Linux 4.16.11
[linux/fpc-iii.git] / drivers / md / dm.c
blob038c7572fdd46e186b572c5edb3bc1266408f4fa
1 /*
2 * Copyright (C) 2001, 2002 Sistina Software (UK) Limited.
3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
5 * This file is released under the GPL.
6 */
8 #include "dm-core.h"
9 #include "dm-rq.h"
10 #include "dm-uevent.h"
12 #include <linux/init.h>
13 #include <linux/module.h>
14 #include <linux/mutex.h>
15 #include <linux/sched/signal.h>
16 #include <linux/blkpg.h>
17 #include <linux/bio.h>
18 #include <linux/mempool.h>
19 #include <linux/dax.h>
20 #include <linux/slab.h>
21 #include <linux/idr.h>
22 #include <linux/uio.h>
23 #include <linux/hdreg.h>
24 #include <linux/delay.h>
25 #include <linux/wait.h>
26 #include <linux/pr.h>
27 #include <linux/refcount.h>
29 #define DM_MSG_PREFIX "core"
32 * Cookies are numeric values sent with CHANGE and REMOVE
33 * uevents while resuming, removing or renaming the device.
35 #define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE"
36 #define DM_COOKIE_LENGTH 24
38 static const char *_name = DM_NAME;
40 static unsigned int major = 0;
41 static unsigned int _major = 0;
43 static DEFINE_IDR(_minor_idr);
45 static DEFINE_SPINLOCK(_minor_lock);
47 static void do_deferred_remove(struct work_struct *w);
49 static DECLARE_WORK(deferred_remove_work, do_deferred_remove);
51 static struct workqueue_struct *deferred_remove_workqueue;
53 atomic_t dm_global_event_nr = ATOMIC_INIT(0);
54 DECLARE_WAIT_QUEUE_HEAD(dm_global_eventq);
56 void dm_issue_global_event(void)
58 atomic_inc(&dm_global_event_nr);
59 wake_up(&dm_global_eventq);
63 * One of these is allocated (on-stack) per original bio.
65 struct clone_info {
66 struct dm_table *map;
67 struct bio *bio;
68 struct dm_io *io;
69 sector_t sector;
70 unsigned sector_count;
74 * One of these is allocated per clone bio.
76 #define DM_TIO_MAGIC 7282014
77 struct dm_target_io {
78 unsigned magic;
79 struct dm_io *io;
80 struct dm_target *ti;
81 unsigned target_bio_nr;
82 unsigned *len_ptr;
83 bool inside_dm_io;
84 struct bio clone;
88 * One of these is allocated per original bio.
89 * It contains the first clone used for that original.
91 #define DM_IO_MAGIC 5191977
92 struct dm_io {
93 unsigned magic;
94 struct mapped_device *md;
95 blk_status_t status;
96 atomic_t io_count;
97 struct bio *orig_bio;
98 unsigned long start_time;
99 spinlock_t endio_lock;
100 struct dm_stats_aux stats_aux;
101 /* last member of dm_target_io is 'struct bio' */
102 struct dm_target_io tio;
105 void *dm_per_bio_data(struct bio *bio, size_t data_size)
107 struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
108 if (!tio->inside_dm_io)
109 return (char *)bio - offsetof(struct dm_target_io, clone) - data_size;
110 return (char *)bio - offsetof(struct dm_target_io, clone) - offsetof(struct dm_io, tio) - data_size;
112 EXPORT_SYMBOL_GPL(dm_per_bio_data);
114 struct bio *dm_bio_from_per_bio_data(void *data, size_t data_size)
116 struct dm_io *io = (struct dm_io *)((char *)data + data_size);
117 if (io->magic == DM_IO_MAGIC)
118 return (struct bio *)((char *)io + offsetof(struct dm_io, tio) + offsetof(struct dm_target_io, clone));
119 BUG_ON(io->magic != DM_TIO_MAGIC);
120 return (struct bio *)((char *)io + offsetof(struct dm_target_io, clone));
122 EXPORT_SYMBOL_GPL(dm_bio_from_per_bio_data);
124 unsigned dm_bio_get_target_bio_nr(const struct bio *bio)
126 return container_of(bio, struct dm_target_io, clone)->target_bio_nr;
128 EXPORT_SYMBOL_GPL(dm_bio_get_target_bio_nr);
130 #define MINOR_ALLOCED ((void *)-1)
133 * Bits for the md->flags field.
135 #define DMF_BLOCK_IO_FOR_SUSPEND 0
136 #define DMF_SUSPENDED 1
137 #define DMF_FROZEN 2
138 #define DMF_FREEING 3
139 #define DMF_DELETING 4
140 #define DMF_NOFLUSH_SUSPENDING 5
141 #define DMF_DEFERRED_REMOVE 6
142 #define DMF_SUSPENDED_INTERNALLY 7
144 #define DM_NUMA_NODE NUMA_NO_NODE
145 static int dm_numa_node = DM_NUMA_NODE;
148 * For mempools pre-allocation at the table loading time.
150 struct dm_md_mempools {
151 struct bio_set *bs;
152 struct bio_set *io_bs;
155 struct table_device {
156 struct list_head list;
157 refcount_t count;
158 struct dm_dev dm_dev;
161 static struct kmem_cache *_rq_tio_cache;
162 static struct kmem_cache *_rq_cache;
165 * Bio-based DM's mempools' reserved IOs set by the user.
