Linux 4.16.11
[linux/fpc-iii.git] / drivers / edac / edac_mc.c
blob48193f5f3b56eb874505480a0c0a4ea12d039a64
1 /*
2 * edac_mc kernel module
3 * (C) 2005, 2006 Linux Networx (http://lnxi.com)
4 * This file may be distributed under the terms of the
5 * GNU General Public License.
7 * Written by Thayne Harbaugh
8 * Based on work by Dan Hollis <goemon at anime dot net> and others.
9 * http://www.anime.net/~goemon/linux-ecc/
11 * Modified by Dave Peterson and Doug Thompson
15 #include <linux/module.h>
16 #include <linux/proc_fs.h>
17 #include <linux/kernel.h>
18 #include <linux/types.h>
19 #include <linux/smp.h>
20 #include <linux/init.h>
21 #include <linux/sysctl.h>
22 #include <linux/highmem.h>
23 #include <linux/timer.h>
24 #include <linux/slab.h>
25 #include <linux/jiffies.h>
26 #include <linux/spinlock.h>
27 #include <linux/list.h>
28 #include <linux/ctype.h>
29 #include <linux/edac.h>
30 #include <linux/bitops.h>
31 #include <linux/uaccess.h>
32 #include <asm/page.h>
33 #include "edac_mc.h"
34 #include "edac_module.h"
35 #include <ras/ras_event.h>
37 #ifdef CONFIG_EDAC_ATOMIC_SCRUB
38 #include <asm/edac.h>
39 #else
40 #define edac_atomic_scrub(va, size) do { } while (0)
41 #endif
43 int edac_op_state = EDAC_OPSTATE_INVAL;
44 EXPORT_SYMBOL_GPL(edac_op_state);
46 static int edac_report = EDAC_REPORTING_ENABLED;
48 /* lock to memory controller's control array */
49 static DEFINE_MUTEX(mem_ctls_mutex);
50 static LIST_HEAD(mc_devices);
53 * Used to lock EDAC MC to just one module, avoiding two drivers e. g.
54 * apei/ghes and i7core_edac to be used at the same time.
56 static const char *edac_mc_owner;
58 static struct bus_type mc_bus[EDAC_MAX_MCS];
60 int edac_get_report_status(void)
62 return edac_report;
64 EXPORT_SYMBOL_GPL(edac_get_report_status);
66 void edac_set_report_status(int new)
68 if (new == EDAC_REPORTING_ENABLED ||
69 new == EDAC_REPORTING_DISABLED ||
70 new == EDAC_REPORTING_FORCE)
71 edac_report = new;
73 EXPORT_SYMBOL_GPL(edac_set_report_status);
75 static int edac_report_set(const char *str, const struct kernel_param *kp)
77 if (!str)
78 return -EINVAL;
80 if (!strncmp(str, "on", 2))
81 edac_report = EDAC_REPORTING_ENABLED;
82 else if (!strncmp(str, "off", 3))
83 edac_report = EDAC_REPORTING_DISABLED;
84 else if (!strncmp(str, "force", 5))
85 edac_report = EDAC_REPORTING_FORCE;
87 return 0;
90 static int edac_report_get(char *buffer, const struct kernel_param *kp)
92 int ret = 0;
94 switch (edac_report) {
95 case EDAC_REPORTING_ENABLED:
96 ret = sprintf(buffer, "on");
97 break;
98 case EDAC_REPORTING_DISABLED:
99 ret = sprintf(buffer, "off");
100 break;
101 case EDAC_REPORTING_FORCE:
102 ret = sprintf(buffer, "force");
103 break;
104 default:
105 ret = -EINVAL;
106 break;
109 return ret;
112 static const struct kernel_param_ops edac_report_ops = {
113 .set = edac_report_set,
114 .get = edac_report_get,
117 module_param_cb(edac_report, &edac_report_ops, &edac_report, 0644);
119 unsigned edac_dimm_info_location(struct dimm_info *dimm, char *buf,
120 unsigned len)
122 struct mem_ctl_info *mci = dimm->mci;
123 int i, n, count = 0;
124 char *p = buf;
126 for (i = 0; i < mci->n_layers; i++) {
127 n = snprintf(p, len, "%s %d ",
128 edac_layer_name[mci->layers[i].type],
129 dimm->location[i]);
130 p += n;
131 len -= n;
132 count += n;
133 if (!len)
134 break;
137 return count;
140 #ifdef CONFIG_EDAC_DEBUG
142 static void edac_mc_dump_channel(struct rank_info *chan)
144 edac_dbg(4, " channel->chan_idx = %d\n", chan->chan_idx);
145 edac_dbg(4, " channel = %p\n", chan);
146 edac_dbg(4, " channel->csrow = %p\n", chan->csrow);
147 edac_dbg(4, " channel->dimm = %p\n", chan->dimm);
150 static void edac_mc_dump_dimm(struct dimm_info *dimm, int number)
152 char location[80];
154 edac_dimm_info_location(dimm, location, sizeof(location));
156 edac_dbg(4, "%s%i: %smapped as virtual row %d, chan %d\n",
157 dimm->mci->csbased ? "rank" : "dimm",
