1 // SPDX-License-Identifier: GPL-2.0
3 * Main bcache entry point - handle a read or a write request and decide what to
4 * do with it; the make_request functions are called by the block layer.
6 * Copyright 2010, 2011 Kent Overstreet <kent.overstreet@gmail.com>
7 * Copyright 2012 Google, Inc.
14 #include "writeback.h"
16 #include <linux/module.h>
17 #include <linux/hash.h>
18 #include <linux/random.h>
19 #include <linux/backing-dev.h>
21 #include <trace/events/bcache.h>
23 #define CUTOFF_CACHE_ADD 95
24 #define CUTOFF_CACHE_READA 90
26 struct kmem_cache
*bch_search_cache
;
28 static void bch_data_insert_start(struct closure
*);
30 static unsigned cache_mode(struct cached_dev
*dc
)
32 return BDEV_CACHE_MODE(&dc
->sb
);
35 static bool verify(struct cached_dev
*dc
)
40 static void bio_csum(struct bio
*bio
, struct bkey
*k
)
43 struct bvec_iter iter
;
46 bio_for_each_segment(bv
, bio
, iter
) {
47 void *d
= kmap(bv
.bv_page
) + bv
.bv_offset
;
48 csum
= bch_crc64_update(csum
, d
, bv
.bv_len
);
52 k
->ptr
[KEY_PTRS(k
)] = csum
& (~0ULL >> 1);
55 /* Insert data into cache */
57 static void bch_data_insert_keys(struct closure
*cl
)
59 struct data_insert_op
*op
= container_of(cl
, struct data_insert_op
, cl
);
60 atomic_t
*journal_ref
= NULL
;
61 struct bkey
*replace_key
= op
->replace
? &op
->replace_key
: NULL
;
65 * If we're looping, might already be waiting on
66 * another journal write - can't wait on more than one journal write at
69 * XXX: this looks wrong
72 while (atomic_read(&s
->cl
.remaining
) & CLOSURE_WAITING
)
77 journal_ref
= bch_journal(op
->c
, &op
->insert_keys
,
78 op
->flush_journal
? cl
: NULL
);
80 ret
= bch_btree_insert(op
->c
, &op
->insert_keys
,
81 journal_ref
, replace_key
);
83 op
->replace_collision
= true;
85 op
->status
= BLK_STS_RESOURCE
;
86 op
->insert_data_done
= true;
90 atomic_dec_bug(journal_ref
);
92 if (!op
->insert_data_done
) {
93 continue_at(cl
, bch_data_insert_start
, op
->wq
);
97 bch_keylist_free(&op
->insert_keys
);
101 static int bch_keylist_realloc(struct keylist
*l
, unsigned u64s
,
104 size_t oldsize
= bch_keylist_nkeys(l
);
105 size_t newsize
= oldsize
+ u64s
;
108 * The journalling code doesn't handle the case where the keys to insert
109 * is bigger than an empty write: If we just return -ENOMEM here,
110 * bio_insert() and bio_invalidate() will insert the keys created so far
111 * and finish the rest when the keylist is empty.
113 if (newsize
* sizeof(uint64_t) > block_bytes(c
) - sizeof(struct jset
))
116 return __bch_keylist_realloc(l
, u64s
);
119 static void bch_data_invalidate(struct closure
*cl
)
121 struct data_insert_op
*op
= container_of(cl
, struct data_insert_op
, cl
);
122 struct bio
*bio
= op
->bio
;
124 pr_debug("invalidating %i sectors from %llu",
125 bio_sectors(bio
), (uint64_t) bio
->bi_iter
.bi_sector
);
127 while (bio_sectors(bio
)) {
128 unsigned sectors
= min(bio_sectors(bio
),
129 1U << (KEY_SIZE_BITS
- 1));
131 if (bch_keylist_realloc(&op
->insert_keys
, 2, op
->c
))
134 bio
->bi_iter
.bi_sector
+= sectors
;
135 bio
->bi_iter
.bi_size
-= sectors
<< 9;
137 bch_keylist_add(&op
->insert_keys
,
138 &KEY(op
->inode
, bio
->bi_iter
.bi_sector
, sectors
));
141 op
->insert_data_done
= true;
144 continue_at(cl
, bch_data_insert_keys
, op
->wq
);
147 static void bch_data_insert_error(struct closure
*cl
)
149 struct data_insert_op
*op
= container_of(cl
, struct data_insert_op
, cl
);
152 * Our data write just errored, which means we've got a bunch of keys to
153 * insert that point to data that wasn't succesfully written.
155 * We don't have to insert those keys but we still have to invalidate
156 * that region of the cache - so, if we just strip off all the pointers
157 * from the keys we'll accomplish just that.
