Linux 4.16.11
[linux/fpc-iii.git] / drivers / edac / altera_edac.c
blob11d6419788c2d45eb467c3fb53614236e112d248
1 /*
2 * Copyright Altera Corporation (C) 2014-2016. All rights reserved.
3 * Copyright 2011-2012 Calxeda, Inc.
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms and conditions of the GNU General Public License,
7 * version 2, as published by the Free Software Foundation.
9 * This program is distributed in the hope it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
12 * more details.
14 * You should have received a copy of the GNU General Public License along with
15 * this program. If not, see <http://www.gnu.org/licenses/>.
17 * Adapted from the highbank_mc_edac driver.
20 #include <asm/cacheflush.h>
21 #include <linux/ctype.h>
22 #include <linux/delay.h>
23 #include <linux/edac.h>
24 #include <linux/genalloc.h>
25 #include <linux/interrupt.h>
26 #include <linux/irqchip/chained_irq.h>
27 #include <linux/kernel.h>
28 #include <linux/mfd/syscon.h>
29 #include <linux/of_address.h>
30 #include <linux/of_irq.h>
31 #include <linux/of_platform.h>
32 #include <linux/platform_device.h>
33 #include <linux/regmap.h>
34 #include <linux/types.h>
35 #include <linux/uaccess.h>
37 #include "altera_edac.h"
38 #include "edac_module.h"
40 #define EDAC_MOD_STR "altera_edac"
41 #define EDAC_DEVICE "Altera"
43 static const struct altr_sdram_prv_data c5_data = {
44 .ecc_ctrl_offset = CV_CTLCFG_OFST,
45 .ecc_ctl_en_mask = CV_CTLCFG_ECC_AUTO_EN,
46 .ecc_stat_offset = CV_DRAMSTS_OFST,
47 .ecc_stat_ce_mask = CV_DRAMSTS_SBEERR,
48 .ecc_stat_ue_mask = CV_DRAMSTS_DBEERR,
49 .ecc_saddr_offset = CV_ERRADDR_OFST,
50 .ecc_daddr_offset = CV_ERRADDR_OFST,
51 .ecc_cecnt_offset = CV_SBECOUNT_OFST,
52 .ecc_uecnt_offset = CV_DBECOUNT_OFST,
53 .ecc_irq_en_offset = CV_DRAMINTR_OFST,
54 .ecc_irq_en_mask = CV_DRAMINTR_INTREN,
55 .ecc_irq_clr_offset = CV_DRAMINTR_OFST,
56 .ecc_irq_clr_mask = (CV_DRAMINTR_INTRCLR | CV_DRAMINTR_INTREN),
57 .ecc_cnt_rst_offset = CV_DRAMINTR_OFST,
58 .ecc_cnt_rst_mask = CV_DRAMINTR_INTRCLR,
59 .ce_ue_trgr_offset = CV_CTLCFG_OFST,
60 .ce_set_mask = CV_CTLCFG_GEN_SB_ERR,
61 .ue_set_mask = CV_CTLCFG_GEN_DB_ERR,
64 static const struct altr_sdram_prv_data a10_data = {
65 .ecc_ctrl_offset = A10_ECCCTRL1_OFST,
66 .ecc_ctl_en_mask = A10_ECCCTRL1_ECC_EN,
67 .ecc_stat_offset = A10_INTSTAT_OFST,
68 .ecc_stat_ce_mask = A10_INTSTAT_SBEERR,
69 .ecc_stat_ue_mask = A10_INTSTAT_DBEERR,
70 .ecc_saddr_offset = A10_SERRADDR_OFST,
71 .ecc_daddr_offset = A10_DERRADDR_OFST,
72 .ecc_irq_en_offset = A10_ERRINTEN_OFST,
73 .ecc_irq_en_mask = A10_ECC_IRQ_EN_MASK,
74 .ecc_irq_clr_offset = A10_INTSTAT_OFST,
75 .ecc_irq_clr_mask = (A10_INTSTAT_SBEERR | A10_INTSTAT_DBEERR),
76 .ecc_cnt_rst_offset = A10_ECCCTRL1_OFST,
77 .ecc_cnt_rst_mask = A10_ECC_CNT_RESET_MASK,
78 .ce_ue_trgr_offset = A10_DIAGINTTEST_OFST,
79 .ce_set_mask = A10_DIAGINT_TSERRA_MASK,
80 .ue_set_mask = A10_DIAGINT_TDERRA_MASK,
83 /*********************** EDAC Memory Controller Functions ****************/
85 /* The SDRAM controller uses the EDAC Memory Controller framework. */
87 static irqreturn_t altr_sdram_mc_err_handler(int irq, void *dev_id)
89 struct mem_ctl_info *mci = dev_id;
90 struct altr_sdram_mc_data *drvdata = mci->pvt_info;
91 const struct altr_sdram_prv_data *priv = drvdata->data;
92 u32 status, err_count = 1, err_addr;
94 regmap_read(drvdata->mc_vbase, priv->ecc_stat_offset, &status);
96 if (status & priv->ecc_stat_ue_mask) {
97 regmap_read(drvdata->mc_vbase, priv->ecc_daddr_offset,
98 &err_addr);
99 if (priv->ecc_uecnt_offset)
100 regmap_read(drvdata->mc_vbase, priv->ecc_uecnt_offset,
101 &err_count);
102 panic("\nEDAC: [%d Uncorrectable errors @ 0x%08X]\n",
103 err_count, err_addr);
105 if (status & priv->ecc_stat_ce_mask) {
106 regmap_read(drvdata->mc_vbase, priv->ecc_saddr_offset,
107 &err_addr);
108 if (priv->ecc_uecnt_offset)
109 regmap_read(drvdata->mc_vbase, priv->ecc_cecnt_offset,
110 &err_count);
111 edac_mc_handle_error(HW_EVENT_ERR_CORRECTED, mci, err_count,
112 err_addr >> PAGE_SHIFT,
113 err_addr & ~PAGE_MASK, 0,
114 0, 0, -1, mci->ctl_name, "");
115 /* Clear IRQ to resume */
116 regmap_write(drvdata->mc_vbase, priv->ecc_irq_clr_offset,
117 priv->ecc_irq_clr_mask);
119 return IRQ_HANDLED;
121 return IRQ_NONE;
124 static ssize_t altr_sdr_mc_err_inject_write(struct file *file,
125 const char __user *data,
126 size_t count, loff_t *ppos)
128 struct mem_ctl_info *mci = file->private_data;
129 struct altr_sdram_mc_data *drvdata = mci->pvt_info;
130 const struct altr_sdram_prv_data *priv = drvdata->data;
131 u32 *ptemp;
132 dma_addr_t dma_handle;
133 u32 reg, read_reg;
135 ptemp = dma_alloc_coherent(mci->pdev, 16, &dma_handle, GFP_KERNEL);
136 if (!ptemp) {
137 dma_free_coherent(mci->pdev, 16, ptemp, dma_handle);
138 edac_printk(KERN_ERR, EDAC_MC,
139 "Inject: Buffer Allocation error\n");
140 return -ENOMEM;
143 regmap_read(drvdata->mc_vbase, priv->ce_ue_trgr_offset,
144 &read_reg);
145 read_reg &= ~(priv->ce_set_mask | priv->ue_set_mask);
147 /* Error are injected by writing a word while the SBE or DBE
148 * bit in the CTLCFG register is set. Reading the word will
149 * trigger the SBE or DBE error and the corresponding IRQ.
151 if (count == 3) {
152 edac_printk(KERN_ALERT, EDAC_MC,
153 "Inject Double bit error\n");
154 local_irq_disable();
155 regmap_write(drvdata->mc_vbase, priv->ce_ue_trgr_offset,
156 (read_reg | priv->ue_set_mask));
157 local_irq_enable();
158 } else {
159 edac_printk(KERN_ALERT, EDAC_MC,
160 "Inject Single bit error\n");
161 local_irq_disable();
162 regmap_write(drvdata->mc_vbase, priv->ce_ue_trgr_offset,
163 (read_reg | priv->ce_set_mask));
164 local_irq_enable();
167 ptemp[0] = 0x5A5A5A5A;
168 ptemp[1] = 0xA5A5A5A5;
170 /* Clear the error injection bits */
171 regmap_write(drvdata->mc_vbase, priv->ce_ue_trgr_offset, read_reg);
172 /* Ensure it has been written out */
173 wmb();
176 * To trigger the error, we need to read the data back
177 * (the data was written with errors above).
178 * The READ_ONCE macros and printk are used to prevent the
179 * the compiler optimizing these reads out.
