Linux 4.16.11
[linux/fpc-iii.git] / drivers / hv / vmbus_drv.c
blobbc65c4d79c1f1a2fd0d5b0538fa513f0ea2263f4
1 /*
2 * Copyright (c) 2009, Microsoft Corporation.
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms and conditions of the GNU General Public License,
6 * version 2, as published by the Free Software Foundation.
8 * This program is distributed in the hope it will be useful, but WITHOUT
9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
11 * more details.
13 * You should have received a copy of the GNU General Public License along with
14 * this program; if not, write to the Free Software Foundation, Inc., 59 Temple
15 * Place - Suite 330, Boston, MA 02111-1307 USA.
17 * Authors:
18 * Haiyang Zhang <haiyangz@microsoft.com>
19 * Hank Janssen <hjanssen@microsoft.com>
20 * K. Y. Srinivasan <kys@microsoft.com>
23 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
25 #include <linux/init.h>
26 #include <linux/module.h>
27 #include <linux/device.h>
28 #include <linux/interrupt.h>
29 #include <linux/sysctl.h>
30 #include <linux/slab.h>
31 #include <linux/acpi.h>
32 #include <linux/completion.h>
33 #include <linux/hyperv.h>
34 #include <linux/kernel_stat.h>
35 #include <linux/clockchips.h>
36 #include <linux/cpu.h>
37 #include <linux/sched/task_stack.h>
39 #include <asm/hyperv.h>
40 #include <asm/mshyperv.h>
41 #include <linux/notifier.h>
42 #include <linux/ptrace.h>
43 #include <linux/screen_info.h>
44 #include <linux/kdebug.h>
45 #include <linux/efi.h>
46 #include <linux/random.h>
47 #include "hyperv_vmbus.h"
49 struct vmbus_dynid {
50 struct list_head node;
51 struct hv_vmbus_device_id id;
54 static struct acpi_device *hv_acpi_dev;
56 static struct completion probe_event;
58 static int hyperv_cpuhp_online;
60 static int hyperv_panic_event(struct notifier_block *nb, unsigned long val,
61 void *args)
63 struct pt_regs *regs;
65 regs = current_pt_regs();
67 hyperv_report_panic(regs, val);
68 return NOTIFY_DONE;
71 static int hyperv_die_event(struct notifier_block *nb, unsigned long val,
72 void *args)
74 struct die_args *die = (struct die_args *)args;
75 struct pt_regs *regs = die->regs;
77 hyperv_report_panic(regs, val);
78 return NOTIFY_DONE;
81 static struct notifier_block hyperv_die_block = {
82 .notifier_call = hyperv_die_event,
84 static struct notifier_block hyperv_panic_block = {
85 .notifier_call = hyperv_panic_event,
88 static const char *fb_mmio_name = "fb_range";
89 static struct resource *fb_mmio;
90 static struct resource *hyperv_mmio;
91 static DEFINE_SEMAPHORE(hyperv_mmio_lock);
93 static int vmbus_exists(void)
95 if (hv_acpi_dev == NULL)
96 return -ENODEV;
98 return 0;
101 #define VMBUS_ALIAS_LEN ((sizeof((struct hv_vmbus_device_id *)0)->guid) * 2)
102 static void print_alias_name(struct hv_device *hv_dev, char *alias_name)
104 int i;
105 for (i = 0; i < VMBUS_ALIAS_LEN; i += 2)
106 sprintf(&alias_name[i], "%02x", hv_dev->dev_type.b[i/2]);
109 static u8 channel_monitor_group(const struct vmbus_channel *channel)
111 return (u8)channel->offermsg.monitorid / 32;
114 static u8 channel_monitor_offset(const struct vmbus_channel *channel)
116 return (u8)channel->offermsg.monitorid % 32;
119 static u32 channel_pending(const struct vmbus_channel *channel,
120 const struct hv_monitor_page *monitor_page)
122 u8 monitor_group = channel_monitor_group(channel);
124 return monitor_page->trigger_group[monitor_group].pending;
127 static u32 channel_latency(const struct vmbus_channel *channel,
128 const struct hv_monitor_page *monitor_page)
130 u8 monitor_group = channel_monitor_group(channel);
131 u8 monitor_offset = channel_monitor_offset(channel);
133 return monitor_page->latency[monitor_group][monitor_offset];
136 static u32 channel_conn_id(struct vmbus_channel *channel,
137 struct hv_monitor_page *monitor_page)
139 u8 monitor_group = channel_monitor_group(channel);
140 u8 monitor_offset = channel_monitor_offset(channel);
141 return monitor_page->parameter[monitor_group][monitor_offset].connectionid.u.id;
144 static ssize_t id_show(struct device *dev, struct device_attribute *dev_attr,
145 char *buf)
147 struct hv_device *hv_dev = device_to_hv_device(dev);
149 if (!hv_dev->channel)
150 return -ENODEV;
151 return sprintf(buf, "%d\n", hv_dev->channel->offermsg.child_relid);
153 static DEVICE_ATTR_RO(id);
155 static ssize_t state_show(struct device *dev, struct device_attribute *dev_attr,
156 char *buf)
158 struct hv_device *hv_dev = device_to_hv_device(dev);
160 if (!hv_dev->channel)
161 return -ENODEV;
162 return sprintf(buf, "%d\n", hv_dev->channel->state);
164 static DEVICE_ATTR_RO(state);
166 static ssize_t monitor_id_show(struct device *dev,
167 struct device_attribute *dev_attr, char *buf)
169 struct hv_device *hv_dev = device_to_hv_device(dev);
171 if (!hv_dev->channel)
172 return -ENODEV;
173 return sprintf(buf, "%d\n", hv_dev->channel->offermsg.monitorid);
175 static DEVICE_ATTR_RO(monitor_id);
177 static ssize_t class_id_show(struct device *dev,
178 struct device_attribute *dev_attr, char *buf)
180 struct hv_device *hv_dev = device_to_hv_device(dev);
182 if (!hv_dev->channel)
183 return -ENODEV;
184 return sprintf(buf, "{%pUl}\n",
185 hv_dev->channel->offermsg.offer.if_type.b);
187 static DEVICE_ATTR_RO(class_id);
189 static ssize_t device_id_show(struct device *dev,
190 struct device_attribute *dev_attr, char *buf)
192 struct hv_device *hv_dev = device_to_hv_device(dev);
194 if (!hv_dev->channel)
195 return -ENODEV;
196 return sprintf(buf, "{%pUl}\n",
197 hv_dev->channel->offermsg.offer.if_instance.b);
199 static DEVICE_ATTR_RO(device_id);
201 static ssize_t modalias_show(struct device *dev,
202 struct device_attribute *dev_attr, char *buf)
204 struct hv_device *hv_dev = device_to_hv_device(dev);
205 char alias_name[VMBUS_ALIAS_LEN + 1];
207 print_alias_name(hv_dev, alias_name);
208 return sprintf(buf, "vmbus:%s\n", alias_name);
210 static DEVICE_ATTR_RO(modalias);
212 static ssize_t server_monitor_pending_show(struct device *dev,
213 struct device_attribute *dev_attr,
214 char *buf)
216 struct hv_device *hv_dev = device_to_hv_device(dev);
218 if (!hv_dev->channel)