160 struct bkey
*src
= op
->insert_keys
.keys
, *dst
= op
->insert_keys
.keys
;
162 while (src
!= op
->insert_keys
.top
) {
163 struct bkey
*n
= bkey_next(src
);
165 SET_KEY_PTRS(src
, 0);
166 memmove(dst
, src
, bkey_bytes(src
));
168 dst
= bkey_next(dst
);
172 op
->insert_keys
.top
= dst
;
174 bch_data_insert_keys(cl
);
177 static void bch_data_insert_endio(struct bio
*bio
)
179 struct closure
*cl
= bio
->bi_private
;
180 struct data_insert_op
*op
= container_of(cl
, struct data_insert_op
, cl
);
182 if (bio
->bi_status
) {
183 /* TODO: We could try to recover from this. */
185 op
->status
= bio
->bi_status
;
186 else if (!op
->replace
)
187 set_closure_fn(cl
, bch_data_insert_error
, op
->wq
);
189 set_closure_fn(cl
, NULL
, NULL
);
192 bch_bbio_endio(op
->c
, bio
, bio
->bi_status
, "writing data to cache");
195 static void bch_data_insert_start(struct closure
*cl
)
197 struct data_insert_op
*op
= container_of(cl
, struct data_insert_op
, cl
);
198 struct bio
*bio
= op
->bio
, *n
;
201 return bch_data_invalidate(cl
);
203 if (atomic_sub_return(bio_sectors(bio
), &op
->c
->sectors_to_gc
) < 0)
207 * Journal writes are marked REQ_PREFLUSH; if the original write was a
208 * flush, it'll wait on the journal write.
210 bio
->bi_opf
&= ~(REQ_PREFLUSH
|REQ_FUA
);
215 struct bio_set
*split
= op
->c
->bio_split
;
217 /* 1 for the device pointer and 1 for the chksum */
218 if (bch_keylist_realloc(&op
->insert_keys
,
219 3 + (op
->csum
? 1 : 0),
221 continue_at(cl
, bch_data_insert_keys
, op
->wq
);
225 k
= op
->insert_keys
.top
;
227 SET_KEY_INODE(k
, op
->inode
);
228 SET_KEY_OFFSET(k
, bio
->bi_iter
.bi_sector
);
230 if (!bch_alloc_sectors(op
->c
, k
, bio_sectors(bio
),
231 op
->write_point
, op
->write_prio
,
235 n
= bio_next_split(bio
, KEY_SIZE(k
), GFP_NOIO
, split
);
237 n
->bi_end_io
= bch_data_insert_endio
;
241 SET_KEY_DIRTY(k
, true);
243 for (i
= 0; i
< KEY_PTRS(k
); i
++)
244 SET_GC_MARK(PTR_BUCKET(op
->c
, k
, i
),
248 SET_KEY_CSUM(k
, op
->csum
);
252 trace_bcache_cache_insert(k
);
253 bch_keylist_push(&op
->insert_keys
);
255 bio_set_op_attrs(n
, REQ_OP_WRITE
, 0);
256 bch_submit_bbio(n
, op
->c
, k
, 0);
259 op
->insert_data_done
= true;
260 continue_at(cl
, bch_data_insert_keys
, op
->wq
);
263 /* bch_alloc_sectors() blocks if s->writeback = true */
264 BUG_ON(op
->writeback
);
267 * But if it's not a writeback write we'd rather just bail out if
268 * there aren't any buckets ready to write to - it might take awhile and
269 * we might be starving btree writes for gc or something.
274 * Writethrough write: We can't complete the write until we've
275 * updated the index. But we don't want to delay the write while
276 * we wait for buckets to be freed up, so just invalidate the
280 return bch_data_invalidate(cl
);
283 * From a cache miss, we can just insert the keys for the data
284 * we have written or bail out if we didn't do anything.
286 op
->insert_data_done
= true;
289 if (!bch_keylist_empty(&op
->insert_keys
))
290 continue_at(cl
, bch_data_insert_keys
, op
->wq
);
297 * bch_data_insert - stick some data in the cache
299 * This is the starting point for any data to end up in a cache device; it could
300 * be from a normal write, or a writeback write, or a write to a flash only
301 * volume - it's also used by the moving garbage collector to compact data in
302 * mostly empty buckets.
304 * It first writes the data to the cache, creating a list of keys to be inserted
305 * (if the data had to be fragmented there will be multiple keys); after the
306 * data is written it calls bch_journal, and after the keys have been added to
307 * the next journal write they're inserted into the btree.
309 * It inserts the data in s->cache_bio; bi_sector is used for the key offset,
310 * and op->inode is used for the key inode.
312 * If s->bypass is true, instead of inserting the data it invalidates the
313 * region of the cache represented by s->cache_bio and op->inode.