158 number, location, dimm->csrow, dimm->cschannel);
159 edac_dbg(4, " dimm = %p\n", dimm);
160 edac_dbg(4, " dimm->label = '%s'\n", dimm->label);
161 edac_dbg(4, " dimm->nr_pages = 0x%x\n", dimm->nr_pages);
162 edac_dbg(4, " dimm->grain = %d\n", dimm->grain);
163 edac_dbg(4, " dimm->nr_pages = 0x%x\n", dimm->nr_pages);
166 static void edac_mc_dump_csrow(struct csrow_info *csrow)
168 edac_dbg(4, "csrow->csrow_idx = %d\n", csrow->csrow_idx);
169 edac_dbg(4, " csrow = %p\n", csrow);
170 edac_dbg(4, " csrow->first_page = 0x%lx\n", csrow->first_page);
171 edac_dbg(4, " csrow->last_page = 0x%lx\n", csrow->last_page);
172 edac_dbg(4, " csrow->page_mask = 0x%lx\n", csrow->page_mask);
173 edac_dbg(4, " csrow->nr_channels = %d\n", csrow->nr_channels);
174 edac_dbg(4, " csrow->channels = %p\n", csrow->channels);
175 edac_dbg(4, " csrow->mci = %p\n", csrow->mci);
178 static void edac_mc_dump_mci(struct mem_ctl_info *mci)
180 edac_dbg(3, "\tmci = %p\n", mci);
181 edac_dbg(3, "\tmci->mtype_cap = %lx\n", mci->mtype_cap);
182 edac_dbg(3, "\tmci->edac_ctl_cap = %lx\n", mci->edac_ctl_cap);
183 edac_dbg(3, "\tmci->edac_cap = %lx\n", mci->edac_cap);
184 edac_dbg(4, "\tmci->edac_check = %p\n", mci->edac_check);
185 edac_dbg(3, "\tmci->nr_csrows = %d, csrows = %p\n",
186 mci->nr_csrows, mci->csrows);
187 edac_dbg(3, "\tmci->nr_dimms = %d, dimms = %p\n",
188 mci->tot_dimms, mci->dimms);
189 edac_dbg(3, "\tdev = %p\n", mci->pdev);
190 edac_dbg(3, "\tmod_name:ctl_name = %s:%s\n",
191 mci->mod_name, mci->ctl_name);
192 edac_dbg(3, "\tpvt_info = %p\n\n", mci->pvt_info);
195 #endif /* CONFIG_EDAC_DEBUG */
197 const char * const edac_mem_types[] = {
198 [MEM_EMPTY] = "Empty csrow",
199 [MEM_RESERVED] = "Reserved csrow type",
200 [MEM_UNKNOWN] = "Unknown csrow type",
201 [MEM_FPM] = "Fast page mode RAM",
202 [MEM_EDO] = "Extended data out RAM",
203 [MEM_BEDO] = "Burst Extended data out RAM",
204 [MEM_SDR] = "Single data rate SDRAM",
205 [MEM_RDR] = "Registered single data rate SDRAM",
206 [MEM_DDR] = "Double data rate SDRAM",
207 [MEM_RDDR] = "Registered Double data rate SDRAM",
208 [MEM_RMBS] = "Rambus DRAM",
209 [MEM_DDR2] = "Unbuffered DDR2 RAM",
210 [MEM_FB_DDR2] = "Fully buffered DDR2",
211 [MEM_RDDR2] = "Registered DDR2 RAM",
212 [MEM_XDR] = "Rambus XDR",
213 [MEM_DDR3] = "Unbuffered DDR3 RAM",
214 [MEM_RDDR3] = "Registered DDR3 RAM",
215 [MEM_LRDDR3] = "Load-Reduced DDR3 RAM",
216 [MEM_DDR4] = "Unbuffered DDR4 RAM",
217 [MEM_RDDR4] = "Registered DDR4 RAM",
219 EXPORT_SYMBOL_GPL(edac_mem_types);
222 * edac_align_ptr - Prepares the pointer offsets for a single-shot allocation
223 * @p: pointer to a pointer with the memory offset to be used. At
224 * return, this will be incremented to point to the next offset
225 * @size: Size of the data structure to be reserved
226 * @n_elems: Number of elements that should be reserved
228 * If 'size' is a constant, the compiler will optimize this whole function
229 * down to either a no-op or the addition of a constant to the value of '*p'.
231 * The 'p' pointer is absolutely needed to keep the proper advancing
232 * further in memory to the proper offsets when allocating the struct along
233 * with its embedded structs, as edac_device_alloc_ctl_info() does it
234 * above, for example.
236 * At return, the pointer 'p' will be incremented to be used on a next call
237 * to this function.
239 void *edac_align_ptr(void **p, unsigned size, int n_elems)
241 unsigned align, r;
242 void *ptr = *p;
244 *p += size * n_elems;
247 * 'p' can possibly be an unaligned item X such that sizeof(X) is
248 * 'size'. Adjust 'p' so that its alignment is at least as
249 * stringent as what the compiler would provide for X and return
250 * the aligned result.
251 * Here we assume that the alignment of a "long long" is the most
252 * stringent alignment that the compiler will ever provide by default.
253 * As far as I know, this is a reasonable assumption.