181 reg = READ_ONCE(ptemp[0]);
182 read_reg = READ_ONCE(ptemp[1]);
183 /* Force Read */
184 rmb();
186 edac_printk(KERN_ALERT, EDAC_MC, "Read Data [0x%X, 0x%X]\n",
187 reg, read_reg);
189 dma_free_coherent(mci->pdev, 16, ptemp, dma_handle);
191 return count;
194 static const struct file_operations altr_sdr_mc_debug_inject_fops = {
195 .open = simple_open,
196 .write = altr_sdr_mc_err_inject_write,
197 .llseek = generic_file_llseek,
200 static void altr_sdr_mc_create_debugfs_nodes(struct mem_ctl_info *mci)
202 if (!IS_ENABLED(CONFIG_EDAC_DEBUG))
203 return;
205 if (!mci->debugfs)
206 return;
208 edac_debugfs_create_file("altr_trigger", S_IWUSR, mci->debugfs, mci,
209 &altr_sdr_mc_debug_inject_fops);
212 /* Get total memory size from Open Firmware DTB */
213 static unsigned long get_total_mem(void)
215 struct device_node *np = NULL;
216 struct resource res;
217 int ret;
218 unsigned long total_mem = 0;
220 for_each_node_by_type(np, "memory") {
221 ret = of_address_to_resource(np, 0, &res);
222 if (ret)
223 continue;
225 total_mem += resource_size(&res);
227 edac_dbg(0, "total_mem 0x%lx\n", total_mem);
228 return total_mem;
231 static const struct of_device_id altr_sdram_ctrl_of_match[] = {
232 { .compatible = "altr,sdram-edac", .data = &c5_data},
233 { .compatible = "altr,sdram-edac-a10", .data = &a10_data},
236 MODULE_DEVICE_TABLE(of, altr_sdram_ctrl_of_match);
238 static int a10_init(struct regmap *mc_vbase)
240 if (regmap_update_bits(mc_vbase, A10_INTMODE_OFST,
241 A10_INTMODE_SB_INT, A10_INTMODE_SB_INT)) {
242 edac_printk(KERN_ERR, EDAC_MC,
243 "Error setting SB IRQ mode\n");
244 return -ENODEV;
247 if (regmap_write(mc_vbase, A10_SERRCNTREG_OFST, 1)) {
248 edac_printk(KERN_ERR, EDAC_MC,
249 "Error setting trigger count\n");
250 return -ENODEV;
253 return 0;
256 static int a10_unmask_irq(struct platform_device *pdev, u32 mask)
258 void __iomem *sm_base;
259 int ret = 0;
261 if (!request_mem_region(A10_SYMAN_INTMASK_CLR, sizeof(u32),
262 dev_name(&pdev->dev))) {
263 edac_printk(KERN_ERR, EDAC_MC,
264 "Unable to request mem region\n");
265 return -EBUSY;
268 sm_base = ioremap(A10_SYMAN_INTMASK_CLR, sizeof(u32));
269 if (!sm_base) {
270 edac_printk(KERN_ERR, EDAC_MC,
271 "Unable to ioremap device\n");
273 ret = -ENOMEM;
274 goto release;
277 iowrite32(mask, sm_base);
279 iounmap(sm_base);
281 release:
282 release_mem_region(A10_SYMAN_INTMASK_CLR, sizeof(u32));
284 return ret;
287 static int altr_sdram_probe(struct platform_device *pdev)
289 const struct of_device_id *id;
290 struct edac_mc_layer layers[2];
291 struct mem_ctl_info *mci;
292 struct altr_sdram_mc_data *drvdata;
293 const struct altr_sdram_prv_data *priv;
294 struct regmap *mc_vbase;
295 struct dimm_info *dimm;
296 u32 read_reg;
297 int irq, irq2, res = 0;
298 unsigned long mem_size, irqflags = 0;
300 id = of_match_device(altr_sdram_ctrl_of_match, &pdev->dev);
301 if (!id)
302 return -ENODEV;
304 /* Grab the register range from the sdr controller in device tree */
305 mc_vbase = syscon_regmap_lookup_by_phandle(pdev->dev.of_node,
306 "altr,sdr-syscon");
307 if (IS_ERR(mc_vbase)) {
308 edac_printk(KERN_ERR, EDAC_MC,
309 "regmap for altr,sdr-syscon lookup failed.\n");
310 return -ENODEV;
313 /* Check specific dependencies for the module */
314 priv = of_match_node(altr_sdram_ctrl_of_match,
315 pdev->dev.of_node)->data;
317 /* Validate the SDRAM controller has ECC enabled */
318 if (regmap_read(mc_vbase, priv->ecc_ctrl_offset, &read_reg) ||
319 ((read_reg & priv->ecc_ctl_en_mask) != priv->ecc_ctl_en_mask)) {
320 edac_printk(KERN_ERR, EDAC_MC,
321 "No ECC/ECC disabled [0x%08X]\n", read_reg);
322 return -ENODEV;
325 /* Grab memory size from device tree. */
326 mem_size = get_total_mem();
327 if (!mem_size) {
328 edac_printk(KERN_ERR, EDAC_MC, "Unable to calculate memory size\n");
329 return -ENODEV;
332 /* Ensure the SDRAM Interrupt is disabled */
333 if (regmap_update_bits(mc_vbase, priv->ecc_irq_en_offset,
334 priv->ecc_irq_en_mask, 0)) {
335 edac_printk(KERN_ERR, EDAC_MC,
336 "Error disabling SDRAM ECC IRQ\n");
337 return -ENODEV;
340 /* Toggle to clear the SDRAM Error count */
341 if (regmap_update_bits(mc_vbase, priv->ecc_cnt_rst_offset,
342 priv->ecc_cnt_rst_mask,
343 priv->ecc_cnt_rst_mask)) {
344 edac_printk(KERN_ERR, EDAC_MC,
345 "Error clearing SDRAM ECC count\n");
346 return -ENODEV;
349 if (regmap_update_bits(mc_vbase, priv->ecc_cnt_rst_offset,
350 priv->ecc_cnt_rst_mask, 0)) {
351 edac_printk(KERN_ERR, EDAC_MC,
352 "Error clearing SDRAM ECC count\n");
353 return -ENODEV;
356 irq = platform_get_irq(pdev, 0);
357 if (irq < 0) {
358 edac_printk(KERN_ERR, EDAC_MC,
359 "No irq %d in DT\n", irq);
360 return -ENODEV;
363 /* Arria10 has a 2nd IRQ */
364 irq2 = platform_get_irq(pdev, 1);
366 layers[0].type = EDAC_MC_LAYER_CHIP_SELECT;
367 layers[0].size = 1;
368 layers[0].is_virt_csrow = true;
369 layers[1].type = EDAC_MC_LAYER_CHANNEL;
370 layers[1].size = 1;
371 layers[1].is_virt_csrow = false;
372 mci = edac_mc_alloc(0, ARRAY_SIZE(layers), layers,
373 sizeof(struct altr_sdram_mc_data));
374 if (!mci)
375 return -ENOMEM;
377 mci->pdev = &pdev->dev;
378 drvdata = mci->pvt_info;
379 drvdata->mc_vbase = mc_vbase;
380 drvdata->data = priv;
381 platform_set_drvdata(pdev, mci);
383 if (!devres_open_group(&pdev->dev, NULL, GFP_KERNEL)) {
384 edac_printk(KERN_ERR, EDAC_MC,
385 "Unable to get managed device resource\n");
386 res = -ENOMEM;
387 goto free;
390 mci->mtype_cap = MEM_FLAG_DDR3;
391 mci->edac_ctl_cap = EDAC_FLAG_NONE | EDAC_FLAG_SECDED;
392 mci->edac_cap = EDAC_FLAG_SECDED;
393 mci->mod_name = EDAC_MOD_STR;
394 mci->ctl_name = dev_name(&pdev->dev);
395 mci->scrub_mode = SCRUB_SW_SRC;
396 mci->dev_name = dev_name(&pdev->dev);
398 dimm = *mci->dimms;
399 dimm->nr_pages = ((mem_size - 1) >> PAGE_SHIFT) + 1;
400 dimm->grain = 8;
401 dimm->dtype = DEV_X8;
402 dimm->mtype = MEM_DDR3;
403 dimm->edac_mode = EDAC_SECDED;
405 res = edac_mc_add_mc(mci);
406 if (res < 0)
407 goto err;
409 /* Only the Arria10 has separate IRQs */
410 if (irq2 > 0) {
411 /* Arria10 specific initialization */
412 res = a10_init(mc_vbase);
413 if (res < 0)
414 goto err2;
416 res = devm_request_irq(&pdev->dev, irq2,
417 altr_sdram_mc_err_handler,
418 IRQF_SHARED, dev_name(&pdev->dev), mci);
419 if (res < 0) {
420 edac_mc_printk(mci, KERN_ERR,
421 "Unable to request irq %d\n", irq2);
422 res = -ENODEV;
423 goto err2;
426 res = a10_unmask_irq(pdev, A10_DDR0_IRQ_MASK);
427 if (res < 0)
428 goto err2;
430 irqflags = IRQF_SHARED;
433 res = devm_request_irq(&pdev->dev, irq, altr_sdram_mc_err_handler,
434 irqflags, dev_name(&pdev->dev), mci);
435 if (res < 0) {
436 edac_mc_printk(mci, KERN_ERR,
437 "Unable to request irq %d\n", irq);
438 res = -ENODEV;
439 goto err2;
442 /* Infrastructure ready - enable the IRQ */
443 if (regmap_update_bits(drvdata->mc_vbase, priv->ecc_irq_en_offset,
444 priv->ecc_irq_en_mask, priv->ecc_irq_en_mask)) {
445 edac_mc_printk(mci, KERN_ERR,
446 "Error enabling SDRAM ECC IRQ\n");
447 res = -ENODEV;
448 goto err2;
451 altr_sdr_mc_create_debugfs_nodes(mci);
453 devres_close_group(&pdev->dev, NULL);
455 return 0;
457 err2:
458 edac_mc_del_mc(&pdev->dev);
459 err:
460 devres_release_group(&pdev->dev, NULL);
461 free:
462 edac_mc_free(mci);
463 edac_printk(KERN_ERR, EDAC_MC,
464 "EDAC Probe Failed; Error %d\n", res);
466 return res;
469 static int altr_sdram_remove(struct platform_device *pdev)
471 struct mem_ctl_info *mci = platform_get_drvdata(pdev);
473 edac_mc_del_mc(&pdev->dev);
474 edac_mc_free(mci);
475 platform_set_drvdata(pdev, NULL);
477 return 0;
481 * If you want to suspend, need to disable EDAC by removing it
482 * from the device tree or defconfig.
