2 * Copyright(C) 2015 Linaro Limited. All rights reserved.
3 * Author: Mathieu Poirier <mathieu.poirier@linaro.org>
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 as published by
7 * the Free Software Foundation.
9 * This program is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
14 * You should have received a copy of the GNU General Public License along with
15 * this program. If not, see <http://www.gnu.org/licenses/>.
18 #include <linux/coresight.h>
19 #include <linux/coresight-pmu.h>
20 #include <linux/cpumask.h>
21 #include <linux/device.h>
22 #include <linux/list.h>
24 #include <linux/init.h>
25 #include <linux/perf_event.h>
26 #include <linux/slab.h>
27 #include <linux/types.h>
28 #include <linux/workqueue.h>
30 #include "coresight-etm-perf.h"
31 #include "coresight-priv.h"
33 static struct pmu etm_pmu
;
34 static bool etm_perf_up
;
37 * struct etm_event_data - Coresight specifics associated to an event
38 * @work: Handle to free allocated memory outside IRQ context.
39 * @mask: Hold the CPU(s) this event was set for.
40 * @snk_config: The sink configuration.
41 * @path: An array of path, each slot for one CPU.
43 struct etm_event_data
{
44 struct work_struct work
;
47 struct list_head
**path
;
50 static DEFINE_PER_CPU(struct perf_output_handle
, ctx_handle
);
51 static DEFINE_PER_CPU(struct coresight_device
*, csdev_src
);
53 /* ETMv3.5/PTM's ETMCR is 'config' */
54 PMU_FORMAT_ATTR(cycacc
, "config:" __stringify(ETM_OPT_CYCACC
));
55 PMU_FORMAT_ATTR(timestamp
, "config:" __stringify(ETM_OPT_TS
));
56 PMU_FORMAT_ATTR(retstack
, "config:" __stringify(ETM_OPT_RETSTK
));
58 static struct attribute
*etm_config_formats_attr
[] = {
59 &format_attr_cycacc
.attr
,
60 &format_attr_timestamp
.attr
,
61 &format_attr_retstack
.attr
,
65 static const struct attribute_group etm_pmu_format_group
= {
67 .attrs
= etm_config_formats_attr
,
70 static const struct attribute_group
*etm_pmu_attr_groups
[] = {
71 &etm_pmu_format_group
,
75 static void etm_event_read(struct perf_event
*event
) {}
77 static int etm_addr_filters_alloc(struct perf_event
*event
)
79 struct etm_filters
*filters
;
80 int node
= event
->cpu
== -1 ? -1 : cpu_to_node(event
->cpu
);
82 filters
= kzalloc_node(sizeof(struct etm_filters
), GFP_KERNEL
, node
);
87 memcpy(filters
, event
->parent
->hw
.addr_filters
,
90 event
->hw
.addr_filters
= filters
;
95 static void etm_event_destroy(struct perf_event
*event
)
97 kfree(event
->hw
.addr_filters
);
98 event
->hw
.addr_filters
= NULL
;
101 static int etm_event_init(struct perf_event
*event
)
105 if (event
->attr
.type
!= etm_pmu
.type
) {
110 ret
= etm_addr_filters_alloc(event
);
114 event
->destroy
= etm_event_destroy
;
119 static void free_event_data(struct work_struct
*work
)
123 struct etm_event_data
*event_data
;
124 struct coresight_device
*sink
;
126 event_data
= container_of(work
, struct etm_event_data
, work
);
127 mask
= &event_data
->mask
;
129 * First deal with the sink configuration. See comment in
130 * etm_setup_aux() about why we take the first available path.
132 if (event_data
->snk_config
) {
133 cpu
= cpumask_first(mask
);
134 sink
= coresight_get_sink(event_data
->path
[cpu
]);
135 if (sink_ops(sink
)->free_buffer
)
136 sink_ops(sink
)->free_buffer(event_data
->snk_config
);
139 for_each_cpu(cpu
, mask
) {
140 if (!(IS_ERR_OR_NULL(event_data
->path
[cpu
])))
141 coresight_release_path(event_data
->path
[cpu
]);
144 kfree(event_data
->path
);
148 static void *alloc_event_data(int cpu
)
152 struct etm_event_data
*event_data
;
154 /* First get memory for the session's data */
155 event_data
= kzalloc(sizeof(struct etm_event_data
), GFP_KERNEL
);
159 /* Make sure nothing disappears under us */
161 size
= num_online_cpus();
163 mask
= &event_data
->mask
;
165 cpumask_set_cpu(cpu
, mask
);
167 cpumask_copy(mask
, cpu_online_mask
);
171 * Each CPU has a single path between source and destination. As such
172 * allocate an array using CPU numbers as indexes. That way a path
173 * for any CPU can easily be accessed at any given time. We proceed
174 * the same way for sessions involving a single CPU. The cost of
175 * unused memory when dealing with single CPU trace scenarios is small
176 * compared to the cost of searching through an optimized array.
