
524 for (j = 0; (j < DMA_IRQ_CHAN_NR) && status; j++) {
525 pchan = sdev->pchans + j;
526 vchan = pchan->vchan;
527 if (vchan && (status & vchan->irq_type)) {
528 if (vchan->cyclic) {
529 vchan_cyclic_callback(&pchan->desc->vd);
530 } else {
531 spin_lock(&vchan->vc.lock);
532 vchan_cookie_complete(&pchan->desc->vd);
533 pchan->done = pchan->desc;
534 spin_unlock(&vchan->vc.lock);
538 status = status >> DMA_IRQ_CHAN_WIDTH;
541 if (!atomic_read(&sdev->tasklet_shutdown))
542 tasklet_schedule(&sdev->task);
543 ret = IRQ_HANDLED;
546 return ret;
549 static int set_config(struct sun6i_dma_dev *sdev,
550 struct dma_slave_config *sconfig,
551 enum dma_transfer_direction direction,
552 u32 *p_cfg)
554 enum dma_slave_buswidth src_addr_width, dst_addr_width;
555 u32 src_maxburst, dst_maxburst;
556 s8 src_width, dst_width, src_burst, dst_burst;
558 src_addr_width = sconfig->src_addr_width;
559 dst_addr_width = sconfig->dst_addr_width;
560 src_maxburst = sconfig->src_maxburst;
561 dst_maxburst = sconfig->dst_maxburst;
563 switch (direction) {
564 case DMA_MEM_TO_DEV:
565 if (src_addr_width == DMA_SLAVE_BUSWIDTH_UNDEFINED)
566 src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
567 src_maxburst = src_maxburst ? src_maxburst : 8;
568 break;
569 case DMA_DEV_TO_MEM:
570 if (dst_addr_width == DMA_SLAVE_BUSWIDTH_UNDEFINED)
571 dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
572 dst_maxburst = dst_maxburst ? dst_maxburst : 8;
573 break;
574 default:
575 return -EINVAL;
578 if (!(BIT(src_addr_width) & sdev->slave.src_addr_widths))
579 return -EINVAL;
580 if (!(BIT(dst_addr_width) & sdev->slave.dst_addr_widths))
581 return -EINVAL;
582 if (!(BIT(src_maxburst) & sdev->cfg->src_burst_lengths))
583 return -EINVAL;
584 if (!(BIT(dst_maxburst) & sdev->cfg->dst_burst_lengths))
585 return -EINVAL;
587 src_width = convert_buswidth(src_addr_width);
588 dst_width = convert_buswidth(dst_addr_width);
589 dst_burst = convert_burst(dst_maxburst);
590 src_burst = convert_burst(src_maxburst);
592 *p_cfg = DMA_CHAN_CFG_SRC_WIDTH(src_width) |
593 DMA_CHAN_CFG_DST_WIDTH(dst_width);
595 sdev->cfg->set_burst_length(p_cfg, src_burst, dst_burst);
597 return 0;
600 static struct dma_async_tx_descriptor *sun6i_dma_prep_dma_memcpy(
601 struct dma_chan *chan, dma_addr_t dest, dma_addr_t src,
602 size_t len, unsigned long flags)
604 struct sun6i_dma_dev *sdev = to_sun6i_dma_dev(chan->device);
605 struct sun6i_vchan *vchan = to_sun6i_vchan(chan);
606 struct sun6i_dma_lli *v_lli;
607 struct sun6i_desc *txd;
608 dma_addr_t p_lli;
609 s8 burst, width;
611 dev_dbg(chan2dev(chan),
612 "%s; chan: %d, dest: %pad, src: %pad, len: %zu. flags: 0x%08lx\n",
613 __func__, vchan->vc.chan.chan_id, &dest, &src, len, flags);
615 if (!len)
616 return NULL;
618 txd = kzalloc(sizeof(*txd), GFP_NOWAIT);
619 if (!txd)
620 return NULL;
622 v_lli = dma_pool_alloc(sdev->pool, GFP_NOWAIT, &p_lli);
623 if (!v_lli) {
624 dev_err(sdev->slave.dev, "Failed to alloc lli memory\n");
625 goto err_txd_free;
628 v_lli->src = src;
629 v_lli->dst = dest;
630 v_lli->len = len;
631 v_lli->para = NORMAL_WAIT;
633 burst = convert_burst(8);
634 width = convert_buswidth(DMA_SLAVE_BUSWIDTH_4_BYTES);
635 v_lli->cfg = DMA_CHAN_CFG_SRC_DRQ(DRQ_SDRAM) |
636 DMA_CHAN_CFG_DST_DRQ(DRQ_SDRAM) |
637 DMA_CHAN_CFG_DST_LINEAR_MODE |