315 void bch_data_insert(struct closure
*cl
)
317 struct data_insert_op
*op
= container_of(cl
, struct data_insert_op
, cl
);
319 trace_bcache_write(op
->c
, op
->inode
, op
->bio
,
320 op
->writeback
, op
->bypass
);
322 bch_keylist_init(&op
->insert_keys
);
324 bch_data_insert_start(cl
);
329 unsigned bch_get_congested(struct cache_set
*c
)
334 if (!c
->congested_read_threshold_us
&&
335 !c
->congested_write_threshold_us
)
338 i
= (local_clock_us() - c
->congested_last_us
) / 1024;
342 i
+= atomic_read(&c
->congested
);
349 i
= fract_exp_two(i
, 6);
351 rand
= get_random_int();
352 i
-= bitmap_weight(&rand
, BITS_PER_LONG
);
354 return i
> 0 ? i
: 1;
357 static void add_sequential(struct task_struct
*t
)
359 ewma_add(t
->sequential_io_avg
,
360 t
->sequential_io
, 8, 0);
362 t
->sequential_io
= 0;
365 static struct hlist_head
*iohash(struct cached_dev
*dc
, uint64_t k
)
367 return &dc
->io_hash
[hash_64(k
, RECENT_IO_BITS
)];
370 static bool check_should_bypass(struct cached_dev
*dc
, struct bio
*bio
)
372 struct cache_set
*c
= dc
->disk
.c
;
373 unsigned mode
= cache_mode(dc
);
374 unsigned sectors
, congested
= bch_get_congested(c
);
375 struct task_struct
*task
= current
;
378 if (test_bit(BCACHE_DEV_DETACHING
, &dc
->disk
.flags
) ||
379 c
->gc_stats
.in_use
> CUTOFF_CACHE_ADD
||
380 (bio_op(bio
) == REQ_OP_DISCARD
))
383 if (mode
== CACHE_MODE_NONE
||
384 (mode
== CACHE_MODE_WRITEAROUND
&&
385 op_is_write(bio_op(bio
))))
389 * Flag for bypass if the IO is for read-ahead or background,
390 * unless the read-ahead request is for metadata (eg, for gfs2).
392 if (bio
->bi_opf
& (REQ_RAHEAD
|REQ_BACKGROUND
) &&
393 !(bio
->bi_opf
& REQ_META
))
396 if (bio
->bi_iter
.bi_sector
& (c
->sb
.block_size
- 1) ||
397 bio_sectors(bio
) & (c
->sb
.block_size
- 1)) {
398 pr_debug("skipping unaligned io");
402 if (bypass_torture_test(dc
)) {
403 if ((get_random_int() & 3) == 3)
409 if (!congested
&& !dc
->sequential_cutoff
)
412 spin_lock(&dc
->io_lock
);
414 hlist_for_each_entry(i
, iohash(dc
, bio
->bi_iter
.bi_sector
), hash
)
415 if (i
->last
== bio
->bi_iter
.bi_sector
&&
416 time_before(jiffies
, i
->jiffies
))
419 i
= list_first_entry(&dc
->io_lru
, struct io
, lru
);
421 add_sequential(task
);
424 if (i
->sequential
+ bio
->bi_iter
.bi_size
> i
->sequential
)
425 i
->sequential
+= bio
->bi_iter
.bi_size
;
427 i
->last
= bio_end_sector(bio
);
428 i
->jiffies
= jiffies
+ msecs_to_jiffies(5000);
429 task
->sequential_io
= i
->sequential
;
432 hlist_add_head(&i
->hash
, iohash(dc
, i
->last
));
433 list_move_tail(&i
->lru
, &dc
->io_lru
);
435 spin_unlock(&dc
->io_lock
);
437 sectors
= max(task
->sequential_io
,
438 task
->sequential_io_avg
) >> 9;
440 if (dc
->sequential_cutoff
&&
441 sectors
>= dc
->sequential_cutoff
>> 9) {
442 trace_bcache_bypass_sequential(bio
);
446 if (congested
&& sectors
>= congested
) {
447 trace_bcache_bypass_congested(bio
);
452 bch_rescale_priorities(c
, bio_sectors(bio
));
455 bch_mark_sectors_bypassed(c
, dc
, bio_sectors(bio
));
462 /* Stack frame for bio_complete */
466 struct bio
*orig_bio
;
467 struct bio
*cache_miss
;
468 struct bcache_device
*d
;
470 unsigned insert_bio_sectors
;
471 unsigned recoverable
:1;
473 unsigned read_dirty_data
:1;
474 unsigned cache_missed
:1;
476 unsigned long start_time
;
479 struct data_insert_op iop
;
482 static void bch_cache_read_endio(struct bio
*bio
)
484 struct bbio
*b
= container_of(bio
, struct bbio
, bio
);
485 struct closure
*cl
= bio
->bi_private
;
486 struct search
*s
= container_of(cl
, struct search
, cl
);
489 * If the bucket was reused while our bio was in flight, we might have
490 * read the wrong data. Set s->error but not error so it doesn't get
491 * counted against the cache device, but we'll still reread the data
492 * from the backing device.
