Linux 4.16.11
[linux/fpc-iii.git] / drivers / iommu / dma-iommu.c
blob25914d36c5ace5e1336251c2e1ec55d6ad517b94
1 /*
2 * A fairly generic DMA-API to IOMMU-API glue layer.
4 * Copyright (C) 2014-2015 ARM Ltd.
6 * based in part on arch/arm/mm/dma-mapping.c:
7 * Copyright (C) 2000-2004 Russell King
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
18 * You should have received a copy of the GNU General Public License
19 * along with this program. If not, see <http://www.gnu.org/licenses/>.
22 #include <linux/device.h>
23 #include <linux/dma-iommu.h>
24 #include <linux/gfp.h>
25 #include <linux/huge_mm.h>
26 #include <linux/iommu.h>
27 #include <linux/iova.h>
28 #include <linux/irq.h>
29 #include <linux/mm.h>
30 #include <linux/pci.h>
31 #include <linux/scatterlist.h>
32 #include <linux/vmalloc.h>
34 #define IOMMU_MAPPING_ERROR 0
36 struct iommu_dma_msi_page {
37 struct list_head list;
38 dma_addr_t iova;
39 phys_addr_t phys;
42 enum iommu_dma_cookie_type {
43 IOMMU_DMA_IOVA_COOKIE,
44 IOMMU_DMA_MSI_COOKIE,
47 struct iommu_dma_cookie {
48 enum iommu_dma_cookie_type type;
49 union {
50 /* Full allocator for IOMMU_DMA_IOVA_COOKIE */
51 struct iova_domain iovad;
52 /* Trivial linear page allocator for IOMMU_DMA_MSI_COOKIE */
53 dma_addr_t msi_iova;
55 struct list_head msi_page_list;
56 spinlock_t msi_lock;
59 static inline size_t cookie_msi_granule(struct iommu_dma_cookie *cookie)
61 if (cookie->type == IOMMU_DMA_IOVA_COOKIE)
62 return cookie->iovad.granule;
63 return PAGE_SIZE;
66 static struct iommu_dma_cookie *cookie_alloc(enum iommu_dma_cookie_type type)
68 struct iommu_dma_cookie *cookie;
70 cookie = kzalloc(sizeof(*cookie), GFP_KERNEL);
71 if (cookie) {
72 spin_lock_init(&cookie->msi_lock);
73 INIT_LIST_HEAD(&cookie->msi_page_list);
74 cookie->type = type;
76 return cookie;
79 int iommu_dma_init(void)
81 return iova_cache_get();
84 /**
85 * iommu_get_dma_cookie - Acquire DMA-API resources for a domain
86 * @domain: IOMMU domain to prepare for DMA-API usage
88 * IOMMU drivers should normally call this from their domain_alloc
89 * callback when domain->type == IOMMU_DOMAIN_DMA.
91 int iommu_get_dma_cookie(struct iommu_domain *domain)
93 if (domain->iova_cookie)
94 return -EEXIST;
96 domain->iova_cookie = cookie_alloc(IOMMU_DMA_IOVA_COOKIE);
97 if (!domain->iova_cookie)
98 return -ENOMEM;
100 return 0;
102 EXPORT_SYMBOL(iommu_get_dma_cookie);
105 * iommu_get_msi_cookie - Acquire just MSI remapping resources
106 * @domain: IOMMU domain to prepare
107 * @base: Start address of IOVA region for MSI mappings
109 * Users who manage their own IOVA allocation and do not want DMA API support,
110 * but would still like to take advantage of automatic MSI remapping, can use
111 * this to initialise their own domain appropriately. Users should reserve a
112 * contiguous IOVA region, starting at @base, large enough to accommodate the
113 * number of PAGE_SIZE mappings necessary to cover every MSI doorbell address
114 * used by the devices attached to @domain.