638 DMA_CHAN_CFG_SRC_LINEAR_MODE |
639 DMA_CHAN_CFG_SRC_WIDTH(width) |
640 DMA_CHAN_CFG_DST_WIDTH(width);
642 sdev->cfg->set_burst_length(&v_lli->cfg, burst, burst);
644 sun6i_dma_lli_add(NULL, v_lli, p_lli, txd);
646 sun6i_dma_dump_lli(vchan, v_lli);
648 return vchan_tx_prep(&vchan->vc, &txd->vd, flags);
650 err_txd_free:
651 kfree(txd);
652 return NULL;
655 static struct dma_async_tx_descriptor *sun6i_dma_prep_slave_sg(
656 struct dma_chan *chan, struct scatterlist *sgl,
657 unsigned int sg_len, enum dma_transfer_direction dir,
658 unsigned long flags, void *context)
660 struct sun6i_dma_dev *sdev = to_sun6i_dma_dev(chan->device);
661 struct sun6i_vchan *vchan = to_sun6i_vchan(chan);
662 struct dma_slave_config *sconfig = &vchan->cfg;
663 struct sun6i_dma_lli *v_lli, *prev = NULL;
664 struct sun6i_desc *txd;
665 struct scatterlist *sg;
666 dma_addr_t p_lli;
667 u32 lli_cfg;
668 int i, ret;
670 if (!sgl)
671 return NULL;
673 ret = set_config(sdev, sconfig, dir, &lli_cfg);
674 if (ret) {
675 dev_err(chan2dev(chan), "Invalid DMA configuration\n");
676 return NULL;
679 txd = kzalloc(sizeof(*txd), GFP_NOWAIT);
680 if (!txd)
681 return NULL;
683 for_each_sg(sgl, sg, sg_len, i) {
684 v_lli = dma_pool_alloc(sdev->pool, GFP_NOWAIT, &p_lli);
685 if (!v_lli)
686 goto err_lli_free;
688 v_lli->len = sg_dma_len(sg);
689 v_lli->para = NORMAL_WAIT;
691 if (dir == DMA_MEM_TO_DEV) {
692 v_lli->src = sg_dma_address(sg);
693 v_lli->dst = sconfig->dst_addr;
694 v_lli->cfg = lli_cfg |
695 DMA_CHAN_CFG_DST_IO_MODE |
696 DMA_CHAN_CFG_SRC_LINEAR_MODE |
697 DMA_CHAN_CFG_SRC_DRQ(DRQ_SDRAM) |
698 DMA_CHAN_CFG_DST_DRQ(vchan->port);
700 dev_dbg(chan2dev(chan),
701 "%s; chan: %d, dest: %pad, src: %pad, len: %u. flags: 0x%08lx\n",
702 __func__, vchan->vc.chan.chan_id,
703 &sconfig->dst_addr, &sg_dma_address(sg),
704 sg_dma_len(sg), flags);
706 } else {
707 v_lli->src = sconfig->src_addr;
708 v_lli->dst = sg_dma_address(sg);
709 v_lli->cfg = lli_cfg |
710 DMA_CHAN_CFG_DST_LINEAR_MODE |
711 DMA_CHAN_CFG_SRC_IO_MODE |
712 DMA_CHAN_CFG_DST_DRQ(DRQ_SDRAM) |
713 DMA_CHAN_CFG_SRC_DRQ(vchan->port);
715 dev_dbg(chan2dev(chan),
716 "%s; chan: %d, dest: %pad, src: %pad, len: %u. flags: 0x%08lx\n",
717 __func__, vchan->vc.chan.chan_id,
718 &sg_dma_address(sg), &sconfig->src_addr,
719 sg_dma_len(sg), flags);
722 prev = sun6i_dma_lli_add(prev, v_lli, p_lli, txd);
725 dev_dbg(chan2dev(chan), "First: %pad\n", &txd->p_lli);
726 for (prev = txd->v_lli; prev; prev = prev->v_lli_next)
727 sun6i_dma_dump_lli(vchan, prev);
729 return vchan_tx_prep(&vchan->vc, &txd->vd, flags);
731 err_lli_free:
732 for (prev = txd->v_lli; prev; prev = prev->v_lli_next)
733 dma_pool_free(sdev->pool, prev, virt_to_phys(prev));
734 kfree(txd);
735 return NULL;
738 static struct dma_async_tx_descriptor *sun6i_dma_prep_dma_cyclic(
739 struct dma_chan *chan,
740 dma_addr_t buf_addr,
741 size_t buf_len,
742 size_t period_len,
743 enum dma_transfer_direction dir,
744 unsigned long flags)
746 struct sun6i_dma_dev *sdev = to_sun6i_dma_dev(chan->device);
747 struct sun6i_vchan *vchan = to_sun6i_vchan(chan);
748 struct dma_slave_config *sconfig = &vchan->cfg;
749 struct sun6i_dma_lli *v_lli, *prev = NULL;
750 struct sun6i_desc *txd;
751 dma_addr_t p_lli;
752 u32 lli_cfg;
753 unsigned int i, periods = buf_len / period_len;