496 s
->iop
.status
= bio
->bi_status
;
497 else if (!KEY_DIRTY(&b
->key
) &&
498 ptr_stale(s
->iop
.c
, &b
->key
, 0)) {
499 atomic_long_inc(&s
->iop
.c
->cache_read_races
);
500 s
->iop
.status
= BLK_STS_IOERR
;
503 bch_bbio_endio(s
->iop
.c
, bio
, bio
->bi_status
, "reading from cache");
507 * Read from a single key, handling the initial cache miss if the key starts in
508 * the middle of the bio
510 static int cache_lookup_fn(struct btree_op
*op
, struct btree
*b
, struct bkey
*k
)
512 struct search
*s
= container_of(op
, struct search
, op
);
513 struct bio
*n
, *bio
= &s
->bio
.bio
;
514 struct bkey
*bio_key
;
517 if (bkey_cmp(k
, &KEY(s
->iop
.inode
, bio
->bi_iter
.bi_sector
, 0)) <= 0)
520 if (KEY_INODE(k
) != s
->iop
.inode
||
521 KEY_START(k
) > bio
->bi_iter
.bi_sector
) {
522 unsigned bio_sectors
= bio_sectors(bio
);
523 unsigned sectors
= KEY_INODE(k
) == s
->iop
.inode
524 ? min_t(uint64_t, INT_MAX
,
525 KEY_START(k
) - bio
->bi_iter
.bi_sector
)
528 int ret
= s
->d
->cache_miss(b
, s
, bio
, sectors
);
529 if (ret
!= MAP_CONTINUE
)
532 /* if this was a complete miss we shouldn't get here */
533 BUG_ON(bio_sectors
<= sectors
);
539 /* XXX: figure out best pointer - for multiple cache devices */
542 PTR_BUCKET(b
->c
, k
, ptr
)->prio
= INITIAL_PRIO
;
545 s
->read_dirty_data
= true;
547 n
= bio_next_split(bio
, min_t(uint64_t, INT_MAX
,
548 KEY_OFFSET(k
) - bio
->bi_iter
.bi_sector
),
549 GFP_NOIO
, s
->d
->bio_split
);
551 bio_key
= &container_of(n
, struct bbio
, bio
)->key
;
552 bch_bkey_copy_single_ptr(bio_key
, k
, ptr
);
554 bch_cut_front(&KEY(s
->iop
.inode
, n
->bi_iter
.bi_sector
, 0), bio_key
);
555 bch_cut_back(&KEY(s
->iop
.inode
, bio_end_sector(n
), 0), bio_key
);
557 n
->bi_end_io
= bch_cache_read_endio
;
558 n
->bi_private
= &s
->cl
;
561 * The bucket we're reading from might be reused while our bio
562 * is in flight, and we could then end up reading the wrong
565 * We guard against this by checking (in cache_read_endio()) if
566 * the pointer is stale again; if so, we treat it as an error
567 * and reread from the backing device (but we don't pass that
568 * error up anywhere).
571 __bch_submit_bbio(n
, b
->c
);
572 return n
== bio
? MAP_DONE
: MAP_CONTINUE
;
575 static void cache_lookup(struct closure
*cl
)
577 struct search
*s
= container_of(cl
, struct search
, iop
.cl
);
578 struct bio
*bio
= &s
->bio
.bio
;
579 struct cached_dev
*dc
;
582 bch_btree_op_init(&s
->op
, -1);
584 ret
= bch_btree_map_keys(&s
->op
, s
->iop
.c
,
585 &KEY(s
->iop
.inode
, bio
->bi_iter
.bi_sector
, 0),
586 cache_lookup_fn
, MAP_END_KEY
);
587 if (ret
== -EAGAIN
) {
588 continue_at(cl
, cache_lookup
, bcache_wq
);
593 * We might meet err when searching the btree, If that happens, we will
594 * get negative ret, in this scenario we should not recover data from
595 * backing device (when cache device is dirty) because we don't know
596 * whether bkeys the read request covered are all clean.