116 int iommu_get_msi_cookie(struct iommu_domain *domain, dma_addr_t base)
118 struct iommu_dma_cookie *cookie;
120 if (domain->type != IOMMU_DOMAIN_UNMANAGED)
121 return -EINVAL;
123 if (domain->iova_cookie)
124 return -EEXIST;
126 cookie = cookie_alloc(IOMMU_DMA_MSI_COOKIE);
127 if (!cookie)
128 return -ENOMEM;
130 cookie->msi_iova = base;
131 domain->iova_cookie = cookie;
132 return 0;
134 EXPORT_SYMBOL(iommu_get_msi_cookie);
137 * iommu_put_dma_cookie - Release a domain's DMA mapping resources
138 * @domain: IOMMU domain previously prepared by iommu_get_dma_cookie() or
139 * iommu_get_msi_cookie()
141 * IOMMU drivers should normally call this from their domain_free callback.
143 void iommu_put_dma_cookie(struct iommu_domain *domain)
145 struct iommu_dma_cookie *cookie = domain->iova_cookie;
146 struct iommu_dma_msi_page *msi, *tmp;
148 if (!cookie)
149 return;
151 if (cookie->type == IOMMU_DMA_IOVA_COOKIE && cookie->iovad.granule)
152 put_iova_domain(&cookie->iovad);
154 list_for_each_entry_safe(msi, tmp, &cookie->msi_page_list, list) {
155 list_del(&msi->list);
156 kfree(msi);
158 kfree(cookie);
159 domain->iova_cookie = NULL;
161 EXPORT_SYMBOL(iommu_put_dma_cookie);
164 * iommu_dma_get_resv_regions - Reserved region driver helper
165 * @dev: Device from iommu_get_resv_regions()
166 * @list: Reserved region list from iommu_get_resv_regions()
168 * IOMMU drivers can use this to implement their .get_resv_regions callback
169 * for general non-IOMMU-specific reservations. Currently, this covers host
170 * bridge windows for PCI devices.
172 void iommu_dma_get_resv_regions(struct device *dev, struct list_head *list)
174 struct pci_host_bridge *bridge;
175 struct resource_entry *window;
177 if (!dev_is_pci(dev))
178 return;
180 bridge = pci_find_host_bridge(to_pci_dev(dev)->bus);
181 resource_list_for_each_entry(window, &bridge->windows) {
182 struct iommu_resv_region *region;
183 phys_addr_t start;
184 size_t length;
186 if (resource_type(window->res) != IORESOURCE_MEM)
187 continue;
189 start = window->res->start - window->offset;
190 length = window->res->end - window->res->start + 1;
191 region = iommu_alloc_resv_region(start, length, 0,
192 IOMMU_RESV_RESERVED);
193 if (!region)
194 return;
196 list_add_tail(&region->list, list);
199 EXPORT_SYMBOL(iommu_dma_get_resv_regions);
201 static int cookie_init_hw_msi_region(struct iommu_dma_cookie *cookie,
202 phys_addr_t start, phys_addr_t end)
204 struct iova_domain *iovad = &cookie->iovad;
205 struct iommu_dma_msi_page *msi_page;
206 int i, num_pages;
208 start -= iova_offset(iovad, start);
209 num_pages = iova_align(iovad, end - start) >> iova_shift(iovad);
211 msi_page = kcalloc(num_pages, sizeof(*msi_page), GFP_KERNEL);
212 if (!msi_page)
213 return -ENOMEM;
215 for (i = 0; i < num_pages; i++) {
216 msi_page[i].phys = start;
217 msi_page[i].iova = start;
218 INIT_LIST_HEAD(&msi_page[i].list);
219 list_add(&msi_page[i].list, &cookie->msi_page_list);
220 start += iovad->granule;
223 return 0;
226 static int iova_reserve_iommu_regions(struct device *dev,
227 struct iommu_domain *domain)
229 struct iommu_dma_cookie *cookie = domain->iova_cookie;
230 struct iova_domain *iovad = &cookie->iovad;
231 struct iommu_resv_region *region;
232 LIST_HEAD(resv_regions);
233 int ret = 0;
235 iommu_get_resv_regions(dev, &resv_regions);
236 list_for_each_entry(region, &resv_regions, list) {
237 unsigned long lo, hi;
239 /* We ARE the software that manages these! */
240 if (region->type == IOMMU_RESV_SW_MSI)
241 continue;
243 lo = iova_pfn(iovad, region->start);
244 hi = iova_pfn(iovad, region->start + region->length - 1);
245 reserve_iova(iovad, lo, hi);
247 if (region->type == IOMMU_RESV_MSI)
248 ret = cookie_init_hw_msi_region(cookie, region->start,
249 region->start + region->length);
250 if (ret)
251 break;
253 iommu_put_resv_regions(dev, &resv_regions);
255 return ret;
259 * iommu_dma_init_domain - Initialise a DMA mapping domain
260 * @domain: IOMMU domain previously prepared by iommu_get_dma_cookie()
261 * @base: IOVA at which the mappable address space starts
262 * @size: Size of IOVA space
263 * @dev: Device the domain is being initialised for
265 * @base and @size should be exact multiples of IOMMU page granularity to
266 * avoid rounding surprises. If necessary, we reserve the page at address 0
267 * to ensure it is an invalid IOVA. It is safe to reinitialise a domain, but
268 * any change which could make prior IOVAs invalid will fail.