255 if (size > sizeof(long))
256 align = sizeof(long long);
257 else if (size > sizeof(int))
258 align = sizeof(long);
259 else if (size > sizeof(short))
260 align = sizeof(int);
261 else if (size > sizeof(char))
262 align = sizeof(short);
263 else
264 return (char *)ptr;
266 r = (unsigned long)p % align;
268 if (r == 0)
269 return (char *)ptr;
271 *p += align - r;
273 return (void *)(((unsigned long)ptr) + align - r);
276 static void _edac_mc_free(struct mem_ctl_info *mci)
278 int i, chn, row;
279 struct csrow_info *csr;
280 const unsigned int tot_dimms = mci->tot_dimms;
281 const unsigned int tot_channels = mci->num_cschannel;
282 const unsigned int tot_csrows = mci->nr_csrows;
284 if (mci->dimms) {
285 for (i = 0; i < tot_dimms; i++)
286 kfree(mci->dimms[i]);
287 kfree(mci->dimms);
289 if (mci->csrows) {
290 for (row = 0; row < tot_csrows; row++) {
291 csr = mci->csrows[row];
292 if (csr) {
293 if (csr->channels) {
294 for (chn = 0; chn < tot_channels; chn++)
295 kfree(csr->channels[chn]);
296 kfree(csr->channels);
298 kfree(csr);
301 kfree(mci->csrows);
303 kfree(mci);
306 struct mem_ctl_info *edac_mc_alloc(unsigned mc_num,
307 unsigned n_layers,
308 struct edac_mc_layer *layers,
309 unsigned sz_pvt)
311 struct mem_ctl_info *mci;
312 struct edac_mc_layer *layer;
313 struct csrow_info *csr;
314 struct rank_info *chan;
315 struct dimm_info *dimm;
316 u32 *ce_per_layer[EDAC_MAX_LAYERS], *ue_per_layer[EDAC_MAX_LAYERS];
317 unsigned pos[EDAC_MAX_LAYERS];
318 unsigned size, tot_dimms = 1, count = 1;
319 unsigned tot_csrows = 1, tot_channels = 1, tot_errcount = 0;
320 void *pvt, *p, *ptr = NULL;
321 int i, j, row, chn, n, len, off;
322 bool per_rank = false;
324 BUG_ON(n_layers > EDAC_MAX_LAYERS || n_layers == 0);
326 * Calculate the total amount of dimms and csrows/cschannels while
327 * in the old API emulation mode
329 for (i = 0; i < n_layers; i++) {
330 tot_dimms *= layers[i].size;
331 if (layers[i].is_virt_csrow)
332 tot_csrows *= layers[i].size;
333 else
334 tot_channels *= layers[i].size;
336 if (layers[i].type == EDAC_MC_LAYER_CHIP_SELECT)
337 per_rank = true;
340 /* Figure out the offsets of the various items from the start of an mc
341 * structure. We want the alignment of each item to be at least as
342 * stringent as what the compiler would provide if we could simply
343 * hardcode everything into a single struct.
345 mci = edac_align_ptr(&ptr, sizeof(*mci), 1);
346 layer = edac_align_ptr(&ptr, sizeof(*layer), n_layers);
347 for (i = 0; i < n_layers; i++) {
348 count *= layers[i].size;
349 edac_dbg(4, "errcount layer %d size %d\n", i, count);
350 ce_per_layer[i] = edac_align_ptr(&ptr, sizeof(u32), count);
351 ue_per_layer[i] = edac_align_ptr(&ptr, sizeof(u32), count);
352 tot_errcount += 2 * count;
355 edac_dbg(4, "allocating %d error counters\n", tot_errcount);
356 pvt = edac_align_ptr(&ptr, sz_pvt, 1);
357 size = ((unsigned long)pvt) + sz_pvt;
359 edac_dbg(1, "allocating %u bytes for mci data (%d %s, %d csrows/channels)\n",
360 size,
361 tot_dimms,
362 per_rank ? "ranks" : "dimms",
363 tot_csrows * tot_channels);
365 mci = kzalloc(size, GFP_KERNEL);
366 if (mci == NULL)
367 return NULL;
369 /* Adjust pointers so they point within the memory we just allocated
370 * rather than an imaginary chunk of memory located at address 0.
372 layer = (struct edac_mc_layer *)(((char *)mci) + ((unsigned long)layer));
373 for (i = 0; i < n_layers; i++) {
374 mci->ce_per_layer[i] = (u32 *)((char *)mci + ((unsigned long)ce_per_layer[i]));
375 mci->ue_per_layer[i] = (u32 *)((char *)mci + ((unsigned long)ue_per_layer[i]));
377 pvt = sz_pvt ? (((char *)mci) + ((unsigned long)pvt)) : NULL;
379 /* setup index and various internal pointers */
380 mci->mc_idx = mc_num;
381 mci->tot_dimms = tot_dimms;
382 mci->pvt_info = pvt;
383 mci->n_layers = n_layers;
384 mci->layers = layer;
385 memcpy(mci->layers, layers, sizeof(*layer) * n_layers);
386 mci->nr_csrows = tot_csrows;
387 mci->num_cschannel = tot_channels;
388 mci->csbased = per_rank;
391 * Alocate and fill the csrow/channels structs
393 mci->csrows = kcalloc(tot_csrows, sizeof(*mci->csrows), GFP_KERNEL);
394 if (!mci->csrows)
395 goto error;
396 for (row = 0; row < tot_csrows; row++) {
397 csr = kzalloc(sizeof(**mci->csrows), GFP_KERNEL);
398 if (!csr)
399 goto error;
400 mci->csrows[row] = csr;
401 csr->csrow_idx = row;
402 csr->mci = mci;
403 csr->nr_channels = tot_channels;
404 csr->channels = kcalloc(tot_channels, sizeof(*csr->channels),
405 GFP_KERNEL);
406 if (!csr->channels)
407 goto error;
409 for (chn = 0; chn < tot_channels; chn++) {
410 chan = kzalloc(sizeof(**csr->channels), GFP_KERNEL);
411 if (!chan)
412 goto error;
413 csr->channels[chn] = chan;
414 chan->chan_idx = chn;
415 chan->csrow = csr;
420 * Allocate and fill the dimm structs
422 mci->dimms = kcalloc(tot_dimms, sizeof(*mci->dimms), GFP_KERNEL);
423 if (!mci->dimms)
424 goto error;
426 memset(&pos, 0, sizeof(pos));
427 row = 0;
428 chn = 0;
429 for (i = 0; i < tot_dimms; i++) {
430 chan = mci->csrows[row]->channels[chn];
431 off = EDAC_DIMM_OFF(layer, n_layers, pos[0], pos[1], pos[2]);
432 if (off < 0 || off >= tot_dimms) {
433 edac_mc_printk(mci, KERN_ERR, "EDAC core bug: EDAC_DIMM_OFF is trying to do an illegal data access\n");
434 goto error;
437 dimm = kzalloc(sizeof(**mci->dimms), GFP_KERNEL);
438 if (!dimm)
439 goto error;
440 mci->dimms[off] = dimm;
441 dimm->mci = mci;
444 * Copy DIMM location and initialize it.