598 * And after that happened, s->iop.status is still its initial value
599 * before we submit s->bio.bio
602 BUG_ON(ret
== -EINTR
);
603 if (s
->d
&& s
->d
->c
&&
604 !UUID_FLASH_ONLY(&s
->d
->c
->uuids
[s
->d
->id
])) {
605 dc
= container_of(s
->d
, struct cached_dev
, disk
);
606 if (dc
&& atomic_read(&dc
->has_dirty
))
607 s
->recoverable
= false;
610 s
->iop
.status
= BLK_STS_IOERR
;
616 /* Common code for the make_request functions */
618 static void request_endio(struct bio
*bio
)
620 struct closure
*cl
= bio
->bi_private
;
622 if (bio
->bi_status
) {
623 struct search
*s
= container_of(cl
, struct search
, cl
);
624 s
->iop
.status
= bio
->bi_status
;
625 /* Only cache read errors are recoverable */
626 s
->recoverable
= false;
633 static void bio_complete(struct search
*s
)
636 generic_end_io_acct(s
->d
->disk
->queue
,
637 bio_data_dir(s
->orig_bio
),
638 &s
->d
->disk
->part0
, s
->start_time
);
640 trace_bcache_request_end(s
->d
, s
->orig_bio
);
641 s
->orig_bio
->bi_status
= s
->iop
.status
;
642 bio_endio(s
->orig_bio
);
647 static void do_bio_hook(struct search
*s
, struct bio
*orig_bio
)
649 struct bio
*bio
= &s
->bio
.bio
;
651 bio_init(bio
, NULL
, 0);
652 __bio_clone_fast(bio
, orig_bio
);
653 bio
->bi_end_io
= request_endio
;
654 bio
->bi_private
= &s
->cl
;
659 static void search_free(struct closure
*cl
)
661 struct search
*s
= container_of(cl
, struct search
, cl
);
667 closure_debug_destroy(cl
);
668 mempool_free(s
, s
->d
->c
->search
);
671 static inline struct search
*search_alloc(struct bio
*bio
,
672 struct bcache_device
*d
)
676 s
= mempool_alloc(d
->c
->search
, GFP_NOIO
);
678 closure_init(&s
->cl
, NULL
);
682 s
->cache_miss
= NULL
;
686 s
->write
= op_is_write(bio_op(bio
));
687 s
->read_dirty_data
= 0;
688 s
->start_time
= jiffies
;
692 s
->iop
.inode
= d
->id
;
693 s
->iop
.write_point
= hash_long((unsigned long) current
, 16);
694 s
->iop
.write_prio
= 0;
697 s
->iop
.flush_journal
= op_is_flush(bio
->bi_opf
);
698 s
->iop
.wq
= bcache_wq
;
705 static void cached_dev_bio_complete(struct closure
*cl
)
707 struct search
*s
= container_of(cl
, struct search
, cl
);
708 struct cached_dev
*dc
= container_of(s
->d
, struct cached_dev
, disk
);
716 static void cached_dev_cache_miss_done(struct closure
*cl
)
718 struct search
*s
= container_of(cl
, struct search
, cl
);
720 if (s
->iop
.replace_collision
)
721 bch_mark_cache_miss_collision(s
->iop
.c
, s
->d
);
724 bio_free_pages(s
->iop
.bio
);
726 cached_dev_bio_complete(cl
);
729 static void cached_dev_read_error(struct closure
*cl
)
731 struct search
*s
= container_of(cl
, struct search
, cl
);
732 struct bio
*bio
= &s
->bio
.bio
;
735 * If read request hit dirty data (s->read_dirty_data is true),
736 * then recovery a failed read request from cached device may
737 * get a stale data back. So read failure recovery is only
738 * permitted when read request hit clean data in cache device,
739 * or when cache read race happened.
741 if (s
->recoverable
&& !s
->read_dirty_data
) {
742 /* Retry from the backing device: */
743 trace_bcache_read_retry(s
->orig_bio
);
746 do_bio_hook(s
, s
->orig_bio
);
748 /* XXX: invalidate cache */
750 closure_bio_submit(bio
, cl
);
753 continue_at(cl
, cached_dev_cache_miss_done
, NULL
);
756 static void cached_dev_read_done(struct closure
*cl
)
758 struct search
*s
= container_of(cl
, struct search
, cl
);
759 struct cached_dev
*dc
= container_of(s
->d
, struct cached_dev
, disk
);
762 * We had a cache miss; cache_bio now contains data ready to be inserted
765 * First, we copy the data we just read from cache_bio's bounce buffers
766 * to the buffers the original bio pointed to:
770 bio_reset(s
->iop
.bio
);
771 s
->iop
.bio
->bi_iter
.bi_sector
= s
->cache_miss
->bi_iter
.bi_sector
;
772 bio_copy_dev(s
->iop
.bio
, s
->cache_miss
);
773 s
->iop
.bio
->bi_iter
.bi_size
= s
->insert_bio_sectors
<< 9;
774 bch_bio_map(s
->iop
.bio
, NULL
);
776 bio_copy_data(s
->cache_miss
, s
->iop
.bio
);
778 bio_put(s
->cache_miss
);
779 s
->cache_miss
= NULL
;
782 if (verify(dc
) && s
->recoverable
&& !s
->read_dirty_data
)
783 bch_data_verify(dc
, s
