Linux 4.16.11
[linux/fpc-iii.git] / drivers / md / bcache / btree.c
blobfad9fe8817eb1a6c3e63e082dc600a72bb52284e
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2010 Kent Overstreet <kent.overstreet@gmail.com>
5 * Uses a block device as cache for other block devices; optimized for SSDs.
6 * All allocation is done in buckets, which should match the erase block size
7 * of the device.
9 * Buckets containing cached data are kept on a heap sorted by priority;
10 * bucket priority is increased on cache hit, and periodically all the buckets
11 * on the heap have their priority scaled down. This currently is just used as
12 * an LRU but in the future should allow for more intelligent heuristics.
14 * Buckets have an 8 bit counter; freeing is accomplished by incrementing the
15 * counter. Garbage collection is used to remove stale pointers.
17 * Indexing is done via a btree; nodes are not necessarily fully sorted, rather
18 * as keys are inserted we only sort the pages that have not yet been written.
19 * When garbage collection is run, we resort the entire node.
21 * All configuration is done via sysfs; see Documentation/bcache.txt.
24 #include "bcache.h"
25 #include "btree.h"
26 #include "debug.h"
27 #include "extents.h"
29 #include <linux/slab.h>
30 #include <linux/bitops.h>
31 #include <linux/hash.h>
32 #include <linux/kthread.h>
33 #include <linux/prefetch.h>
34 #include <linux/random.h>
35 #include <linux/rcupdate.h>
36 #include <linux/sched/clock.h>
37 #include <linux/rculist.h>
39 #include <trace/events/bcache.h>
42 * Todo:
43 * register_bcache: Return errors out to userspace correctly
45 * Writeback: don't undirty key until after a cache flush
47 * Create an iterator for key pointers
49 * On btree write error, mark bucket such that it won't be freed from the cache
51 * Journalling:
52 * Check for bad keys in replay
53 * Propagate barriers
54 * Refcount journal entries in journal_replay
56 * Garbage collection:
57 * Finish incremental gc
58 * Gc should free old UUIDs, data for invalid UUIDs
60 * Provide a way to list backing device UUIDs we have data cached for, and
61 * probably how long it's been since we've seen them, and a way to invalidate
62 * dirty data for devices that will never be attached again
64 * Keep 1 min/5 min/15 min statistics of how busy a block device has been, so
65 * that based on that and how much dirty data we have we can keep writeback
66 * from being starved
68 * Add a tracepoint or somesuch to watch for writeback starvation
70 * When btree depth > 1 and splitting an interior node, we have to make sure
71 * alloc_bucket() cannot fail. This should be true but is not completely
72 * obvious.
74 * Plugging?
76 * If data write is less than hard sector size of ssd, round up offset in open
77 * bucket to the next whole sector
79 * Superblock needs to be fleshed out for multiple cache devices
81 * Add a sysfs tunable for the number of writeback IOs in flight
83 * Add a sysfs tunable for the number of open data buckets
85 * IO tracking: Can we track when one process is doing io on behalf of another?
86 * IO tracking: Don't use just an average, weigh more recent stuff higher
88 * Test module load/unload
91 #define MAX_NEED_GC 64
92 #define MAX_SAVE_PRIO 72
94 #define PTR_DIRTY_BIT (((uint64_t) 1 << 36))
96 #define PTR_HASH(c, k) \
97 (((k)->ptr[0] >> c->bucket_bits) | PTR_GEN(k, 0))
99 #define insert_lock(s, b) ((b)->level <= (s)->lock)
102 * These macros are for recursing down the btree - they handle the details of
103 * locking and looking up nodes in the cache for you. They're best treated as
104 * mere syntax when reading code that uses them.
106 * op->lock determines whether we take a read or a write lock at a given depth.
107 * If you've got a read lock and find that you need a write lock (i.e. you're
108 * going to have to split), set op->lock and return -EINTR; btree_root() will
109 * call you again and you'll have the correct lock.
113 * btree - recurse down the btree on a specified key
114 * @fn: function to call, which will be passed the child node
115 * @key: key to recurse on
116 * @b: parent btree node
117 * @op: pointer to struct btree_op
119 #define btree(fn, key, b, op, ...) \
120 ({ \
121 int _r, l = (b)->level - 1; \
122 bool _w = l <= (op)->lock; \
123 struct btree *_child = bch_btree_node_get((b)->c, op, key, l, \
124 _w, b); \
125 if (!IS_ERR(_child)) { \
126 _r = bch_btree_ ## fn(_child, op, ##__VA_ARGS__); \
127 rw_unlock(_w, _child); \
128 } else \
129 _r = PTR_ERR(_child); \
130 _r; \
134 * btree_root - call a function on the root of the btree
135 * @fn: function to call, which will be passed the child node
136 * @c: cache set
137 * @op: pointer to struct btree_op
139 #define btree_root(fn, c, op, ...) \
140 ({ \
141 int _r = -EINTR; \
142 do { \
143 struct btree *_b = (c)->root; \
144 bool _w = insert_lock(op, _b); \
145 rw_lock(_w, _b, _b->level); \
146 if (_b == (c)->root && \
147 _w == insert_lock(op, _b)) { \
148 _r = bch_btree_ ## fn(_b, op, ##__VA_ARGS__); \
150 rw_unlock(_w, _b); \
151 bch_cannibalize_unlock(c); \
152 if (_r == -EINTR) \
153 schedule(); \
154 } while (_r == -EINTR); \
156 finish_wait(&(c)->btree_cache_wait, &(op)->wait); \
157 _r; \
160 static inline struct bset *write_block(struct btree *b)
162 return ((void *) btree_bset_first(b)) + b->written * block_bytes(b->c);
165 static void bch_btree_init_next(struct btree *b)
167 /* If not a leaf node, always sort */
168 if (b->level && b->keys.nsets)
169 bch_btree_sort(&b->keys, &b->c->sort);
170 else
171 bch_btree_sort_lazy(&b->keys, &b->c->sort);
173 if (b->written < btree_blocks(b))
174 bch_bset_init_next(&b->keys, write_block(b),
175 bset_magic(&b->c->sb));
179 /* Btree key manipulation */
181 void bkey_put(struct cache_set *c, struct bkey *k)
183 unsigned i;
185 for (i = 0; i < KEY_PTRS(k); i++)
186 if (ptr_available(c, k, i))
187 atomic_dec_bug(&PTR_BUCKET(c, k, i)->pin);
190 /* Btree IO */
192 static uint64_t btree_csum_set(struct btree *b, struct bset *i)
194 uint64_t crc = b->key.ptr[0];
195 void *data = (void *) i + 8, *end = bset_bkey_last(i);
197 crc = bch_crc64_update(crc, data, end - data);
198 return crc ^ 0xffffffffffffffffULL;
201 void bch_btree_node_read_done(struct btree *b)
203 const char *err = "bad btree header";
204 struct bset *i = btree_bset_first(b);
205 struct btree_iter *iter;
207 iter = mempool_alloc(b->c->fill_iter, GFP_NOIO);
208 iter->size = b->c->sb.bucket_size / b->c->sb.block_size;
209 iter->used = 0;
211 #ifdef CONFIG_BCACHE_DEBUG
212 iter->b = &b->keys;
213 #endif
215 if (!i->seq)
216 goto err;
218 for (;
219 b->written < btree_blocks(b) && i->seq == b->keys.set[0].data->seq;
220 i = write_block(b)) {
221 err = "unsupported bset version";
222 if (i->version > BCACHE_BSET_VERSION)
223 goto err;
225 err = "bad btree header";
226 if (b->written + set_blocks(i, block_bytes(b->c)) >
227 btree_blocks(b))
228 goto err;
230 err = "bad magic";
231 if (i->magic != bset_magic(&b->c->sb))
232 goto err;
234 err = "bad checksum";
235 switch (i->version) {
236 case 0:
237 if (i->csum != csum_set(i))
238 goto err;
239 break;
240 case BCACHE_BSET_VERSION:
241 if (i->csum != btree_csum_set(b, i))
242 goto err;
243 break;
246 err = "empty set";
247 if (i != b->keys.set[0].data && !i->keys)
248 goto err;
250 bch_btree_iter_push(iter, i->start, bset_bkey_last(i));
252 b->written += set_blocks(i, block_bytes(b->c));
255 err = "corrupted btree";
256 for (i = write_block(b);
257 bset_sector_offset(&b->keys, i) < KEY_SIZE(&b->key);
258 i = ((void *) i) + block_bytes(b->c))
259 if (i->seq == b->keys.set[0].data->seq)
260 goto err;
262 bch_btree_sort_and_fix_extents(&b->keys, iter, &b->c->sort);
264 i = b->keys.set[0].data;
265 err = "short btree key";
266 if (b->keys.set[0].size &&
267 bkey_cmp(&b->key, &b->keys.set[0].end) < 0)
268 goto err;
270 if (b->written < btree_blocks(b))
271 bch_bset_init_next(&b->keys, write_block(b),
272 bset_magic(&b->c->sb));
273 out:
274 mempool_free(iter, b->c->fill_iter);
275 return;
276 err:
277 set_btree_node_io_error(b);
278 bch_cache_set_error(b->c, "%s at bucket %zu, block %u, %u keys",
279 err, PTR_BUCKET_NR(b->c, &b->key, 0),
280 bset_block_offset(b, i), i->keys);
281 goto out;
284 static void btree_node_read_endio(struct bio *bio)
286 struct closure *cl = bio->bi_private;