270 int iommu_dma_init_domain(struct iommu_domain *domain, dma_addr_t base,
271 u64 size, struct device *dev)
273 struct iommu_dma_cookie *cookie = domain->iova_cookie;
274 struct iova_domain *iovad = &cookie->iovad;
275 unsigned long order, base_pfn, end_pfn;
277 if (!cookie || cookie->type != IOMMU_DMA_IOVA_COOKIE)
278 return -EINVAL;
280 /* Use the smallest supported page size for IOVA granularity */
281 order = __ffs(domain->pgsize_bitmap);
282 base_pfn = max_t(unsigned long, 1, base >> order);
283 end_pfn = (base + size - 1) >> order;
285 /* Check the domain allows at least some access to the device... */
286 if (domain->geometry.force_aperture) {
287 if (base > domain->geometry.aperture_end ||
288 base + size <= domain->geometry.aperture_start) {
289 pr_warn("specified DMA range outside IOMMU capability\n");
290 return -EFAULT;
292 /* ...then finally give it a kicking to make sure it fits */
293 base_pfn = max_t(unsigned long, base_pfn,
294 domain->geometry.aperture_start >> order);
297 /* start_pfn is always nonzero for an already-initialised domain */
298 if (iovad->start_pfn) {
299 if (1UL << order != iovad->granule ||
300 base_pfn != iovad->start_pfn) {
301 pr_warn("Incompatible range for DMA domain\n");
302 return -EFAULT;
305 return 0;
308 init_iova_domain(iovad, 1UL << order, base_pfn);
309 if (!dev)
310 return 0;
312 return iova_reserve_iommu_regions(dev, domain);
314 EXPORT_SYMBOL(iommu_dma_init_domain);
317 * dma_info_to_prot - Translate DMA API directions and attributes to IOMMU API
318 * page flags.
319 * @dir: Direction of DMA transfer
320 * @coherent: Is the DMA master cache-coherent?
321 * @attrs: DMA attributes for the mapping
323 * Return: corresponding IOMMU API page protection flags
325 int dma_info_to_prot(enum dma_data_direction dir, bool coherent,
326 unsigned long attrs)
328 int prot = coherent ? IOMMU_CACHE : 0;
330 if (attrs & DMA_ATTR_PRIVILEGED)
331 prot |= IOMMU_PRIV;
333 switch (dir) {
334 case DMA_BIDIRECTIONAL:
335 return prot | IOMMU_READ | IOMMU_WRITE;
336 case DMA_TO_DEVICE:
337 return prot | IOMMU_READ;
338 case DMA_FROM_DEVICE:
339 return prot | IOMMU_WRITE;
340 default:
341 return 0;
345 static dma_addr_t iommu_dma_alloc_iova(struct iommu_domain *domain,
346 size_t size, dma_addr_t dma_limit, struct device *dev)
348 struct iommu_dma_cookie *cookie = domain->iova_cookie;
349 struct iova_domain *iovad = &cookie->iovad;
350 unsigned long shift, iova_len, iova = 0;
352 if (cookie->type == IOMMU_DMA_MSI_COOKIE) {
353 cookie->msi_iova += size;
354 return cookie->msi_iova - size;
357 shift = iova_shift(iovad);
358 iova_len = size >> shift;
360 * Freeing non-power-of-two-sized allocations back into the IOVA caches
361 * will come back to bite us badly, so we have to waste a bit of space
362 * rounding up anything cacheable to make sure that can't happen. The
363 * order of the unadjusted size will still match upon freeing.