->orig_bio
);
788 !test_bit(CACHE_SET_STOPPING
, &s
->iop
.c
->flags
)) {
789 BUG_ON(!s
->iop
.replace
);
790 closure_call(&s
->iop
.cl
, bch_data_insert
, NULL
, cl
);
793 continue_at(cl
, cached_dev_cache_miss_done
, NULL
);
796 static void cached_dev_read_done_bh(struct closure
*cl
)
798 struct search
*s
= container_of(cl
, struct search
, cl
);
799 struct cached_dev
*dc
= container_of(s
->d
, struct cached_dev
, disk
);
801 bch_mark_cache_accounting(s
->iop
.c
, s
->d
,
802 !s
->cache_missed
, s
->iop
.bypass
);
803 trace_bcache_read(s
->orig_bio
, !s
->cache_miss
, s
->iop
.bypass
);
806 continue_at_nobarrier(cl
, cached_dev_read_error
, bcache_wq
);
807 else if (s
->iop
.bio
|| verify(dc
))
808 continue_at_nobarrier(cl
, cached_dev_read_done
, bcache_wq
);
810 continue_at_nobarrier(cl
, cached_dev_bio_complete
, NULL
);
813 static int cached_dev_cache_miss(struct btree
*b
, struct search
*s
,
814 struct bio
*bio
, unsigned sectors
)
816 int ret
= MAP_CONTINUE
;
818 struct cached_dev
*dc
= container_of(s
->d
, struct cached_dev
, disk
);
819 struct bio
*miss
, *cache_bio
;
823 if (s
->cache_miss
|| s
->iop
.bypass
) {
824 miss
= bio_next_split(bio
, sectors
, GFP_NOIO
, s
->d
->bio_split
);
825 ret
= miss
== bio
? MAP_DONE
: MAP_CONTINUE
;
829 if (!(bio
->bi_opf
& REQ_RAHEAD
) &&
830 !(bio
->bi_opf
& REQ_META
) &&
831 s
->iop
.c
->gc_stats
.in_use
< CUTOFF_CACHE_READA
)
832 reada
= min_t(sector_t
, dc
->readahead
>> 9,
833 get_capacity(bio
->bi_disk
) - bio_end_sector(bio
));
835 s
->insert_bio_sectors
= min(sectors
, bio_sectors(bio
) + reada
);
837 s
->iop
.replace_key
= KEY(s
->iop
.inode
,
838 bio
->bi_iter
.bi_sector
+ s
->insert_bio_sectors
,
839 s
->insert_bio_sectors
);
841 ret
= bch_btree_insert_check_key(b
, &s
->op
, &s
->iop
.replace_key
);
845 s
->iop
.replace
= true;
847 miss
= bio_next_split(bio
, sectors
, GFP_NOIO
, s
->d
->bio_split
);
849 /* btree_search_recurse()'s btree iterator is no good anymore */
850 ret
= miss
== bio
? MAP_DONE
: -EINTR
;
852 cache_bio
= bio_alloc_bioset(GFP_NOWAIT
,
853 DIV_ROUND_UP(s
->insert_bio_sectors
, PAGE_SECTORS
),
858 cache_bio
->bi_iter
.bi_sector
= miss
->bi_iter
.bi_sector
;
859 bio_copy_dev(cache_bio
, miss
);
860 cache_bio
->bi_iter
.bi_size
= s
->insert_bio_sectors
<< 9;
862 cache_bio
->bi_end_io
= request_endio
;
863 cache_bio
->bi_private
= &s
->cl
;
865 bch_bio_map(cache_bio
, NULL
);
866 if (bch_bio_alloc_pages(cache_bio
, __GFP_NOWARN
|GFP_NOIO
))
870 bch_mark_cache_readahead(s
->iop
.c
, s
->d
);
872 s
->cache_miss
= miss
;
873 s
->iop
.bio
= cache_bio
;
875 closure_bio_submit(cache_bio
, &s
->cl
);
881 miss
->bi_end_io
= request_endio
;
882 miss
->bi_private
= &s
->cl
;
883 closure_bio_submit(miss
, &s
->cl
);
887 static void cached_dev_read(struct cached_dev
*dc
, struct search
*s
)
889 struct closure
*cl
= &s
->cl
;
891 closure_call(&s
->iop
.cl
, cache_lookup
, NULL
, cl
);
892 continue_at(cl
, cached_dev_read_done_bh
, NULL
);
897 static void cached_dev_write_complete(struct closure
*cl
)
899 struct search
*s
= container_of(cl
, struct search
, cl
);
900 struct cached_dev
*dc
= container_of(s
->d
, struct cached_dev
, disk
);
902 up_read_non_owner(&dc
->writeback_lock
);
903 cached_dev_bio_complete(cl
);
906 static void cached_dev_write(struct cached_dev
*dc
, struct search
*s
)
908 struct closure
*cl
= &s
->cl
;
909 struct bio
*bio
= &s
->bio
.bio
;
910 struct bkey start
= KEY(dc
->disk
.id
, bio
->bi_iter
.bi_sector
, 0);
911 struct bkey end
= KEY(dc
->disk
.id
, bio_end_sector(bio
), 0);
913 bch_keybuf_check_overlapping(&s
->iop
.c
->moving_gc_keys
, &start
, &end
);
915 down_read_non_owner(&dc
->writeback_lock
);
916 if (bch_keybuf_check_overlapping(&dc
->writeback_keys
, &start
, &end
)) {
918 * We overlap with some dirty data undergoing background
919 * writeback, force this write to writeback
921 s
->iop
.bypass
= false;
922 s
->iop
.writeback
= true;
926 * Discards aren't _required_ to do anything, so skipping if
927 * check_overlapping returned true is ok
929 * But check_overlapping drops dirty keys for which io hasn't started,
930 * so we still want to call it.