287 closure_put(cl);
290 static void bch_btree_node_read(struct btree *b)
292 uint64_t start_time = local_clock();
293 struct closure cl;
294 struct bio *bio;
296 trace_bcache_btree_read(b);
298 closure_init_stack(&cl);
300 bio = bch_bbio_alloc(b->c);
301 bio->bi_iter.bi_size = KEY_SIZE(&b->key) << 9;
302 bio->bi_end_io = btree_node_read_endio;
303 bio->bi_private = &cl;
304 bio->bi_opf = REQ_OP_READ | REQ_META;
306 bch_bio_map(bio, b->keys.set[0].data);
308 bch_submit_bbio(bio, b->c, &b->key, 0);
309 closure_sync(&cl);
311 if (bio->bi_status)
312 set_btree_node_io_error(b);
314 bch_bbio_free(bio, b->c);
316 if (btree_node_io_error(b))
317 goto err;
319 bch_btree_node_read_done(b);
320 bch_time_stats_update(&b->c->btree_read_time, start_time);
322 return;
323 err:
324 bch_cache_set_error(b->c, "io error reading bucket %zu",
325 PTR_BUCKET_NR(b->c, &b->key, 0));
328 static void btree_complete_write(struct btree *b, struct btree_write *w)
330 if (w->prio_blocked &&
331 !atomic_sub_return(w->prio_blocked, &b->c->prio_blocked))
332 wake_up_allocators(b->c);
334 if (w->journal) {
335 atomic_dec_bug(w->journal);
336 __closure_wake_up(&b->c->journal.wait);
339 w->prio_blocked = 0;
340 w->journal = NULL;
343 static void btree_node_write_unlock(struct closure *cl)
345 struct btree *b = container_of(cl, struct btree, io);
347 up(&b->io_mutex);
350 static void __btree_node_write_done(struct closure *cl)
352 struct btree *b = container_of(cl, struct btree, io);
353 struct btree_write *w = btree_prev_write(b);
355 bch_bbio_free(b->bio, b->c);
356 b->bio = NULL;
357 btree_complete_write(b, w);
359 if (btree_node_dirty(b))
360 schedule_delayed_work(&b->work, 30 * HZ);
362 closure_return_with_destructor(cl, btree_node_write_unlock);
365 static void btree_node_write_done(struct closure *cl)
367 struct btree *b = container_of(cl, struct btree, io);
369 bio_free_pages(b->bio);
370 __btree_node_write_done(cl);
373 static void btree_node_write_endio(struct bio *bio)
375 struct closure *cl = bio->bi_private;
376 struct btree *b = container_of(cl, struct btree, io);
378 if (bio->bi_status)
379 set_btree_node_io_error(b);
381 bch_bbio_count_io_errors(b->c, bio, bio->bi_status, "writing btree");
382 closure_put(cl);
385 static void do_btree_node_write(struct btree *b)
387 struct closure *cl = &b->io;
388 struct bset *i = btree_bset_last(b);
389 BKEY_PADDED(key) k;
391 i->version = BCACHE_BSET_VERSION;
392 i->csum = btree_csum_set(b, i);
394 BUG_ON(b->bio);
395 b->bio = bch_bbio_alloc(b->c);
397 b->bio->bi_end_io = btree_node_write_endio;
398 b->bio->bi_private = cl;
399 b->bio->bi_iter.bi_size = roundup(set_bytes(i), block_bytes(b->c));
400 b->bio->bi_opf = REQ_OP_WRITE | REQ_META | REQ_FUA;
401 bch_bio_map(b->bio, i);
404 * If we're appending to a leaf node, we don't technically need FUA -
405 * this write just needs to be persisted before the next journal write,
406 * which will be marked FLUSH|FUA.
408 * Similarly if we're writing a new btree root - the pointer is going to
409 * be in the next journal entry.
411 * But if we're writing a new btree node (that isn't a root) or
412 * appending to a non leaf btree node, we need either FUA or a flush
413 * when we write the parent with the new pointer. FUA is cheaper than a
414 * flush, and writes appending to leaf nodes aren't blocking anything so
415 * just make all btree node writes FUA to keep things sane.
418 bkey_copy(&k.key, &b->key);
419 SET_PTR_OFFSET(&k.key, 0, PTR_OFFSET(&k.key, 0) +
420 bset_sector_offset(&b->keys, i));
422 if (!bch_bio_alloc_pages(b->bio, __GFP_NOWARN|GFP_NOWAIT)) {
423 int j;
424 struct bio_vec *bv;
425 void *base = (void *) ((unsigned long) i & ~(PAGE_SIZE - 1));
427 bio_for_each_segment_all(bv, b->bio, j)
428 memcpy(page_address(bv->bv_page),
429 base + j * PAGE_SIZE, PAGE_SIZE);
431 bch_submit_bbio(b->bio, b->c, &k.key, 0);
433 continue_at(cl, btree_node_write_done, NULL);
434 } else {
435 /* No problem for multipage bvec since the bio is just allocated */
436 b->bio->bi_vcnt = 0;
437 bch_bio_map(b->bio, i);
439 bch_submit_bbio(b->bio, b->c, &k.key, 0);
441 closure_sync(cl);
442 continue_at_nobarrier(cl, __btree_node_write_done, NULL);
446 void __bch_btree_node_write(struct btree *b, struct closure *parent)
448 struct bset *i = btree_bset_last(b);
450 lockdep_assert_held(&b->write_lock);
452 trace_bcache_btree_write(b);
454 BUG_ON(current->bio_list);
455 BUG_ON(b->written >= btree_blocks(b));
456 BUG_ON(b->written && !i->keys);
457 BUG_ON(btree_bset_first(b)->seq != i->seq);
458 bch_check_keys(&b->keys, "writing");
460 cancel_delayed_work(&b->work);
462 /* If caller isn't waiting for write, parent refcount is cache set */
463 down(&b->io_mutex);
464 closure_init(&b->io, parent ?: &b->c->cl);
466 clear_bit(BTREE_NODE_dirty, &b->flags);
467 change_bit(BTREE_NODE_write_idx, &b->flags);
469 do_btree_node_write(b);
471 atomic_long_add(set_blocks(i, block_bytes(b->c)) * b->c->sb.block_size,
472 &PTR_CACHE(b->c, &b->key, 0)->btree_sectors_written);
474 b->written += set_blocks(i, block_bytes(b->c));
477 void bch_btree_node_write(struct btree *b, struct closure *parent)
479 unsigned nsets = b->keys.nsets;
481 lockdep_assert_held(&b->lock);
483 __bch_btree_node_write(b, parent);
486 * do verify if there was more than one set initially (i.e. we did a
487 * sort) and we sorted down to a single set:
489 if (nsets && !b->keys.nsets)
490 bch_btree_verify(b);
492 bch_btree_init_next(b);
495 static void bch_btree_node_write_sync(struct btree *b)
497 struct closure cl;
499 closure_init_stack(&cl);
501 mutex_lock(&b->write_lock);
502 bch_btree_node_write(b, &cl);
503 mutex_unlock(&b->write_lock);
505 closure_sync(&cl);
508 static void btree_node_write_work(struct work_struct *w)
510 struct btree *b = container_of(to_delayed_work(w), struct btree, work);
512 mutex_lock(&b->write_lock);
513 if (btree_node_dirty(b))
514 __bch_btree_node_write(b, NULL);
515 mutex_unlock(&b->write_lock);
518 static void bch_btree_leaf_dirty(struct btree *b, atomic_t *journal_ref)
520 struct bset *i = btree_bset_last(b);
521 struct btree_write *w = btree_current_write(b);
523 lockdep_assert_held(&b->write_lock);
525 BUG_ON(!b->written);
526 BUG_ON(!i->keys);
528 if (!btree_node_dirty(b))
529 schedule_delayed_work(&b->work, 30 * HZ);
531 set_btree_node_dirty(b);
533 if (journal_ref) {
534 if (w->journal &&
535 journal_pin_cmp(b->c, w->journal, journal_ref)) {
536 atomic_dec_bug(w->journal);
537 w->journal = NULL;
540 if (!w->journal) {
541 w->journal = journal_ref;
542 atomic_inc(w->journal);
546 /* Force write if set is too big */
547 if (set_bytes(i) > PAGE_SIZE - 48 &&
548 !current->bio_list)
549 bch_btree_node_write(b, NULL);
553 * Btree in memory cache - allocation/freeing
554 * mca -> memory cache
557 #define mca_reserve(c) (((c->root && c->root->level) \
558 ? c->root->level : 1) * 8 + 16)
559 #define mca_can_free(c) \
560 max_t(int, 0, c->btree_cache_used - mca_reserve(c))
562 static void mca_data_free(struct btree *b)
564 BUG_ON(b->io_mutex.count != 1);
566 bch_btree_keys_free(&b->keys);
568 b->c->btree_cache_used--;
569 list_move(&b->list, &b->c->btree_cache_freed);
572 static void mca_bucket_free(struct btree *b)
574 BUG_ON(btree_node_dirty(b));
576 b->key.ptr[0] = 0;
577 hlist_del_init_rcu(&b->hash);
578 list_move(&b->list, &b->c->btree_cache_freeable);
581 static unsigned btree_order(struct bkey *k)
583 return ilog2(KEY_SIZE(k) / PAGE_SECTORS ?: 1);
586 static void mca_data_alloc(struct btree *b, struct bkey *k, gfp_t gfp)
588 if (!bch_btree_keys_alloc(&b->keys,
589 max_t(unsigned,
590 ilog2(b->c->btree_pages),
591 btree_order(k)),
592 gfp)) {
593 b->c->btree_cache_used++;
594 list_move(&b->list, &b->c->btree_cache);
595 } else {
596 list_move(&b->list, &b->c->btree_cache_freed);
600 static struct btree *mca_bucket_alloc(struct cache_set *c,
601 struct bkey *k, gfp_t gfp)
603 struct btree *b = kzalloc(sizeof(struct btree), gfp);
604 if (!b)
605 return NULL;
607 init_rwsem(&b->lock);
608 lockdep_set_novalidate_class(&b->lock);
609 mutex_init(&b->write_lock);
610 lockdep_set_novalidate_class(&b->write_lock);
611 INIT_LIST_HEAD(&b->list);
612 INIT_DELAYED_WORK(&b->work, btree_node_write_work);
613 b->c = c;
614 sema_init(&b->io_mutex, 1);
616 mca_data_alloc(b, k, gfp);
617 return b;