365 if (iova_len < (1 << (IOVA_RANGE_CACHE_MAX_SIZE - 1)))
366 iova_len = roundup_pow_of_two(iova_len);
368 if (domain->geometry.force_aperture)
369 dma_limit = min(dma_limit, domain->geometry.aperture_end);
371 /* Try to get PCI devices a SAC address */
372 if (dma_limit > DMA_BIT_MASK(32) && dev_is_pci(dev))
373 iova = alloc_iova_fast(iovad, iova_len,
374 DMA_BIT_MASK(32) >> shift, false);
376 if (!iova)
377 iova = alloc_iova_fast(iovad, iova_len, dma_limit >> shift,
378 true);
380 return (dma_addr_t)iova << shift;
383 static void iommu_dma_free_iova(struct iommu_dma_cookie *cookie,
384 dma_addr_t iova, size_t size)
386 struct iova_domain *iovad = &cookie->iovad;
388 /* The MSI case is only ever cleaning up its most recent allocation */
389 if (cookie->type == IOMMU_DMA_MSI_COOKIE)
390 cookie->msi_iova -= size;
391 else
392 free_iova_fast(iovad, iova_pfn(iovad, iova),
393 size >> iova_shift(iovad));
396 static void __iommu_dma_unmap(struct iommu_domain *domain, dma_addr_t dma_addr,
397 size_t size)
399 struct iommu_dma_cookie *cookie = domain->iova_cookie;
400 struct iova_domain *iovad = &cookie->iovad;
401 size_t iova_off = iova_offset(iovad, dma_addr);
403 dma_addr -= iova_off;
404 size = iova_align(iovad, size + iova_off);
406 WARN_ON(iommu_unmap(domain, dma_addr, size) != size);
407 iommu_dma_free_iova(cookie, dma_addr, size);
410 static void __iommu_dma_free_pages(struct page **pages, int count)
412 while (count--)
413 __free_page(pages[count]);
414 kvfree(pages);
417 static struct page **__iommu_dma_alloc_pages(unsigned int count,
418 unsigned long order_mask, gfp_t gfp)
420 struct page **pages;
421 unsigned int i = 0, array_size = count * sizeof(*pages);
423 order_mask &= (2U << MAX_ORDER) - 1;
424 if (!order_mask)
425 return NULL;
427 if (array_size <= PAGE_SIZE)
428 pages = kzalloc(array_size, GFP_KERNEL);
429 else
430 pages = vzalloc(array_size);
431 if (!pages)
432 return NULL;
434 /* IOMMU can map any pages, so himem can also be used here */
435 gfp |= __GFP_NOWARN | __GFP_HIGHMEM;
437 while (count) {
438 struct page *page = NULL;
439 unsigned int order_size;
442 * Higher-order allocations are a convenience rather
443 * than a necessity, hence using __GFP_NORETRY until
444 * falling back to minimum-order allocations.
446 for (order_mask &= (2U << __fls(count)) - 1;
447 order_mask; order_mask &= ~order_size) {
448 unsigned int order = __fls(order_mask);
450 order_size = 1U << order;
451 page = alloc_pages((order_mask - order_size) ?