484 #ifdef CONFIG_PM
485 static int altr_sdram_prepare(struct device *dev)
487 pr_err("Suspend not allowed when EDAC is enabled.\n");
489 return -EPERM;
492 static const struct dev_pm_ops altr_sdram_pm_ops = {
493 .prepare = altr_sdram_prepare,
495 #endif
497 static struct platform_driver altr_sdram_edac_driver = {
498 .probe = altr_sdram_probe,
499 .remove = altr_sdram_remove,
500 .driver = {
501 .name = "altr_sdram_edac",
502 #ifdef CONFIG_PM
503 .pm = &altr_sdram_pm_ops,
504 #endif
505 .of_match_table = altr_sdram_ctrl_of_match,
509 module_platform_driver(altr_sdram_edac_driver);
511 /************************* EDAC Parent Probe *************************/
513 static const struct of_device_id altr_edac_device_of_match[];
515 static const struct of_device_id altr_edac_of_match[] = {
516 { .compatible = "altr,socfpga-ecc-manager" },
519 MODULE_DEVICE_TABLE(of, altr_edac_of_match);
521 static int altr_edac_probe(struct platform_device *pdev)
523 of_platform_populate(pdev->dev.of_node, altr_edac_device_of_match,
524 NULL, &pdev->dev);
525 return 0;
528 static struct platform_driver altr_edac_driver = {
529 .probe = altr_edac_probe,
530 .driver = {
531 .name = "socfpga_ecc_manager",
532 .of_match_table = altr_edac_of_match,
535 module_platform_driver(altr_edac_driver);
537 /************************* EDAC Device Functions *************************/
540 * EDAC Device Functions (shared between various IPs).
541 * The discrete memories use the EDAC Device framework. The probe
542 * and error handling functions are very similar between memories
543 * so they are shared. The memory allocation and freeing for EDAC
544 * trigger testing are different for each memory.
547 static const struct edac_device_prv_data ocramecc_data;
548 static const struct edac_device_prv_data l2ecc_data;
549 static const struct edac_device_prv_data a10_ocramecc_data;
550 static const struct edac_device_prv_data a10_l2ecc_data;
552 static irqreturn_t altr_edac_device_handler(int irq, void *dev_id)
554 irqreturn_t ret_value = IRQ_NONE;
555 struct edac_device_ctl_info *dci = dev_id;
556 struct altr_edac_device_dev *drvdata = dci->pvt_info;
557 const struct edac_device_prv_data *priv = drvdata->data;
559 if (irq == drvdata->sb_irq) {
560 if (priv->ce_clear_mask)
561 writel(priv->ce_clear_mask, drvdata->base);
562 edac_device_handle_ce(dci, 0, 0, drvdata->edac_dev_name);
563 ret_value = IRQ_HANDLED;
564 } else if (irq == drvdata->db_irq) {
565 if (priv->ue_clear_mask)
566 writel(priv->ue_clear_mask, drvdata->base);
567 edac_device_handle_ue(dci, 0, 0, drvdata->edac_dev_name);
568 panic("\nEDAC:ECC_DEVICE[Uncorrectable errors]\n");
569 ret_value = IRQ_HANDLED;
570 } else {
571 WARN_ON(1);
574 return ret_value;
577 static ssize_t altr_edac_device_trig(struct file *file,
578 const char __user *user_buf,
579 size_t count, loff_t *ppos)
582 u32 *ptemp, i, error_mask;
583 int result = 0;
584 u8 trig_type;
585 unsigned long flags;
586 struct edac_device_ctl_info *edac_dci = file->private_data;
587 struct altr_edac_device_dev *drvdata = edac_dci->pvt_info;
588 const struct edac_device_prv_data *priv = drvdata->data;
589 void *generic_ptr = edac_dci->dev;
591 if (!user_buf || get_user(trig_type, user_buf))
592 return -EFAULT;
594 if (!priv->alloc_mem)
595 return -ENOMEM;
598 * Note that generic_ptr is initialized to the device * but in
599 * some alloc_functions, this is overridden and returns data.
601 ptemp = priv->alloc_mem(priv->trig_alloc_sz, &generic_ptr);
602 if (!ptemp) {
603 edac_printk(KERN_ERR, EDAC_DEVICE,
604 "Inject: Buffer Allocation error\n");
605 return -ENOMEM;
608 if (trig_type == ALTR_UE_TRIGGER_CHAR)
609 error_mask = priv->ue_set_mask;
610 else
611 error_mask = priv->ce_set_mask;
613 edac_printk(KERN_ALERT, EDAC_DEVICE,
614 "Trigger Error Mask (0x%X)\n", error_mask);
616 local_irq_save(flags);
617 /* write ECC corrupted data out. */
618 for (i = 0; i < (priv->trig_alloc_sz / sizeof(*ptemp)); i++) {
619 /* Read data so we're in the correct state */
620 rmb();
621 if (READ_ONCE(ptemp[i]))
622 result = -1;
623 /* Toggle Error bit (it is latched), leave ECC enabled */
624 writel(error_mask, (drvdata->base + priv->set_err_ofst));
625 writel(priv->ecc_enable_mask, (drvdata->base +
626 priv->set_err_ofst));
627 ptemp[i] = i;
629 /* Ensure it has been written out */
630 wmb();
631 local_irq_restore(flags);
633 if (result)
634 edac_printk(KERN_ERR, EDAC_DEVICE, "Mem Not Cleared\n");
636 /* Read out written data. ECC error caused here */
637 for (i = 0; i < ALTR_TRIGGER_READ_WRD_CNT; i++)
638 if (READ_ONCE(ptemp[i]) != i)
639 edac_printk(KERN_ERR, EDAC_DEVICE,
640 "Read doesn't match written data\n");
642 if (priv->free_mem)
643 priv->free_mem(ptemp, priv->trig_alloc_sz, generic_ptr);
645 return count;
648 static const struct file_operations altr_edac_device_inject_fops = {
649 .open = simple_open,
650 .write = altr_edac_device_trig,
651 .llseek = generic_file_llseek,
654 static ssize_t altr_edac_a10_device_trig(struct file *file,
655 const char __user *user_buf,
656 size_t count, loff_t *ppos);
658 static const struct file_operations altr_edac_a10_device_inject_fops = {
659 .open = simple_open,
660 .write = altr_edac_a10_device_trig,
661 .llseek = generic_file_llseek,
664 static void altr_create_edacdev_dbgfs(struct edac_device_ctl_info *edac_dci,
665 const struct edac_device_prv_data *priv)
667 struct altr_edac_device_dev *drvdata = edac_dci->pvt_info;
669 if (!IS_ENABLED(CONFIG_EDAC_DEBUG))
670 return;
672 drvdata->debugfs_dir = edac_debugfs_create_dir(drvdata->edac_dev_name);
673 if (!drvdata->debugfs_dir)
674 return;
676 if (!edac_debugfs_create_file("altr_trigger", S_IWUSR,
677 drvdata->debugfs_dir, edac_dci,
678 priv->inject_fops))
679 debugfs_remove_recursive(drvdata->debugfs_dir);
682 static const struct of_device_id altr_edac_device_of_match[] = {
683 #ifdef CONFIG_EDAC_ALTERA_L2C
684 { .compatible = "altr,socfpga-l2-ecc", .data = &l2ecc_data },
685 #endif
686 #ifdef CONFIG_EDAC_ALTERA_OCRAM
687 { .compatible = "altr,socfpga-ocram-ecc", .data = &ocramecc_data },
688 #endif
691 MODULE_DEVICE_TABLE(of, altr_edac_device_of_match);
694 * altr_edac_device_probe()
695 * This is a generic EDAC device driver that will support
696 * various Altera memory devices such as the L2 cache ECC and
697 * OCRAM ECC as well as the memories for other peripherals.
698 * Module specific initialization is done by passing the
699 * function index in the device tree.