620 static int mca_reap(struct btree *b, unsigned min_order, bool flush)
622 struct closure cl;
624 closure_init_stack(&cl);
625 lockdep_assert_held(&b->c->bucket_lock);
627 if (!down_write_trylock(&b->lock))
628 return -ENOMEM;
630 BUG_ON(btree_node_dirty(b) && !b->keys.set[0].data);
632 if (b->keys.page_order < min_order)
633 goto out_unlock;
635 if (!flush) {
636 if (btree_node_dirty(b))
637 goto out_unlock;
639 if (down_trylock(&b->io_mutex))
640 goto out_unlock;
641 up(&b->io_mutex);
644 mutex_lock(&b->write_lock);
645 if (btree_node_dirty(b))
646 __bch_btree_node_write(b, &cl);
647 mutex_unlock(&b->write_lock);
649 closure_sync(&cl);
651 /* wait for any in flight btree write */
652 down(&b->io_mutex);
653 up(&b->io_mutex);
655 return 0;
656 out_unlock:
657 rw_unlock(true, b);
658 return -ENOMEM;
661 static unsigned long bch_mca_scan(struct shrinker *shrink,
662 struct shrink_control *sc)
664 struct cache_set *c = container_of(shrink, struct cache_set, shrink);
665 struct btree *b, *t;
666 unsigned long i, nr = sc->nr_to_scan;
667 unsigned long freed = 0;
669 if (c->shrinker_disabled)
670 return SHRINK_STOP;
672 if (c->btree_cache_alloc_lock)
673 return SHRINK_STOP;
675 /* Return -1 if we can't do anything right now */
676 if (sc->gfp_mask & __GFP_IO)
677 mutex_lock(&c->bucket_lock);
678 else if (!mutex_trylock(&c->bucket_lock))
679 return -1;
682 * It's _really_ critical that we don't free too many btree nodes - we
683 * have to always leave ourselves a reserve. The reserve is how we
684 * guarantee that allocating memory for a new btree node can always
685 * succeed, so that inserting keys into the btree can always succeed and
686 * IO can always make forward progress:
688 nr /= c->btree_pages;
689 nr = min_t(unsigned long, nr, mca_can_free(c));
691 i = 0;
692 list_for_each_entry_safe(b, t, &c->btree_cache_freeable, list) {
693 if (freed >= nr)
694 break;
696 if (++i > 3 &&
697 !mca_reap(b, 0, false)) {
698 mca_data_free(b);
699 rw_unlock(true, b);
700 freed++;
704 for (i = 0; (nr--) && i < c->btree_cache_used; i++) {
705 if (list_empty(&c->btree_cache))
706 goto out;
708 b = list_first_entry(&c->btree_cache, struct btree, list);
709 list_rotate_left(&c->btree_cache);
711 if (!b->accessed &&
712 !mca_reap(b, 0, false)) {
713 mca_bucket_free(b);
714 mca_data_free(b);
715 rw_unlock(true, b);
716 freed++;
717 } else
718 b->accessed = 0;
720 out:
721 mutex_unlock(&c->bucket_lock);
722 return freed;
725 static unsigned long bch_mca_count(struct shrinker *shrink,
726 struct shrink_control *sc)
728 struct cache_set *c = container_of(shrink, struct cache_set, shrink);
730 if (c->shrinker_disabled)
731 return 0;
733 if (c->btree_cache_alloc_lock)
734 return 0;
736 return mca_can_free(c) * c->btree_pages;
739 void bch_btree_cache_free(struct cache_set *c)
741 struct btree *b;
742 struct closure cl;
743 closure_init_stack(&cl);
745 if (c->shrink.list.next)
746 unregister_shrinker(&c->shrink);
748 mutex_lock(&c->bucket_lock);
750 #ifdef CONFIG_BCACHE_DEBUG
751 if (c->verify_data)
752 list_move(&c->verify_data->list, &c->btree_cache);
754 free_pages((unsigned long) c->verify_ondisk, ilog2(bucket_pages(c)));
755 #endif
757 list_splice(&c->btree_cache_freeable,
758 &c->btree_cache);
760 while (!list_empty(&c->btree_cache)) {
761 b = list_first_entry(&c->btree_cache, struct btree, list);
763 if (btree_node_dirty(b))
764 btree_complete_write(b, btree_current_write(b));
765 clear_bit(BTREE_NODE_dirty, &b->flags);
767 mca_data_free(b);
770 while (!list_empty(&c->btree_cache_freed)) {
771 b = list_first_entry(&c->btree_cache_freed,
772 struct btree, list);
773 list_del(&b->list);
774 cancel_delayed_work_sync(&b->work);
775 kfree(b);
778 mutex_unlock(&c->bucket_lock);
781 int bch_btree_cache_alloc(struct cache_set *c)
783 unsigned i;
785 for (i = 0; i < mca_reserve(c); i++)
786 if (!mca_bucket_alloc(c, &ZERO_KEY, GFP_KERNEL))
787 return -ENOMEM;
789 list_splice_init(&c->btree_cache,
790 &c->btree_cache_freeable);
792 #ifdef CONFIG_BCACHE_DEBUG
793 mutex_init(&c->verify_lock);
795 c->verify_ondisk = (void *)
796 __get_free_pages(GFP_KERNEL, ilog2(bucket_pages(c)));
798 c->verify_data = mca_bucket_alloc(c, &ZERO_KEY, GFP_KERNEL);
800 if (c->verify_data &&
801 c->verify_data->keys.set->data)
802 list_del_init(&c->verify_data->list);
803 else
804 c->verify_data = NULL;
805 #endif
807 c->shrink.count_objects = bch_mca_count;
808 c->shrink.scan_objects = bch_mca_scan;
809 c->shrink.seeks = 4;
810 c->shrink.batch = c->btree_pages * 2;
812 if (register_shrinker(&c->shrink))
813 pr_warn("bcache: %s: could not register shrinker",
814 __func__);
816 return 0;
819 /* Btree in memory cache - hash table */
821 static struct hlist_head *mca_hash(struct cache_set *c, struct bkey *k)
823 return &c->bucket_hash[hash_32(PTR_HASH(c, k), BUCKET_HASH_BITS)];
826 static struct btree *mca_find(struct cache_set *c, struct bkey *k)
828 struct btree *b;
830 rcu_read_lock();
831 hlist_for_each_entry_rcu(b, mca_hash(c, k), hash)
832 if (PTR_HASH(c, &b->key) == PTR_HASH(c, k))
833 goto out;
834 b = NULL;
835 out:
836 rcu_read_unlock();
837 return b;
840 static int mca_cannibalize_lock(struct cache_set *c, struct btree_op *op)
842 struct task_struct *old;
844 old = cmpxchg(&c->btree_cache_alloc_lock, NULL, current);
845 if (old && old != current) {
846 if (op)
847 prepare_to_wait(&c->btree_cache_wait, &op->wait,
848 TASK_UNINTERRUPTIBLE);
849 return -EINTR;
852 return 0;
855 static struct btree *mca_cannibalize(struct cache_set *c, struct btree_op *op,
856 struct bkey *k)
858 struct btree *b;
860 trace_bcache_btree_cache_cannibalize(c);
862 if (mca_cannibalize_lock(c, op))
863 return ERR_PTR(-EINTR);
865 list_for_each_entry_reverse(b, &c->btree_cache, list)
866 if (!mca_reap(b, btree_order(k), false))
867 return b;
869 list_for_each_entry_reverse(b, &c->btree_cache, list)
870 if (!mca_reap(b, btree_order(k), true))
871 return b;
873 WARN(1, "btree cache cannibalize failed\n");
874 return ERR_PTR(-ENOMEM);
878 * We can only have one thread cannibalizing other cached btree nodes at a time,
879 * or we'll deadlock. We use an open coded mutex to ensure that, which a
880 * cannibalize_bucket() will take. This means every time we unlock the root of
881 * the btree, we need to release this lock if we have it held.
883 static void bch_cannibalize_unlock(struct cache_set *c)
885 if (c->btree_cache_alloc_lock == current) {
886 c->btree_cache_alloc_lock = NULL;
887 wake_up(&c->btree_cache_wait);
891 static struct btree *mca_alloc(struct cache_set *c, struct btree_op *op,
892 struct bkey *k, int level)
894 struct btree *b;
896 BUG_ON(current->bio_list);
898 lockdep_assert_held(&c->bucket_lock);
900 if (mca_find(c, k))
901 return NULL;
903 /* btree_free() doesn't free memory; it sticks the node on the end of
904 * the list. Check if there's any freed nodes there:
906 list_for_each_entry(b, &c->btree_cache_freeable, list)
907 if (!mca_reap(b, btree_order(k), false))
908 goto out;
910 /* We never free struct btree itself, just the memory that holds the on
911 * disk node. Check the freed list before allocating a new one:
913 list_for_each_entry(b, &c->btree_cache_freed, list)
914 if (!mca_reap(b, 0, false)) {
915 mca_data_alloc(b, k, __GFP_NOWARN|GFP_NOIO);
916 if (!b->keys.set[0].data)
917 goto err;
918 else
919 goto out;
922 b = mca_bucket_alloc(c, k, __GFP_NOWARN|GFP_NOIO);
923 if (!b)
924 goto err;
926 BUG_ON(!down_write_trylock(&b->lock));
927 if (!b->keys.set->data)
928 goto err;
929 out:
930 BUG_ON(b->io_mutex.count != 1);
932 bkey_copy(&b->key, k);
933 list_move(&b->list, &c->btree_cache);
934 hlist_del_init_rcu(&b->hash);
935 hlist_add_head_rcu(&b->hash, mca_hash(c, k));
937 lock_set_subclass(&b->lock.dep_map, level + 1, _THIS_IP_);
938 b->parent = (void *) ~0UL;
939 b->flags = 0;
940 b->written = 0;
941 b->level = level;
943 if (!b->level)
944 bch_btree_keys_init(&b->keys, &bch_extent_keys_ops,
945 &b->c->expensive_debug_checks);
946 else
947 bch_btree_keys_init(&b->keys, &bch_btree_keys_ops,
948 &b->c->expensive_debug_checks);
950 return b;
951 err:
952 if (b)
953 rw_unlock(true, b);
955 b = mca_cannibalize(c, op, k);
956 if (!IS_ERR(b))
957 goto out;
959 return b;
963 * bch_btree_node_get - find a btree node in the cache and lock it, reading it
964 * in from disk if necessary.