219 return -ENODEV;
220 return sprintf(buf, "%d\n",
221 channel_pending(hv_dev->channel,
222 vmbus_connection.monitor_pages[1]));
224 static DEVICE_ATTR_RO(server_monitor_pending);
226 static ssize_t client_monitor_pending_show(struct device *dev,
227 struct device_attribute *dev_attr,
228 char *buf)
230 struct hv_device *hv_dev = device_to_hv_device(dev);
232 if (!hv_dev->channel)
233 return -ENODEV;
234 return sprintf(buf, "%d\n",
235 channel_pending(hv_dev->channel,
236 vmbus_connection.monitor_pages[1]));
238 static DEVICE_ATTR_RO(client_monitor_pending);
240 static ssize_t server_monitor_latency_show(struct device *dev,
241 struct device_attribute *dev_attr,
242 char *buf)
244 struct hv_device *hv_dev = device_to_hv_device(dev);
246 if (!hv_dev->channel)
247 return -ENODEV;
248 return sprintf(buf, "%d\n",
249 channel_latency(hv_dev->channel,
250 vmbus_connection.monitor_pages[0]));
252 static DEVICE_ATTR_RO(server_monitor_latency);
254 static ssize_t client_monitor_latency_show(struct device *dev,
255 struct device_attribute *dev_attr,
256 char *buf)
258 struct hv_device *hv_dev = device_to_hv_device(dev);
260 if (!hv_dev->channel)
261 return -ENODEV;
262 return sprintf(buf, "%d\n",
263 channel_latency(hv_dev->channel,
264 vmbus_connection.monitor_pages[1]));
266 static DEVICE_ATTR_RO(client_monitor_latency);
268 static ssize_t server_monitor_conn_id_show(struct device *dev,
269 struct device_attribute *dev_attr,
270 char *buf)
272 struct hv_device *hv_dev = device_to_hv_device(dev);
274 if (!hv_dev->channel)
275 return -ENODEV;
276 return sprintf(buf, "%d\n",
277 channel_conn_id(hv_dev->channel,
278 vmbus_connection.monitor_pages[0]));
280 static DEVICE_ATTR_RO(server_monitor_conn_id);
282 static ssize_t client_monitor_conn_id_show(struct device *dev,
283 struct device_attribute *dev_attr,
284 char *buf)
286 struct hv_device *hv_dev = device_to_hv_device(dev);
288 if (!hv_dev->channel)
289 return -ENODEV;
290 return sprintf(buf, "%d\n",
291 channel_conn_id(hv_dev->channel,
292 vmbus_connection.monitor_pages[1]));
294 static DEVICE_ATTR_RO(client_monitor_conn_id);
296 static ssize_t out_intr_mask_show(struct device *dev,
297 struct device_attribute *dev_attr, char *buf)
299 struct hv_device *hv_dev = device_to_hv_device(dev);
300 struct hv_ring_buffer_debug_info outbound;
302 if (!hv_dev->channel)
303 return -ENODEV;
304 hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound, &outbound);
305 return sprintf(buf, "%d\n", outbound.current_interrupt_mask);
307 static DEVICE_ATTR_RO(out_intr_mask);
309 static ssize_t out_read_index_show(struct device *dev,
310 struct device_attribute *dev_attr, char *buf)
312 struct hv_device *hv_dev = device_to_hv_device(dev);
313 struct hv_ring_buffer_debug_info outbound;
315 if (!hv_dev->channel)
316 return -ENODEV;
317 hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound, &outbound);
318 return sprintf(buf, "%d\n", outbound.current_read_index);
320 static DEVICE_ATTR_RO(out_read_index);
322 static ssize_t out_write_index_show(struct device *dev,
323 struct device_attribute *dev_attr,
324 char *buf)
326 struct hv_device *hv_dev = device_to_hv_device(dev);
327 struct hv_ring_buffer_debug_info outbound;
329 if (!hv_dev->channel)
330 return -ENODEV;
331 hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound, &outbound);
332 return sprintf(buf, "%d\n", outbound.current_write_index);
334 static DEVICE_ATTR_RO(out_write_index);
336 static ssize_t out_read_bytes_avail_show(struct device *dev,
337 struct device_attribute *dev_attr,
338 char *buf)
340 struct hv_device *hv_dev = device_to_hv_device(dev);
341 struct hv_ring_buffer_debug_info outbound;
343 if (!hv_dev->channel)
344 return -ENODEV;
345 hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound, &outbound);
346 return sprintf(buf, "%d\n", outbound.bytes_avail_toread);
348 static DEVICE_ATTR_RO(out_read_bytes_avail);
350 static ssize_t out_write_bytes_avail_show(struct device *dev,
351 struct device_attribute *dev_attr,
352 char *buf)
354 struct hv_device *hv_dev = device_to_hv_device(dev);
355 struct hv_ring_buffer_debug_info outbound;
357 if (!hv_dev->channel)
358 return -ENODEV;
359 hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound, &outbound);
360 return sprintf(buf, "%d\n", outbound.bytes_avail_towrite);
362 static DEVICE_ATTR_RO(out_write_bytes_avail);
364 static ssize_t in_intr_mask_show(struct device *dev,
365 struct device_attribute *dev_attr, char *buf)
367 struct hv_device *hv_dev = device_to_hv_device(dev);
368 struct hv_ring_buffer_debug_info inbound;
370 if (!hv_dev->channel)
371 return -ENODEV;
372 hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
373 return sprintf(buf, "%d\n", inbound.current_interrupt_mask);
375 static DEVICE_ATTR_RO(in_intr_mask);
377 static ssize_t in_read_index_show(struct device *dev,
378 struct device_attribute *dev_attr, char *buf)
380 struct hv_device *hv_dev = device_to_hv_device(dev);
381 struct hv_ring_buffer_debug_info inbound;
383 if (!hv_dev->channel)
384 return -ENODEV;
385 hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
386 return sprintf(buf, "%d\n", inbound.current_read_index);
388 static DEVICE_ATTR_RO(in_read_index);
390 static ssize_t in_write_index_show(struct device *dev,
391 struct device_attribute *dev_attr, char *buf)
393 struct hv_device *hv_dev = device_to_hv_device(dev);
394 struct hv_ring_buffer_debug_info inbound;
396 if (!hv_dev->channel)
397 return -ENODEV;
398 hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
399 return sprintf(buf, "%d\n", inbound.current_write_index);
401 static DEVICE_ATTR_RO(in_write_index);
403 static ssize_t in_read_bytes_avail_show(struct device *dev,
404 struct device_attribute *dev_attr,
405 char *buf)
407 struct hv_device *hv_dev = device_to_hv_device(dev);
408 struct hv_ring_buffer_debug_info inbound;
410 if (!hv_dev->channel)
411 return -ENODEV;
412 hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
413 return sprintf(buf, "%d\n", inbound.bytes_avail_toread);
415 static DEVICE_ATTR_RO(in_read_bytes_avail);
417 static ssize_t in_write_bytes_avail_show(struct device *dev,