701 static int altr_edac_device_probe(struct platform_device *pdev)
703 struct edac_device_ctl_info *dci;
704 struct altr_edac_device_dev *drvdata;
705 struct resource *r;
706 int res = 0;
707 struct device_node *np = pdev->dev.of_node;
708 char *ecc_name = (char *)np->name;
709 static int dev_instance;
711 if (!devres_open_group(&pdev->dev, NULL, GFP_KERNEL)) {
712 edac_printk(KERN_ERR, EDAC_DEVICE,
713 "Unable to open devm\n");
714 return -ENOMEM;
717 r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
718 if (!r) {
719 edac_printk(KERN_ERR, EDAC_DEVICE,
720 "Unable to get mem resource\n");
721 res = -ENODEV;
722 goto fail;
725 if (!devm_request_mem_region(&pdev->dev, r->start, resource_size(r),
726 dev_name(&pdev->dev))) {
727 edac_printk(KERN_ERR, EDAC_DEVICE,
728 "%s:Error requesting mem region\n", ecc_name);
729 res = -EBUSY;
730 goto fail;
733 dci = edac_device_alloc_ctl_info(sizeof(*drvdata), ecc_name,
734 1, ecc_name, 1, 0, NULL, 0,
735 dev_instance++);
737 if (!dci) {
738 edac_printk(KERN_ERR, EDAC_DEVICE,
739 "%s: Unable to allocate EDAC device\n", ecc_name);
740 res = -ENOMEM;
741 goto fail;
744 drvdata = dci->pvt_info;
745 dci->dev = &pdev->dev;
746 platform_set_drvdata(pdev, dci);
747 drvdata->edac_dev_name = ecc_name;
749 drvdata->base = devm_ioremap(&pdev->dev, r->start, resource_size(r));
750 if (!drvdata->base) {
751 res = -ENOMEM;
752 goto fail1;
755 /* Get driver specific data for this EDAC device */
756 drvdata->data = of_match_node(altr_edac_device_of_match, np)->data;
758 /* Check specific dependencies for the module */
759 if (drvdata->data->setup) {
760 res = drvdata->data->setup(drvdata);
761 if (res)
762 goto fail1;
765 drvdata->sb_irq = platform_get_irq(pdev, 0);
766 res = devm_request_irq(&pdev->dev, drvdata->sb_irq,
767 altr_edac_device_handler,
768 0, dev_name(&pdev->dev), dci);
769 if (res)
770 goto fail1;
772 drvdata->db_irq = platform_get_irq(pdev, 1);
773 res = devm_request_irq(&pdev->dev, drvdata->db_irq,
774 altr_edac_device_handler,
775 0, dev_name(&pdev->dev), dci);
776 if (res)
777 goto fail1;
779 dci->mod_name = "Altera ECC Manager";
780 dci->dev_name = drvdata->edac_dev_name;
782 res = edac_device_add_device(dci);
783 if (res)
784 goto fail1;
786 altr_create_edacdev_dbgfs(dci, drvdata->data);
788 devres_close_group(&pdev->dev, NULL);
790 return 0;
792 fail1:
793 edac_device_free_ctl_info(dci);
794 fail:
795 devres_release_group(&pdev->dev, NULL);
796 edac_printk(KERN_ERR, EDAC_DEVICE,
797 "%s:Error setting up EDAC device: %d\n", ecc_name, res);
799 return res;
802 static int altr_edac_device_remove(struct platform_device *pdev)
804 struct edac_device_ctl_info *dci = platform_get_drvdata(pdev);
805 struct altr_edac_device_dev *drvdata = dci->pvt_info;
807 debugfs_remove_recursive(drvdata->debugfs_dir);
808 edac_device_del_device(&pdev->dev);
809 edac_device_free_ctl_info(dci);
811 return 0;
814 static struct platform_driver altr_edac_device_driver = {
815 .probe = altr_edac_device_probe,
816 .remove = altr_edac_device_remove,
817 .driver = {
818 .name = "altr_edac_device",
819 .of_match_table = altr_edac_device_of_match,
822 module_platform_driver(altr_edac_device_driver);
824 /******************* Arria10 Device ECC Shared Functions *****************/
827 * Test for memory's ECC dependencies upon entry because platform specific
828 * startup should have initialized the memory and enabled the ECC.
829 * Can't turn on ECC here because accessing un-initialized memory will
830 * cause CE/UE errors possibly causing an ABORT.
832 static int __maybe_unused
833 altr_check_ecc_deps(struct altr_edac_device_dev *device)
835 void __iomem *base = device->base;
836 const struct edac_device_prv_data *prv = device->data;
838 if (readl(base + prv->ecc_en_ofst) & prv->ecc_enable_mask)
839 return 0;
841 edac_printk(KERN_ERR, EDAC_DEVICE,
842 "%s: No ECC present or ECC disabled.\n",
843 device->edac_dev_name);
844 return -ENODEV;
847 static irqreturn_t __maybe_unused altr_edac_a10_ecc_irq(int irq, void *dev_id)
849 struct altr_edac_device_dev *dci = dev_id;
850 void __iomem *base = dci->base;
852 if (irq == dci->sb_irq) {
853 writel(ALTR_A10_ECC_SERRPENA,
854 base + ALTR_A10_ECC_INTSTAT_OFST);
855 edac_device_handle_ce(dci->edac_dev, 0, 0, dci->edac_dev_name);
857 return IRQ_HANDLED;
858 } else if (irq == dci->db_irq) {
859 writel(ALTR_A10_ECC_DERRPENA,
860 base + ALTR_A10_ECC_INTSTAT_OFST);
861 edac_device_handle_ue(dci->edac_dev, 0, 0, dci->edac_dev_name);
862 if (dci->data->panic)
863 panic("\nEDAC:ECC_DEVICE[Uncorrectable errors]\n");
865 return IRQ_HANDLED;
868 WARN_ON(1);
870 return IRQ_NONE;
873 /******************* Arria10 Memory Buffer Functions *********************/
875 static inline int a10_get_irq_mask(struct device_node *np)
877 int irq;
878 const u32 *handle = of_get_property(np, "interrupts", NULL);
880 if (!handle)
881 return -ENODEV;
882 irq = be32_to_cpup(handle);
883 return irq;
886 static inline void ecc_set_bits(u32 bit_mask, void __iomem *ioaddr)
888 u32 value = readl(ioaddr);
890 value |= bit_mask;
891 writel(value, ioaddr);
894 static inline void ecc_clear_bits(u32 bit_mask, void __iomem *ioaddr)
896 u32 value = readl(ioaddr);
898 value &= ~bit_mask;
899 writel(value, ioaddr);
902 static inline int ecc_test_bits(u32 bit_mask, void __iomem *ioaddr)
904 u32 value = readl(ioaddr);
906 return (value & bit_mask) ? 1 : 0;
910 * This function uses the memory initialization block in the Arria10 ECC
911 * controller to initialize/clear the entire memory data and ECC data.
913 static int __maybe_unused altr_init_memory_port(void __iomem *ioaddr, int port)
915 int limit = ALTR_A10_ECC_INIT_WATCHDOG_10US;
916 u32 init_mask, stat_mask, clear_mask;
917 int ret = 0;
919 if (port) {
920 init_mask = ALTR_A10_ECC_INITB;
921 stat_mask = ALTR_A10_ECC_INITCOMPLETEB;
922 clear_mask = ALTR_A10_ECC_ERRPENB_MASK;
923 } else {
924 init_mask = ALTR_A10_ECC_INITA;
925 stat_mask = ALTR_A10_ECC_INITCOMPLETEA;
926 clear_mask = ALTR_A10_ECC_ERRPENA_MASK;
929 ecc_set_bits(init_mask, (ioaddr + ALTR_A10_ECC_CTRL_OFST));
930 while (limit--) {
931 if (ecc_test_bits(stat_mask,
932 (ioaddr + ALTR_A10_ECC_INITSTAT_OFST)))
933 break;
934 udelay(1);
936 if (limit < 0)
937 ret = -EBUSY;
939 /* Clear any pending ECC interrupts */
940 writel(clear_mask, (ioaddr + ALTR_A10_ECC_INTSTAT_OFST));
942 return ret;
945 static __init int __maybe_unused
946 altr_init_a10_ecc_block(struct device_node *np, u32 irq_mask,
947 u32 ecc_ctrl_en_mask, bool dual_port)
949 int ret = 0;
950 void __iomem *ecc_block_base;
951 struct regmap *ecc_mgr_map;
952 char *ecc_name;
953 struct device_node *np_eccmgr;
955 ecc_name = (char *)np->name;