966 * If IO is necessary and running under generic_make_request, returns -EAGAIN.
968 * The btree node will have either a read or a write lock held, depending on
969 * level and op->lock.
971 struct btree *bch_btree_node_get(struct cache_set *c, struct btree_op *op,
972 struct bkey *k, int level, bool write,
973 struct btree *parent)
975 int i = 0;
976 struct btree *b;
978 BUG_ON(level < 0);
979 retry:
980 b = mca_find(c, k);
982 if (!b) {
983 if (current->bio_list)
984 return ERR_PTR(-EAGAIN);
986 mutex_lock(&c->bucket_lock);
987 b = mca_alloc(c, op, k, level);
988 mutex_unlock(&c->bucket_lock);
990 if (!b)
991 goto retry;
992 if (IS_ERR(b))
993 return b;
995 bch_btree_node_read(b);
997 if (!write)
998 downgrade_write(&b->lock);
999 } else {
1000 rw_lock(write, b, level);
1001 if (PTR_HASH(c, &b->key) != PTR_HASH(c, k)) {
1002 rw_unlock(write, b);
1003 goto retry;
1005 BUG_ON(b->level != level);
1008 b->parent = parent;
1009 b->accessed = 1;
1011 for (; i <= b->keys.nsets && b->keys.set[i].size; i++) {
1012 prefetch(b->keys.set[i].tree);
1013 prefetch(b->keys.set[i].data);
1016 for (; i <= b->keys.nsets; i++)
1017 prefetch(b->keys.set[i].data);
1019 if (btree_node_io_error(b)) {
1020 rw_unlock(write, b);
1021 return ERR_PTR(-EIO);
1024 BUG_ON(!b->written);
1026 return b;
1029 static void btree_node_prefetch(struct btree *parent, struct bkey *k)
1031 struct btree *b;
1033 mutex_lock(&parent->c->bucket_lock);
1034 b = mca_alloc(parent->c, NULL, k, parent->level - 1);
1035 mutex_unlock(&parent->c->bucket_lock);
1037 if (!IS_ERR_OR_NULL(b)) {
1038 b->parent = parent;
1039 bch_btree_node_read(b);
1040 rw_unlock(true, b);
1044 /* Btree alloc */
1046 static void btree_node_free(struct btree *b)
1048 trace_bcache_btree_node_free(b);
1050 BUG_ON(b == b->c->root);
1052 mutex_lock(&b->write_lock);
1054 if (btree_node_dirty(b))
1055 btree_complete_write(b, btree_current_write(b));
1056 clear_bit(BTREE_NODE_dirty, &b->flags);
1058 mutex_unlock(&b->write_lock);
1060 cancel_delayed_work(&b->work);
1062 mutex_lock(&b->c->bucket_lock);
1063 bch_bucket_free(b->c, &b->key);
1064 mca_bucket_free(b);
1065 mutex_unlock(&b->c->bucket_lock);
1068 struct btree *__bch_btree_node_alloc(struct cache_set *c, struct btree_op *op,
1069 int level, bool wait,
1070 struct btree *parent)
1072 BKEY_PADDED(key) k;
1073 struct btree *b = ERR_PTR(-EAGAIN);
1075 mutex_lock(&c->bucket_lock);
1076 retry:
1077 if (__bch_bucket_alloc_set(c, RESERVE_BTREE, &k.key, 1, wait))
1078 goto err;
1080 bkey_put(c, &k.key);
1081 SET_KEY_SIZE(&k.key, c->btree_pages * PAGE_SECTORS);
1083 b = mca_alloc(c, op, &k.key, level);
1084 if (IS_ERR(b))
1085 goto err_free;
1087 if (!b) {
1088 cache_bug(c,
1089 "Tried to allocate bucket that was in btree cache");
1090 goto retry;
1093 b->accessed = 1;
1094 b->parent = parent;
1095 bch_bset_init_next(&b->keys, b->keys.set->data, bset_magic(&b->c->sb));
1097 mutex_unlock(&c->bucket_lock);
1099 trace_bcache_btree_node_alloc(b);
1100 return b;
1101 err_free:
1102 bch_bucket_free(c, &k.key);
1103 err:
1104 mutex_unlock(&c->bucket_lock);
1106 trace_bcache_btree_node_alloc_fail(c);
1107 return b;
1110 static struct btree *bch_btree_node_alloc(struct cache_set *c,
1111 struct btree_op *op, int level,
1112 struct btree *parent)
1114 return __bch_btree_node_alloc(c, op, level, op != NULL, parent);
1117 static struct btree *btree_node_alloc_replacement(struct btree *b,
1118 struct btree_op *op)
1120 struct btree *n = bch_btree_node_alloc(b->c, op, b->level, b->parent);
1121 if (!IS_ERR_OR_NULL(n)) {
1122 mutex_lock(&n->write_lock);
1123 bch_btree_sort_into(&b->keys, &n->keys, &b->c->sort);
1124 bkey_copy_key(&n->key, &b->key);
1125 mutex_unlock(&n->write_lock);
1128 return n;
1131 static void make_btree_freeing_key(struct btree *b, struct bkey *k)
1133 unsigned i;
1135 mutex_lock(&b->c->bucket_lock);
1137 atomic_inc(&b->c->prio_blocked);
1139 bkey_copy(k, &b->key);
1140 bkey_copy_key(k, &ZERO_KEY);
1142 for (i = 0; i < KEY_PTRS(k); i++)
1143 SET_PTR_GEN(k, i,
1144 bch_inc_gen(PTR_CACHE(b->c, &b->key, i),
1145 PTR_BUCKET(b->c, &b->key, i)));
1147 mutex_unlock(&b->c->bucket_lock);
1150 static int btree_check_reserve(struct btree *b, struct btree_op *op)
1152 struct cache_set *c = b->c;
1153 struct cache *ca;
1154 unsigned i, reserve = (c->root->level - b->level) * 2 + 1;
1156 mutex_lock(&c->bucket_lock);
1158 for_each_cache(ca, c, i)
1159 if (fifo_used(&ca->free[RESERVE_BTREE]) < reserve) {
1160 if (op)
1161 prepare_to_wait(&c->btree_cache_wait, &op->wait,
1162 TASK_UNINTERRUPTIBLE);
1163 mutex_unlock(&c->bucket_lock);
1164 return -EINTR;
1167 mutex_unlock(&c->bucket_lock);
1169 return mca_cannibalize_lock(b->c, op);
1172 /* Garbage collection */
1174 static uint8_t __bch_btree_mark_key(struct cache_set *c, int level,
1175 struct bkey *k)
1177 uint8_t stale = 0;
1178 unsigned i;
1179 struct bucket *g;
1182 * ptr_invalid() can't return true for the keys that mark btree nodes as
1183 * freed, but since ptr_bad() returns true we'll never actually use them
1184 * for anything and thus we don't want mark their pointers here
1186 if (!bkey_cmp(k, &ZERO_KEY))
1187 return stale;
1189 for (i = 0; i < KEY_PTRS(k); i++) {
1190 if (!ptr_available(c, k, i))
1191 continue;
1193 g = PTR_BUCKET(c, k, i);
1195 if (gen_after(g->last_gc, PTR_GEN(k, i)))
1196 g->last_gc = PTR_GEN(k, i);
1198 if (ptr_stale(c, k, i)) {
1199 stale = max(stale, ptr_stale(c, k, i));
1200 continue;
1203 cache_bug_on(GC_MARK(g) &&
1204 (GC_MARK(g) == GC_MARK_METADATA) != (level != 0),
1205 c, "inconsistent ptrs: mark = %llu, level = %i",
1206 GC_MARK(g), level);
1208 if (level)
1209 SET_GC_MARK(g, GC_MARK_METADATA);
1210 else if (KEY_DIRTY(k))
1211 SET_GC_MARK(g, GC_MARK_DIRTY);
1212 else if (!GC_MARK(g))
1213 SET_GC_MARK(g, GC_MARK_RECLAIMABLE);
1215 /* guard against overflow */
1216 SET_GC_SECTORS_USED(g, min_t(unsigned,
1217 GC_SECTORS_USED(g) + KEY_SIZE(k),
1218 MAX_GC_SECTORS_USED));
1220 BUG_ON(!GC_SECTORS_USED(g));
1223 return stale;
1226 #define btree_mark_key(b, k) __bch_btree_mark_key(b->c, b->level, k)
1228 void bch_initial_mark_key(struct cache_set *c, int level, struct bkey *k)
1230 unsigned i;
1232 for (i = 0; i < KEY_PTRS(k); i++)
1233 if (ptr_available(c, k, i) &&
1234 !ptr_stale(c, k, i)) {
1235 struct bucket *b = PTR_BUCKET(c, k, i);
1237 b->gen = PTR_GEN(k, i);
1239 if (level && bkey_cmp(k, &ZERO_KEY))
1240 b->prio = BTREE_PRIO;
1241 else if (!level && b->prio == BTREE_PRIO)
1242 b->prio = INITIAL_PRIO;
1245 __bch_btree_mark_key(c, level, k);
1248 void bch_update_bucket_in_use(struct cache_set *c, struct gc_stat *stats)
1250 stats->in_use = (c->nbuckets - c->avail_nbuckets) * 100 / c->nbuckets;
1253 static bool btree_gc_mark_node(struct btree *b, struct gc_stat *gc)
1255 uint8_t stale = 0;
1256 unsigned keys = 0, good_keys = 0;
1257 struct bkey *k;
1258 struct btree_iter iter;
1259 struct bset_tree *t;
1261 gc->nodes++;