418 struct device_attribute *dev_attr,
419 char *buf)
421 struct hv_device *hv_dev = device_to_hv_device(dev);
422 struct hv_ring_buffer_debug_info inbound;
424 if (!hv_dev->channel)
425 return -ENODEV;
426 hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
427 return sprintf(buf, "%d\n", inbound.bytes_avail_towrite);
429 static DEVICE_ATTR_RO(in_write_bytes_avail);
431 static ssize_t channel_vp_mapping_show(struct device *dev,
432 struct device_attribute *dev_attr,
433 char *buf)
435 struct hv_device *hv_dev = device_to_hv_device(dev);
436 struct vmbus_channel *channel = hv_dev->channel, *cur_sc;
437 unsigned long flags;
438 int buf_size = PAGE_SIZE, n_written, tot_written;
439 struct list_head *cur;
441 if (!channel)
442 return -ENODEV;
444 tot_written = snprintf(buf, buf_size, "%u:%u\n",
445 channel->offermsg.child_relid, channel->target_cpu);
447 spin_lock_irqsave(&channel->lock, flags);
449 list_for_each(cur, &channel->sc_list) {
450 if (tot_written >= buf_size - 1)
451 break;
453 cur_sc = list_entry(cur, struct vmbus_channel, sc_list);
454 n_written = scnprintf(buf + tot_written,
455 buf_size - tot_written,
456 "%u:%u\n",
457 cur_sc->offermsg.child_relid,
458 cur_sc->target_cpu);
459 tot_written += n_written;
462 spin_unlock_irqrestore(&channel->lock, flags);
464 return tot_written;
466 static DEVICE_ATTR_RO(channel_vp_mapping);
468 static ssize_t vendor_show(struct device *dev,
469 struct device_attribute *dev_attr,
470 char *buf)
472 struct hv_device *hv_dev = device_to_hv_device(dev);
473 return sprintf(buf, "0x%x\n", hv_dev->vendor_id);
475 static DEVICE_ATTR_RO(vendor);
477 static ssize_t device_show(struct device *dev,
478 struct device_attribute *dev_attr,
479 char *buf)
481 struct hv_device *hv_dev = device_to_hv_device(dev);
482 return sprintf(buf, "0x%x\n", hv_dev->device_id);
484 static DEVICE_ATTR_RO(device);
486 /* Set up per device attributes in /sys/bus/vmbus/devices/<bus device> */
487 static struct attribute *vmbus_dev_attrs[] = {
488 &dev_attr_id.attr,
489 &dev_attr_state.attr,
490 &dev_attr_monitor_id.attr,
491 &dev_attr_class_id.attr,
492 &dev_attr_device_id.attr,
493 &dev_attr_modalias.attr,
494 &dev_attr_server_monitor_pending.attr,
495 &dev_attr_client_monitor_pending.attr,
496 &dev_attr_server_monitor_latency.attr,
497 &dev_attr_client_monitor_latency.attr,
498 &dev_attr_server_monitor_conn_id.attr,
499 &dev_attr_client_monitor_conn_id.attr,
500 &dev_attr_out_intr_mask.attr,
501 &dev_attr_out_read_index.attr,
502 &dev_attr_out_write_index.attr,
503 &dev_attr_out_read_bytes_avail.attr,
504 &dev_attr_out_write_bytes_avail.attr,
505 &dev_attr_in_intr_mask.attr,
506 &dev_attr_in_read_index.attr,
507 &dev_attr_in_write_index.attr,
508 &dev_attr_in_read_bytes_avail.attr,
509 &dev_attr_in_write_bytes_avail.attr,
510 &dev_attr_channel_vp_mapping.attr,
511 &dev_attr_vendor.attr,
512 &dev_attr_device.attr,
513 NULL,
515 ATTRIBUTE_GROUPS(vmbus_dev);
518 * vmbus_uevent - add uevent for our device
520 * This routine is invoked when a device is added or removed on the vmbus to
521 * generate a uevent to udev in the userspace. The udev will then look at its
522 * rule and the uevent generated here to load the appropriate driver
524 * The alias string will be of the form vmbus:guid where guid is the string
525 * representation of the device guid (each byte of the guid will be
526 * represented with two hex characters.
528 static int vmbus_uevent(struct device *device, struct kobj_uevent_env *env)
530 struct hv_device *dev = device_to_hv_device(device);
531 int ret;
532 char alias_name[VMBUS_ALIAS_LEN + 1];
534 print_alias_name(dev, alias_name);
535 ret = add_uevent_var(env, "MODALIAS=vmbus:%s", alias_name);
536 return ret;
539 static const uuid_le null_guid;
541 static inline bool is_null_guid(const uuid_le *guid)
543 if (uuid_le_cmp(*guid, null_guid))
544 return false;
545 return true;
549 * Return a matching hv_vmbus_device_id pointer.
550 * If there is no match, return NULL.
552 static const struct hv_vmbus_device_id *hv_vmbus_get_id(struct hv_driver *drv,
553 const uuid_le *guid)
555 const struct hv_vmbus_device_id *id = NULL;
556 struct vmbus_dynid *dynid;
558 /* Look at the dynamic ids first, before the static ones */
559 spin_lock(&drv->dynids.lock);
560 list_for_each_entry(dynid, &drv->dynids.list, node) {
561 if (!uuid_le_cmp(dynid->id.guid, *guid)) {
562 id = &dynid->id;
563 break;
566 spin_unlock(&drv->dynids.lock);
568 if (id)
569 return id;
571 id = drv->id_table;
572 if (id == NULL)
573 return NULL; /* empty device table */
575 for (; !is_null_guid(&id->guid); id++)
576 if (!uuid_le_cmp(id->guid, *guid))
577 return id;
579 return NULL;
582 /* vmbus_add_dynid - add a new device ID to this driver and re-probe devices */
583 static int vmbus_add_dynid(struct hv_driver *drv, uuid_le *guid)
585 struct vmbus_dynid *dynid;
587 dynid = kzalloc(sizeof(*dynid), GFP_KERNEL);
588 if (!dynid)
589 return -ENOMEM;
591 dynid->id.guid = *guid;
593 spin_lock(&drv->dynids.lock);
594 list_add_tail(&dynid->node, &drv->dynids.list);
595 spin_unlock(&drv->dynids.lock);
597 return driver_attach(&drv->driver);
600 static void vmbus_free_dynids(struct hv_driver *drv)
602 struct vmbus_dynid *dynid, *n;
604 spin_lock(&drv->dynids.lock);
605 list_for_each_entry_safe(dynid, n, &drv->dynids.list, node) {
606 list_del(&dynid->node);
607 kfree(dynid);
609 spin_unlock(&drv->dynids.lock);
613 * store_new_id - sysfs frontend to vmbus_add_dynid()
615 * Allow GUIDs to be added to an existing driver via sysfs.
617 static ssize_t new_id_store(struct device_driver *driver, const char *buf,
618 size_t count)
620 struct hv_driver *drv = drv_to_hv_drv(driver);
621 uuid_le guid;
622 ssize_t retval;
624 retval = uuid_le_to_bin(buf, &guid);
625 if (retval)
626 return retval;
628 if (hv_vmbus_get_id(drv, &guid))
629 return -EEXIST;
631 retval = vmbus_add_dynid(drv, &guid);
632 if (retval)
633 return retval;
634 return count;
636 static DRIVER_ATTR_WO(new_id);
639 * store_remove_id - remove a PCI device ID from this driver
641 * Removes a dynamic pci device ID to this driver.