957 /* Get the ECC Manager - parent of the device EDACs */
958 np_eccmgr = of_get_parent(np);
959 ecc_mgr_map = syscon_regmap_lookup_by_phandle(np_eccmgr,
960 "altr,sysmgr-syscon");
961 of_node_put(np_eccmgr);
962 if (IS_ERR(ecc_mgr_map)) {
963 edac_printk(KERN_ERR, EDAC_DEVICE,
964 "Unable to get syscon altr,sysmgr-syscon\n");
965 return -ENODEV;
968 /* Map the ECC Block */
969 ecc_block_base = of_iomap(np, 0);
970 if (!ecc_block_base) {
971 edac_printk(KERN_ERR, EDAC_DEVICE,
972 "Unable to map %s ECC block\n", ecc_name);
973 return -ENODEV;
976 /* Disable ECC */
977 regmap_write(ecc_mgr_map, A10_SYSMGR_ECC_INTMASK_SET_OFST, irq_mask);
978 writel(ALTR_A10_ECC_SERRINTEN,
979 (ecc_block_base + ALTR_A10_ECC_ERRINTENR_OFST));
980 ecc_clear_bits(ecc_ctrl_en_mask,
981 (ecc_block_base + ALTR_A10_ECC_CTRL_OFST));
982 /* Ensure all writes complete */
983 wmb();
984 /* Use HW initialization block to initialize memory for ECC */
985 ret = altr_init_memory_port(ecc_block_base, 0);
986 if (ret) {
987 edac_printk(KERN_ERR, EDAC_DEVICE,
988 "ECC: cannot init %s PORTA memory\n", ecc_name);
989 goto out;
992 if (dual_port) {
993 ret = altr_init_memory_port(ecc_block_base, 1);
994 if (ret) {
995 edac_printk(KERN_ERR, EDAC_DEVICE,
996 "ECC: cannot init %s PORTB memory\n",
997 ecc_name);
998 goto out;
1002 /* Interrupt mode set to every SBERR */
1003 regmap_write(ecc_mgr_map, ALTR_A10_ECC_INTMODE_OFST,
1004 ALTR_A10_ECC_INTMODE);
1005 /* Enable ECC */
1006 ecc_set_bits(ecc_ctrl_en_mask, (ecc_block_base +
1007 ALTR_A10_ECC_CTRL_OFST));
1008 writel(ALTR_A10_ECC_SERRINTEN,
1009 (ecc_block_base + ALTR_A10_ECC_ERRINTENS_OFST));
1010 regmap_write(ecc_mgr_map, A10_SYSMGR_ECC_INTMASK_CLR_OFST, irq_mask);
1011 /* Ensure all writes complete */
1012 wmb();
1013 out:
1014 iounmap(ecc_block_base);
1015 return ret;
1018 static int socfpga_is_a10(void)
1020 return of_machine_is_compatible("altr,socfpga-arria10");
1023 static int validate_parent_available(struct device_node *np);
1024 static const struct of_device_id altr_edac_a10_device_of_match[];
1025 static int __init __maybe_unused altr_init_a10_ecc_device_type(char *compat)
1027 int irq;
1028 struct device_node *child, *np;
1030 if (!socfpga_is_a10())
1031 return -ENODEV;
1033 np = of_find_compatible_node(NULL, NULL,
1034 "altr,socfpga-a10-ecc-manager");
1035 if (!np) {
1036 edac_printk(KERN_ERR, EDAC_DEVICE, "ECC Manager not found\n");
1037 return -ENODEV;
1040 for_each_child_of_node(np, child) {
1041 const struct of_device_id *pdev_id;
1042 const struct edac_device_prv_data *prv;
1044 if (!of_device_is_available(child))
1045 continue;
1046 if (!of_device_is_compatible(child, compat))
1047 continue;
1049 if (validate_parent_available(child))
1050 continue;
1052 irq = a10_get_irq_mask(child);
1053 if (irq < 0)
1054 continue;
1056 /* Get matching node and check for valid result */
1057 pdev_id = of_match_node(altr_edac_a10_device_of_match, child);
1058 if (IS_ERR_OR_NULL(pdev_id))
1059 continue;
1061 /* Validate private data pointer before dereferencing */
1062 prv = pdev_id->data;
1063 if (!prv)
1064 continue;
1066 altr_init_a10_ecc_block(child, BIT(irq),
1067 prv->ecc_enable_mask, 0);
1070 of_node_put(np);
1071 return 0;
1074 /*********************** OCRAM EDAC Device Functions *********************/
1076 #ifdef CONFIG_EDAC_ALTERA_OCRAM
1078 static void *ocram_alloc_mem(size_t size, void **other)
1080 struct device_node *np;
1081 struct gen_pool *gp;
1082 void *sram_addr;
1084 np = of_find_compatible_node(NULL, NULL, "altr,socfpga-ocram-ecc");
1085 if (!np)
1086 return NULL;
1088 gp = of_gen_pool_get(np, "iram", 0);
1089 of_node_put(np);
1090 if (!gp)
1091 return NULL;
1093 sram_addr = (void *)gen_pool_alloc(gp, size);
1094 if (!sram_addr)
1095 return NULL;
1097 memset(sram_addr, 0, size);
1098 /* Ensure data is written out */
1099 wmb();
1101 /* Remember this handle for freeing later */
1102 *other = gp;
1104 return sram_addr;
1107 static void ocram_free_mem(void *p, size_t size, void *other)
1109 gen_pool_free((struct gen_pool *)other, (u32)p, size);
1112 static const struct edac_device_prv_data ocramecc_data = {
1113 .setup = altr_check_ecc_deps,
1114 .ce_clear_mask = (ALTR_OCR_ECC_EN | ALTR_OCR_ECC_SERR),
1115 .ue_clear_mask = (ALTR_OCR_ECC_EN | ALTR_OCR_ECC_DERR),
1116 .alloc_mem = ocram_alloc_mem,
1117 .free_mem = ocram_free_mem,
1118 .ecc_enable_mask = ALTR_OCR_ECC_EN,
1119 .ecc_en_ofst = ALTR_OCR_ECC_REG_OFFSET,
1120 .ce_set_mask = (ALTR_OCR_ECC_EN | ALTR_OCR_ECC_INJS),
1121 .ue_set_mask = (ALTR_OCR_ECC_EN | ALTR_OCR_ECC_INJD),
1122 .set_err_ofst = ALTR_OCR_ECC_REG_OFFSET,
1123 .trig_alloc_sz = ALTR_TRIG_OCRAM_BYTE_SIZE,
1124 .inject_fops = &altr_edac_device_inject_fops,
1127 static const struct edac_device_prv_data a10_ocramecc_data = {
1128 .setup = altr_check_ecc_deps,
1129 .ce_clear_mask = ALTR_A10_ECC_SERRPENA,
1130 .ue_clear_mask = ALTR_A10_ECC_DERRPENA,
1131 .irq_status_mask = A10_SYSMGR_ECC_INTSTAT_OCRAM,
1132 .ecc_enable_mask = ALTR_A10_OCRAM_ECC_EN_CTL,
1133 .ecc_en_ofst = ALTR_A10_ECC_CTRL_OFST,
1134 .ce_set_mask = ALTR_A10_ECC_TSERRA,
1135 .ue_set_mask = ALTR_A10_ECC_TDERRA,
1136 .set_err_ofst = ALTR_A10_ECC_INTTEST_OFST,
1137 .ecc_irq_handler = altr_edac_a10_ecc_irq,
1138 .inject_fops = &altr_edac_a10_device_inject_fops,
1140 * OCRAM panic on uncorrectable error because sleep/resume
1141 * functions and FPGA contents are stored in OCRAM. Prefer
1142 * a kernel panic over executing/loading corrupted data.
1144 .panic = true,
1147 #endif /* CONFIG_EDAC_ALTERA_OCRAM */
1149 /********************* L2 Cache EDAC Device Functions ********************/
1151 #ifdef CONFIG_EDAC_ALTERA_L2C
1153 static void *l2_alloc_mem(size_t size, void **other)
1155 struct device *dev = *other;
1156 void *ptemp = devm_kzalloc(dev, size, GFP_KERNEL);
1158 if (!ptemp)
1159 return NULL;
1161 /* Make sure everything is written out */
1162 wmb();
1165 * Clean all cache levels up to LoC (includes L2)
1166 * This ensures the corrupted data is written into
1167 * L2 cache for readback test (which causes ECC error).
1169 flush_cache_all();
1171 return ptemp;
1174 static void l2_free_mem(void *p, size_t size, void *other)
1176 struct device *dev = other;
1178 if (dev && p)
1179 devm_kfree(dev, p);
1183 * altr_l2_check_deps()
1184 * Test for L2 cache ECC dependencies upon entry because
1185 * platform specific startup should have initialized the L2
1186 * memory and enabled the ECC.
1187 * Bail if ECC is not enabled.
1188 * Note that L2 Cache Enable is forced at build time.
1190 static int altr_l2_check_deps(struct altr_edac_device_dev *device)
1192 void __iomem *base = device->base;
1193 const struct edac_device_prv_data *prv = device->data;