1263 for_each_key_filter(&b->keys, k, &iter, bch_ptr_invalid) {
1264 stale = max(stale, btree_mark_key(b, k));
1265 keys++;
1267 if (bch_ptr_bad(&b->keys, k))
1268 continue;
1270 gc->key_bytes += bkey_u64s(k);
1271 gc->nkeys++;
1272 good_keys++;
1274 gc->data += KEY_SIZE(k);
1277 for (t = b->keys.set; t <= &b->keys.set[b->keys.nsets]; t++)
1278 btree_bug_on(t->size &&
1279 bset_written(&b->keys, t) &&
1280 bkey_cmp(&b->key, &t->end) < 0,
1281 b, "found short btree key in gc");
1283 if (b->c->gc_always_rewrite)
1284 return true;
1286 if (stale > 10)
1287 return true;
1289 if ((keys - good_keys) * 2 > keys)
1290 return true;
1292 return false;
1295 #define GC_MERGE_NODES 4U
1297 struct gc_merge_info {
1298 struct btree *b;
1299 unsigned keys;
1302 static int bch_btree_insert_node(struct btree *, struct btree_op *,
1303 struct keylist *, atomic_t *, struct bkey *);
1305 static int btree_gc_coalesce(struct btree *b, struct btree_op *op,
1306 struct gc_stat *gc, struct gc_merge_info *r)
1308 unsigned i, nodes = 0, keys = 0, blocks;
1309 struct btree *new_nodes[GC_MERGE_NODES];
1310 struct keylist keylist;
1311 struct closure cl;
1312 struct bkey *k;
1314 bch_keylist_init(&keylist);
1316 if (btree_check_reserve(b, NULL))
1317 return 0;
1319 memset(new_nodes, 0, sizeof(new_nodes));
1320 closure_init_stack(&cl);
1322 while (nodes < GC_MERGE_NODES && !IS_ERR_OR_NULL(r[nodes].b))
1323 keys += r[nodes++].keys;
1325 blocks = btree_default_blocks(b->c) * 2 / 3;
1327 if (nodes < 2 ||
1328 __set_blocks(b->keys.set[0].data, keys,
1329 block_bytes(b->c)) > blocks * (nodes - 1))
1330 return 0;
1332 for (i = 0; i < nodes; i++) {
1333 new_nodes[i] = btree_node_alloc_replacement(r[i].b, NULL);
1334 if (IS_ERR_OR_NULL(new_nodes[i]))
1335 goto out_nocoalesce;
1339 * We have to check the reserve here, after we've allocated our new
1340 * nodes, to make sure the insert below will succeed - we also check
1341 * before as an optimization to potentially avoid a bunch of expensive
1342 * allocs/sorts
1344 if (btree_check_reserve(b, NULL))
1345 goto out_nocoalesce;
1347 for (i = 0; i < nodes; i++)
1348 mutex_lock(&new_nodes[i]->write_lock);
1350 for (i = nodes - 1; i > 0; --i) {
1351 struct bset *n1 = btree_bset_first(new_nodes[i]);
1352 struct bset *n2 = btree_bset_first(new_nodes[i - 1]);
1353 struct bkey *k, *last = NULL;
1355 keys = 0;
1357 if (i > 1) {
1358 for (k = n2->start;
1359 k < bset_bkey_last(n2);
1360 k = bkey_next(k)) {
1361 if (__set_blocks(n1, n1->keys + keys +
1362 bkey_u64s(k),
1363 block_bytes(b->c)) > blocks)
1364 break;
1366 last = k;
1367 keys += bkey_u64s(k);
1369 } else {
1371 * Last node we're not getting rid of - we're getting
1372 * rid of the node at r[0]. Have to try and fit all of
1373 * the remaining keys into this node; we can't ensure
1374 * they will always fit due to rounding and variable
1375 * length keys (shouldn't be possible in practice,
1376 * though)
1378 if (__set_blocks(n1, n1->keys + n2->keys,
1379 block_bytes(b->c)) >
1380 btree_blocks(new_nodes[i]))
1381 goto out_nocoalesce;
1383 keys = n2->keys;
1384 /* Take the key of the node we're getting rid of */
1385 last = &r->b->key;
1388 BUG_ON(__set_blocks(n1, n1->keys + keys, block_bytes(b->c)) >
1389 btree_blocks(new_nodes[i]));
1391 if (last)
1392 bkey_copy_key(&new_nodes[i]->key, last);
1394 memcpy(bset_bkey_last(n1),
1395 n2->start,
1396 (void *) bset_bkey_idx(n2, keys) - (void *) n2->start);
1398 n1->keys += keys;
1399 r[i].keys = n1->keys;
1401 memmove(n2->start,
1402 bset_bkey_idx(n2, keys),
1403 (void *) bset_bkey_last(n2) -
1404 (void *) bset_bkey_idx(n2, keys));
1406 n2->keys -= keys;
1408 if (__bch_keylist_realloc(&keylist,
1409 bkey_u64s(&new_nodes[i]->key)))
1410 goto out_nocoalesce;
1412 bch_btree_node_write(new_nodes[i], &cl);
1413 bch_keylist_add(&keylist, &new_nodes[i]->key);
1416 for (i = 0; i < nodes; i++)
1417 mutex_unlock(&new_nodes[i]->write_lock);
1419 closure_sync(&cl);
1421 /* We emptied out this node */
1422 BUG_ON(btree_bset_first(new_nodes[0])->keys);
1423 btree_node_free(new_nodes[0]);
1424 rw_unlock(true, new_nodes[0]);
1425 new_nodes[0] = NULL;
1427 for (i = 0; i < nodes; i++) {
1428 if (__bch_keylist_realloc(&keylist, bkey_u64s(&r[i].b->key)))
1429 goto out_nocoalesce;
1431 make_btree_freeing_key(r[i].b, keylist.top);
1432 bch_keylist_push(&keylist);
1435 bch_btree_insert_node(b, op, &keylist, NULL, NULL);
1436 BUG_ON(!bch_keylist_empty(&keylist));
1438 for (i = 0; i < nodes; i++) {
1439 btree_node_free(r[i].b);
1440 rw_unlock(true, r[i].b);
1442 r[i].b = new_nodes[i];
1445 memmove(r, r + 1, sizeof(r[0]) * (nodes - 1));
1446 r[nodes - 1].b = ERR_PTR(-EINTR);
1448 trace_bcache_btree_gc_coalesce(nodes);
1449 gc->nodes--;
1451 bch_keylist_free(&keylist);
1453 /* Invalidated our iterator */
1454 return -EINTR;
1456 out_nocoalesce:
1457 closure_sync(&cl);
1458 bch_keylist_free(&keylist);
1460 while ((k = bch_keylist_pop(&keylist)))
1461 if (!bkey_cmp(k, &ZERO_KEY))
1462 atomic_dec(&b->c->prio_blocked);
1464 for (i = 0; i < nodes; i++)
1465 if (!IS_ERR_OR_NULL(new_nodes[i])) {
1466 btree_node_free(new_nodes[i]);
1467 rw_unlock(true, new_nodes[i]);
1469 return 0;
1472 static int btree_gc_rewrite_node(struct btree *b, struct btree_op *op,
1473 struct btree *replace)
1475 struct keylist keys;
1476 struct btree *n;
1478 if (btree_check_reserve(b, NULL))
1479 return 0;
1481 n = btree_node_alloc_replacement(replace, NULL);
1483 /* recheck reserve after allocating replacement node */
1484 if (btree_check_reserve(b, NULL)) {
1485 btree_node_free(n);
1486 rw_unlock(true, n);
1487 return 0;
1490 bch_btree_node_write_sync(n);
1492 bch_keylist_init(&keys);
1493 bch_keylist_add(&keys, &n->key);
1495 make_btree_freeing_key(replace, keys.top);
1496 bch_keylist_push(&keys);
1498 bch_btree_insert_node(b, op, &keys, NULL, NULL);
1499 BUG_ON(!bch_keylist_empty(&keys));
1501 btree_node_free(replace);
1502 rw_unlock(true, n);
1504 /* Invalidated our iterator */
1505 return -EINTR;
1508 static unsigned btree_gc_count_keys(struct btree *b)
1510 struct bkey *k;
1511 struct btree_iter iter;
1512 unsigned ret = 0;
1514 for_each_key_filter(&b->keys, k, &iter, bch_ptr_bad)
1515 ret += bkey_u64s(k);
1517 return ret;
1520 static int btree_gc_recurse(struct btree *b, struct btree_op *op,
1521 struct closure *writes, struct gc_stat *gc)
1523 int ret = 0;
1524 bool should_rewrite;
1525 struct bkey *k;
1526 struct btree_iter iter;
1527 struct gc_merge_info r[GC_MERGE_NODES];
1528 struct gc_merge_info *i, *last = r + ARRAY_SIZE(r) - 1;
1530 bch_btree_iter_init(&b->keys, &iter, &b->c->gc_done);
1532 for (i = r; i < r + ARRAY_SIZE(r); i++)
1533 i->b = ERR_PTR(-EINTR);
1535 while (1) {
1536 k = bch_btree_iter_next_filter(&iter, &b->keys, bch_ptr_bad);
1537 if (k) {
1538 r->b = bch_btree_node_get(b->c, op, k, b->level - 1,
1539 true, b);
1540 if (IS_ERR(r->b)) {
1541 ret = PTR_ERR(r->b);
1542 break;
1545 r->keys = btree_gc_count_keys(r->b);
1547 ret = btree_gc_coalesce(b, op, gc, r);