452 gfp | __GFP_NORETRY : gfp, order);
453 if (!page)
454 continue;
455 if (!order)
456 break;
457 if (!PageCompound(page)) {
458 split_page(page, order);
459 break;
460 } else if (!split_huge_page(page)) {
461 break;
463 __free_pages(page, order);
465 if (!page) {
466 __iommu_dma_free_pages(pages, i);
467 return NULL;
469 count -= order_size;
470 while (order_size--)
471 pages[i++] = page++;
473 return pages;
477 * iommu_dma_free - Free a buffer allocated by iommu_dma_alloc()
478 * @dev: Device which owns this buffer
479 * @pages: Array of buffer pages as returned by iommu_dma_alloc()
480 * @size: Size of buffer in bytes
481 * @handle: DMA address of buffer
483 * Frees both the pages associated with the buffer, and the array
484 * describing them
486 void iommu_dma_free(struct device *dev, struct page **pages, size_t size,
487 dma_addr_t *handle)
489 __iommu_dma_unmap(iommu_get_domain_for_dev(dev), *handle, size);
490 __iommu_dma_free_pages(pages, PAGE_ALIGN(size) >> PAGE_SHIFT);
491 *handle = IOMMU_MAPPING_ERROR;
495 * iommu_dma_alloc - Allocate and map a buffer contiguous in IOVA space
496 * @dev: Device to allocate memory for. Must be a real device
497 * attached to an iommu_dma_domain
498 * @size: Size of buffer in bytes
499 * @gfp: Allocation flags
500 * @attrs: DMA attributes for this allocation
501 * @prot: IOMMU mapping flags
502 * @handle: Out argument for allocated DMA handle
503 * @flush_page: Arch callback which must ensure PAGE_SIZE bytes from the
504 * given VA/PA are visible to the given non-coherent device.
506 * If @size is less than PAGE_SIZE, then a full CPU page will be allocated,
507 * but an IOMMU which supports smaller pages might not map the whole thing.
509 * Return: Array of struct page pointers describing the buffer,
510 * or NULL on failure.
512 struct page **iommu_dma_alloc(struct device *dev, size_t size, gfp_t gfp,
513 unsigned long attrs, int prot, dma_addr_t *handle,
514 void (*flush_page)(struct device *, const void *, phys_addr_t))
516 struct iommu_domain *domain = iommu_get_domain_for_dev(dev);
517 struct iommu_dma_cookie *cookie = domain->iova_cookie;
518 struct iova_domain *iovad = &cookie->iovad;
519 struct page **pages;
520 struct sg_table sgt;
521 dma_addr_t iova;
522 unsigned int count, min_size, alloc_sizes = domain->pgsize_bitmap;
524 *handle = IOMMU_MAPPING_ERROR;
526 min_size = alloc_sizes & -alloc_sizes;
527 if (min_size < PAGE_SIZE) {
528 min_size = PAGE_SIZE;
529 alloc_sizes |= PAGE_SIZE;
530 } else {
531 size = ALIGN(size, min_size);
533 if (attrs & DMA_ATTR_ALLOC_SINGLE_PAGES)
534 alloc_sizes = min_size;
536 count = PAGE_ALIGN(size) >> PAGE_SHIFT;
537 pages = __iommu_dma_alloc_pages(count, alloc_sizes >> PAGE_SHIFT, gfp);
538 if (!pages)
539 return NULL;
541 size = iova_align(iovad, size);
542 iova = iommu_dma_alloc_iova(domain, size, dev->coherent_dma_mask, dev);
543 if (!iova)
544 goto out_free_pages;
546 if (sg_alloc_table_from_pages(&sgt, pages, count, 0, size, GFP_KERNEL))
547 goto out_free_iova;
549 if (!(prot & IOMMU_CACHE)) {
550 struct sg_mapping_iter miter;
552 * The CPU-centric flushing implied by SG_MITER_TO_SG isn't
553 * sufficient here, so skip it by using the "wrong" direction.
555 sg_miter_start(&miter, sgt.sgl, sgt.orig_nents, SG_MITER_FROM_SG);
556 while (sg_miter_next(&miter))
557 flush_page(dev, miter.addr, page_to_phys(miter.page));
558 sg_miter_stop(&miter);
561 if (iommu_map_sg(domain, iova, sgt.sgl, sgt.orig_nents, prot)
562 < size)
563 goto out_free_sg;
565 *handle = iova;
566 sg_free_table(&sgt);
567 return pages;
569 out_free_sg:
570 sg_free_table(&sgt);
571 out_free_iova:
572 iommu_dma_free_iova(cookie, iova, size);
573 out_free_pages:
574 __iommu_dma_free_pages(pages, count);
575 return NULL;
579 * iommu_dma_mmap - Map a buffer into provided user VMA
580 * @pages: Array representing buffer from iommu_dma_alloc()
581 * @size: Size of buffer in bytes
582 * @vma: VMA describing requested userspace mapping
584 * Maps the pages of the buffer in @pages into @vma. The caller is responsible
585 * for verifying the correct size and protection of @vma beforehand.