932 if (bio_op(bio
) == REQ_OP_DISCARD
)
933 s
->iop
.bypass
= true;
935 if (should_writeback(dc
, s
->orig_bio
,
938 s
->iop
.bypass
= false;
939 s
->iop
.writeback
= true;
943 s
->iop
.bio
= s
->orig_bio
;
946 if ((bio_op(bio
) != REQ_OP_DISCARD
) ||
947 blk_queue_discard(bdev_get_queue(dc
->bdev
)))
948 closure_bio_submit(bio
, cl
);
949 } else if (s
->iop
.writeback
) {
950 bch_writeback_add(dc
);
953 if (bio
->bi_opf
& REQ_PREFLUSH
) {
954 /* Also need to send a flush to the backing device */
955 struct bio
*flush
= bio_alloc_bioset(GFP_NOIO
, 0,
958 bio_copy_dev(flush
, bio
);
959 flush
->bi_end_io
= request_endio
;
960 flush
->bi_private
= cl
;
961 flush
->bi_opf
= REQ_OP_WRITE
| REQ_PREFLUSH
;
963 closure_bio_submit(flush
, cl
);
966 s
->iop
.bio
= bio_clone_fast(bio
, GFP_NOIO
, dc
->disk
.bio_split
);
968 closure_bio_submit(bio
, cl
);
971 closure_call(&s
->iop
.cl
, bch_data_insert
, NULL
, cl
);
972 continue_at(cl
, cached_dev_write_complete
, NULL
);
975 static void cached_dev_nodata(struct closure
*cl
)
977 struct search
*s
= container_of(cl
, struct search
, cl
);
978 struct bio
*bio
= &s
->bio
.bio
;
980 if (s
->iop
.flush_journal
)
981 bch_journal_meta(s
->iop
.c
, cl
);
983 /* If it's a flush, we send the flush to the backing device too */
984 closure_bio_submit(bio
, cl
);
986 continue_at(cl
, cached_dev_bio_complete
, NULL
);
989 /* Cached devices - read & write stuff */
991 static blk_qc_t
cached_dev_make_request(struct request_queue
*q
,
995 struct bcache_device
*d
= bio
->bi_disk
->private_data
;
996 struct cached_dev
*dc
= container_of(d
, struct cached_dev
, disk
);
997 int rw
= bio_data_dir(bio
);
999 atomic_set(&dc
->backing_idle
, 0);
1000 generic_start_io_acct(q
, rw
, bio_sectors(bio
), &d
->disk
->part0
);
1002 bio_set_dev(bio
, dc
->bdev
);
1003 bio
->bi_iter
.bi_sector
+= dc
->sb
.data_offset
;
1005 if (cached_dev_get(dc
)) {
1006 s
= search_alloc(bio
, d
);
1007 trace_bcache_request_start(s
->d
, bio
);
1009 if (!bio
->bi_iter
.bi_size
) {
1011 * can't call bch_journal_meta from under
1012 * generic_make_request
1014 continue_at_nobarrier(&s
->cl
,
1018 s
->iop
.bypass
= check_should_bypass(dc
, bio
);
1021 cached_dev_write(dc
, s
);
1023 cached_dev_read(dc
, s
);
1026 if ((bio_op(bio
) == REQ_OP_DISCARD
) &&
1027 !blk_queue_discard(bdev_get_queue(dc
->bdev
)))
1030 generic_make_request(bio
);
1033 return BLK_QC_T_NONE
;
1036 static int cached_dev_ioctl(struct bcache_device
*d
, fmode_t mode
,
1037 unsigned int cmd
, unsigned long arg
)
1039 struct cached_dev
*dc
= container_of(d
, struct cached_dev
, disk
);
1040 return __blkdev_driver_ioctl(dc
->bdev
, mode
, cmd
, arg
);
1043 static int cached_dev_congested(void *data
, int bits
)
1045 struct bcache_device
*d
= data
;
1046 struct cached_dev
*dc
= container_of(d
, struct cached_dev
, disk
);
1047 struct request_queue
*q
= bdev_get_queue(dc
->bdev
);
1050 if (bdi_congested(q
->backing_dev_info
, bits
))
1053 if (cached_dev_get(dc