1548 if (ret)
1549 break;
1552 if (!last->b)
1553 break;
1555 if (!IS_ERR(last->b)) {
1556 should_rewrite = btree_gc_mark_node(last->b, gc);
1557 if (should_rewrite) {
1558 ret = btree_gc_rewrite_node(b, op, last->b);
1559 if (ret)
1560 break;
1563 if (last->b->level) {
1564 ret = btree_gc_recurse(last->b, op, writes, gc);
1565 if (ret)
1566 break;
1569 bkey_copy_key(&b->c->gc_done, &last->b->key);
1572 * Must flush leaf nodes before gc ends, since replace
1573 * operations aren't journalled
1575 mutex_lock(&last->b->write_lock);
1576 if (btree_node_dirty(last->b))
1577 bch_btree_node_write(last->b, writes);
1578 mutex_unlock(&last->b->write_lock);
1579 rw_unlock(true, last->b);
1582 memmove(r + 1, r, sizeof(r[0]) * (GC_MERGE_NODES - 1));
1583 r->b = NULL;
1585 if (need_resched()) {
1586 ret = -EAGAIN;
1587 break;
1591 for (i = r; i < r + ARRAY_SIZE(r); i++)
1592 if (!IS_ERR_OR_NULL(i->b)) {
1593 mutex_lock(&i->b->write_lock);
1594 if (btree_node_dirty(i->b))
1595 bch_btree_node_write(i->b, writes);
1596 mutex_unlock(&i->b->write_lock);
1597 rw_unlock(true, i->b);
1600 return ret;
1603 static int bch_btree_gc_root(struct btree *b, struct btree_op *op,
1604 struct closure *writes, struct gc_stat *gc)
1606 struct btree *n = NULL;
1607 int ret = 0;
1608 bool should_rewrite;
1610 should_rewrite = btree_gc_mark_node(b, gc);
1611 if (should_rewrite) {
1612 n = btree_node_alloc_replacement(b, NULL);
1614 if (!IS_ERR_OR_NULL(n)) {
1615 bch_btree_node_write_sync(n);
1617 bch_btree_set_root(n);
1618 btree_node_free(b);
1619 rw_unlock(true, n);
1621 return -EINTR;
1625 __bch_btree_mark_key(b->c, b->level + 1, &b->key);
1627 if (b->level) {
1628 ret = btree_gc_recurse(b, op, writes, gc);
1629 if (ret)
1630 return ret;
1633 bkey_copy_key(&b->c->gc_done, &b->key);
1635 return ret;
1638 static void btree_gc_start(struct cache_set *c)
1640 struct cache *ca;
1641 struct bucket *b;
1642 unsigned i;
1644 if (!c->gc_mark_valid)
1645 return;
1647 mutex_lock(&c->bucket_lock);
1649 c->gc_mark_valid = 0;
1650 c->gc_done = ZERO_KEY;
1652 for_each_cache(ca, c, i)
1653 for_each_bucket(b, ca) {
1654 b->last_gc = b->gen;
1655 if (!atomic_read(&b->pin)) {
1656 SET_GC_MARK(b, 0);
1657 SET_GC_SECTORS_USED(b, 0);
1661 mutex_unlock(&c->bucket_lock);
1664 static void bch_btree_gc_finish(struct cache_set *c)
1666 struct bucket *b;
1667 struct cache *ca;
1668 unsigned i;
1670 mutex_lock(&c->bucket_lock);
1672 set_gc_sectors(c);
1673 c->gc_mark_valid = 1;
1674 c->need_gc = 0;
1676 for (i = 0; i < KEY_PTRS(&c->uuid_bucket); i++)
1677 SET_GC_MARK(PTR_BUCKET(c, &c->uuid_bucket, i),
1678 GC_MARK_METADATA);
1680 /* don't reclaim buckets to which writeback keys point */
1681 rcu_read_lock();
1682 for (i = 0; i < c->devices_max_used; i++) {
1683 struct bcache_device *d = c->devices[i];
1684 struct cached_dev *dc;
1685 struct keybuf_key *w, *n;
1686 unsigned j;
1688 if (!d || UUID_FLASH_ONLY(&c->uuids[i]))
1689 continue;
1690 dc = container_of(d, struct cached_dev, disk);
1692 spin_lock(&dc->writeback_keys.lock);
1693 rbtree_postorder_for_each_entry_safe(w, n,
1694 &dc->writeback_keys.keys, node)
1695 for (j = 0; j < KEY_PTRS(&w->key); j++)
1696 SET_GC_MARK(PTR_BUCKET(c, &w->key, j),
1697 GC_MARK_DIRTY);
1698 spin_unlock(&dc->writeback_keys.lock);
1700 rcu_read_unlock();
1702 c->avail_nbuckets = 0;
1703 for_each_cache(ca, c, i) {
1704 uint64_t *i;
1706 ca->invalidate_needs_gc = 0;
1708 for (i = ca->sb.d; i < ca->sb.d + ca->sb.keys; i++)
1709 SET_GC_MARK(ca->buckets + *i, GC_MARK_METADATA);
1711 for (i = ca->prio_buckets;
1712 i < ca->prio_buckets + prio_buckets(ca) * 2; i++)
1713 SET_GC_MARK(ca->buckets + *i, GC_MARK_METADATA);
1715 for_each_bucket(b, ca) {
1716 c->need_gc = max(c->need_gc, bucket_gc_gen(b));
1718 if (atomic_read(&b->pin))
1719 continue;
1721 BUG_ON(!GC_MARK(b) && GC_SECTORS_USED(b));
1723 if (!GC_MARK(b) || GC_MARK(b) == GC_MARK_RECLAIMABLE)
1724 c->avail_nbuckets++;
1728 mutex_unlock(&c->bucket_lock);
1731 static void bch_btree_gc(struct cache_set *c)
1733 int ret;
1734 struct gc_stat stats;
1735 struct closure writes;
1736 struct btree_op op;
1737 uint64_t start_time = local_clock();
1739 trace_bcache_gc_start(c);
1741 memset(&stats, 0, sizeof(struct gc_stat));
1742 closure_init_stack(&writes);
1743 bch_btree_op_init(&op, SHRT_MAX);
1745 btree_gc_start(c);
1747 do {
1748 ret = btree_root(gc_root, c, &op, &writes, &stats);
1749 closure_sync(&writes);
1750 cond_resched();
1752 if (ret && ret != -EAGAIN)
1753 pr_warn("gc failed!");
1754 } while (ret);
1756 bch_btree_gc_finish(c);
1757 wake_up_allocators(c);
1759 bch_time_stats_update(&c->btree_gc_time, start_time);
1761 stats.key_bytes *= sizeof(uint64_t);
1762 stats.data <<= 9;
1763 bch_update_bucket_in_use(c, &stats);
1764 memcpy(&c->gc_stats, &stats, sizeof(struct gc_stat));
1766 trace_bcache_gc_end(c);
1768 bch_moving_gc(c);
1771 static bool gc_should_run(struct cache_set *c)
1773 struct cache *ca;
1774 unsigned i;
1776 for_each_cache(ca, c, i)
1777 if (ca->invalidate_needs_gc)
1778 return true;
1780 if (atomic_read(&c->sectors_to_gc) < 0)
1781 return true;
1783 return false;
1786 static int bch_gc_thread(void *arg)
1788 struct cache_set *c = arg;
1790 while (1) {
1791 wait_event_interruptible(c->gc_wait,
1792 kthread_should_stop() || gc_should_run(c));
1794 if (kthread_should_stop())
1795 break;
1797 set_gc_sectors(c);
1798 bch_btree_gc(c);
1801 return 0;
1804 int bch_gc_thread_start(struct cache_set *c)
1806 c->gc_thread = kthread_run(bch_gc_thread, c, "bcache_gc");
1807 return PTR_ERR_OR_ZERO(c->gc_thread);
1810 /* Initial partial gc */
1812 static int bch_btree_check_recurse(struct btree *b, struct btree_op *op)
1814 int ret = 0;
1815 struct bkey *k, *p = NULL;
1816 struct btree_iter iter;
1818 for_each_key_filter(&b->keys, k, &iter, bch_ptr_invalid)
1819 bch_initial_mark_key(b->c, b->level, k);
1821 bch_initial_mark_key(b->c, b->level + 1, &b->key);
1823 if (b->level) {
1824 bch_btree_iter_init(&b->keys, &iter, NULL);
1826 do {
1827 k = bch_btree_iter_next_filter(&iter, &b->keys,
1828 bch_ptr_bad);
1829 if (k)
1830 btree_node_prefetch(b, k);
1832 if (p)
1833 ret = btree(check_recurse, p, b, op);
1835 p = k;
1836 } while (p && !ret);
1839 return ret;
1842 int bch_btree_check(struct cache_set *c)
1844 struct btree_op op;
1846 bch_btree_op_init(&op, SHRT_MAX);
1848 return btree_root(check_recurse, c, &op);
1851 void bch_initial_gc_finish(struct cache_set *c)
1853 struct cache *ca;
1854 struct bucket *b;
1855 unsigned i;
1857 bch_btree_gc_finish(c);
1859 mutex_lock(&c->bucket_lock);
1862 * We need to put some unused buckets directly on the prio freelist in
1863 * order to get the allocator thread started - it needs freed buckets in
1864 * order to rewrite the prios and gens, and it needs to rewrite prios
1865 * and gens in order to free buckets.
1867 * This is only safe for buckets that have no live data in them, which
1868 * there should always be some of.