588 int iommu_dma_mmap(struct page **pages, size_t size, struct vm_area_struct *vma)
590 unsigned long uaddr = vma->vm_start;
591 unsigned int i, count = PAGE_ALIGN(size) >> PAGE_SHIFT;
592 int ret = -ENXIO;
594 for (i = vma->vm_pgoff; i < count && uaddr < vma->vm_end; i++) {
595 ret = vm_insert_page(vma, uaddr, pages[i]);
596 if (ret)
597 break;
598 uaddr += PAGE_SIZE;
600 return ret;
603 static dma_addr_t __iommu_dma_map(struct device *dev, phys_addr_t phys,
604 size_t size, int prot)
606 struct iommu_domain *domain = iommu_get_domain_for_dev(dev);
607 struct iommu_dma_cookie *cookie = domain->iova_cookie;
608 size_t iova_off = 0;
609 dma_addr_t iova;
611 if (cookie->type == IOMMU_DMA_IOVA_COOKIE) {
612 iova_off = iova_offset(&cookie->iovad, phys);
613 size = iova_align(&cookie->iovad, size + iova_off);
616 iova = iommu_dma_alloc_iova(domain, size, dma_get_mask(dev), dev);
617 if (!iova)
618 return IOMMU_MAPPING_ERROR;
620 if (iommu_map(domain, iova, phys - iova_off, size, prot)) {
621 iommu_dma_free_iova(cookie, iova, size);
622 return IOMMU_MAPPING_ERROR;
624 return iova + iova_off;
627 dma_addr_t iommu_dma_map_page(struct device *dev, struct page *page,
628 unsigned long offset, size_t size, int prot)
630 return __iommu_dma_map(dev, page_to_phys(page) + offset, size, prot);
633 void iommu_dma_unmap_page(struct device *dev, dma_addr_t handle, size_t size,
634 enum dma_data_direction dir, unsigned long attrs)
636 __iommu_dma_unmap(iommu_get_domain_for_dev(dev), handle, size);
640 * Prepare a successfully-mapped scatterlist to give back to the caller.
642 * At this point the segments are already laid out by iommu_dma_map_sg() to
643 * avoid individually crossing any boundaries, so we merely need to check a
644 * segment's start address to avoid concatenating across one.
646 static int __finalise_sg(struct device *dev, struct scatterlist *sg, int nents,
647 dma_addr_t dma_addr)
649 struct scatterlist *s, *cur = sg;
650 unsigned long seg_mask = dma_get_seg_boundary(dev);
651 unsigned int cur_len = 0, max_len = dma_get_max_seg_size(dev);
652 int i, count = 0;
654 for_each_sg(sg, s, nents, i) {
655 /* Restore this segment's original unaligned fields first */
656 unsigned int s_iova_off = sg_dma_address(s);
657 unsigned int s_length = sg_dma_len(s);
658 unsigned int s_iova_len = s->length;
660 s->offset += s_iova_off;
661 s->length = s_length;
662 sg_dma_address(s) = IOMMU_MAPPING_ERROR;
663 sg_dma_len(s) = 0;
666 * Now fill in the real DMA data. If...
667 * - there is a valid output segment to append to
668 * - and this segment starts on an IOVA page boundary
669 * - but doesn't fall at a segment boundary
670 * - and wouldn't make the resulting output segment too long
672 if (cur_len && !s_iova_off && (dma_addr & seg_mask) &&
673 (cur_len + s_length <= max_len)) {
674 /* ...then concatenate it with the previous one */
675 cur_len += s_length;
676 } else {
677 /* Otherwise start the next output segment */
678 if (i > 0)
679 cur = sg_next(cur);
680 cur_len = s_length;
681 count++;
683 sg_dma_address(cur) = dma_addr + s_iova_off;
686 sg_dma_len(cur) = cur_len;
687 dma_addr += s_iova_len;
689 if (s_length + s_iova_off < s_iova_len)
690 cur_len = 0;
692 return count;
696 * If mapping failed, then just restore the original list,
697 * but making sure the DMA fields are invalidated.