643 static ssize_t remove_id_store(struct device_driver *driver, const char *buf,
644 size_t count)
646 struct hv_driver *drv = drv_to_hv_drv(driver);
647 struct vmbus_dynid *dynid, *n;
648 uuid_le guid;
649 ssize_t retval;
651 retval = uuid_le_to_bin(buf, &guid);
652 if (retval)
653 return retval;
655 retval = -ENODEV;
656 spin_lock(&drv->dynids.lock);
657 list_for_each_entry_safe(dynid, n, &drv->dynids.list, node) {
658 struct hv_vmbus_device_id *id = &dynid->id;
660 if (!uuid_le_cmp(id->guid, guid)) {
661 list_del(&dynid->node);
662 kfree(dynid);
663 retval = count;
664 break;
667 spin_unlock(&drv->dynids.lock);
669 return retval;
671 static DRIVER_ATTR_WO(remove_id);
673 static struct attribute *vmbus_drv_attrs[] = {
674 &driver_attr_new_id.attr,
675 &driver_attr_remove_id.attr,
676 NULL,
678 ATTRIBUTE_GROUPS(vmbus_drv);
682 * vmbus_match - Attempt to match the specified device to the specified driver
684 static int vmbus_match(struct device *device, struct device_driver *driver)
686 struct hv_driver *drv = drv_to_hv_drv(driver);
687 struct hv_device *hv_dev = device_to_hv_device(device);
689 /* The hv_sock driver handles all hv_sock offers. */
690 if (is_hvsock_channel(hv_dev->channel))
691 return drv->hvsock;
693 if (hv_vmbus_get_id(drv, &hv_dev->dev_type))
694 return 1;
696 return 0;
700 * vmbus_probe - Add the new vmbus's child device
702 static int vmbus_probe(struct device *child_device)
704 int ret = 0;
705 struct hv_driver *drv =
706 drv_to_hv_drv(child_device->driver);
707 struct hv_device *dev = device_to_hv_device(child_device);
708 const struct hv_vmbus_device_id *dev_id;
710 dev_id = hv_vmbus_get_id(drv, &dev->dev_type);
711 if (drv->probe) {
712 ret = drv->probe(dev, dev_id);
713 if (ret != 0)
714 pr_err("probe failed for device %s (%d)\n",
715 dev_name(child_device), ret);
717 } else {
718 pr_err("probe not set for driver %s\n",
719 dev_name(child_device));
720 ret = -ENODEV;
722 return ret;
726 * vmbus_remove - Remove a vmbus device
728 static int vmbus_remove(struct device *child_device)
730 struct hv_driver *drv;
731 struct hv_device *dev = device_to_hv_device(child_device);
733 if (child_device->driver) {
734 drv = drv_to_hv_drv(child_device->driver);
735 if (drv->remove)
736 drv->remove(dev);
739 return 0;
744 * vmbus_shutdown - Shutdown a vmbus device
746 static void vmbus_shutdown(struct device *child_device)
748 struct hv_driver *drv;
749 struct hv_device *dev = device_to_hv_device(child_device);
752 /* The device may not be attached yet */
753 if (!child_device->driver)
754 return;
756 drv = drv_to_hv_drv(child_device->driver);
758 if (drv->shutdown)
759 drv->shutdown(dev);
764 * vmbus_device_release - Final callback release of the vmbus child device
766 static void vmbus_device_release(struct device *device)
768 struct hv_device *hv_dev = device_to_hv_device(device);
769 struct vmbus_channel *channel = hv_dev->channel;
771 mutex_lock(&vmbus_connection.channel_mutex);
772 hv_process_channel_removal(channel->offermsg.child_relid);
773 mutex_unlock(&vmbus_connection.channel_mutex);
774 kfree(hv_dev);
778 /* The one and only one */
779 static struct bus_type hv_bus = {
780 .name = "vmbus",
781 .match = vmbus_match,
782 .shutdown = vmbus_shutdown,
783 .remove = vmbus_remove,
784 .probe = vmbus_probe,
785 .uevent = vmbus_uevent,
786 .dev_groups = vmbus_dev_groups,
787 .drv_groups = vmbus_drv_groups,
790 struct onmessage_work_context {
791 struct work_struct work;
792 struct hv_message msg;
795 static void vmbus_onmessage_work(struct work_struct *work)
797 struct onmessage_work_context *ctx;
799 /* Do not process messages if we're in DISCONNECTED state */
800 if (vmbus_connection.conn_state == DISCONNECTED)
801 return;
803 ctx = container_of(work, struct onmessage_work_context,
804 work);
805 vmbus_onmessage(&ctx->msg);
806 kfree(ctx);
809 static void hv_process_timer_expiration(struct hv_message *msg,
810 struct hv_per_cpu_context *hv_cpu)
812 struct clock_event_device *dev = hv_cpu->clk_evt;
814 if (dev->event_handler)
815 dev->event_handler(dev);
817 vmbus_signal_eom(msg, HVMSG_TIMER_EXPIRED);
820 void vmbus_on_msg_dpc(unsigned long data)
822 struct hv_per_cpu_context *hv_cpu = (void *)data;
823 void *page_addr = hv_cpu->synic_message_page;
824 struct hv_message *msg = (struct hv_message *)page_addr +
825 VMBUS_MESSAGE_SINT;
826 struct vmbus_channel_message_header *hdr;
827 const struct vmbus_channel_message_table_entry *entry;
828 struct onmessage_work_context *ctx;
829 u32 message_type = msg->header.message_type;
831 if (message_type == HVMSG_NONE)
832 /* no msg */
833 return;
835 hdr = (struct vmbus_channel_message_header *)msg->u.payload;
837 trace_vmbus_on_msg_dpc(hdr);
839 if (hdr->msgtype >= CHANNELMSG_COUNT) {
840 WARN_ONCE(1, "unknown msgtype=%d\n", hdr->msgtype);
841 goto msg_handled;
844 entry = &channel_message_table[hdr->msgtype];
845 if (entry->handler_type == VMHT_BLOCKING) {
846 ctx = kmalloc(sizeof(*ctx), GFP_ATOMIC);
847 if (ctx == NULL)
848 return;
850 INIT_WORK(&ctx->work, vmbus_onmessage_work);
851 memcpy(&ctx->msg, msg, sizeof(*msg));
854 * The host can generate a rescind message while we
855 * may still be handling the original offer. We deal with
856 * this condition by ensuring the processing is done on the
857 * same CPU.
859 switch (hdr->msgtype) {
860 case CHANNELMSG_RESCIND_CHANNELOFFER:
862 * If we are handling the rescind message;
863 * schedule the work on the global work queue.
865 schedule_work_on(vmbus_connection.connect_cpu,
866 &ctx->work);
867 break;
869 case CHANNELMSG_OFFERCHANNEL:
870 atomic_inc(&vmbus_connection.offer_in_progress);
871 queue_work_on(vmbus_connection.connect_cpu,
872 vmbus_connection.work_queue,
873 &ctx->work);
874 break;
876 default:
877 queue_work(vmbus_connection.work_queue, &ctx->work);
879 } else
880 entry->message_handler(hdr);
882 msg_handled:
883 vmbus_signal_eom(msg, message_type);
888 * Direct callback for channels using other deferred processing
890 static void vmbus_channel_isr(struct vmbus_channel *channel)
892 void (*callback_fn)(void *);
894 callback_fn = READ_ONCE(channel->onchannel_callback);
895 if (likely(callback_fn != NULL))
896 (*callback_fn)(channel->channel_callback_context);
900 * Schedule all channels with events pending
902 static void vmbus_chan_sched(struct hv_per_cpu_context *hv_cpu)
904 unsigned long *recv_int_page;
905 u32 maxbits, relid;
907 if (vmbus_proto_version < VERSION_WIN8) {
908 maxbits = MAX_NUM_CHANNELS_SUPPORTED;
909 recv_int_page = vmbus_connection.recv_int_page;
910 } else {
912 * When the host is win8 and beyond, the event page
913 * can be directly checked to get the id of the channel
914 * that has the interrupt pending.