1870 for_each_cache(ca, c, i) {
1871 for_each_bucket(b, ca) {
1872 if (fifo_full(&ca->free[RESERVE_PRIO]) &&
1873 fifo_full(&ca->free[RESERVE_BTREE]))
1874 break;
1876 if (bch_can_invalidate_bucket(ca, b) &&
1877 !GC_MARK(b)) {
1878 __bch_invalidate_one_bucket(ca, b);
1879 if (!fifo_push(&ca->free[RESERVE_PRIO],
1880 b - ca->buckets))
1881 fifo_push(&ca->free[RESERVE_BTREE],
1882 b - ca->buckets);
1887 mutex_unlock(&c->bucket_lock);
1890 /* Btree insertion */
1892 static bool btree_insert_key(struct btree *b, struct bkey *k,
1893 struct bkey *replace_key)
1895 unsigned status;
1897 BUG_ON(bkey_cmp(k, &b->key) > 0);
1899 status = bch_btree_insert_key(&b->keys, k, replace_key);
1900 if (status != BTREE_INSERT_STATUS_NO_INSERT) {
1901 bch_check_keys(&b->keys, "%u for %s", status,
1902 replace_key ? "replace" : "insert");
1904 trace_bcache_btree_insert_key(b, k, replace_key != NULL,
1905 status);
1906 return true;
1907 } else
1908 return false;
1911 static size_t insert_u64s_remaining(struct btree *b)
1913 long ret = bch_btree_keys_u64s_remaining(&b->keys);
1916 * Might land in the middle of an existing extent and have to split it
1918 if (b->keys.ops->is_extents)
1919 ret -= KEY_MAX_U64S;
1921 return max(ret, 0L);
1924 static bool bch_btree_insert_keys(struct btree *b, struct btree_op *op,
1925 struct keylist *insert_keys,
1926 struct bkey *replace_key)
1928 bool ret = false;
1929 int oldsize = bch_count_data(&b->keys);
1931 while (!bch_keylist_empty(insert_keys)) {
1932 struct bkey *k = insert_keys->keys;
1934 if (bkey_u64s(k) > insert_u64s_remaining(b))
1935 break;
1937 if (bkey_cmp(k, &b->key) <= 0) {
1938 if (!b->level)
1939 bkey_put(b->c, k);
1941 ret |= btree_insert_key(b, k, replace_key);
1942 bch_keylist_pop_front(insert_keys);
1943 } else if (bkey_cmp(&START_KEY(k), &b->key) < 0) {
1944 BKEY_PADDED(key) temp;
1945 bkey_copy(&temp.key, insert_keys->keys);
1947 bch_cut_back(&b->key, &temp.key);
1948 bch_cut_front(&b->key, insert_keys->keys);
1950 ret |= btree_insert_key(b, &temp.key, replace_key);
1951 break;
1952 } else {
1953 break;
1957 if (!ret)
1958 op->insert_collision = true;
1960 BUG_ON(!bch_keylist_empty(insert_keys) && b->level);
1962 BUG_ON(bch_count_data(&b->keys) < oldsize);
1963 return ret;
1966 static int btree_split(struct btree *b, struct btree_op *op,
1967 struct keylist *insert_keys,
1968 struct bkey *replace_key)
1970 bool split;
1971 struct btree *n1, *n2 = NULL, *n3 = NULL;
1972 uint64_t start_time = local_clock();
1973 struct closure cl;
1974 struct keylist parent_keys;
1976 closure_init_stack(&cl);
1977 bch_keylist_init(&parent_keys);
1979 if (btree_check_reserve(b, op)) {
1980 if (!b->level)
1981 return -EINTR;
1982 else
1983 WARN(1, "insufficient reserve for split\n");
1986 n1 = btree_node_alloc_replacement(b, op);
1987 if (IS_ERR(n1))
1988 goto err;
1990 split = set_blocks(btree_bset_first(n1),
1991 block_bytes(n1->c)) > (btree_blocks(b) * 4) / 5;
1993 if (split) {
1994 unsigned keys = 0;
1996 trace_bcache_btree_node_split(b, btree_bset_first(n1)->keys);
1998 n2 = bch_btree_node_alloc(b->c, op, b->level, b->parent);
1999 if (IS_ERR(n2))
2000 goto err_free1;
2002 if (!b->parent) {
2003 n3 = bch_btree_node_alloc(b->c, op, b->level + 1, NULL);
2004 if (IS_ERR(n3))
2005 goto err_free2;
2008 mutex_lock(&n1->write_lock);
2009 mutex_lock(&n2->write_lock);
2011 bch_btree_insert_keys(n1, op, insert_keys, replace_key);
2014 * Has to be a linear search because we don't have an auxiliary
2015 * search tree yet
2018 while (keys < (btree_bset_first(n1)->keys * 3) / 5)
2019 keys += bkey_u64s(bset_bkey_idx(btree_bset_first(n1),
2020 keys));
2022 bkey_copy_key(&n1->key,
2023 bset_bkey_idx(btree_bset_first(n1), keys));
2024 keys += bkey_u64s(bset_bkey_idx(btree_bset_first(n1), keys));
2026 btree_bset_first(n2)->keys = btree_bset_first(n1)->keys - keys;
2027 btree_bset_first(n1)->keys = keys;
2029 memcpy(btree_bset_first(n2)->start,
2030 bset_bkey_last(btree_bset_first(n1)),
2031 btree_bset_first(n2)->keys * sizeof(uint64_t));
2033 bkey_copy_key(&n2->key, &b->key);
2035 bch_keylist_add(&parent_keys, &n2->key);
2036 bch_btree_node_write(n2, &cl);
2037 mutex_unlock(&n2->write_lock);
2038 rw_unlock(true, n2);
2039 } else {
2040 trace_bcache_btree_node_compact(b, btree_bset_first(n1)->keys);
2042 mutex_lock(&n1->write_lock);
2043 bch_btree_insert_keys(n1, op, insert_keys, replace_key);
2046 bch_keylist_add(&parent_keys, &n1->key);
2047 bch_btree_node_write(n1, &cl);
2048 mutex_unlock(&n1->write_lock);
2050 if (n3) {
2051 /* Depth increases, make a new root */
2052 mutex_lock(&n3->write_lock);
2053 bkey_copy_key(&n3->key, &MAX_KEY);
2054 bch_btree_insert_keys(n3, op, &parent_keys, NULL);
2055 bch_btree_node_write(n3, &cl);
2056 mutex_unlock(&n3->write_lock);
2058 closure_sync(&cl);
2059 bch_btree_set_root(n3);
2060 rw_unlock(true, n3);
2061 } else if (!b->parent) {
2062 /* Root filled up but didn't need to be split */
2063 closure_sync(&cl);
2064 bch_btree_set_root(n1);
2065 } else {
2066 /* Split a non root node */
2067 closure_sync(&cl);
2068 make_btree_freeing_key(b, parent_keys.top);
2069 bch_keylist_push(&parent_keys);
2071 bch_btree_insert_node(b->parent, op, &parent_keys, NULL, NULL);
2072 BUG_ON(!bch_keylist_empty(&parent_keys));
2075 btree_node_free(b);
2076 rw_unlock(true, n1);
2078 bch_time_stats_update(&b->c->btree_split_time, start_time);
2080 return 0;
2081 err_free2:
2082 bkey_put(b->c, &n2->key);
2083 btree_node_free(n2);
2084 rw_unlock(true, n2);
2085 err_free1:
2086 bkey_put(b->c, &n1->key);
2087 btree_node_free(n1);
2088 rw_unlock(true, n1);
2089 err:
2090 WARN(1, "bcache: btree split failed (level %u)", b->level);
2092 if (n3 == ERR_PTR(-EAGAIN) ||
2093 n2 == ERR_PTR(-EAGAIN) ||
2094 n1 == ERR_PTR(-EAGAIN))
2095 return -EAGAIN;
2097 return -ENOMEM;
2100 static int bch_btree_insert_node(struct btree *b, struct btree_op *op,
2101 struct keylist *insert_keys,
2102 atomic_t *journal_ref,
2103 struct bkey *replace_key)
2105 struct closure cl;
2107 BUG_ON(b->level && replace_key);
2109 closure_init_stack(&cl);
2111 mutex_lock(&b->write_lock);
2113 if (write_block(b) != btree_bset_last(b) &&
2114 b->keys.last_set_unwritten)
2115 bch_btree_init_next(b); /* just wrote a set */
2117 if (bch_keylist_nkeys(insert_keys) > insert_u64s_remaining(b)) {
2118 mutex_unlock(&b->write_lock);
2119 goto split;
2122 BUG_ON(write_block(b) != btree_bset_last(b));
2124 if (bch_btree_insert_keys(b, op, insert_keys, replace_key)) {
2125 if (!b->level)
2126 bch_btree_leaf_dirty(b, journal_ref);
2127 else
2128 bch_btree_node_write(b, &cl);
2131 mutex_unlock(&b->write_lock);
2133 /* wait for btree node write if necessary, after unlock */
2134 closure_sync(&cl);
2136 return 0;
2137 split:
2138 if (current->bio_list) {
2139 op->lock = b->c->root->level + 1;
2140 return -EAGAIN;
2141 } else if (op->lock <= b->c->root->level) {
2142 op->lock = b->c->root->level + 1;
2143 return -EINTR;
2144 } else {
2145 /* Invalidated all iterators */
2146 int ret = btree_split(b, op, insert_keys, replace_key);
2148 if (bch_keylist_empty(insert_keys))
2149 return 0;
2150 else if (!ret)
2151 return -EINTR;
2152 return ret;
2156 int bch_btree_insert_check_key(struct btree *b, struct btree_op *op,
2157 struct bkey *check_key)
2159 int ret = -EINTR;
2160 uint64_t btree_ptr = b->key.ptr[0];
2161 unsigned long seq = b->seq;
2162 struct keylist insert;
2163 bool upgrade = op->lock == -1;
2165 bch_keylist_init(&insert);
2167 if (upgrade) {
2168 rw_unlock(false, b);
2169 rw_lock(true, b, b->level);
2171 if (b->key.ptr[0] != btree_ptr ||
2172 b->seq != seq + 1) {
2173 op->lock = b->level;
2174 goto out;
2178 SET_KEY_PTRS(check_key, 1);
2179 get_random_bytes(&check_key->ptr[0], sizeof(uint64_t));
2181 SET_PTR_DEV(check_key, 0, PTR_CHECK_DEV);
2183 bch_keylist_add(&insert, check_key);