754 int ret;
756 ret = set_config(sdev, sconfig, dir, &lli_cfg);
757 if (ret) {
758 dev_err(chan2dev(chan), "Invalid DMA configuration\n");
759 return NULL;
762 txd = kzalloc(sizeof(*txd), GFP_NOWAIT);
763 if (!txd)
764 return NULL;
766 for (i = 0; i < periods; i++) {
767 v_lli = dma_pool_alloc(sdev->pool, GFP_NOWAIT, &p_lli);
768 if (!v_lli) {
769 dev_err(sdev->slave.dev, "Failed to alloc lli memory\n");
770 goto err_lli_free;
773 v_lli->len = period_len;
774 v_lli->para = NORMAL_WAIT;
776 if (dir == DMA_MEM_TO_DEV) {
777 v_lli->src = buf_addr + period_len * i;
778 v_lli->dst = sconfig->dst_addr;
779 v_lli->cfg = lli_cfg |
780 DMA_CHAN_CFG_DST_IO_MODE |
781 DMA_CHAN_CFG_SRC_LINEAR_MODE |
782 DMA_CHAN_CFG_SRC_DRQ(DRQ_SDRAM) |
783 DMA_CHAN_CFG_DST_DRQ(vchan->port);
784 } else {
785 v_lli->src = sconfig->src_addr;
786 v_lli->dst = buf_addr + period_len * i;
787 v_lli->cfg = lli_cfg |
788 DMA_CHAN_CFG_DST_LINEAR_MODE |
789 DMA_CHAN_CFG_SRC_IO_MODE |
790 DMA_CHAN_CFG_DST_DRQ(DRQ_SDRAM) |
791 DMA_CHAN_CFG_SRC_DRQ(vchan->port);
794 prev = sun6i_dma_lli_add(prev, v_lli, p_lli, txd);
797 prev->p_lli_next = txd->p_lli; /* cyclic list */
799 vchan->cyclic = true;
801 return vchan_tx_prep(&vchan->vc, &txd->vd, flags);
803 err_lli_free:
804 for (prev = txd->v_lli; prev; prev = prev->v_lli_next)
805 dma_pool_free(sdev->pool, prev, virt_to_phys(prev));
806 kfree(txd);
807 return NULL;
810 static int sun6i_dma_config(struct dma_chan *chan,
811 struct dma_slave_config *config)
813 struct sun6i_vchan *vchan = to_sun6i_vchan(chan);
815 memcpy(&vchan->cfg, config, sizeof(*config));
817 return 0;
820 static int sun6i_dma_pause(struct dma_chan *chan)
822 struct sun6i_dma_dev *sdev = to_sun6i_dma_dev(chan->device);
823 struct sun6i_vchan *vchan = to_sun6i_vchan(chan);
824 struct sun6i_pchan *pchan = vchan->phy;
826 dev_dbg(chan2dev(chan), "vchan %p: pause\n", &vchan->vc);
828 if (pchan) {
829 writel(DMA_CHAN_PAUSE_PAUSE,
830 pchan->base + DMA_CHAN_PAUSE);
831 } else {
832 spin_lock(&sdev->lock);
833 list_del_init(&vchan->node);
834 spin_unlock(&sdev->lock);
837 return 0;
840 static int sun6i_dma_resume(struct dma_chan *chan)
842 struct sun6i_dma_dev *sdev = to_sun6i_dma_dev(chan->device);
843 struct sun6i_vchan *vchan = to_sun6i_vchan(chan);
844 struct sun6i_pchan *pchan = vchan->phy;
845 unsigned long flags;
847 dev_dbg(chan2dev(chan), "vchan %p: resume\n", &vchan->vc);
849 spin_lock_irqsave(&vchan->vc.lock, flags);
851 if (pchan) {
852 writel(DMA_CHAN_PAUSE_RESUME,
853 pchan->base + DMA_CHAN_PAUSE);
854 } else if (!list_empty(&vchan->vc.desc_issued)) {
855 spin_lock(&sdev->lock);
856 list_add_tail(&vchan->node, &sdev->pending);
857 spin_unlock(&sdev->lock);
860 spin_unlock_irqrestore(&vchan->vc.lock, flags);
862 return 0;
865 static int sun6i_dma_terminate_all(struct dma_chan *chan)
867 struct sun6i_dma_dev *sdev = to_sun6i_dma_dev(chan->device);
868 struct sun6i_vchan *vchan = to_sun6i_vchan(chan);
869 struct sun6i_pchan *pchan = vchan->phy;
870 unsigned long flags;
871 LIST_HEAD(head);
873 spin_lock(&sdev->lock);
874 list_del_init(&vchan->node);
875 spin_unlock(&sdev->lock);
877 spin_lock_irqsave(&vchan->vc.lock, flags);
879 if (vchan->cyclic) {
880 vchan->cyclic = false;
881 if (pchan && pchan->desc) {
882 struct virt_dma_desc *vd = &pchan->desc->vd;