446 len = sizeof(dimm->label);
447 p = dimm->label;
448 n = snprintf(p, len, "mc#%u", mc_num);
449 p += n;
450 len -= n;
451 for (j = 0; j < n_layers; j++) {
452 n = snprintf(p, len, "%s#%u",
453 edac_layer_name[layers[j].type],
454 pos[j]);
455 p += n;
456 len -= n;
457 dimm->location[j] = pos[j];
459 if (len <= 0)
460 break;
463 /* Link it to the csrows old API data */
464 chan->dimm = dimm;
465 dimm->csrow = row;
466 dimm->cschannel = chn;
468 /* Increment csrow location */
469 if (layers[0].is_virt_csrow) {
470 chn++;
471 if (chn == tot_channels) {
472 chn = 0;
473 row++;
475 } else {
476 row++;
477 if (row == tot_csrows) {
478 row = 0;
479 chn++;
483 /* Increment dimm location */
484 for (j = n_layers - 1; j >= 0; j--) {
485 pos[j]++;
486 if (pos[j] < layers[j].size)
487 break;
488 pos[j] = 0;
492 mci->op_state = OP_ALLOC;
494 return mci;
496 error:
497 _edac_mc_free(mci);
499 return NULL;
501 EXPORT_SYMBOL_GPL(edac_mc_alloc);
503 void edac_mc_free(struct mem_ctl_info *mci)
505 edac_dbg(1, "\n");
507 /* If we're not yet registered with sysfs free only what was allocated
508 * in edac_mc_alloc().
510 if (!device_is_registered(&mci->dev)) {
511 _edac_mc_free(mci);
512 return;
515 /* the mci instance is freed here, when the sysfs object is dropped */
516 edac_unregister_sysfs(mci);
518 EXPORT_SYMBOL_GPL(edac_mc_free);
520 bool edac_has_mcs(void)
522 bool ret;
524 mutex_lock(&mem_ctls_mutex);
526 ret = list_empty(&mc_devices);
528 mutex_unlock(&mem_ctls_mutex);
530 return !ret;
532 EXPORT_SYMBOL_GPL(edac_has_mcs);
534 /* Caller must hold mem_ctls_mutex */
535 static struct mem_ctl_info *__find_mci_by_dev(struct device *dev)
537 struct mem_ctl_info *mci;
538 struct list_head *item;
540 edac_dbg(3, "\n");
542 list_for_each(item, &mc_devices) {
543 mci = list_entry(item, struct mem_ctl_info, link);
545 if (mci->pdev == dev)
546 return mci;
549 return NULL;
553 * find_mci_by_dev
555 * scan list of controllers looking for the one that manages
556 * the 'dev' device
557 * @dev: pointer to a struct device related with the MCI
559 struct mem_ctl_info *find_mci_by_dev(struct device *dev)
561 struct mem_ctl_info *ret;
563 mutex_lock(&mem_ctls_mutex);
564 ret = __find_mci_by_dev(dev);
565 mutex_unlock(&mem_ctls_mutex);
567 return ret;
569 EXPORT_SYMBOL_GPL(find_mci_by_dev);
572 * edac_mc_workq_function
573 * performs the operation scheduled by a workq request
575 static void edac_mc_workq_function(struct work_struct *work_req)
577 struct delayed_work *d_work = to_delayed_work(work_req);
578 struct mem_ctl_info *mci = to_edac_mem_ctl_work(d_work);
580 mutex_lock(&mem_ctls_mutex);
582 if (mci->op_state != OP_RUNNING_POLL) {
583 mutex_unlock(&mem_ctls_mutex);
584 return;
587 if (edac_op_state == EDAC_OPSTATE_POLL)
588 mci->edac_check(mci);
590 mutex_unlock(&mem_ctls_mutex);
592 /* Queue ourselves again. */
593 edac_queue_work(&mci->work, msecs_to_jiffies(edac_mc_get_poll_msec()));
597 * edac_mc_reset_delay_period(unsigned long value)
599 * user space has updated our poll period value, need to
600 * reset our workq delays
602 void edac_mc_reset_delay_period(unsigned long value)
604 struct mem_ctl_info *mci;
605 struct list_head *item;
607 mutex_lock(&mem_ctls_mutex);
609 list_for_each(item, &mc_devices) {
610 mci = list_entry(item, struct mem_ctl_info, link);
612 if (mci->op_state == OP_RUNNING_POLL)
613 edac_mod_work(&mci->work, value);
615 mutex_unlock(&mem_ctls_mutex);
620 /* Return 0 on success, 1 on failure.