)) {
1057 for_each_cache(ca
, d
->c
, i
) {
1058 q
= bdev_get_queue(ca
->bdev
);
1059 ret
|= bdi_congested(q
->backing_dev_info
, bits
);
1068 void bch_cached_dev_request_init(struct cached_dev
*dc
)
1070 struct gendisk
*g
= dc
->disk
.disk
;
1072 g
->queue
->make_request_fn
= cached_dev_make_request
;
1073 g
->queue
->backing_dev_info
->congested_fn
= cached_dev_congested
;
1074 dc
->disk
.cache_miss
= cached_dev_cache_miss
;
1075 dc
->disk
.ioctl
= cached_dev_ioctl
;
1078 /* Flash backed devices */
1080 static int flash_dev_cache_miss(struct btree
*b
, struct search
*s
,
1081 struct bio
*bio
, unsigned sectors
)
1083 unsigned bytes
= min(sectors
, bio_sectors(bio
)) << 9;
1085 swap(bio
->bi_iter
.bi_size
, bytes
);
1087 swap(bio
->bi_iter
.bi_size
, bytes
);
1089 bio_advance(bio
, bytes
);
1091 if (!bio
->bi_iter
.bi_size
)
1094 return MAP_CONTINUE
;
1097 static void flash_dev_nodata(struct closure
*cl
)
1099 struct search
*s
= container_of(cl
, struct search
, cl
);
1101 if (s
->iop
.flush_journal
)
1102 bch_journal_meta(s
->iop
.c
, cl
);
1104 continue_at(cl
, search_free
, NULL
);
1107 static blk_qc_t
flash_dev_make_request(struct request_queue
*q
,
1112 struct bcache_device
*d
= bio
->bi_disk
->private_data
;
1113 int rw
= bio_data_dir(bio
);
1115 generic_start_io_acct(q
, rw
, bio_sectors(bio
), &d
->disk
->part0
);
1117 s
= search_alloc(bio
, d
);
1121 trace_bcache_request_start(s
->d
, bio
);
1123 if (!bio
->bi_iter
.bi_size
) {
1125 * can't call bch_journal_meta from under
1126 * generic_make_request
1128 continue_at_nobarrier(&s
->cl
,
1131 return BLK_QC_T_NONE
;
1133 bch_keybuf_check_overlapping(&s
->iop
.c
->moving_gc_keys
,
1134 &KEY(d
->id
, bio
->bi_iter
.bi_sector
, 0),
1135 &KEY(d
->id
, bio_end_sector(bio
), 0));
1137 s
->iop
.bypass
= (bio_op(bio
) == REQ_OP_DISCARD
) != 0;
1138 s
->iop
.writeback
= true;
1141 closure_call(&s
->iop
.cl
, bch_data_insert
, NULL
, cl
);
1143 closure_call(&s
->iop
.cl
, cache_lookup
, NULL
, cl
);
1146 continue_at(cl
, search_free
, NULL
);
1147 return BLK_QC_T_NONE
;
1150 static int flash_dev_ioctl(struct bcache_device
*d
, fmode_t mode
,
1151 unsigned int cmd
, unsigned long arg
)
1156 static int flash_dev_congested(void *data
, int bits
)
1158 struct bcache_device
*d
= data
;
1159 struct request_queue
*q
;
1164 for_each_cache(ca
, d
->c
, i
) {
1165 q
= bdev_get_queue(ca
->bdev
);
1166 ret
|= bdi_congested(q
->backing_dev_info
, bits
);
1172 void bch_flash_dev_request_init(struct bcache_device
*d
)
1174 struct gendisk
*g
= d
->disk
;
1176 g
->queue
->make_request_fn
= flash_dev_make_request
;
1177 g
->queue
->backing_dev_info
->congested_fn
= flash_dev_congested
;
1178 d
->cache_miss
= flash_dev_cache_miss
;
1179 d
->ioctl
= flash_dev_ioctl
;
1182 void bch_request_exit(void)
1184 if (bch_search_cache
)
1185 kmem_cache_destroy(bch_search_cache
);
1188 int __init
bch_request_init(void)
1190 bch_search_cache
= KMEM_CACHE(search
, 0);
1191 if (!bch_search_cache
)