916 void *page_addr = hv_cpu->synic_event_page;
917 union hv_synic_event_flags *event
918 = (union hv_synic_event_flags *)page_addr +
919 VMBUS_MESSAGE_SINT;
921 maxbits = HV_EVENT_FLAGS_COUNT;
922 recv_int_page = event->flags;
925 if (unlikely(!recv_int_page))
926 return;
928 for_each_set_bit(relid, recv_int_page, maxbits) {
929 struct vmbus_channel *channel;
931 if (!sync_test_and_clear_bit(relid, recv_int_page))
932 continue;
934 /* Special case - vmbus channel protocol msg */
935 if (relid == 0)
936 continue;
938 rcu_read_lock();
940 /* Find channel based on relid */
941 list_for_each_entry_rcu(channel, &hv_cpu->chan_list, percpu_list) {
942 if (channel->offermsg.child_relid != relid)
943 continue;
945 if (channel->rescind)
946 continue;
948 trace_vmbus_chan_sched(channel);
950 ++channel->interrupts;
952 switch (channel->callback_mode) {
953 case HV_CALL_ISR:
954 vmbus_channel_isr(channel);
955 break;
957 case HV_CALL_BATCHED:
958 hv_begin_read(&channel->inbound);
959 /* fallthrough */
960 case HV_CALL_DIRECT:
961 tasklet_schedule(&channel->callback_event);
965 rcu_read_unlock();
969 static void vmbus_isr(void)
971 struct hv_per_cpu_context *hv_cpu
972 = this_cpu_ptr(hv_context.cpu_context);
973 void *page_addr = hv_cpu->synic_event_page;
974 struct hv_message *msg;
975 union hv_synic_event_flags *event;
976 bool handled = false;
978 if (unlikely(page_addr == NULL))
979 return;
981 event = (union hv_synic_event_flags *)page_addr +
982 VMBUS_MESSAGE_SINT;
984 * Check for events before checking for messages. This is the order
985 * in which events and messages are checked in Windows guests on
986 * Hyper-V, and the Windows team suggested we do the same.
989 if ((vmbus_proto_version == VERSION_WS2008) ||
990 (vmbus_proto_version == VERSION_WIN7)) {
992 /* Since we are a child, we only need to check bit 0 */
993 if (sync_test_and_clear_bit(0, event->flags))
994 handled = true;
995 } else {
997 * Our host is win8 or above. The signaling mechanism
998 * has changed and we can directly look at the event page.
999 * If bit n is set then we have an interrup on the channel
1000 * whose id is n.
1002 handled = true;
1005 if (handled)
1006 vmbus_chan_sched(hv_cpu);
1008 page_addr = hv_cpu->synic_message_page;
1009 msg = (struct hv_message *)page_addr + VMBUS_MESSAGE_SINT;
1011 /* Check if there are actual msgs to be processed */
1012 if (msg->header.message_type != HVMSG_NONE) {
1013 if (msg->header.message_type == HVMSG_TIMER_EXPIRED)
1014 hv_process_timer_expiration(msg, hv_cpu);
1015 else
1016 tasklet_schedule(&hv_cpu->msg_dpc);
1019 add_interrupt_randomness(HYPERVISOR_CALLBACK_VECTOR, 0);
1024 * vmbus_bus_init -Main vmbus driver initialization routine.
1026 * Here, we
1027 * - initialize the vmbus driver context
1028 * - invoke the vmbus hv main init routine
1029 * - retrieve the channel offers
1031 static int vmbus_bus_init(void)
1033 int ret;
1035 /* Hypervisor initialization...setup hypercall page..etc */
1036 ret = hv_init();
1037 if (ret != 0) {
1038 pr_err("Unable to initialize the hypervisor - 0x%x\n", ret);
1039 return ret;
1042 ret = bus_register(&hv_bus);
1043 if (ret)
1044 return ret;
1046 hv_setup_vmbus_irq(vmbus_isr);
1048 ret = hv_synic_alloc();
1049 if (ret)
1050 goto err_alloc;
1052 * Initialize the per-cpu interrupt state and
1053 * connect to the host.
1055 ret = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "hyperv/vmbus:online",
1056 hv_synic_init, hv_synic_cleanup);
1057 if (ret < 0)
1058 goto err_alloc;
1059 hyperv_cpuhp_online = ret;
1061 ret = vmbus_connect();
1062 if (ret)
1063 goto err_connect;
1066 * Only register if the crash MSRs are available
1068 if (ms_hyperv.misc_features & HV_FEATURE_GUEST_CRASH_MSR_AVAILABLE) {
1069 register_die_notifier(&hyperv_die_block);
1070 atomic_notifier_chain_register(&panic_notifier_list,
1071 &hyperv_panic_block);
1074 vmbus_request_offers();
1076 return 0;
1078 err_connect:
1079 cpuhp_remove_state(hyperv_cpuhp_online);
1080 err_alloc:
1081 hv_synic_free();
1082 hv_remove_vmbus_irq();
1084 bus_unregister(&hv_bus);
1086 return ret;
1090 * __vmbus_child_driver_register() - Register a vmbus's driver
1091 * @hv_driver: Pointer to driver structure you want to register
1092 * @owner: owner module of the drv
1093 * @mod_name: module name string
1095 * Registers the given driver with Linux through the 'driver_register()' call
1096 * and sets up the hyper-v vmbus handling for this driver.
1097 * It will return the state of the 'driver_register()' call.
1100 int __vmbus_driver_register(struct hv_driver *hv_driver, struct module *owner, const char *mod_name)
1102 int ret;
1104 pr_info("registering driver %s\n", hv_driver->name);
1106 ret = vmbus_exists();
1107 if (ret < 0)
1108 return ret;
1110 hv_driver->driver.name = hv_driver->name;
1111 hv_driver->driver.owner = owner;
1112 hv_driver->driver.mod_name = mod_name;
1113 hv_driver->driver.bus = &hv_bus;
1115 spin_lock_init(&hv_driver->dynids.lock);
1116 INIT_LIST_HEAD(&hv_driver->dynids.list);
1118 ret = driver_register(&hv_driver->driver);
1120 return ret;
1122 EXPORT_SYMBOL_GPL(__vmbus_driver_register);
1125 * vmbus_driver_unregister() - Unregister a vmbus's driver
1126 * @hv_driver: Pointer to driver structure you want to
1127 * un-register
1129 * Un-register the given driver that was previous registered with a call to
1130 * vmbus_driver_register()
1132 void vmbus_driver_unregister(struct hv_driver *hv_driver)
1134 pr_info("unregistering driver %s\n", hv_driver->name);
1136 if (!vmbus_exists()) {
1137 driver_unregister(&hv_driver->driver);
1138 vmbus_free_dynids(hv_driver);
1141 EXPORT_SYMBOL_GPL(vmbus_driver_unregister);
1145 * Called when last reference to channel is gone.