178 event_data
->path
= kcalloc(size
,
179 sizeof(struct list_head
*), GFP_KERNEL
);
180 if (!event_data
->path
) {
188 static void etm_free_aux(void *data
)
190 struct etm_event_data
*event_data
= data
;
192 schedule_work(&event_data
->work
);
195 static void *etm_setup_aux(int event_cpu
, void **pages
,
196 int nr_pages
, bool overwrite
)
200 struct coresight_device
*sink
;
201 struct etm_event_data
*event_data
= NULL
;
203 event_data
= alloc_event_data(event_cpu
);
206 INIT_WORK(&event_data
->work
, free_event_data
);
209 * In theory nothing prevent tracers in a trace session from being
210 * associated with different sinks, nor having a sink per tracer. But
211 * until we have HW with this kind of topology we need to assume tracers
212 * in a trace session are using the same sink. Therefore go through
213 * the coresight bus and pick the first enabled sink.
215 * When operated from sysFS users are responsible to enable the sink
216 * while from perf, the perf tools will do it based on the choice made
217 * on the cmd line. As such the "enable_sink" flag in sysFS is reset.
219 sink
= coresight_get_enabled_sink(true);
223 mask
= &event_data
->mask
;
225 /* Setup the path for each CPU in a trace session */
226 for_each_cpu(cpu
, mask
) {
227 struct coresight_device
*csdev
;
229 csdev
= per_cpu(csdev_src
, cpu
);
234 * Building a path doesn't enable it, it simply builds a
235 * list of devices from source to sink that can be
236 * referenced later when the path is actually needed.
238 event_data
->path
[cpu
] = coresight_build_path(csdev
, sink
);
239 if (IS_ERR(event_data
->path
[cpu
]))
243 if (!sink_ops(sink
)->alloc_buffer
)
246 cpu
= cpumask_first(mask
);
247 /* Get the AUX specific data from the sink buffer */
248 event_data
->snk_config
=
249 sink_ops(sink
)->alloc_buffer(sink
, cpu
, pages
,
250 nr_pages
, overwrite
);
251 if (!event_data
->snk_config
)
258 etm_free_aux(event_data
);
263 static void etm_event_start(struct perf_event
*event
, int flags
)
265 int cpu
= smp_processor_id();
266 struct etm_event_data
*event_data
;
267 struct perf_output_handle
*handle
= this_cpu_ptr(&ctx_handle
);
268 struct coresight_device
*sink
, *csdev
= per_cpu(csdev_src
, cpu
);
274 * Deal with the ring buffer API and get a handle on the
275 * session's information.
277 event_data
= perf_aux_output_begin(handle
, event
);
281 /* We need a sink, no need to continue without one */
282 sink
= coresight_get_sink(event_data
->path
[cpu
]);
283 if (WARN_ON_ONCE(!sink
|| !sink_ops(sink
)->set_buffer
))
286 /* Configure the sink */
287 if (sink_ops(sink
)->set_buffer(sink
, handle
,
288 event_data
->snk_config
))
291 /* Nothing will happen without a path */
292 if (coresight_enable_path(event_data
->path
[cpu
], CS_MODE_PERF
))
295 /* Tell the perf core the event is alive */
298 /* Finally enable the tracer */
299 if (source_ops(csdev
)->enable(csdev
, event
, CS_MODE_PERF
))
306 perf_aux_output_flag(handle
, PERF_AUX_FLAG_TRUNCATED
);
307 perf_aux_output_end(handle
, 0);
309 event
->hw
.state
= PERF_HES_STOPPED
;
313 static void etm_event_stop(struct perf_event
*event
, int mode
)
315 int cpu
= smp_processor_id();
317 struct coresight_device
*sink
, *csdev
= per_cpu(csdev_src
, cpu
);
318 struct perf_output_handle
*handle
= this_cpu_ptr(&ctx_handle
);
319 struct etm_event_data
*event_data
= perf_get_aux(handle
);
321 if (event
->hw
.state
== PERF_HES_STOPPED
)
327 sink
= coresight_get_sink(event_data
->path
[cpu
]);
332 source_ops(csdev
)->disable(csdev
, event
);
335 event
->hw
.state
= PERF_HES_STOPPED
;
337 if (mode
& PERF_EF_UPDATE
) {
338 if (WARN_ON_ONCE(handle
->event
!= event
))
341 /* update trace information */
342 if (!sink_ops(sink
)->update_buffer
)
345 sink_ops(sink
)->update_buffer(sink
, handle
,
346 event_data
->snk_config
);
348 if (!sink_ops(sink
)->reset_buffer
)
351 size
= sink_ops(sink
)->reset_buffer(sink
, handle
,
352 event_data
->snk_config
);
354 perf_aux_output_end(handle
, size
);
357 /* Disabling the path make its elements available to other sessions */
358 coresight_disable_path(event_data
->path
[cpu
]);
361 static int etm_event_add(struct perf_event
*event
, int mode
)
364 struct hw_perf_event
*hwc
= &event
->hw
;
366 if (mode
& PERF_EF_START
) {
367 etm_event_start(event
, 0);
368 if (hwc
->state
& PERF_HES_STOPPED
)
371 hwc
->state
= PERF_HES_STOPPED
;
377 static void etm_event_del(struct perf_event
*event
, int mode
)
379 etm_event_stop(event
, PERF_EF_UPDATE
);
382 static int etm_addr_filters_validate(struct list_head
*filters
)
384 bool range
= false, address
= false;
386 struct perf_addr_filter
*filter
;
388 list_for_each_entry(filter
, filters
, entry
) {
390 * No need to go further if there's no more
393 if (++index
> ETM_ADDR_CMP_MAX
)
397 * As taken from the struct perf_addr_filter documentation:
398 * @range: 1: range, 0: address
400 * At this time we don't allow range and start/stop filtering
401 * to cohabitate, they have to be mutually exclusive.