883 struct virt_dma_chan *vc = &vchan->vc;
885 list_add_tail(&vd->node, &vc->desc_completed);
889 vchan_get_all_descriptors(&vchan->vc, &head);
891 if (pchan) {
892 writel(DMA_CHAN_ENABLE_STOP, pchan->base + DMA_CHAN_ENABLE);
893 writel(DMA_CHAN_PAUSE_RESUME, pchan->base + DMA_CHAN_PAUSE);
895 vchan->phy = NULL;
896 pchan->vchan = NULL;
897 pchan->desc = NULL;
898 pchan->done = NULL;
901 spin_unlock_irqrestore(&vchan->vc.lock, flags);
903 vchan_dma_desc_free_list(&vchan->vc, &head);
905 return 0;
908 static enum dma_status sun6i_dma_tx_status(struct dma_chan *chan,
909 dma_cookie_t cookie,
910 struct dma_tx_state *state)
912 struct sun6i_vchan *vchan = to_sun6i_vchan(chan);
913 struct sun6i_pchan *pchan = vchan->phy;
914 struct sun6i_dma_lli *lli;
915 struct virt_dma_desc *vd;
916 struct sun6i_desc *txd;
917 enum dma_status ret;
918 unsigned long flags;
919 size_t bytes = 0;
921 ret = dma_cookie_status(chan, cookie, state);
922 if (ret == DMA_COMPLETE || !state)
923 return ret;
925 spin_lock_irqsave(&vchan->vc.lock, flags);
927 vd = vchan_find_desc(&vchan->vc, cookie);
928 txd = to_sun6i_desc(&vd->tx);
930 if (vd) {
931 for (lli = txd->v_lli; lli != NULL; lli = lli->v_lli_next)
932 bytes += lli->len;
933 } else if (!pchan || !pchan->desc) {
934 bytes = 0;
935 } else {
936 bytes = sun6i_get_chan_size(pchan);
939 spin_unlock_irqrestore(&vchan->vc.lock, flags);
941 dma_set_residue(state, bytes);
943 return ret;
946 static void sun6i_dma_issue_pending(struct dma_chan *chan)
948 struct sun6i_dma_dev *sdev = to_sun6i_dma_dev(chan->device);
949 struct sun6i_vchan *vchan = to_sun6i_vchan(chan);
950 unsigned long flags;
952 spin_lock_irqsave(&vchan->vc.lock, flags);
954 if (vchan_issue_pending(&vchan->vc)) {
955 spin_lock(&sdev->lock);
957 if (!vchan->phy && list_empty(&vchan->node)) {
958 list_add_tail(&vchan->node, &sdev->pending);
959 tasklet_schedule(&sdev->task);
960 dev_dbg(chan2dev(chan), "vchan %p: issued\n",
961 &vchan->vc);
964 spin_unlock(&sdev->lock);
965 } else {
966 dev_dbg(chan2dev(chan), "vchan %p: nothing to issue\n",
967 &vchan->vc);
970 spin_unlock_irqrestore(&vchan->vc.lock, flags);
973 static void sun6i_dma_free_chan_resources(struct dma_chan *chan)
975 struct sun6i_dma_dev *sdev = to_sun6i_dma_dev(chan->device);
976 struct sun6i_vchan *vchan = to_sun6i_vchan(chan);
977 unsigned long flags;
979 spin_lock_irqsave(&sdev->lock, flags);
980 list_del_init(&vchan->node);
981 spin_unlock_irqrestore(&sdev->lock, flags);
983 vchan_free_chan_resources(&vchan->vc);
986 static struct dma_chan *sun6i_dma_of_xlate(struct of_phandle_args *dma_spec,
987 struct of_dma *ofdma)
989 struct sun6i_dma_dev *sdev = ofdma->of_dma_data;
990 struct sun6i_vchan *vchan;
991 struct dma_chan *chan;
992 u8 port = dma_spec->args[0];
994 if (port > sdev->max_request)
995 return NULL;
997 chan = dma_get_any_slave_channel(&sdev->slave);
998 if (!chan)
999 return NULL;
1001 vchan = to_sun6i_vchan(chan);
1002 vchan->port = port;
1004 return chan;
1007 static inline void sun6i_kill_tasklet(struct sun6i_dma_dev *sdev)
1009 /* Disable all interrupts from DMA */
1010 writel(0, sdev->base + DMA_IRQ_EN(0));
1011 writel(0, sdev->base + DMA_IRQ_EN(1));
1013 /* Prevent spurious interrupts from scheduling the tasklet */
1014 atomic_inc(&sdev->tasklet_shutdown);