621 * Before calling this function, caller must
622 * assign a unique value to mci->mc_idx.
624 * locking model:
626 * called with the mem_ctls_mutex lock held
628 static int add_mc_to_global_list(struct mem_ctl_info *mci)
630 struct list_head *item, *insert_before;
631 struct mem_ctl_info *p;
633 insert_before = &mc_devices;
635 p = __find_mci_by_dev(mci->pdev);
636 if (unlikely(p != NULL))
637 goto fail0;
639 list_for_each(item, &mc_devices) {
640 p = list_entry(item, struct mem_ctl_info, link);
642 if (p->mc_idx >= mci->mc_idx) {
643 if (unlikely(p->mc_idx == mci->mc_idx))
644 goto fail1;
646 insert_before = item;
647 break;
651 list_add_tail_rcu(&mci->link, insert_before);
652 return 0;
654 fail0:
655 edac_printk(KERN_WARNING, EDAC_MC,
656 "%s (%s) %s %s already assigned %d\n", dev_name(p->pdev),
657 edac_dev_name(mci), p->mod_name, p->ctl_name, p->mc_idx);
658 return 1;
660 fail1:
661 edac_printk(KERN_WARNING, EDAC_MC,
662 "bug in low-level driver: attempt to assign\n"
663 " duplicate mc_idx %d in %s()\n", p->mc_idx, __func__);
664 return 1;
667 static int del_mc_from_global_list(struct mem_ctl_info *mci)
669 list_del_rcu(&mci->link);
671 /* these are for safe removal of devices from global list while
672 * NMI handlers may be traversing list
674 synchronize_rcu();
675 INIT_LIST_HEAD(&mci->link);
677 return list_empty(&mc_devices);
680 struct mem_ctl_info *edac_mc_find(int idx)
682 struct mem_ctl_info *mci = NULL;
683 struct list_head *item;
685 mutex_lock(&mem_ctls_mutex);
687 list_for_each(item, &mc_devices) {
688 mci = list_entry(item, struct mem_ctl_info, link);
690 if (mci->mc_idx >= idx) {
691 if (mci->mc_idx == idx) {
692 goto unlock;
694 break;
698 unlock:
699 mutex_unlock(&mem_ctls_mutex);
700 return mci;
702 EXPORT_SYMBOL(edac_mc_find);
704 const char *edac_get_owner(void)
706 return edac_mc_owner;
708 EXPORT_SYMBOL_GPL(edac_get_owner);
710 /* FIXME - should a warning be printed if no error detection? correction? */
711 int edac_mc_add_mc_with_groups(struct mem_ctl_info *mci,
712 const struct attribute_group **groups)
714 int ret = -EINVAL;
715 edac_dbg(0, "\n");
717 if (mci->mc_idx >= EDAC_MAX_MCS) {
718 pr_warn_once("Too many memory controllers: %d\n", mci->mc_idx);
719 return -ENODEV;
722 #ifdef CONFIG_EDAC_DEBUG
723 if (edac_debug_level >= 3)
724 edac_mc_dump_mci(mci);
726 if (edac_debug_level >= 4) {
727 int i;
729 for (i = 0; i < mci->nr_csrows; i++) {
730 struct csrow_info *csrow = mci->csrows[i];
731 u32 nr_pages = 0;
732 int j;
734 for (j = 0; j < csrow->nr_channels; j++)
735 nr_pages += csrow->channels[j]->dimm->nr_pages;
736 if (!nr_pages)
737 continue;
738 edac_mc_dump_csrow(csrow);
739 for (j = 0; j < csrow->nr_channels; j++)
740 if (csrow->channels[j]->dimm->nr_pages)
741 edac_mc_dump_channel(csrow->channels[j]);
743 for (i = 0; i < mci->tot_dimms; i++)
744 if (mci->dimms[i]->nr_pages)
745 edac_mc_dump_dimm(mci->dimms[i], i);
747 #endif
748 mutex_lock(&mem_ctls_mutex);
750 if (edac_mc_owner && edac_mc_owner != mci->mod_name) {
751 ret = -EPERM;
752 goto fail0;
755 if (add_mc_to_global_list(mci))
756 goto fail0;
758 /* set load time so that error rate can be tracked */
759 mci->start_time = jiffies;
761 mci->bus = &mc_bus[mci->mc_idx];
763 if (edac_create_sysfs_mci_device(mci, groups)) {
764 edac_mc_printk(mci, KERN_WARNING,
765 "failed to create sysfs device\n");
766 goto fail1;
769 if (mci->edac_check) {
770 mci->op_state = OP_RUNNING_POLL;
772 INIT_DELAYED_WORK(&mci->work, edac_mc_workq_function);
773 edac_queue_work(&mci->work, msecs_to_jiffies(edac_mc_get_poll_msec()));
775 } else {
776 mci->op_state = OP_RUNNING_INTERRUPT;
779 /* Report action taken */
780 edac_mc_printk(mci, KERN_INFO,
781 "Giving out device to module %s controller %s: DEV %s (%s)\n",
782 mci->mod_name, mci->ctl_name, mci->dev_name,
783 edac_op_state_to_string(mci->op_state));
785 edac_mc_owner = mci->mod_name;
787 mutex_unlock(&mem_ctls_mutex);
788 return 0;
790 fail1:
791 del_mc_from_global_list(mci);
793 fail0:
794 mutex_unlock(&mem_ctls_mutex);
795 return ret;
797 EXPORT_SYMBOL_GPL(edac_mc_add_mc_with_groups);
799 struct mem_ctl_info *edac_mc_del_mc(struct device *dev)
801 struct mem_ctl_info *mci;
803 edac_dbg(0, "\n");
805 mutex_lock(&mem_ctls_mutex);
807 /* find the requested mci struct in the global list */
808 mci = __find_mci_by_dev(dev);
809 if (mci == NULL) {
810 mutex_unlock(&mem_ctls_mutex);
811 return NULL;
814 /* mark MCI offline: */
815 mci->op_state = OP_OFFLINE;
817 if (del_mc_from_global_list(mci))