1195 if ((readl(base) & prv->ecc_enable_mask) ==
1196 prv->ecc_enable_mask)
1197 return 0;
1199 edac_printk(KERN_ERR, EDAC_DEVICE,
1200 "L2: No ECC present, or ECC disabled\n");
1201 return -ENODEV;
1204 static irqreturn_t altr_edac_a10_l2_irq(int irq, void *dev_id)
1206 struct altr_edac_device_dev *dci = dev_id;
1208 if (irq == dci->sb_irq) {
1209 regmap_write(dci->edac->ecc_mgr_map,
1210 A10_SYSGMR_MPU_CLEAR_L2_ECC_OFST,
1211 A10_SYSGMR_MPU_CLEAR_L2_ECC_SB);
1212 edac_device_handle_ce(dci->edac_dev, 0, 0, dci->edac_dev_name);
1214 return IRQ_HANDLED;
1215 } else if (irq == dci->db_irq) {
1216 regmap_write(dci->edac->ecc_mgr_map,
1217 A10_SYSGMR_MPU_CLEAR_L2_ECC_OFST,
1218 A10_SYSGMR_MPU_CLEAR_L2_ECC_MB);
1219 edac_device_handle_ue(dci->edac_dev, 0, 0, dci->edac_dev_name);
1220 panic("\nEDAC:ECC_DEVICE[Uncorrectable errors]\n");
1222 return IRQ_HANDLED;
1225 WARN_ON(1);
1227 return IRQ_NONE;
1230 static const struct edac_device_prv_data l2ecc_data = {
1231 .setup = altr_l2_check_deps,
1232 .ce_clear_mask = 0,
1233 .ue_clear_mask = 0,
1234 .alloc_mem = l2_alloc_mem,
1235 .free_mem = l2_free_mem,
1236 .ecc_enable_mask = ALTR_L2_ECC_EN,
1237 .ce_set_mask = (ALTR_L2_ECC_EN | ALTR_L2_ECC_INJS),
1238 .ue_set_mask = (ALTR_L2_ECC_EN | ALTR_L2_ECC_INJD),
1239 .set_err_ofst = ALTR_L2_ECC_REG_OFFSET,
1240 .trig_alloc_sz = ALTR_TRIG_L2C_BYTE_SIZE,
1241 .inject_fops = &altr_edac_device_inject_fops,
1244 static const struct edac_device_prv_data a10_l2ecc_data = {
1245 .setup = altr_l2_check_deps,
1246 .ce_clear_mask = ALTR_A10_L2_ECC_SERR_CLR,
1247 .ue_clear_mask = ALTR_A10_L2_ECC_MERR_CLR,
1248 .irq_status_mask = A10_SYSMGR_ECC_INTSTAT_L2,
1249 .alloc_mem = l2_alloc_mem,
1250 .free_mem = l2_free_mem,
1251 .ecc_enable_mask = ALTR_A10_L2_ECC_EN_CTL,
1252 .ce_set_mask = ALTR_A10_L2_ECC_CE_INJ_MASK,
1253 .ue_set_mask = ALTR_A10_L2_ECC_UE_INJ_MASK,
1254 .set_err_ofst = ALTR_A10_L2_ECC_INJ_OFST,
1255 .ecc_irq_handler = altr_edac_a10_l2_irq,
1256 .trig_alloc_sz = ALTR_TRIG_L2C_BYTE_SIZE,
1257 .inject_fops = &altr_edac_device_inject_fops,
1260 #endif /* CONFIG_EDAC_ALTERA_L2C */
1262 /********************* Ethernet Device Functions ********************/
1264 #ifdef CONFIG_EDAC_ALTERA_ETHERNET
1266 static const struct edac_device_prv_data a10_enetecc_data = {
1267 .setup = altr_check_ecc_deps,
1268 .ce_clear_mask = ALTR_A10_ECC_SERRPENA,
1269 .ue_clear_mask = ALTR_A10_ECC_DERRPENA,
1270 .ecc_enable_mask = ALTR_A10_COMMON_ECC_EN_CTL,
1271 .ecc_en_ofst = ALTR_A10_ECC_CTRL_OFST,
1272 .ce_set_mask = ALTR_A10_ECC_TSERRA,
1273 .ue_set_mask = ALTR_A10_ECC_TDERRA,
1274 .set_err_ofst = ALTR_A10_ECC_INTTEST_OFST,
1275 .ecc_irq_handler = altr_edac_a10_ecc_irq,
1276 .inject_fops = &altr_edac_a10_device_inject_fops,
1279 static int __init socfpga_init_ethernet_ecc(void)
1281 return altr_init_a10_ecc_device_type("altr,socfpga-eth-mac-ecc");
1284 early_initcall(socfpga_init_ethernet_ecc);
1286 #endif /* CONFIG_EDAC_ALTERA_ETHERNET */
1288 /********************** NAND Device Functions **********************/
1290 #ifdef CONFIG_EDAC_ALTERA_NAND
1292 static const struct edac_device_prv_data a10_nandecc_data = {
1293 .setup = altr_check_ecc_deps,
1294 .ce_clear_mask = ALTR_A10_ECC_SERRPENA,
1295 .ue_clear_mask = ALTR_A10_ECC_DERRPENA,
1296 .ecc_enable_mask = ALTR_A10_COMMON_ECC_EN_CTL,
1297 .ecc_en_ofst = ALTR_A10_ECC_CTRL_OFST,
1298 .ce_set_mask = ALTR_A10_ECC_TSERRA,
1299 .ue_set_mask = ALTR_A10_ECC_TDERRA,
1300 .set_err_ofst = ALTR_A10_ECC_INTTEST_OFST,
1301 .ecc_irq_handler = altr_edac_a10_ecc_irq,
1302 .inject_fops = &altr_edac_a10_device_inject_fops,
1305 static int __init socfpga_init_nand_ecc(void)
1307 return altr_init_a10_ecc_device_type("altr,socfpga-nand-ecc");
1310 early_initcall(socfpga_init_nand_ecc);
1312 #endif /* CONFIG_EDAC_ALTERA_NAND */
1314 /********************** DMA Device Functions **********************/
1316 #ifdef CONFIG_EDAC_ALTERA_DMA
1318 static const struct edac_device_prv_data a10_dmaecc_data = {
1319 .setup = altr_check_ecc_deps,
1320 .ce_clear_mask = ALTR_A10_ECC_SERRPENA,
1321 .ue_clear_mask = ALTR_A10_ECC_DERRPENA,
1322 .ecc_enable_mask = ALTR_A10_COMMON_ECC_EN_CTL,
1323 .ecc_en_ofst = ALTR_A10_ECC_CTRL_OFST,
1324 .ce_set_mask = ALTR_A10_ECC_TSERRA,
1325 .ue_set_mask = ALTR_A10_ECC_TDERRA,
1326 .set_err_ofst = ALTR_A10_ECC_INTTEST_OFST,
1327 .ecc_irq_handler = altr_edac_a10_ecc_irq,
1328 .inject_fops = &altr_edac_a10_device_inject_fops,
1331 static int __init socfpga_init_dma_ecc(void)
1333 return altr_init_a10_ecc_device_type("altr,socfpga-dma-ecc");
1336 early_initcall(socfpga_init_dma_ecc);
1338 #endif /* CONFIG_EDAC_ALTERA_DMA */
1340 /********************** USB Device Functions **********************/
1342 #ifdef CONFIG_EDAC_ALTERA_USB
1344 static const struct edac_device_prv_data a10_usbecc_data = {
1345 .setup = altr_check_ecc_deps,
1346 .ce_clear_mask = ALTR_A10_ECC_SERRPENA,
1347 .ue_clear_mask = ALTR_A10_ECC_DERRPENA,
1348 .ecc_enable_mask = ALTR_A10_COMMON_ECC_EN_CTL,
1349 .ecc_en_ofst = ALTR_A10_ECC_CTRL_OFST,
1350 .ce_set_mask = ALTR_A10_ECC_TSERRA,
1351 .ue_set_mask = ALTR_A10_ECC_TDERRA,
1352 .set_err_ofst = ALTR_A10_ECC_INTTEST_OFST,
1353 .ecc_irq_handler = altr_edac_a10_ecc_irq,
1354 .inject_fops = &altr_edac_a10_device_inject_fops,
1357 static int __init socfpga_init_usb_ecc(void)
1359 return altr_init_a10_ecc_device_type("altr,socfpga-usb-ecc");
1362 early_initcall(socfpga_init_usb_ecc);
1364 #endif /* CONFIG_EDAC_ALTERA_USB */
1366 /********************** QSPI Device Functions **********************/
1368 #ifdef CONFIG_EDAC_ALTERA_QSPI
1370 static const struct edac_device_prv_data a10_qspiecc_data = {
1371 .setup = altr_check_ecc_deps,
1372 .ce_clear_mask = ALTR_A10_ECC_SERRPENA,
1373 .ue_clear_mask = ALTR_A10_ECC_DERRPENA,
1374 .ecc_enable_mask = ALTR_A10_COMMON_ECC_EN_CTL,
1375 .ecc_en_ofst = ALTR_A10_ECC_CTRL_OFST,
1376 .ce_set_mask = ALTR_A10_ECC_TSERRA,
1377 .ue_set_mask = ALTR_A10_ECC_TDERRA,
1378 .set_err_ofst = ALTR_A10_ECC_INTTEST_OFST,
1379 .ecc_irq_handler = altr_edac_a10_ecc_irq,
1380 .inject_fops = &altr_edac_a10_device_inject_fops,
1383 static int __init socfpga_init_qspi_ecc(void)
1385 return altr_init_a10_ecc_device_type("altr,socfpga-qspi-ecc");
1388 early_initcall(socfpga_init_qspi_ecc);
1390 #endif /* CONFIG_EDAC_ALTERA_QSPI */
1392 /********************* SDMMC Device Functions **********************/
1394 #ifdef CONFIG_EDAC_ALTERA_SDMMC
1396 static const struct edac_device_prv_data a10_sdmmceccb_data;
1397 static int altr_portb_setup(struct altr_edac_device_dev *device)
1399 struct edac_device_ctl_info *dci;
1400 struct altr_edac_device_dev *altdev;
1401 char *ecc_name = "sdmmcb-ecc";
1402 int edac_idx, rc;
1403 struct device_node *np;