403 if ((filter
->range
== 1) && address
)
406 if ((filter
->range
== 0) && range
)
410 * For range filtering, the second address in the address
411 * range comparator needs to be higher than the first.
414 if (filter
->range
&& filter
->size
== 0)
418 * Everything checks out with this filter, record what we've
419 * received before moving on to the next one.
430 static void etm_addr_filters_sync(struct perf_event
*event
)
432 struct perf_addr_filters_head
*head
= perf_event_addr_filters(event
);
433 unsigned long start
, stop
, *offs
= event
->addr_filters_offs
;
434 struct etm_filters
*filters
= event
->hw
.addr_filters
;
435 struct etm_filter
*etm_filter
;
436 struct perf_addr_filter
*filter
;
439 list_for_each_entry(filter
, &head
->list
, entry
) {
440 start
= filter
->offset
+ offs
[i
];
441 stop
= start
+ filter
->size
;
442 etm_filter
= &filters
->etm_filter
[i
];
444 if (filter
->range
== 1) {
445 etm_filter
->start_addr
= start
;
446 etm_filter
->stop_addr
= stop
;
447 etm_filter
->type
= ETM_ADDR_TYPE_RANGE
;
449 if (filter
->filter
== 1) {
450 etm_filter
->start_addr
= start
;
451 etm_filter
->type
= ETM_ADDR_TYPE_START
;
453 etm_filter
->stop_addr
= stop
;
454 etm_filter
->type
= ETM_ADDR_TYPE_STOP
;
460 filters
->nr_filters
= i
;
463 int etm_perf_symlink(struct coresight_device
*csdev
, bool link
)
465 char entry
[sizeof("cpu9999999")];
466 int ret
= 0, cpu
= source_ops(csdev
)->cpu_id(csdev
);
467 struct device
*pmu_dev
= etm_pmu
.dev
;
468 struct device
*cs_dev
= &csdev
->dev
;
470 sprintf(entry
, "cpu%d", cpu
);
473 return -EPROBE_DEFER
;
476 ret
= sysfs_create_link(&pmu_dev
->kobj
, &cs_dev
->kobj
, entry
);
479 per_cpu(csdev_src
, cpu
) = csdev
;
481 sysfs_remove_link(&pmu_dev
->kobj
, entry
);
482 per_cpu(csdev_src
, cpu
) = NULL
;
488 static int __init
etm_perf_init(void)
492 etm_pmu
.capabilities
= PERF_PMU_CAP_EXCLUSIVE
;
494 etm_pmu
.attr_groups
= etm_pmu_attr_groups
;
495 etm_pmu
.task_ctx_nr
= perf_sw_context
;
496 etm_pmu
.read
= etm_event_read
;
497 etm_pmu
.event_init
= etm_event_init
;
498 etm_pmu
.setup_aux
= etm_setup_aux
;
499 etm_pmu
.free_aux
= etm_free_aux
;
500 etm_pmu
.start
= etm_event_start
;
501 etm_pmu
.stop
= etm_event_stop
;
502 etm_pmu
.add
= etm_event_add
;
503 etm_pmu
.del
= etm_event_del
;
504 etm_pmu
.addr_filters_sync
= etm_addr_filters_sync
;
505 etm_pmu
.addr_filters_validate
= etm_addr_filters_validate
;
506 etm_pmu
.nr_addr_filters
= ETM_ADDR_CMP_MAX
;
508 ret
= perf_pmu_register(&etm_pmu
, CORESIGHT_ETM_PMU_NAME
, -1);
514 device_initcall(etm_perf_init
);