2185 ret = bch_btree_insert_node(b, op, &insert, NULL, NULL);
2187 BUG_ON(!ret && !bch_keylist_empty(&insert));
2188 out:
2189 if (upgrade)
2190 downgrade_write(&b->lock);
2191 return ret;
2194 struct btree_insert_op {
2195 struct btree_op op;
2196 struct keylist *keys;
2197 atomic_t *journal_ref;
2198 struct bkey *replace_key;
2201 static int btree_insert_fn(struct btree_op *b_op, struct btree *b)
2203 struct btree_insert_op *op = container_of(b_op,
2204 struct btree_insert_op, op);
2206 int ret = bch_btree_insert_node(b, &op->op, op->keys,
2207 op->journal_ref, op->replace_key);
2208 if (ret && !bch_keylist_empty(op->keys))
2209 return ret;
2210 else
2211 return MAP_DONE;
2214 int bch_btree_insert(struct cache_set *c, struct keylist *keys,
2215 atomic_t *journal_ref, struct bkey *replace_key)
2217 struct btree_insert_op op;
2218 int ret = 0;
2220 BUG_ON(current->bio_list);
2221 BUG_ON(bch_keylist_empty(keys));
2223 bch_btree_op_init(&op.op, 0);
2224 op.keys = keys;
2225 op.journal_ref = journal_ref;
2226 op.replace_key = replace_key;
2228 while (!ret && !bch_keylist_empty(keys)) {
2229 op.op.lock = 0;
2230 ret = bch_btree_map_leaf_nodes(&op.op, c,
2231 &START_KEY(keys->keys),
2232 btree_insert_fn);
2235 if (ret) {
2236 struct bkey *k;
2238 pr_err("error %i", ret);
2240 while ((k = bch_keylist_pop(keys)))
2241 bkey_put(c, k);
2242 } else if (op.op.insert_collision)
2243 ret = -ESRCH;
2245 return ret;
2248 void bch_btree_set_root(struct btree *b)
2250 unsigned i;
2251 struct closure cl;
2253 closure_init_stack(&cl);
2255 trace_bcache_btree_set_root(b);
2257 BUG_ON(!b->written);
2259 for (i = 0; i < KEY_PTRS(&b->key); i++)
2260 BUG_ON(PTR_BUCKET(b->c, &b->key, i)->prio != BTREE_PRIO);
2262 mutex_lock(&b->c->bucket_lock);
2263 list_del_init(&b->list);
2264 mutex_unlock(&b->c->bucket_lock);
2266 b->c->root = b;
2268 bch_journal_meta(b->c, &cl);
2269 closure_sync(&cl);
2272 /* Map across nodes or keys */
2274 static int bch_btree_map_nodes_recurse(struct btree *b, struct btree_op *op,
2275 struct bkey *from,
2276 btree_map_nodes_fn *fn, int flags)
2278 int ret = MAP_CONTINUE;
2280 if (b->level) {
2281 struct bkey *k;
2282 struct btree_iter iter;
2284 bch_btree_iter_init(&b->keys, &iter, from);
2286 while ((k = bch_btree_iter_next_filter(&iter, &b->keys,
2287 bch_ptr_bad))) {
2288 ret = btree(map_nodes_recurse, k, b,
2289 op, from, fn, flags);
2290 from = NULL;
2292 if (ret != MAP_CONTINUE)
2293 return ret;
2297 if (!b->level || flags == MAP_ALL_NODES)
2298 ret = fn(op, b);
2300 return ret;
2303 int __bch_btree_map_nodes(struct btree_op *op, struct cache_set *c,
2304 struct bkey *from, btree_map_nodes_fn *fn, int flags)
2306 return btree_root(map_nodes_recurse, c, op, from, fn, flags);
2309 static int bch_btree_map_keys_recurse(struct btree *b, struct btree_op *op,
2310 struct bkey *from, btree_map_keys_fn *fn,
2311 int flags)
2313 int ret = MAP_CONTINUE;
2314 struct bkey *k;
2315 struct btree_iter iter;
2317 bch_btree_iter_init(&b->keys, &iter, from);
2319 while ((k = bch_btree_iter_next_filter(&iter, &b->keys, bch_ptr_bad))) {
2320 ret = !b->level
2321 ? fn(op, b, k)
2322 : btree(map_keys_recurse, k, b, op, from, fn, flags);
2323 from = NULL;
2325 if (ret != MAP_CONTINUE)
2326 return ret;
2329 if (!b->level && (flags & MAP_END_KEY))
2330 ret = fn(op, b, &KEY(KEY_INODE(&b->key),
2331 KEY_OFFSET(&b->key), 0));
2333 return ret;
2336 int bch_btree_map_keys(struct btree_op *op, struct cache_set *c,
2337 struct bkey *from, btree_map_keys_fn *fn, int flags)
2339 return btree_root(map_keys_recurse, c, op, from, fn, flags);
2342 /* Keybuf code */
2344 static inline int keybuf_cmp(struct keybuf_key *l, struct keybuf_key *r)
2346 /* Overlapping keys compare equal */
2347 if (bkey_cmp(&l->key, &START_KEY(&r->key)) <= 0)
2348 return -1;
2349 if (bkey_cmp(&START_KEY(&l->key), &r->key) >= 0)
2350 return 1;
2351 return 0;
2354 static inline int keybuf_nonoverlapping_cmp(struct keybuf_key *l,
2355 struct keybuf_key *r)
2357 return clamp_t(int64_t, bkey_cmp(&l->key, &r->key), -1, 1);
2360 struct refill {
2361 struct btree_op op;
2362 unsigned nr_found;
2363 struct keybuf *buf;
2364 struct bkey *end;
2365 keybuf_pred_fn *pred;
2368 static int refill_keybuf_fn(struct btree_op *op, struct btree *b,
2369 struct bkey *k)
2371 struct refill *refill = container_of(op, struct refill, op);
2372 struct keybuf *buf = refill->buf;
2373 int ret = MAP_CONTINUE;
2375 if (bkey_cmp(k, refill->end) >= 0) {
2376 ret = MAP_DONE;
2377 goto out;
2380 if (!KEY_SIZE(k)) /* end key */
2381 goto out;
2383 if (refill->pred(buf, k)) {
2384 struct keybuf_key *w;
2386 spin_lock(&buf->lock);
2388 w = array_alloc(&buf->freelist);
2389 if (!w) {
2390 spin_unlock(&buf->lock);
2391 return MAP_DONE;
2394 w->private = NULL;
2395 bkey_copy(&w->key, k);
2397 if (RB_INSERT(&buf->keys, w, node, keybuf_cmp))
2398 array_free(&buf->freelist, w);
2399 else
2400 refill->nr_found++;
2402 if (array_freelist_empty(&buf->freelist))
2403 ret = MAP_DONE;
2405 spin_unlock(&buf->lock);
2407 out:
2408 buf->last_scanned = *k;
2409 return ret;
2412 void bch_refill_keybuf(struct cache_set *c, struct keybuf *buf,
2413 struct bkey *end, keybuf_pred_fn *pred)
2415 struct bkey start = buf->last_scanned;
2416 struct refill refill;
2418 cond_resched();
2420 bch_btree_op_init(&refill.op, -1);
2421 refill.nr_found = 0;
2422 refill.buf = buf;
2423 refill.end = end;
2424 refill.pred = pred;
2426 bch_btree_map_keys(&refill.op, c, &buf->last_scanned,
2427 refill_keybuf_fn, MAP_END_KEY);
2429 trace_bcache_keyscan(refill.nr_found,
2430 KEY_INODE(&start), KEY_OFFSET(&start),
2431 KEY_INODE(&buf->last_scanned),
2432 KEY_OFFSET(&buf->last_scanned));
2434 spin_lock(&buf->lock);
2436 if (!RB_EMPTY_ROOT(&buf->keys)) {
2437 struct keybuf_key *w;
2438 w = RB_FIRST(&buf->keys, struct keybuf_key, node);
2439 buf->start = START_KEY(&w->key);
2441 w = RB_LAST(&buf->keys, struct keybuf_key, node);
2442 buf->end = w->key;
2443 } else {
2444 buf->start = MAX_KEY;
2445 buf->end = MAX_KEY;
2448 spin_unlock(&buf->lock);
2451 static void __bch_keybuf_del(struct keybuf *buf, struct keybuf_key *w)
2453 rb_erase(&w->node, &buf->keys);
2454 array_free(&buf->freelist, w);
2457 void bch_keybuf_del(struct keybuf *buf, struct keybuf_key *w)
2459 spin_lock(&buf->lock);
2460 __bch_keybuf_del(buf, w);
2461 spin_unlock(&buf->lock);
2464 bool bch_keybuf_check_overlapping(struct keybuf *buf, struct bkey *start,
2465 struct bkey *end)
2467 bool ret = false;
2468 struct keybuf_key *p, *w, s;
2469 s.key = *start;
2471 if (bkey_cmp(end, &buf->start) <= 0 ||
2472 bkey_cmp(start, &buf->end) >= 0)
2473 return false;
2475 spin_lock(&buf->lock);
2476 w = RB_GREATER(&buf->keys, s, node, keybuf_nonoverlapping_cmp);
2478 while (w && bkey_cmp(&START_KEY(&w->key), end) < 0) {
2479 p = w;
2480 w = RB_NEXT(w, node);
2482 if (p->private)
2483 ret = true;
2484 else
2485 __bch_keybuf_del(buf, p);
2488 spin_unlock(&buf->lock);
2489 return ret;
2492 struct keybuf_key *bch_keybuf_next(struct keybuf *buf)
2494 struct keybuf_key *w;
2495 spin_lock(&buf->lock);
2497 w = RB_FIRST(&buf->keys, struct keybuf_key, node);
2499 while (w && w->private)
2500 w = RB_NEXT(w, node);
2502 if (w)
2503 w->private = ERR_PTR(-EINTR);
2505 spin_unlock(&buf->lock);
2506 return w;
2509 struct keybuf_key *bch_keybuf_next_rescan(struct cache_set *c,
2510 struct keybuf *buf,
2511 struct bkey *end,
2512 keybuf_pred_fn *pred)
2514 struct keybuf_key *ret;
2516 while (1) {
2517 ret = bch_keybuf_next(buf);
2518 if (ret)
2519 break;
2521 if (bkey_cmp(&buf->last_scanned, end) >= 0) {
2522 pr_debug("scan finished");
2523 break;
2526 bch_refill_keybuf(c, buf, end, pred);
2529 return ret;
2532 void bch_keybuf_init(struct keybuf *buf)
2534 buf->last_scanned = MAX_KEY;
2535 buf->keys = RB_ROOT;
2537 spin_lock_init(&buf->lock);
2538 array_allocator_init(&buf->freelist);