1404 const struct edac_device_prv_data *prv = &a10_sdmmceccb_data;
1406 rc = altr_check_ecc_deps(device);
1407 if (rc)
1408 return rc;
1410 np = of_find_compatible_node(NULL, NULL, "altr,socfpga-sdmmc-ecc");
1411 if (!np) {
1412 edac_printk(KERN_WARNING, EDAC_DEVICE, "SDMMC node not found\n");
1413 return -ENODEV;
1416 /* Create the PortB EDAC device */
1417 edac_idx = edac_device_alloc_index();
1418 dci = edac_device_alloc_ctl_info(sizeof(*altdev), ecc_name, 1,
1419 ecc_name, 1, 0, NULL, 0, edac_idx);
1420 if (!dci) {
1421 edac_printk(KERN_ERR, EDAC_DEVICE,
1422 "%s: Unable to allocate PortB EDAC device\n",
1423 ecc_name);
1424 return -ENOMEM;
1427 /* Initialize the PortB EDAC device structure from PortA structure */
1428 altdev = dci->pvt_info;
1429 *altdev = *device;
1431 if (!devres_open_group(&altdev->ddev, altr_portb_setup, GFP_KERNEL))
1432 return -ENOMEM;
1434 /* Update PortB specific values */
1435 altdev->edac_dev_name = ecc_name;
1436 altdev->edac_idx = edac_idx;
1437 altdev->edac_dev = dci;
1438 altdev->data = prv;
1439 dci->dev = &altdev->ddev;
1440 dci->ctl_name = "Altera ECC Manager";
1441 dci->mod_name = ecc_name;
1442 dci->dev_name = ecc_name;
1444 /* Update the IRQs for PortB */
1445 altdev->sb_irq = irq_of_parse_and_map(np, 2);
1446 if (!altdev->sb_irq) {
1447 edac_printk(KERN_ERR, EDAC_DEVICE, "Error PortB SBIRQ alloc\n");
1448 rc = -ENODEV;
1449 goto err_release_group_1;
1451 rc = devm_request_irq(&altdev->ddev, altdev->sb_irq,
1452 prv->ecc_irq_handler,
1453 IRQF_ONESHOT | IRQF_TRIGGER_HIGH,
1454 ecc_name, altdev);
1455 if (rc) {
1456 edac_printk(KERN_ERR, EDAC_DEVICE, "PortB SBERR IRQ error\n");
1457 goto err_release_group_1;
1460 altdev->db_irq = irq_of_parse_and_map(np, 3);
1461 if (!altdev->db_irq) {
1462 edac_printk(KERN_ERR, EDAC_DEVICE, "Error PortB DBIRQ alloc\n");
1463 rc = -ENODEV;
1464 goto err_release_group_1;
1466 rc = devm_request_irq(&altdev->ddev, altdev->db_irq,
1467 prv->ecc_irq_handler,
1468 IRQF_ONESHOT | IRQF_TRIGGER_HIGH,
1469 ecc_name, altdev);
1470 if (rc) {
1471 edac_printk(KERN_ERR, EDAC_DEVICE, "PortB DBERR IRQ error\n");
1472 goto err_release_group_1;
1475 rc = edac_device_add_device(dci);
1476 if (rc) {
1477 edac_printk(KERN_ERR, EDAC_DEVICE,
1478 "edac_device_add_device portB failed\n");
1479 rc = -ENOMEM;
1480 goto err_release_group_1;
1482 altr_create_edacdev_dbgfs(dci, prv);
1484 list_add(&altdev->next, &altdev->edac->a10_ecc_devices);
1486 devres_remove_group(&altdev->ddev, altr_portb_setup);
1488 return 0;
1490 err_release_group_1:
1491 edac_device_free_ctl_info(dci);
1492 devres_release_group(&altdev->ddev, altr_portb_setup);
1493 edac_printk(KERN_ERR, EDAC_DEVICE,
1494 "%s:Error setting up EDAC device: %d\n", ecc_name, rc);
1495 return rc;
1498 static irqreturn_t altr_edac_a10_ecc_irq_portb(int irq, void *dev_id)
1500 struct altr_edac_device_dev *ad = dev_id;
1501 void __iomem *base = ad->base;
1502 const struct edac_device_prv_data *priv = ad->data;
1504 if (irq == ad->sb_irq) {
1505 writel(priv->ce_clear_mask,
1506 base + ALTR_A10_ECC_INTSTAT_OFST);
1507 edac_device_handle_ce(ad->edac_dev, 0, 0, ad->edac_dev_name);
1508 return IRQ_HANDLED;
1509 } else if (irq == ad->db_irq) {
1510 writel(priv->ue_clear_mask,
1511 base + ALTR_A10_ECC_INTSTAT_OFST);
1512 edac_device_handle_ue(ad->edac_dev, 0, 0, ad->edac_dev_name);
1513 return IRQ_HANDLED;
1516 WARN_ONCE(1, "Unhandled IRQ%d on Port B.", irq);
1518 return IRQ_NONE;
1521 static const struct edac_device_prv_data a10_sdmmcecca_data = {
1522 .setup = altr_portb_setup,
1523 .ce_clear_mask = ALTR_A10_ECC_SERRPENA,
1524 .ue_clear_mask = ALTR_A10_ECC_DERRPENA,
1525 .ecc_enable_mask = ALTR_A10_COMMON_ECC_EN_CTL,
1526 .ecc_en_ofst = ALTR_A10_ECC_CTRL_OFST,
1527 .ce_set_mask = ALTR_A10_ECC_SERRPENA,
1528 .ue_set_mask = ALTR_A10_ECC_DERRPENA,
1529 .set_err_ofst = ALTR_A10_ECC_INTTEST_OFST,
1530 .ecc_irq_handler = altr_edac_a10_ecc_irq,
1531 .inject_fops = &altr_edac_a10_device_inject_fops,
1534 static const struct edac_device_prv_data a10_sdmmceccb_data = {
1535 .setup = altr_portb_setup,
1536 .ce_clear_mask = ALTR_A10_ECC_SERRPENB,
1537 .ue_clear_mask = ALTR_A10_ECC_DERRPENB,
1538 .ecc_enable_mask = ALTR_A10_COMMON_ECC_EN_CTL,
1539 .ecc_en_ofst = ALTR_A10_ECC_CTRL_OFST,
1540 .ce_set_mask = ALTR_A10_ECC_TSERRB,
1541 .ue_set_mask = ALTR_A10_ECC_TDERRB,
1542 .set_err_ofst = ALTR_A10_ECC_INTTEST_OFST,
1543 .ecc_irq_handler = altr_edac_a10_ecc_irq_portb,
1544 .inject_fops = &altr_edac_a10_device_inject_fops,
1547 static int __init socfpga_init_sdmmc_ecc(void)
1549 int rc = -ENODEV;
1550 struct device_node *child;
1552 if (!socfpga_is_a10())
1553 return -ENODEV;
1555 child = of_find_compatible_node(NULL, NULL, "altr,socfpga-sdmmc-ecc");
1556 if (!child) {
1557 edac_printk(KERN_WARNING, EDAC_DEVICE, "SDMMC node not found\n");
1558 return -ENODEV;
1561 if (!of_device_is_available(child))
1562 goto exit;
1564 if (validate_parent_available(child))
1565 goto exit;
1567 rc = altr_init_a10_ecc_block(child, ALTR_A10_SDMMC_IRQ_MASK,
1568 a10_sdmmcecca_data.ecc_enable_mask, 1);
1569 exit:
1570 of_node_put(child);
1571 return rc;
1574 early_initcall(socfpga_init_sdmmc_ecc);
1576 #endif /* CONFIG_EDAC_ALTERA_SDMMC */
1578 /********************* Arria10 EDAC Device Functions *************************/
1579 static const struct of_device_id altr_edac_a10_device_of_match[] = {
1580 #ifdef CONFIG_EDAC_ALTERA_L2C
1581 { .compatible = "altr,socfpga-a10-l2-ecc", .data = &a10_l2ecc_data },
1582 #endif
1583 #ifdef CONFIG_EDAC_ALTERA_OCRAM
1584 { .compatible = "altr,socfpga-a10-ocram-ecc",
1585 .data = &a10_ocramecc_data },
1586 #endif
1587 #ifdef CONFIG_EDAC_ALTERA_ETHERNET
1588 { .compatible = "altr,socfpga-eth-mac-ecc",
1589 .data = &a10_enetecc_data },
1590 #endif
1591 #ifdef CONFIG_EDAC_ALTERA_NAND
1592 { .compatible = "altr,socfpga-nand-ecc", .data = &a10_nandecc_data },
1593 #endif
1594 #ifdef CONFIG_EDAC_ALTERA_DMA
1595 { .compatible = "altr,socfpga-dma-ecc", .data = &a10_dmaecc_data },
1596 #endif
1597 #ifdef CONFIG_EDAC_ALTERA_USB
1598 { .compatible = "altr,socfpga-usb-ecc", .data = &a10_usbecc_data },
1599 #endif
1600 #ifdef CONFIG_EDAC_ALTERA_QSPI
1601 { .compatible = "altr,socfpga-qspi-ecc", .data = &a10_qspiecc_data },
1602 #endif
1603 #ifdef CONFIG_EDAC_ALTERA_SDMMC
1604 { .compatible = "altr,socfpga-sdmmc-ecc", .data = &a10_sdmmcecca_data },
1605 #endif
1608 MODULE_DEVICE_TABLE(of, altr_edac_a10_device_of_match);
1611 * The Arria10 EDAC Device Functions differ from the Cyclone5/Arria5
1612 * because 2 IRQs are shared among the all ECC peripherals. The ECC
1613 * manager manages the IRQs and the children.
1614 * Based on xgene_edac.c peripheral code.