699 static void __invalidate_sg(struct scatterlist *sg, int nents)
701 struct scatterlist *s;
702 int i;
704 for_each_sg(sg, s, nents, i) {
705 if (sg_dma_address(s) != IOMMU_MAPPING_ERROR)
706 s->offset += sg_dma_address(s);
707 if (sg_dma_len(s))
708 s->length = sg_dma_len(s);
709 sg_dma_address(s) = IOMMU_MAPPING_ERROR;
710 sg_dma_len(s) = 0;
715 * The DMA API client is passing in a scatterlist which could describe
716 * any old buffer layout, but the IOMMU API requires everything to be
717 * aligned to IOMMU pages. Hence the need for this complicated bit of
718 * impedance-matching, to be able to hand off a suitably-aligned list,
719 * but still preserve the original offsets and sizes for the caller.
721 int iommu_dma_map_sg(struct device *dev, struct scatterlist *sg,
722 int nents, int prot)
724 struct iommu_domain *domain = iommu_get_domain_for_dev(dev);
725 struct iommu_dma_cookie *cookie = domain->iova_cookie;
726 struct iova_domain *iovad = &cookie->iovad;
727 struct scatterlist *s, *prev = NULL;
728 dma_addr_t iova;
729 size_t iova_len = 0;
730 unsigned long mask = dma_get_seg_boundary(dev);
731 int i;
734 * Work out how much IOVA space we need, and align the segments to
735 * IOVA granules for the IOMMU driver to handle. With some clever
736 * trickery we can modify the list in-place, but reversibly, by
737 * stashing the unaligned parts in the as-yet-unused DMA fields.
739 for_each_sg(sg, s, nents, i) {
740 size_t s_iova_off = iova_offset(iovad, s->offset);
741 size_t s_length = s->length;
742 size_t pad_len = (mask - iova_len + 1) & mask;
744 sg_dma_address(s) = s_iova_off;
745 sg_dma_len(s) = s_length;
746 s->offset -= s_iova_off;
747 s_length = iova_align(iovad, s_length + s_iova_off);
748 s->length = s_length;
751 * Due to the alignment of our single IOVA allocation, we can
752 * depend on these assumptions about the segment boundary mask:
753 * - If mask size >= IOVA size, then the IOVA range cannot
754 * possibly fall across a boundary, so we don't care.
755 * - If mask size < IOVA size, then the IOVA range must start
756 * exactly on a boundary, therefore we can lay things out
757 * based purely on segment lengths without needing to know
758 * the actual addresses beforehand.
759 * - The mask must be a power of 2, so pad_len == 0 if
760 * iova_len == 0, thus we cannot dereference prev the first
761 * time through here (i.e. before it has a meaningful value).
763 if (pad_len && pad_len < s_length - 1) {
764 prev->length += pad_len;
765 iova_len += pad_len;
768 iova_len += s_length;
769 prev = s;
772 iova = iommu_dma_alloc_iova(domain, iova_len, dma_get_mask(dev), dev);
773 if (!iova)
774 goto out_restore_sg;
777 * We'll leave any physical concatenation to the IOMMU driver's
778 * implementation - it knows better than we do.
780 if (iommu_map_sg(domain, iova, sg, nents, prot) < iova_len)
781 goto out_free_iova;
783 return __finalise_sg(dev, sg, nents, iova);
785 out_free_iova:
786 iommu_dma_free_iova(cookie, iova, iova_len);
787 out_restore_sg:
788 __invalidate_sg(sg, nents);
789 return 0;
792 void iommu_dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
793 enum dma_data_direction dir, unsigned long attrs)
795 dma_addr_t start, end;
796 struct scatterlist *tmp;
797 int i;
799 * The scatterlist segments are mapped into a single
800 * contiguous IOVA allocation, so this is incredibly easy.