1016 /* Make sure we won't have any further interrupts */
1017 devm_free_irq(sdev->slave.dev, sdev->irq, sdev);
1019 /* Actually prevent the tasklet from being scheduled */
1020 tasklet_kill(&sdev->task);
1023 static inline void sun6i_dma_free(struct sun6i_dma_dev *sdev)
1025 int i;
1027 for (i = 0; i < sdev->num_vchans; i++) {
1028 struct sun6i_vchan *vchan = &sdev->vchans[i];
1030 list_del(&vchan->vc.chan.device_node);
1031 tasklet_kill(&vchan->vc.task);
1036 * For A31:
1038 * There's 16 physical channels that can work in parallel.
1040 * However we have 30 different endpoints for our requests.
1042 * Since the channels are able to handle only an unidirectional
1043 * transfer, we need to allocate more virtual channels so that
1044 * everyone can grab one channel.
1046 * Some devices can't work in both direction (mostly because it
1047 * wouldn't make sense), so we have a bit fewer virtual channels than
1048 * 2 channels per endpoints.
1051 static struct sun6i_dma_config sun6i_a31_dma_cfg = {
1052 .nr_max_channels = 16,
1053 .nr_max_requests = 30,
1054 .nr_max_vchans = 53,
1055 .set_burst_length = sun6i_set_burst_length_a31,
1056 .src_burst_lengths = BIT(1) | BIT(8),
1057 .dst_burst_lengths = BIT(1) | BIT(8),
1058 .src_addr_widths = BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) |
1059 BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) |
1060 BIT(DMA_SLAVE_BUSWIDTH_4_BYTES),
1061 .dst_addr_widths = BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) |
1062 BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) |
1063 BIT(DMA_SLAVE_BUSWIDTH_4_BYTES),
1067 * The A23 only has 8 physical channels, a maximum DRQ port id of 24,
1068 * and a total of 37 usable source and destination endpoints.
1071 static struct sun6i_dma_config sun8i_a23_dma_cfg = {
1072 .nr_max_channels = 8,
1073 .nr_max_requests = 24,
1074 .nr_max_vchans = 37,
1075 .clock_autogate_enable = sun6i_enable_clock_autogate_a23,
1076 .set_burst_length = sun6i_set_burst_length_a31,
1077 .src_burst_lengths = BIT(1) | BIT(8),
1078 .dst_burst_lengths = BIT(1) | BIT(8),
1079 .src_addr_widths = BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) |
1080 BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) |
1081 BIT(DMA_SLAVE_BUSWIDTH_4_BYTES),
1082 .dst_addr_widths = BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) |
1083 BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) |
1084 BIT(DMA_SLAVE_BUSWIDTH_4_BYTES),
1087 static struct sun6i_dma_config sun8i_a83t_dma_cfg = {
1088 .nr_max_channels = 8,
1089 .nr_max_requests = 28,
1090 .nr_max_vchans = 39,
1091 .clock_autogate_enable = sun6i_enable_clock_autogate_a23,
1092 .set_burst_length = sun6i_set_burst_length_a31,
1093 .src_burst_lengths = BIT(1) | BIT(8),
1094 .dst_burst_lengths = BIT(1) | BIT(8),
1095 .src_addr_widths = BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) |
1096 BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) |
1097 BIT(DMA_SLAVE_BUSWIDTH_4_BYTES),
1098 .dst_addr_widths = BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) |
1099 BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) |
1100 BIT(DMA_SLAVE_BUSWIDTH_4_BYTES),
1104 * The H3 has 12 physical channels, a maximum DRQ port id of 27,
1105 * and a total of 34 usable source and destination endpoints.