818 edac_mc_owner = NULL;
820 mutex_unlock(&mem_ctls_mutex);
822 if (mci->edac_check)
823 edac_stop_work(&mci->work);
825 /* remove from sysfs */
826 edac_remove_sysfs_mci_device(mci);
828 edac_printk(KERN_INFO, EDAC_MC,
829 "Removed device %d for %s %s: DEV %s\n", mci->mc_idx,
830 mci->mod_name, mci->ctl_name, edac_dev_name(mci));
832 return mci;
834 EXPORT_SYMBOL_GPL(edac_mc_del_mc);
836 static void edac_mc_scrub_block(unsigned long page, unsigned long offset,
837 u32 size)
839 struct page *pg;
840 void *virt_addr;
841 unsigned long flags = 0;
843 edac_dbg(3, "\n");
845 /* ECC error page was not in our memory. Ignore it. */
846 if (!pfn_valid(page))
847 return;
849 /* Find the actual page structure then map it and fix */
850 pg = pfn_to_page(page);
852 if (PageHighMem(pg))
853 local_irq_save(flags);
855 virt_addr = kmap_atomic(pg);
857 /* Perform architecture specific atomic scrub operation */
858 edac_atomic_scrub(virt_addr + offset, size);
860 /* Unmap and complete */
861 kunmap_atomic(virt_addr);
863 if (PageHighMem(pg))
864 local_irq_restore(flags);
867 /* FIXME - should return -1 */
868 int edac_mc_find_csrow_by_page(struct mem_ctl_info *mci, unsigned long page)
870 struct csrow_info **csrows = mci->csrows;
871 int row, i, j, n;
873 edac_dbg(1, "MC%d: 0x%lx\n", mci->mc_idx, page);
874 row = -1;
876 for (i = 0; i < mci->nr_csrows; i++) {
877 struct csrow_info *csrow = csrows[i];
878 n = 0;
879 for (j = 0; j < csrow->nr_channels; j++) {
880 struct dimm_info *dimm = csrow->channels[j]->dimm;
881 n += dimm->nr_pages;
883 if (n == 0)
884 continue;
886 edac_dbg(3, "MC%d: first(0x%lx) page(0x%lx) last(0x%lx) mask(0x%lx)\n",
887 mci->mc_idx,
888 csrow->first_page, page, csrow->last_page,
889 csrow->page_mask);
891 if ((page >= csrow->first_page) &&
892 (page <= csrow->last_page) &&
893 ((page & csrow->page_mask) ==
894 (csrow->first_page & csrow->page_mask))) {
895 row = i;
896 break;
900 if (row == -1)
901 edac_mc_printk(mci, KERN_ERR,
902 "could not look up page error address %lx\n",
903 (unsigned long)page);
905 return row;
907 EXPORT_SYMBOL_GPL(edac_mc_find_csrow_by_page);
909 const char *edac_layer_name[] = {
910 [EDAC_MC_LAYER_BRANCH] = "branch",
911 [EDAC_MC_LAYER_CHANNEL] = "channel",
912 [EDAC_MC_LAYER_SLOT] = "slot",
913 [EDAC_MC_LAYER_CHIP_SELECT] = "csrow",
914 [EDAC_MC_LAYER_ALL_MEM] = "memory",
916 EXPORT_SYMBOL_GPL(edac_layer_name);
918 static void edac_inc_ce_error(struct mem_ctl_info *mci,
919 bool enable_per_layer_report,
920 const int pos[EDAC_MAX_LAYERS],
921 const u16 count)
923 int i, index = 0;
925 mci->ce_mc += count;
927 if (!enable_per_layer_report) {
928 mci->ce_noinfo_count += count;
929 return;
932 for (i = 0; i < mci->n_layers; i++) {
933 if (pos[i] < 0)
934 break;
935 index += pos[i];
936 mci->ce_per_layer[i][index] += count;
938 if (i < mci->n_layers - 1)
939 index *= mci->layers[i + 1].size;
943 static void edac_inc_ue_error(struct mem_ctl_info *mci,
944 bool enable_per_layer_report,
945 const int pos[EDAC_MAX_LAYERS],
946 const u16 count)
948 int i, index = 0;
950 mci->ue_mc += count;
952 if (!enable_per_layer_report) {
953 mci->ue_noinfo_count += count;
954 return;
957 for (i = 0; i < mci->n_layers; i++) {
958 if (pos[i] < 0)
959 break;
960 index += pos[i];
961 mci->ue_per_layer[i][index] += count;
963 if (i < mci->n_layers - 1)
964 index *= mci->layers[i + 1].size;
968 static void edac_ce_error(struct mem_ctl_info *mci,
969 const u16 error_count,
970 const int pos[EDAC_MAX_LAYERS],
971 const char *msg,
972 const char *location,
973 const char *label,
974 const char *detail,
975 const char *other_detail,
976 const bool enable_per_layer_report,
977 const unsigned long page_frame_number,
978 const unsigned long offset_in_page,
979 long grain)
981 unsigned long remapped_page;
982 char *msg_aux = "";
984 if (*msg)
985 msg_aux = " ";
987 if (edac_mc_get_log_ce()) {
988 if (other_detail && *other_detail)
989 edac_mc_printk(mci, KERN_WARNING,
990 "%d CE %s%son %s (%s %s - %s)\n",
991 error_count, msg, msg_aux, label,
992 location, detail, other_detail);
993 else
994 edac_mc_printk(mci, KERN_WARNING,
995 "%d CE %s%son %s (%s %s)\n",
996 error_count, msg, msg_aux, label,
997 location, detail);
999 edac_inc_ce_error(mci, enable_per_layer_report, pos, error_count);
1001 if (mci->scrub_mode == SCRUB_SW_SRC) {
1003 * Some memory controllers (called MCs below) can remap
1004 * memory so that it is still available at a different
1005 * address when PCI devices map into memory.