1147 static void vmbus_chan_release(struct kobject *kobj)
1149 struct vmbus_channel *channel
1150 = container_of(kobj, struct vmbus_channel, kobj);
1152 kfree_rcu(channel, rcu);
1155 struct vmbus_chan_attribute {
1156 struct attribute attr;
1157 ssize_t (*show)(const struct vmbus_channel *chan, char *buf);
1158 ssize_t (*store)(struct vmbus_channel *chan,
1159 const char *buf, size_t count);
1161 #define VMBUS_CHAN_ATTR(_name, _mode, _show, _store) \
1162 struct vmbus_chan_attribute chan_attr_##_name \
1163 = __ATTR(_name, _mode, _show, _store)
1164 #define VMBUS_CHAN_ATTR_RW(_name) \
1165 struct vmbus_chan_attribute chan_attr_##_name = __ATTR_RW(_name)
1166 #define VMBUS_CHAN_ATTR_RO(_name) \
1167 struct vmbus_chan_attribute chan_attr_##_name = __ATTR_RO(_name)
1168 #define VMBUS_CHAN_ATTR_WO(_name) \
1169 struct vmbus_chan_attribute chan_attr_##_name = __ATTR_WO(_name)
1171 static ssize_t vmbus_chan_attr_show(struct kobject *kobj,
1172 struct attribute *attr, char *buf)
1174 const struct vmbus_chan_attribute *attribute
1175 = container_of(attr, struct vmbus_chan_attribute, attr);
1176 const struct vmbus_channel *chan
1177 = container_of(kobj, struct vmbus_channel, kobj);
1179 if (!attribute->show)
1180 return -EIO;
1182 return attribute->show(chan, buf);
1185 static const struct sysfs_ops vmbus_chan_sysfs_ops = {
1186 .show = vmbus_chan_attr_show,
1189 static ssize_t out_mask_show(const struct vmbus_channel *channel, char *buf)
1191 const struct hv_ring_buffer_info *rbi = &channel->outbound;
1193 return sprintf(buf, "%u\n", rbi->ring_buffer->interrupt_mask);
1195 static VMBUS_CHAN_ATTR_RO(out_mask);
1197 static ssize_t in_mask_show(const struct vmbus_channel *channel, char *buf)
1199 const struct hv_ring_buffer_info *rbi = &channel->inbound;
1201 return sprintf(buf, "%u\n", rbi->ring_buffer->interrupt_mask);
1203 static VMBUS_CHAN_ATTR_RO(in_mask);
1205 static ssize_t read_avail_show(const struct vmbus_channel *channel, char *buf)
1207 const struct hv_ring_buffer_info *rbi = &channel->inbound;
1209 return sprintf(buf, "%u\n", hv_get_bytes_to_read(rbi));
1211 static VMBUS_CHAN_ATTR_RO(read_avail);
1213 static ssize_t write_avail_show(const struct vmbus_channel *channel, char *buf)
1215 const struct hv_ring_buffer_info *rbi = &channel->outbound;
1217 return sprintf(buf, "%u\n", hv_get_bytes_to_write(rbi));
1219 static VMBUS_CHAN_ATTR_RO(write_avail);
1221 static ssize_t show_target_cpu(const struct vmbus_channel *channel, char *buf)
1223 return sprintf(buf, "%u\n", channel->target_cpu);
1225 static VMBUS_CHAN_ATTR(cpu, S_IRUGO, show_target_cpu, NULL);
1227 static ssize_t channel_pending_show(const struct vmbus_channel *channel,
1228 char *buf)
1230 return sprintf(buf, "%d\n",
1231 channel_pending(channel,
1232 vmbus_connection.monitor_pages[1]));
1234 static VMBUS_CHAN_ATTR(pending, S_IRUGO, channel_pending_show, NULL);
1236 static ssize_t channel_latency_show(const struct vmbus_channel *channel,
1237 char *buf)
1239 return sprintf(buf, "%d\n",
1240 channel_latency(channel,
1241 vmbus_connection.monitor_pages[1]));
1243 static VMBUS_CHAN_ATTR(latency, S_IRUGO, channel_latency_show, NULL);
1245 static ssize_t channel_interrupts_show(const struct vmbus_channel *channel, char *buf)
1247 return sprintf(buf, "%llu\n", channel->interrupts);
1249 static VMBUS_CHAN_ATTR(interrupts, S_IRUGO, channel_interrupts_show, NULL);
1251 static ssize_t channel_events_show(const struct vmbus_channel *channel, char *buf)
1253 return sprintf(buf, "%llu\n", channel->sig_events);
1255 static VMBUS_CHAN_ATTR(events, S_IRUGO, channel_events_show, NULL);
1257 static ssize_t subchannel_monitor_id_show(const struct vmbus_channel *channel,
1258 char *buf)
1260 return sprintf(buf, "%u\n", channel->offermsg.monitorid);
1262 static VMBUS_CHAN_ATTR(monitor_id, S_IRUGO, subchannel_monitor_id_show, NULL);
1264 static ssize_t subchannel_id_show(const struct vmbus_channel *channel,
1265 char *buf)
1267 return sprintf(buf, "%u\n",
1268 channel->offermsg.offer.sub_channel_index);
1270 static VMBUS_CHAN_ATTR_RO(subchannel_id);
1272 static struct attribute *vmbus_chan_attrs[] = {
1273 &chan_attr_out_mask.attr,
1274 &chan_attr_in_mask.attr,
1275 &chan_attr_read_avail.attr,
1276 &chan_attr_write_avail.attr,
1277 &chan_attr_cpu.attr,
1278 &chan_attr_pending.attr,
1279 &chan_attr_latency.attr,
1280 &chan_attr_interrupts.attr,
1281 &chan_attr_events.attr,
1282 &chan_attr_monitor_id.attr,
1283 &chan_attr_subchannel_id.attr,
1284 NULL
1287 static struct kobj_type vmbus_chan_ktype = {
1288 .sysfs_ops = &vmbus_chan_sysfs_ops,
1289 .release = vmbus_chan_release,
1290 .default_attrs = vmbus_chan_attrs,
1294 * vmbus_add_channel_kobj - setup a sub-directory under device/channels
1296 int vmbus_add_channel_kobj(struct hv_device *dev, struct vmbus_channel *channel)
1298 struct kobject *kobj = &channel->kobj;
1299 u32 relid = channel->offermsg.child_relid;
1300 int ret;
1302 kobj->kset = dev->channels_kset;
1303 ret = kobject_init_and_add(kobj, &vmbus_chan_ktype, NULL,
1304 "%u", relid);
1305 if (ret)
1306 return ret;
1308 kobject_uevent(kobj, KOBJ_ADD);
1310 return 0;
1314 * vmbus_device_create - Creates and registers a new child device
1315 * on the vmbus.