1106 * It also supports additional burst lengths and bus widths,
1107 * and the burst length fields have different offsets.
1110 static struct sun6i_dma_config sun8i_h3_dma_cfg = {
1111 .nr_max_channels = 12,
1112 .nr_max_requests = 27,
1113 .nr_max_vchans = 34,
1114 .clock_autogate_enable = sun6i_enable_clock_autogate_h3,
1115 .set_burst_length = sun6i_set_burst_length_h3,
1116 .src_burst_lengths = BIT(1) | BIT(4) | BIT(8) | BIT(16),
1117 .dst_burst_lengths = BIT(1) | BIT(4) | BIT(8) | BIT(16),
1118 .src_addr_widths = BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) |
1119 BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) |
1120 BIT(DMA_SLAVE_BUSWIDTH_4_BYTES) |
1121 BIT(DMA_SLAVE_BUSWIDTH_8_BYTES),
1122 .dst_addr_widths = BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) |
1123 BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) |
1124 BIT(DMA_SLAVE_BUSWIDTH_4_BYTES) |
1125 BIT(DMA_SLAVE_BUSWIDTH_8_BYTES),
1129 * The A64 binding uses the number of dma channels from the
1130 * device tree node.
1132 static struct sun6i_dma_config sun50i_a64_dma_cfg = {
1133 .clock_autogate_enable = sun6i_enable_clock_autogate_h3,
1134 .set_burst_length = sun6i_set_burst_length_h3,
1135 .src_burst_lengths = BIT(1) | BIT(4) | BIT(8) | BIT(16),
1136 .dst_burst_lengths = BIT(1) | BIT(4) | BIT(8) | BIT(16),
1137 .src_addr_widths = BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) |
1138 BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) |
1139 BIT(DMA_SLAVE_BUSWIDTH_4_BYTES) |
1140 BIT(DMA_SLAVE_BUSWIDTH_8_BYTES),
1141 .dst_addr_widths = BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) |
1142 BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) |
1143 BIT(DMA_SLAVE_BUSWIDTH_4_BYTES) |
1144 BIT(DMA_SLAVE_BUSWIDTH_8_BYTES),
1148 * The V3s have only 8 physical channels, a maximum DRQ port id of 23,
1149 * and a total of 24 usable source and destination endpoints.
1152 static struct sun6i_dma_config sun8i_v3s_dma_cfg = {
1153 .nr_max_channels = 8,
1154 .nr_max_requests = 23,
1155 .nr_max_vchans = 24,
1156 .clock_autogate_enable = sun6i_enable_clock_autogate_a23,
1157 .set_burst_length = sun6i_set_burst_length_a31,
1158 .src_burst_lengths = BIT(1) | BIT(8),
1159 .dst_burst_lengths = BIT(1) | BIT(8),
1160 .src_addr_widths = BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) |
1161 BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) |
1162 BIT(DMA_SLAVE_BUSWIDTH_4_BYTES),
1163 .dst_addr_widths = BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) |
1164 BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) |
1165 BIT(DMA_SLAVE_BUSWIDTH_4_BYTES),
1168 static const struct of_device_id sun6i_dma_match[] = {
1169 { .compatible = "allwinner,sun6i-a31-dma", .data = &sun6i_a31_dma_cfg },
1170 { .compatible = "allwinner,sun8i-a23-dma", .data = &sun8i_a23_dma_cfg },
1171 { .compatible = "allwinner,sun8i-a83t-dma", .data = &sun8i_a83t_dma_cfg },
1172 { .compatible = "allwinner,sun8i-h3-dma", .data = &sun8i_h3_dma_cfg },
1173 { .compatible = "allwinner,sun8i-v3s-dma", .data = &sun8i_v3s_dma_cfg },
1174 { .compatible = "allwinner,sun50i-a64-dma", .data = &sun50i_a64_dma_cfg },
1175 { /* sentinel */ }
1177 MODULE_DEVICE_TABLE(of, sun6i_dma_match);