1006 * MC's that can't do this, lose the memory where PCI
1007 * devices are mapped. This mapping is MC-dependent
1008 * and so we call back into the MC driver for it to
1009 * map the MC page to a physical (CPU) page which can
1010 * then be mapped to a virtual page - which can then
1011 * be scrubbed.
1013 remapped_page = mci->ctl_page_to_phys ?
1014 mci->ctl_page_to_phys(mci, page_frame_number) :
1015 page_frame_number;
1017 edac_mc_scrub_block(remapped_page,
1018 offset_in_page, grain);
1022 static void edac_ue_error(struct mem_ctl_info *mci,
1023 const u16 error_count,
1024 const int pos[EDAC_MAX_LAYERS],
1025 const char *msg,
1026 const char *location,
1027 const char *label,
1028 const char *detail,
1029 const char *other_detail,
1030 const bool enable_per_layer_report)
1032 char *msg_aux = "";
1034 if (*msg)
1035 msg_aux = " ";
1037 if (edac_mc_get_log_ue()) {
1038 if (other_detail && *other_detail)
1039 edac_mc_printk(mci, KERN_WARNING,
1040 "%d UE %s%son %s (%s %s - %s)\n",
1041 error_count, msg, msg_aux, label,
1042 location, detail, other_detail);
1043 else
1044 edac_mc_printk(mci, KERN_WARNING,
1045 "%d UE %s%son %s (%s %s)\n",
1046 error_count, msg, msg_aux, label,
1047 location, detail);
1050 if (edac_mc_get_panic_on_ue()) {
1051 if (other_detail && *other_detail)
1052 panic("UE %s%son %s (%s%s - %s)\n",
1053 msg, msg_aux, label, location, detail, other_detail);
1054 else
1055 panic("UE %s%son %s (%s%s)\n",
1056 msg, msg_aux, label, location, detail);
1059 edac_inc_ue_error(mci, enable_per_layer_report, pos, error_count);
1062 void edac_raw_mc_handle_error(const enum hw_event_mc_err_type type,
1063 struct mem_ctl_info *mci,
1064 struct edac_raw_error_desc *e)
1066 char detail[80];
1067 int pos[EDAC_MAX_LAYERS] = { e->top_layer, e->mid_layer, e->low_layer };
1069 /* Memory type dependent details about the error */
1070 if (type == HW_EVENT_ERR_CORRECTED) {
1071 snprintf(detail, sizeof(detail),
1072 "page:0x%lx offset:0x%lx grain:%ld syndrome:0x%lx",
1073 e->page_frame_number, e->offset_in_page,
1074 e->grain, e->syndrome);
1075 edac_ce_error(mci, e->error_count, pos, e->msg, e->location, e->label,
1076 detail, e->other_detail, e->enable_per_layer_report,
1077 e->page_frame_number, e->offset_in_page, e->grain);
1078 } else {
1079 snprintf(detail, sizeof(detail),
1080 "page:0x%lx offset:0x%lx grain:%ld",
1081 e->page_frame_number, e->offset_in_page, e->grain);
1083 edac_ue_error(mci, e->error_count, pos, e->msg, e->location, e->label,
1084 detail, e->other_detail, e->enable_per_layer_report);
1089 EXPORT_SYMBOL_GPL(edac_raw_mc_handle_error);
1091 void edac_mc_handle_error(const enum hw_event_mc_err_type type,
1092 struct mem_ctl_info *mci,
1093 const u16 error_count,
1094 const unsigned long page_frame_number,
1095 const unsigned long offset_in_page,
1096 const unsigned long syndrome,
1097 const int top_layer,
1098 const int mid_layer,
1099 const int low_layer,
1100 const char *msg,
1101 const char *other_detail)
1103 char *p;
1104 int row = -1, chan = -1;
1105 int pos[EDAC_MAX_LAYERS] = { top_layer, mid_layer, low_layer };
1106 int i, n_labels = 0;
1107 u8 grain_bits;
1108 struct edac_raw_error_desc *e = &mci->error_desc;
1110 edac_dbg(3, "MC%d\n", mci->mc_idx);
1112 /* Fills the error report buffer */
1113 memset(e, 0, sizeof (*e));
1114 e->error_count = error_count;
1115 e->top_layer = top_layer;
1116 e->mid_layer = mid_layer;
1117 e->low_layer = low_layer;
1118 e->page_frame_number = page_frame_number;
1119 e->offset_in_page = offset_in_page;
1120 e->syndrome = syndrome;
1121 e->msg = msg;
1122 e->other_detail = other_detail;
1125 * Check if the event report is consistent and if the memory
1126 * location is known. If it is known, enable_per_layer_report will be
1127 * true, the DIMM(s) label info will be filled and the per-layer
1128 * error counters will be incremented.