1317 struct hv_device *vmbus_device_create(const uuid_le *type,
1318 const uuid_le *instance,
1319 struct vmbus_channel *channel)
1321 struct hv_device *child_device_obj;
1323 child_device_obj = kzalloc(sizeof(struct hv_device), GFP_KERNEL);
1324 if (!child_device_obj) {
1325 pr_err("Unable to allocate device object for child device\n");
1326 return NULL;
1329 child_device_obj->channel = channel;
1330 memcpy(&child_device_obj->dev_type, type, sizeof(uuid_le));
1331 memcpy(&child_device_obj->dev_instance, instance,
1332 sizeof(uuid_le));
1333 child_device_obj->vendor_id = 0x1414; /* MSFT vendor ID */
1336 return child_device_obj;
1340 * vmbus_device_register - Register the child device
1342 int vmbus_device_register(struct hv_device *child_device_obj)
1344 struct kobject *kobj = &child_device_obj->device.kobj;
1345 int ret;
1347 dev_set_name(&child_device_obj->device, "%pUl",
1348 child_device_obj->channel->offermsg.offer.if_instance.b);
1350 child_device_obj->device.bus = &hv_bus;
1351 child_device_obj->device.parent = &hv_acpi_dev->dev;
1352 child_device_obj->device.release = vmbus_device_release;
1355 * Register with the LDM. This will kick off the driver/device
1356 * binding...which will eventually call vmbus_match() and vmbus_probe()
1358 ret = device_register(&child_device_obj->device);
1359 if (ret) {
1360 pr_err("Unable to register child device\n");
1361 return ret;
1364 child_device_obj->channels_kset = kset_create_and_add("channels",
1365 NULL, kobj);
1366 if (!child_device_obj->channels_kset) {
1367 ret = -ENOMEM;
1368 goto err_dev_unregister;
1371 ret = vmbus_add_channel_kobj(child_device_obj,
1372 child_device_obj->channel);
1373 if (ret) {
1374 pr_err("Unable to register primary channeln");
1375 goto err_kset_unregister;
1378 return 0;
1380 err_kset_unregister:
1381 kset_unregister(child_device_obj->channels_kset);
1383 err_dev_unregister:
1384 device_unregister(&child_device_obj->device);
1385 return ret;
1389 * vmbus_device_unregister - Remove the specified child device
1390 * from the vmbus.
1392 void vmbus_device_unregister(struct hv_device *device_obj)
1394 pr_debug("child device %s unregistered\n",
1395 dev_name(&device_obj->device));
1397 kset_unregister(device_obj->channels_kset);
1400 * Kick off the process of unregistering the device.
1401 * This will call vmbus_remove() and eventually vmbus_device_release()
1403 device_unregister(&device_obj->device);
1408 * VMBUS is an acpi enumerated device. Get the information we
1409 * need from DSDT.
1411 #define VTPM_BASE_ADDRESS 0xfed40000
1412 static acpi_status vmbus_walk_resources(struct acpi_resource *res, void *ctx)
1414 resource_size_t start = 0;
1415 resource_size_t end = 0;
1416 struct resource *new_res;
1417 struct resource **old_res = &hyperv_mmio;
1418 struct resource **prev_res = NULL;
1420 switch (res->type) {
1423 * "Address" descriptors are for bus windows. Ignore
1424 * "memory" descriptors, which are for registers on
1425 * devices.
1427 case ACPI_RESOURCE_TYPE_ADDRESS32:
1428 start = res->data.address32.address.minimum;
1429 end = res->data.address32.address.maximum;
1430 break;
1432 case ACPI_RESOURCE_TYPE_ADDRESS64:
1433 start = res->data.address64.address.minimum;
1434 end = res->data.address64.address.maximum;
1435 break;
1437 default:
1438 /* Unused resource type */
1439 return AE_OK;
1443 * Ignore ranges that are below 1MB, as they're not
1444 * necessary or useful here.
1446 if (end < 0x100000)
1447 return AE_OK;
1449 new_res = kzalloc(sizeof(*new_res), GFP_ATOMIC);
1450 if (!new_res)
1451 return AE_NO_MEMORY;
1453 /* If this range overlaps the virtual TPM, truncate it. */
1454 if (end > VTPM_BASE_ADDRESS && start < VTPM_BASE_ADDRESS)
1455 end = VTPM_BASE_ADDRESS;
1457 new_res->name = "hyperv mmio";
1458 new_res->flags = IORESOURCE_MEM;
1459 new_res->start = start;
1460 new_res->end = end;
1463 * If two ranges are adjacent, merge them.
1465 do {
1466 if (!*old_res) {
1467 *old_res = new_res;
1468 break;
1471 if (((*old_res)->end + 1) == new_res->start) {
1472 (*old_res)->end = new_res->end;
1473 kfree(new_res);
1474 break;
1477 if ((*old_res)->start == new_res->end + 1) {
1478 (*old_res)->start = new_res->start;
1479 kfree(new_res);
1480 break;
1483 if ((*old_res)->start > new_res->end) {
1484 new_res->sibling = *old_res;
1485 if (prev_res)
1486 (*prev_res)->sibling = new_res;
1487 *old_res = new_res;
1488 break;
1491 prev_res = old_res;
1492 old_res = &(*old_res)->sibling;
1494 } while (1);
1496 return AE_OK;
1499 static int vmbus_acpi_remove(struct acpi_device *device)
1501 struct resource *cur_res;
1502 struct resource *next_res;
1504 if (hyperv_mmio) {
1505 if (fb_mmio) {
1506 __release_region(hyperv_mmio, fb_mmio->start,
1507 resource_size(fb_mmio));
1508 fb_mmio = NULL;
1511 for (cur_res = hyperv_mmio; cur_res; cur_res = next_res) {
1512 next_res = cur_res->sibling;
1513 kfree(cur_res);
1517 return 0;
1520 static void vmbus_reserve_fb(void)
1522 int size;
1524 * Make a claim for the frame buffer in the resource tree under the
1525 * first node, which will be the one below 4GB. The length seems to
1526 * be underreported, particularly in a Generation 1 VM. So start out
1527 * reserving a larger area and make it smaller until it succeeds.
1530 if (screen_info.lfb_base) {
1531 if (efi_enabled(EFI_BOOT))
1532 size = max_t(__u32, screen_info.lfb_size, 0x800000);
1533 else
1534 size = max_t(__u32, screen_info.lfb_size, 0x4000000);
1536 for (; !fb_mmio && (size >= 0x100000); size >>= 1) {
1537 fb_mmio = __request_region(hyperv_mmio,
1538 screen_info.lfb_base, size,
1539 fb_mmio_name, 0);
1545 * vmbus_allocate_mmio() - Pick a memory-mapped I/O range.
1546 * @new: If successful, supplied a pointer to the
1547 * allocated MMIO space.
1548 * @device_obj: Identifies the caller
1549 * @min: Minimum guest physical address of the
1550 * allocation
1551 * @max: Maximum guest physical address
1552 * @size: Size of the range to be allocated
1553 * @align: Alignment of the range to be allocated
1554 * @fb_overlap_ok: Whether this allocation can be allowed
1555 * to overlap the video frame buffer.
1557 * This function walks the resources granted to VMBus by the
1558 * _CRS object in the ACPI namespace underneath the parent
1559 * "bridge" whether that's a root PCI bus in the Generation 1
1560 * case or a Module Device in the Generation 2 case. It then
1561 * attempts to allocate from the global MMIO pool in a way that
1562 * matches the constraints supplied in these parameters and by
1563 * that _CRS.