1179 static int sun6i_dma_probe(struct platform_device *pdev)
1181 struct device_node *np = pdev->dev.of_node;
1182 struct sun6i_dma_dev *sdc;
1183 struct resource *res;
1184 int ret, i;
1186 sdc = devm_kzalloc(&pdev->dev, sizeof(*sdc), GFP_KERNEL);
1187 if (!sdc)
1188 return -ENOMEM;
1190 sdc->cfg = of_device_get_match_data(&pdev->dev);
1191 if (!sdc->cfg)
1192 return -ENODEV;
1194 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1195 sdc->base = devm_ioremap_resource(&pdev->dev, res);
1196 if (IS_ERR(sdc->base))
1197 return PTR_ERR(sdc->base);
1199 sdc->irq = platform_get_irq(pdev, 0);
1200 if (sdc->irq < 0) {
1201 dev_err(&pdev->dev, "Cannot claim IRQ\n");
1202 return sdc->irq;
1205 sdc->clk = devm_clk_get(&pdev->dev, NULL);
1206 if (IS_ERR(sdc->clk)) {
1207 dev_err(&pdev->dev, "No clock specified\n");
1208 return PTR_ERR(sdc->clk);
1211 sdc->rstc = devm_reset_control_get(&pdev->dev, NULL);
1212 if (IS_ERR(sdc->rstc)) {
1213 dev_err(&pdev->dev, "No reset controller specified\n");
1214 return PTR_ERR(sdc->rstc);
1217 sdc->pool = dmam_pool_create(dev_name(&pdev->dev), &pdev->dev,
1218 sizeof(struct sun6i_dma_lli), 4, 0);
1219 if (!sdc->pool) {
1220 dev_err(&pdev->dev, "No memory for descriptors dma pool\n");
1221 return -ENOMEM;
1224 platform_set_drvdata(pdev, sdc);
1225 INIT_LIST_HEAD(&sdc->pending);
1226 spin_lock_init(&sdc->lock);
1228 dma_cap_set(DMA_PRIVATE, sdc->slave.cap_mask);
1229 dma_cap_set(DMA_MEMCPY, sdc->slave.cap_mask);
1230 dma_cap_set(DMA_SLAVE, sdc->slave.cap_mask);
1231 dma_cap_set(DMA_CYCLIC, sdc->slave.cap_mask);
1233 INIT_LIST_HEAD(&sdc->slave.channels);
1234 sdc->slave.device_free_chan_resources = sun6i_dma_free_chan_resources;
1235 sdc->slave.device_tx_status = sun6i_dma_tx_status;
1236 sdc->slave.device_issue_pending = sun6i_dma_issue_pending;
1237 sdc->slave.device_prep_slave_sg = sun6i_dma_prep_slave_sg;
1238 sdc->slave.device_prep_dma_memcpy = sun6i_dma_prep_dma_memcpy;
1239 sdc->slave.device_prep_dma_cyclic = sun6i_dma_prep_dma_cyclic;
1240 sdc->slave.copy_align = DMAENGINE_ALIGN_4_BYTES;
1241 sdc->slave.device_config = sun6i_dma_config;
1242 sdc->slave.device_pause = sun6i_dma_pause;
1243 sdc->slave.device_resume = sun6i_dma_resume;
1244 sdc->slave.device_terminate_all = sun6i_dma_terminate_all;
1245 sdc->slave.src_addr_widths = sdc->cfg->src_addr_widths;
1246 sdc->slave.dst_addr_widths = sdc->cfg->dst_addr_widths;
1247 sdc->slave.directions = BIT(DMA_DEV_TO_MEM) |
1248 BIT(DMA_MEM_TO_DEV);
1249 sdc->slave.residue_granularity = DMA_RESIDUE_GRANULARITY_BURST;
1250 sdc->slave.dev = &pdev->dev;
1252 sdc->num_pchans = sdc->cfg->nr_max_channels;
1253 sdc->num_vchans = sdc->cfg->nr_max_vchans;
1254 sdc->max_request = sdc->cfg->nr_max_requests;
1256 ret = of_property_read_u32(np, "dma-channels", &sdc->num_pchans);
1257 if (ret && !sdc->num_pchans) {
1258 dev_err(&pdev->dev, "Can't get dma-channels.\n");
1259 return ret;
1262 ret = of_property_read_u32(np, "dma-requests", &sdc->max_request);
1263 if (ret && !sdc->max_request) {
1264 dev_info(&pdev->dev, "Missing dma-requests, using %u.\n",
1265 DMA_CHAN_MAX_DRQ);
1266 sdc->max_request = DMA_CHAN_MAX_DRQ;
1270 * If the number of vchans is not specified, derive it from the
1271 * highest port number, at most one channel per port and direction.