1617 static ssize_t altr_edac_a10_device_trig(struct file *file,
1618 const char __user *user_buf,
1619 size_t count, loff_t *ppos)
1621 struct edac_device_ctl_info *edac_dci = file->private_data;
1622 struct altr_edac_device_dev *drvdata = edac_dci->pvt_info;
1623 const struct edac_device_prv_data *priv = drvdata->data;
1624 void __iomem *set_addr = (drvdata->base + priv->set_err_ofst);
1625 unsigned long flags;
1626 u8 trig_type;
1628 if (!user_buf || get_user(trig_type, user_buf))
1629 return -EFAULT;
1631 local_irq_save(flags);
1632 if (trig_type == ALTR_UE_TRIGGER_CHAR)
1633 writel(priv->ue_set_mask, set_addr);
1634 else
1635 writel(priv->ce_set_mask, set_addr);
1636 /* Ensure the interrupt test bits are set */
1637 wmb();
1638 local_irq_restore(flags);
1640 return count;
1643 static void altr_edac_a10_irq_handler(struct irq_desc *desc)
1645 int dberr, bit, sm_offset, irq_status;
1646 struct altr_arria10_edac *edac = irq_desc_get_handler_data(desc);
1647 struct irq_chip *chip = irq_desc_get_chip(desc);
1648 int irq = irq_desc_get_irq(desc);
1650 dberr = (irq == edac->db_irq) ? 1 : 0;
1651 sm_offset = dberr ? A10_SYSMGR_ECC_INTSTAT_DERR_OFST :
1652 A10_SYSMGR_ECC_INTSTAT_SERR_OFST;
1654 chained_irq_enter(chip, desc);
1656 regmap_read(edac->ecc_mgr_map, sm_offset, &irq_status);
1658 for_each_set_bit(bit, (unsigned long *)&irq_status, 32) {
1659 irq = irq_linear_revmap(edac->domain, dberr * 32 + bit);
1660 if (irq)
1661 generic_handle_irq(irq);
1664 chained_irq_exit(chip, desc);
1667 static int validate_parent_available(struct device_node *np)
1669 struct device_node *parent;
1670 int ret = 0;
1672 /* Ensure parent device is enabled if parent node exists */
1673 parent = of_parse_phandle(np, "altr,ecc-parent", 0);
1674 if (parent && !of_device_is_available(parent))
1675 ret = -ENODEV;
1677 of_node_put(parent);
1678 return ret;
1681 static int altr_edac_a10_device_add(struct altr_arria10_edac *edac,
1682 struct device_node *np)
1684 struct edac_device_ctl_info *dci;
1685 struct altr_edac_device_dev *altdev;
1686 char *ecc_name = (char *)np->name;
1687 struct resource res;
1688 int edac_idx;
1689 int rc = 0;
1690 const struct edac_device_prv_data *prv;
1691 /* Get matching node and check for valid result */
1692 const struct of_device_id *pdev_id =
1693 of_match_node(altr_edac_a10_device_of_match, np);
1694 if (IS_ERR_OR_NULL(pdev_id))
1695 return -ENODEV;
1697 /* Get driver specific data for this EDAC device */
1698 prv = pdev_id->data;
1699 if (IS_ERR_OR_NULL(prv))
1700 return -ENODEV;
1702 if (validate_parent_available(np))
1703 return -ENODEV;
1705 if (!devres_open_group(edac->dev, altr_edac_a10_device_add, GFP_KERNEL))
1706 return -ENOMEM;
1708 rc = of_address_to_resource(np, 0, &res);
1709 if (rc < 0) {
1710 edac_printk(KERN_ERR, EDAC_DEVICE,
1711 "%s: no resource address\n", ecc_name);
1712 goto err_release_group;
1715 edac_idx = edac_device_alloc_index();
1716 dci = edac_device_alloc_ctl_info(sizeof(*altdev), ecc_name,
1717 1, ecc_name, 1, 0, NULL, 0,
1718 edac_idx);
1720 if (!dci) {
1721 edac_printk(KERN_ERR, EDAC_DEVICE,
1722 "%s: Unable to allocate EDAC device\n", ecc_name);
1723 rc = -ENOMEM;
1724 goto err_release_group;
1727 altdev = dci->pvt_info;
1728 dci->dev = edac->dev;
1729 altdev->edac_dev_name = ecc_name;
1730 altdev->edac_idx = edac_idx;
1731 altdev->edac = edac;
1732 altdev->edac_dev = dci;
1733 altdev->data = prv;
1734 altdev->ddev = *edac->dev;
1735 dci->dev = &altdev->ddev;
1736 dci->ctl_name = "Altera ECC Manager";
1737 dci->mod_name = ecc_name;
1738 dci->dev_name = ecc_name;
1740 altdev->base = devm_ioremap_resource(edac->dev, &res);
1741 if (IS_ERR(altdev->base)) {
1742 rc = PTR_ERR(altdev->base);
1743 goto err_release_group1;
1746 /* Check specific dependencies for the module */
1747 if (altdev->data->setup) {
1748 rc = altdev->data->setup(altdev);
1749 if (rc)
1750 goto err_release_group1;
1753 altdev->sb_irq = irq_of_parse_and_map(np, 0);
1754 if (!altdev->sb_irq) {
1755 edac_printk(KERN_ERR, EDAC_DEVICE, "Error allocating SBIRQ\n");
1756 rc = -ENODEV;
1757 goto err_release_group1;
1759 rc = devm_request_irq(edac->dev, altdev->sb_irq, prv->ecc_irq_handler,
1760 IRQF_ONESHOT | IRQF_TRIGGER_HIGH,
1761 ecc_name, altdev);
1762 if (rc) {
1763 edac_printk(KERN_ERR, EDAC_DEVICE, "No SBERR IRQ resource\n");
1764 goto err_release_group1;
1767 altdev->db_irq = irq_of_parse_and_map(np, 1);
1768 if (!altdev->db_irq) {
1769 edac_printk(KERN_ERR, EDAC_DEVICE, "Error allocating DBIRQ\n");
1770 rc = -ENODEV;
1771 goto err_release_group1;
1773 rc = devm_request_irq(edac->dev, altdev->db_irq, prv->ecc_irq_handler,
1774 IRQF_ONESHOT | IRQF_TRIGGER_HIGH,
1775 ecc_name, altdev);
1776 if (rc) {
1777 edac_printk(KERN_ERR, EDAC_DEVICE, "No DBERR IRQ resource\n");
1778 goto err_release_group1;
1781 rc = edac_device_add_device(dci);
1782 if (rc) {
1783 dev_err(edac->dev, "edac_device_add_device failed\n");
1784 rc = -ENOMEM;
1785 goto err_release_group1;
1788 altr_create_edacdev_dbgfs(dci, prv);
1790 list_add(&altdev->next, &edac->a10_ecc_devices);
1792 devres_remove_group(edac->dev, altr_edac_a10_device_add);
1794 return 0;
1796 err_release_group1:
1797 edac_device_free_ctl_info(dci);
1798 err_release_group:
1799 devres_release_group(edac->dev, NULL);
1800 edac_printk(KERN_ERR, EDAC_DEVICE,
1801 "%s:Error setting up EDAC device: %d\n", ecc_name, rc);
1803 return rc;
1806 static void a10_eccmgr_irq_mask(struct irq_data *d)
1808 struct altr_arria10_edac *edac = irq_data_get_irq_chip_data(d);
1810 regmap_write(edac->ecc_mgr_map, A10_SYSMGR_ECC_INTMASK_SET_OFST,
1811 BIT(d->hwirq));
1814 static void a10_eccmgr_irq_unmask(struct irq_data *d)
1816 struct altr_arria10_edac *edac = irq_data_get_irq_chip_data(d);
1818 regmap_write(edac->ecc_mgr_map, A10_SYSMGR_ECC_INTMASK_CLR_OFST,
1819 BIT(d->hwirq));
1822 static int a10_eccmgr_irqdomain_map(struct irq_domain *d, unsigned int irq,
1823 irq_hw_number_t hwirq)
1825 struct altr_arria10_edac *edac = d->host_data;
1827 irq_set_chip_and_handler(irq, &edac->irq_chip, handle_simple_irq);
1828 irq_set_chip_data(irq, edac);
1829 irq_set_noprobe(irq);
1831 return 0;
1834 static const struct irq_domain_ops a10_eccmgr_ic_ops = {
1835 .map = a10_eccmgr_irqdomain_map,
1836 .xlate = irq_domain_xlate_twocell,
1839 static int altr_edac_a10_probe(struct platform_device *pdev)
1841 struct altr_arria10_edac *edac;
1842 struct device_node *child;
1844 edac = devm_kzalloc(&pdev->dev, sizeof(*edac), GFP_KERNEL);
1845 if (!edac)
1846 return -ENOMEM;
1848 edac->dev = &pdev->dev;
1849 platform_set_drvdata(pdev, edac);
1850 INIT_LIST_HEAD(&edac->a10_ecc_devices);
1852 edac->ecc_mgr_map = syscon_regmap_lookup_by_phandle(pdev->dev.of_node,
1853 "altr,sysmgr-syscon");
1854 if (IS_ERR(edac->ecc_mgr_map)) {
1855 edac_printk(KERN_ERR, EDAC_DEVICE,
1856 "Unable to get syscon altr,sysmgr-syscon\n");
1857 return PTR_ERR(edac->ecc_mgr_map);
1860 edac->irq_chip.name = pdev->dev.of_node->name;
1861 edac->irq_chip.irq_mask = a10_eccmgr_irq_mask;
1862 edac->irq_chip.irq_unmask = a10_eccmgr_irq_unmask;
1863 edac->domain = irq_domain_add_linear(pdev->dev.of_node, 64,
1864 &a10_eccmgr_ic_ops, edac);
1865 if (!edac->domain) {
1866 dev_err(&pdev->dev, "Error adding IRQ domain\n");
1867 return -ENOMEM;
1870 edac->sb_irq = platform_get_irq(pdev, 0);
1871 if (edac->sb_irq < 0) {
1872 dev_err(&pdev->dev, "No SBERR IRQ resource\n");
1873 return edac->sb_irq;
1876 irq_set_chained_handler_and_data(edac->sb_irq,
1877 altr_edac_a10_irq_handler,
1878 edac);
1880 edac->db_irq = platform_get_irq(pdev, 1);
1881 if (edac->db_irq < 0) {
1882 dev_err(&pdev->dev, "No DBERR IRQ resource\n");
1883 return edac->db_irq;
1885 irq_set_chained_handler_and_data(edac->db_irq,
1886 altr_edac_a10_irq_handler,
1887 edac);
1889 for_each_child_of_node(pdev->dev.of_node, child) {
1890 if (!of_device_is_available(child))
1891 continue;
1893 if (of_device_is_compatible(child, "altr,socfpga-a10-l2-ecc") ||
1894 of_device_is_compatible(child, "altr,socfpga-a10-ocram-ecc") ||
1895 of_device_is_compatible(child, "altr,socfpga-eth-mac-ecc") ||
1896 of_device_is_compatible(child, "altr,socfpga-nand-ecc") ||
1897 of_device_is_compatible(child, "altr,socfpga-dma-ecc") ||
1898 of_device_is_compatible(child, "altr,socfpga-usb-ecc") ||
1899 of_device_is_compatible(child, "altr,socfpga-qspi-ecc") ||
1900 of_device_is_compatible(child, "altr,socfpga-sdmmc-ecc"))
1902 altr_edac_a10_device_add(edac, child);
1904 else if (of_device_is_compatible(child, "altr,sdram-edac-a10"))
1905 of_platform_populate(pdev->dev.of_node,
1906 altr_sdram_ctrl_of_match,
1907 NULL, &pdev->dev);
1910 return 0;
1913 static const struct of_device_id altr_edac_a10_of_match[] = {
1914 { .compatible = "altr,socfpga-a10-ecc-manager" },
1917 MODULE_DEVICE_TABLE(of, altr_edac_a10_of_match);
1919 static struct platform_driver altr_edac_a10_driver = {
1920 .probe = altr_edac_a10_probe,
1921 .driver = {
1922 .name = "socfpga_a10_ecc_manager",
1923 .of_match_table = altr_edac_a10_of_match,
1926 module_platform_driver(altr_edac_a10_driver);
1928 MODULE_LICENSE("GPL v2");
1929 MODULE_AUTHOR("Thor Thayer");
1930 MODULE_DESCRIPTION("EDAC Driver for Altera Memories");