1565 * Return: 0 on success, -errno on failure
1567 int vmbus_allocate_mmio(struct resource **new, struct hv_device *device_obj,
1568 resource_size_t min, resource_size_t max,
1569 resource_size_t size, resource_size_t align,
1570 bool fb_overlap_ok)
1572 struct resource *iter, *shadow;
1573 resource_size_t range_min, range_max, start;
1574 const char *dev_n = dev_name(&device_obj->device);
1575 int retval;
1577 retval = -ENXIO;
1578 down(&hyperv_mmio_lock);
1581 * If overlaps with frame buffers are allowed, then first attempt to
1582 * make the allocation from within the reserved region. Because it
1583 * is already reserved, no shadow allocation is necessary.
1585 if (fb_overlap_ok && fb_mmio && !(min > fb_mmio->end) &&
1586 !(max < fb_mmio->start)) {
1588 range_min = fb_mmio->start;
1589 range_max = fb_mmio->end;
1590 start = (range_min + align - 1) & ~(align - 1);
1591 for (; start + size - 1 <= range_max; start += align) {
1592 *new = request_mem_region_exclusive(start, size, dev_n);
1593 if (*new) {
1594 retval = 0;
1595 goto exit;
1600 for (iter = hyperv_mmio; iter; iter = iter->sibling) {
1601 if ((iter->start >= max) || (iter->end <= min))
1602 continue;
1604 range_min = iter->start;
1605 range_max = iter->end;
1606 start = (range_min + align - 1) & ~(align - 1);
1607 for (; start + size - 1 <= range_max; start += align) {
1608 shadow = __request_region(iter, start, size, NULL,
1609 IORESOURCE_BUSY);
1610 if (!shadow)
1611 continue;
1613 *new = request_mem_region_exclusive(start, size, dev_n);
1614 if (*new) {
1615 shadow->name = (char *)*new;
1616 retval = 0;
1617 goto exit;
1620 __release_region(iter, start, size);
1624 exit:
1625 up(&hyperv_mmio_lock);
1626 return retval;
1628 EXPORT_SYMBOL_GPL(vmbus_allocate_mmio);
1631 * vmbus_free_mmio() - Free a memory-mapped I/O range.
1632 * @start: Base address of region to release.
1633 * @size: Size of the range to be allocated
1635 * This function releases anything requested by
1636 * vmbus_mmio_allocate().
1638 void vmbus_free_mmio(resource_size_t start, resource_size_t size)
1640 struct resource *iter;
1642 down(&hyperv_mmio_lock);
1643 for (iter = hyperv_mmio; iter; iter = iter->sibling) {
1644 if ((iter->start >= start + size) || (iter->end <= start))
1645 continue;
1647 __release_region(iter, start, size);
1649 release_mem_region(start, size);
1650 up(&hyperv_mmio_lock);
1653 EXPORT_SYMBOL_GPL(vmbus_free_mmio);
1655 static int vmbus_acpi_add(struct acpi_device *device)
1657 acpi_status result;
1658 int ret_val = -ENODEV;
1659 struct acpi_device *ancestor;
1661 hv_acpi_dev = device;
1663 result = acpi_walk_resources(device->handle, METHOD_NAME__CRS,
1664 vmbus_walk_resources, NULL);
1666 if (ACPI_FAILURE(result))
1667 goto acpi_walk_err;
1669 * Some ancestor of the vmbus acpi device (Gen1 or Gen2
1670 * firmware) is the VMOD that has the mmio ranges. Get that.
1672 for (ancestor = device->parent; ancestor; ancestor = ancestor->parent) {
1673 result = acpi_walk_resources(ancestor->handle, METHOD_NAME__CRS,
1674 vmbus_walk_resources, NULL);
1676 if (ACPI_FAILURE(result))
1677 continue;
1678 if (hyperv_mmio) {
1679 vmbus_reserve_fb();
1680 break;
1683 ret_val = 0;
1685 acpi_walk_err:
1686 complete(&probe_event);
1687 if (ret_val)
1688 vmbus_acpi_remove(device);
1689 return ret_val;
1692 static const struct acpi_device_id vmbus_acpi_device_ids[] = {
1693 {"VMBUS", 0},
1694 {"VMBus", 0},
1695 {"", 0},
1697 MODULE_DEVICE_TABLE(acpi, vmbus_acpi_device_ids);
1699 static struct acpi_driver vmbus_acpi_driver = {
1700 .name = "vmbus",
1701 .ids = vmbus_acpi_device_ids,
1702 .ops = {
1703 .add = vmbus_acpi_add,
1704 .remove = vmbus_acpi_remove,
1708 static void hv_kexec_handler(void)
1710 hv_synic_clockevents_cleanup();
1711 vmbus_initiate_unload(false);
1712 vmbus_connection.conn_state = DISCONNECTED;
1713 /* Make sure conn_state is set as hv_synic_cleanup checks for it */
1714 mb();
1715 cpuhp_remove_state(hyperv_cpuhp_online);
1716 hyperv_cleanup();
1719 static void hv_crash_handler(struct pt_regs *regs)
1721 vmbus_initiate_unload(true);
1723 * In crash handler we can't schedule synic cleanup for all CPUs,
1724 * doing the cleanup for current CPU only. This should be sufficient
1725 * for kdump.
1727 vmbus_connection.conn_state = DISCONNECTED;
1728 hv_synic_cleanup(smp_processor_id());
1729 hyperv_cleanup();
1732 static int __init hv_acpi_init(void)
1734 int ret, t;
1736 if (!hv_is_hyperv_initialized())
1737 return -ENODEV;
1739 init_completion(&probe_event);
1742 * Get ACPI resources first.
1744 ret = acpi_bus_register_driver(&vmbus_acpi_driver);
1746 if (ret)
1747 return ret;
1749 t = wait_for_completion_timeout(&probe_event, 5*HZ);
1750 if (t == 0) {
1751 ret = -ETIMEDOUT;
1752 goto cleanup;
1755 ret = vmbus_bus_init();
1756 if (ret)
1757 goto cleanup;
1759 hv_setup_kexec_handler(hv_kexec_handler);
1760 hv_setup_crash_handler(hv_crash_handler);
1762 return 0;
1764 cleanup:
1765 acpi_bus_unregister_driver(&vmbus_acpi_driver);
1766 hv_acpi_dev = NULL;
1767 return ret;
1770 static void __exit vmbus_exit(void)
1772 int cpu;
1774 hv_remove_kexec_handler();
1775 hv_remove_crash_handler();
1776 vmbus_connection.conn_state = DISCONNECTED;
1777 hv_synic_clockevents_cleanup();
1778 vmbus_disconnect();
1779 hv_remove_vmbus_irq();
1780 for_each_online_cpu(cpu) {
1781 struct hv_per_cpu_context *hv_cpu
1782 = per_cpu_ptr(hv_context.cpu_context, cpu);
1784 tasklet_kill(&hv_cpu->msg_dpc);
1786 vmbus_free_channels();
1788 if (ms_hyperv.misc_features & HV_FEATURE_GUEST_CRASH_MSR_AVAILABLE) {
1789 unregister_die_notifier(&hyperv_die_block);
1790 atomic_notifier_chain_unregister(&panic_notifier_list,
1791 &hyperv_panic_block);
1793 bus_unregister(&hv_bus);
1795 cpuhp_remove_state(hyperv_cpuhp_online);
1796 hv_synic_free();
1797 acpi_bus_unregister_driver(&vmbus_acpi_driver);
1801 MODULE_LICENSE("GPL");
1803 subsys_initcall(hv_acpi_init);
1804 module_exit(vmbus_exit);