1273 if (!sdc->num_vchans)
1274 sdc->num_vchans = 2 * (sdc->max_request + 1);
1276 sdc->pchans = devm_kcalloc(&pdev->dev, sdc->num_pchans,
1277 sizeof(struct sun6i_pchan), GFP_KERNEL);
1278 if (!sdc->pchans)
1279 return -ENOMEM;
1281 sdc->vchans = devm_kcalloc(&pdev->dev, sdc->num_vchans,
1282 sizeof(struct sun6i_vchan), GFP_KERNEL);
1283 if (!sdc->vchans)
1284 return -ENOMEM;
1286 tasklet_init(&sdc->task, sun6i_dma_tasklet, (unsigned long)sdc);
1288 for (i = 0; i < sdc->num_pchans; i++) {
1289 struct sun6i_pchan *pchan = &sdc->pchans[i];
1291 pchan->idx = i;
1292 pchan->base = sdc->base + 0x100 + i * 0x40;
1295 for (i = 0; i < sdc->num_vchans; i++) {
1296 struct sun6i_vchan *vchan = &sdc->vchans[i];
1298 INIT_LIST_HEAD(&vchan->node);
1299 vchan->vc.desc_free = sun6i_dma_free_desc;
1300 vchan_init(&vchan->vc, &sdc->slave);
1303 ret = reset_control_deassert(sdc->rstc);
1304 if (ret) {
1305 dev_err(&pdev->dev, "Couldn't deassert the device from reset\n");
1306 goto err_chan_free;
1309 ret = clk_prepare_enable(sdc->clk);
1310 if (ret) {
1311 dev_err(&pdev->dev, "Couldn't enable the clock\n");
1312 goto err_reset_assert;
1315 ret = devm_request_irq(&pdev->dev, sdc->irq, sun6i_dma_interrupt, 0,
1316 dev_name(&pdev->dev), sdc);
1317 if (ret) {
1318 dev_err(&pdev->dev, "Cannot request IRQ\n");
1319 goto err_clk_disable;
1322 ret = dma_async_device_register(&sdc->slave);
1323 if (ret) {
1324 dev_warn(&pdev->dev, "Failed to register DMA engine device\n");
1325 goto err_irq_disable;
1328 ret = of_dma_controller_register(pdev->dev.of_node, sun6i_dma_of_xlate,
1329 sdc);
1330 if (ret) {
1331 dev_err(&pdev->dev, "of_dma_controller_register failed\n");
1332 goto err_dma_unregister;
1335 if (sdc->cfg->clock_autogate_enable)
1336 sdc->cfg->clock_autogate_enable(sdc);
1338 return 0;
1340 err_dma_unregister:
1341 dma_async_device_unregister(&sdc->slave);
1342 err_irq_disable:
1343 sun6i_kill_tasklet(sdc);
1344 err_clk_disable:
1345 clk_disable_unprepare(sdc->clk);
1346 err_reset_assert:
1347 reset_control_assert(sdc->rstc);
1348 err_chan_free:
1349 sun6i_dma_free(sdc);
1350 return ret;
1353 static int sun6i_dma_remove(struct platform_device *pdev)
1355 struct sun6i_dma_dev *sdc = platform_get_drvdata(pdev);
1357 of_dma_controller_free(pdev->dev.of_node);
1358 dma_async_device_unregister(&sdc->slave);
1360 sun6i_kill_tasklet(sdc);
1362 clk_disable_unprepare(sdc->clk);
1363 reset_control_assert(sdc->rstc);
1365 sun6i_dma_free(sdc);
1367 return 0;
1370 static struct platform_driver sun6i_dma_driver = {
1371 .probe = sun6i_dma_probe,
1372 .remove = sun6i_dma_remove,
1373 .driver = {
1374 .name = "sun6i-dma",
1375 .of_match_table = sun6i_dma_match,
1378 module_platform_driver(sun6i_dma_driver);
1380 MODULE_DESCRIPTION("Allwinner A31 DMA Controller Driver");
1381 MODULE_AUTHOR("Sugar <shuge@allwinnertech.com>");
1382 MODULE_AUTHOR("Maxime Ripard <maxime.ripard@free-electrons.com>");
1383 MODULE_LICENSE("GPL");