802 start = sg_dma_address(sg);
803 for_each_sg(sg_next(sg), tmp, nents - 1, i) {
804 if (sg_dma_len(tmp) == 0)
805 break;
806 sg = tmp;
808 end = sg_dma_address(sg) + sg_dma_len(sg);
809 __iommu_dma_unmap(iommu_get_domain_for_dev(dev), start, end - start);
812 dma_addr_t iommu_dma_map_resource(struct device *dev, phys_addr_t phys,
813 size_t size, enum dma_data_direction dir, unsigned long attrs)
815 return __iommu_dma_map(dev, phys, size,
816 dma_info_to_prot(dir, false, attrs) | IOMMU_MMIO);
819 void iommu_dma_unmap_resource(struct device *dev, dma_addr_t handle,
820 size_t size, enum dma_data_direction dir, unsigned long attrs)
822 __iommu_dma_unmap(iommu_get_domain_for_dev(dev), handle, size);
825 int iommu_dma_mapping_error(struct device *dev, dma_addr_t dma_addr)
827 return dma_addr == IOMMU_MAPPING_ERROR;
830 static struct iommu_dma_msi_page *iommu_dma_get_msi_page(struct device *dev,
831 phys_addr_t msi_addr, struct iommu_domain *domain)
833 struct iommu_dma_cookie *cookie = domain->iova_cookie;
834 struct iommu_dma_msi_page *msi_page;
835 dma_addr_t iova;
836 int prot = IOMMU_WRITE | IOMMU_NOEXEC | IOMMU_MMIO;
837 size_t size = cookie_msi_granule(cookie);
839 msi_addr &= ~(phys_addr_t)(size - 1);
840 list_for_each_entry(msi_page, &cookie->msi_page_list, list)
841 if (msi_page->phys == msi_addr)
842 return msi_page;
844 msi_page = kzalloc(sizeof(*msi_page), GFP_ATOMIC);
845 if (!msi_page)
846 return NULL;
848 iova = __iommu_dma_map(dev, msi_addr, size, prot);
849 if (iommu_dma_mapping_error(dev, iova))
850 goto out_free_page;
852 INIT_LIST_HEAD(&msi_page->list);
853 msi_page->phys = msi_addr;
854 msi_page->iova = iova;
855 list_add(&msi_page->list, &cookie->msi_page_list);
856 return msi_page;
858 out_free_page:
859 kfree(msi_page);
860 return NULL;
863 void iommu_dma_map_msi_msg(int irq, struct msi_msg *msg)
865 struct device *dev = msi_desc_to_dev(irq_get_msi_desc(irq));
866 struct iommu_domain *domain = iommu_get_domain_for_dev(dev);
867 struct iommu_dma_cookie *cookie;
868 struct iommu_dma_msi_page *msi_page;
869 phys_addr_t msi_addr = (u64)msg->address_hi << 32 | msg->address_lo;
870 unsigned long flags;
872 if (!domain || !domain->iova_cookie)
873 return;
875 cookie = domain->iova_cookie;
878 * We disable IRQs to rule out a possible inversion against
879 * irq_desc_lock if, say, someone tries to retarget the affinity
880 * of an MSI from within an IPI handler.
882 spin_lock_irqsave(&cookie->msi_lock, flags);
883 msi_page = iommu_dma_get_msi_page(dev, msi_addr, domain);
884 spin_unlock_irqrestore(&cookie->msi_lock, flags);
886 if (WARN_ON(!msi_page)) {
888 * We're called from a void callback, so the best we can do is
889 * 'fail' by filling the message with obviously bogus values.
890 * Since we got this far due to an IOMMU being present, it's
891 * not like the existing address would have worked anyway...
893 msg->address_hi = ~0U;
894 msg->address_lo = ~0U;
895 msg->data = ~0U;
896 } else {
897 msg->address_hi = upper_32_bits(msi_page->iova);
898 msg->address_lo &= cookie_msi_granule(cookie) - 1;
899 msg->address_lo += lower_32_bits(msi_page->iova);