1130 for (i = 0; i < mci->n_layers; i++) {
1131 if (pos[i] >= (int)mci->layers[i].size) {
1133 edac_mc_printk(mci, KERN_ERR,
1134 "INTERNAL ERROR: %s value is out of range (%d >= %d)\n",
1135 edac_layer_name[mci->layers[i].type],
1136 pos[i], mci->layers[i].size);
1138 * Instead of just returning it, let's use what's
1139 * known about the error. The increment routines and
1140 * the DIMM filter logic will do the right thing by
1141 * pointing the likely damaged DIMMs.
1143 pos[i] = -1;
1145 if (pos[i] >= 0)
1146 e->enable_per_layer_report = true;
1150 * Get the dimm label/grain that applies to the match criteria.
1151 * As the error algorithm may not be able to point to just one memory
1152 * stick, the logic here will get all possible labels that could
1153 * pottentially be affected by the error.
1154 * On FB-DIMM memory controllers, for uncorrected errors, it is common
1155 * to have only the MC channel and the MC dimm (also called "branch")
1156 * but the channel is not known, as the memory is arranged in pairs,
1157 * where each memory belongs to a separate channel within the same
1158 * branch.
1160 p = e->label;
1161 *p = '\0';
1163 for (i = 0; i < mci->tot_dimms; i++) {
1164 struct dimm_info *dimm = mci->dimms[i];
1166 if (top_layer >= 0 && top_layer != dimm->location[0])
1167 continue;
1168 if (mid_layer >= 0 && mid_layer != dimm->location[1])
1169 continue;
1170 if (low_layer >= 0 && low_layer != dimm->location[2])
1171 continue;
1173 /* get the max grain, over the error match range */
1174 if (dimm->grain > e->grain)
1175 e->grain = dimm->grain;
1178 * If the error is memory-controller wide, there's no need to
1179 * seek for the affected DIMMs because the whole
1180 * channel/memory controller/... may be affected.
1181 * Also, don't show errors for empty DIMM slots.
1183 if (e->enable_per_layer_report && dimm->nr_pages) {
1184 if (n_labels >= EDAC_MAX_LABELS) {
1185 e->enable_per_layer_report = false;
1186 break;
1188 n_labels++;
1189 if (p != e->label) {
1190 strcpy(p, OTHER_LABEL);
1191 p += strlen(OTHER_LABEL);
1193 strcpy(p, dimm->label);
1194 p += strlen(p);
1195 *p = '\0';
1198 * get csrow/channel of the DIMM, in order to allow
1199 * incrementing the compat API counters
1201 edac_dbg(4, "%s csrows map: (%d,%d)\n",
1202 mci->csbased ? "rank" : "dimm",
1203 dimm->csrow, dimm->cschannel);
1204 if (row == -1)
1205 row = dimm->csrow;
1206 else if (row >= 0 && row != dimm->csrow)
1207 row = -2;
1209 if (chan == -1)
1210 chan = dimm->cschannel;
1211 else if (chan >= 0 && chan != dimm->cschannel)
1212 chan = -2;
1216 if (!e->enable_per_layer_report) {
1217 strcpy(e->label, "any memory");
1218 } else {
1219 edac_dbg(4, "csrow/channel to increment: (%d,%d)\n", row, chan);
1220 if (p == e->label)
1221 strcpy(e->label, "unknown memory");
1222 if (type == HW_EVENT_ERR_CORRECTED) {
1223 if (row >= 0) {
1224 mci->csrows[row]->ce_count += error_count;
1225 if (chan >= 0)
1226 mci->csrows[row]->channels[chan]->ce_count += error_count;
1228 } else
1229 if (row >= 0)
1230 mci->csrows[row]->ue_count += error_count;
1233 /* Fill the RAM location data */
1234 p = e->location;
1236 for (i = 0; i < mci->n_layers; i++) {
1237 if (pos[i] < 0)
1238 continue;
1240 p += sprintf(p, "%s:%d ",
1241 edac_layer_name[mci->layers[i].type],
1242 pos[i]);
1244 if (p > e->location)
1245 *(p - 1) = '\0';
1247 /* Report the error via the trace interface */
1248 grain_bits = fls_long(e->grain) + 1;
1250 if (IS_ENABLED(CONFIG_RAS))
1251 trace_mc_event(type, e->msg, e->label, e->error_count,
1252 mci->mc_idx, e->top_layer, e->mid_layer,
1253 e->low_layer,
1254 (e->page_frame_number << PAGE_SHIFT) | e->offset_in_page,
1255 grain_bits, e->syndrome, e->other_detail);
1257 edac_raw_mc_handle_error(type, mci, e);
1259 EXPORT_SYMBOL_GPL(edac_mc_handle_error);