167 #define RESERVED_BIO_BASED_IOS 16
168 static unsigned reserved_bio_based_ios = RESERVED_BIO_BASED_IOS;
170 static int __dm_get_module_param_int(int *module_param, int min, int max)
172 int param = READ_ONCE(*module_param);
173 int modified_param = 0;
174 bool modified = true;
176 if (param < min)
177 modified_param = min;
178 else if (param > max)
179 modified_param = max;
180 else
181 modified = false;
183 if (modified) {
184 (void)cmpxchg(module_param, param, modified_param);
185 param = modified_param;
188 return param;
191 unsigned __dm_get_module_param(unsigned *module_param,
192 unsigned def, unsigned max)
194 unsigned param = READ_ONCE(*module_param);
195 unsigned modified_param = 0;
197 if (!param)
198 modified_param = def;
199 else if (param > max)
200 modified_param = max;
202 if (modified_param) {
203 (void)cmpxchg(module_param, param, modified_param);
204 param = modified_param;
207 return param;
210 unsigned dm_get_reserved_bio_based_ios(void)
212 return __dm_get_module_param(&reserved_bio_based_ios,
213 RESERVED_BIO_BASED_IOS, DM_RESERVED_MAX_IOS);
215 EXPORT_SYMBOL_GPL(dm_get_reserved_bio_based_ios);
217 static unsigned dm_get_numa_node(void)
219 return __dm_get_module_param_int(&dm_numa_node,
220 DM_NUMA_NODE, num_online_nodes() - 1);
223 static int __init local_init(void)
225 int r = -ENOMEM;
227 _rq_tio_cache = KMEM_CACHE(dm_rq_target_io, 0);
228 if (!_rq_tio_cache)
229 return r;
231 _rq_cache = kmem_cache_create("dm_old_clone_request", sizeof(struct request),
232 __alignof__(struct request), 0, NULL);
233 if (!_rq_cache)
234 goto out_free_rq_tio_cache;
236 r = dm_uevent_init();
237 if (r)
238 goto out_free_rq_cache;
240 deferred_remove_workqueue = alloc_workqueue("kdmremove", WQ_UNBOUND, 1);
241 if (!deferred_remove_workqueue) {
242 r = -ENOMEM;
243 goto out_uevent_exit;
246 _major = major;
247 r = register_blkdev(_major, _name);
248 if (r < 0)
249 goto out_free_workqueue;
251 if (!_major)
252 _major = r;
254 return 0;
256 out_free_workqueue:
257 destroy_workqueue(deferred_remove_workqueue);
258 out_uevent_exit:
259 dm_uevent_exit();
260 out_free_rq_cache:
261 kmem_cache_destroy(_rq_cache);
262 out_free_rq_tio_cache:
263 kmem_cache_destroy(_rq_tio_cache);
265 return r;
268 static void local_exit(void)
270 flush_scheduled_work();
271 destroy_workqueue(deferred_remove_workqueue);
273 kmem_cache_destroy(_rq_cache);
274 kmem_cache_destroy(_rq_tio_cache);
275 unregister_blkdev(_major, _name);
276 dm_uevent_exit();
278 _major = 0;
280 DMINFO("cleaned up");
283 static int (*_inits[])(void) __initdata = {
284 local_init,
285 dm_target_init,
286 dm_linear_init,
287 dm_stripe_init,
288 dm_io_init,
289 dm_kcopyd_init,
290 dm_interface_init,
291 dm_statistics_init,
294 static void (*_exits[])(void) = {
295 local_exit,
296 dm_target_exit,
297 dm_linear_exit,
298 dm_stripe_exit,
299 dm_io_exit,
300 dm_kcopyd_exit,
301 dm_interface_exit,
302 dm_statistics_exit,
305 static int __init dm_init(void)
307 const int count = ARRAY_SIZE(_inits);
309 int r, i;
311 for (i = 0; i < count; i++) {
312 r = _inits[i]();
313 if (r)
314 goto bad;
317 return 0;
319 bad:
320 while (i--)
321 _exits[i]();
323 return r;
326 static void __exit dm_exit(void)
328 int i = ARRAY_SIZE(_exits);
330 while (i--)
331 _exits[i]();
334 * Should be empty by this point.
336 idr_destroy(&_minor_idr);
340 * Block device functions
342 int dm_deleting_md(struct mapped_device *md)
344 return test_bit(DMF_DELETING, &md->flags);
347 static int dm_blk_open(struct block_device *bdev, fmode_t mode)
349 struct mapped_device *md;
351 spin_lock(&_minor_lock);
353 md = bdev->bd_disk->private_data;
354 if (!md)
355 goto out;
357 if (test_bit(DMF_FREEING, &md->flags) ||
358 dm_deleting_md(md)) {
359 md = NULL;
360 goto out;
363 dm_get(md);
364 atomic_inc(&md->open_count);
365 out:
366 spin_unlock(&_minor_lock);
368 return md ? 0 : -ENXIO;
371 static void dm_blk_close(struct gendisk *disk, fmode_t mode)
373 struct mapped_device *md;
375 spin_lock(&_minor_lock);
377 md = disk->private_data;
378 if (WARN_ON(!md))
379 goto out;
381 if (atomic_dec_and_test(&md->open_count) &&
382 (test_bit(DMF_DEFERRED_REMOVE, &md->flags)))
383 queue_work(deferred_remove_workqueue, &deferred_remove_work);
385 dm_put(md);
386 out:
387 spin_unlock(&_minor_lock);
390 int dm_open_count(struct mapped_device *md)
392 return atomic_read(&md->open_count);
396 * Guarantees nothing is using the device before it's deleted.
398 int dm_lock_for_deletion(struct mapped_device *md, bool mark_deferred, bool only_deferred)
400 int r = 0;
402 spin_lock(&_minor_lock);
404 if (dm_open_count(md)) {
405 r = -EBUSY;
406 if (mark_deferred)
407 set_bit(DMF_DEFERRED_REMOVE, &md->flags);
408 } else if (only_deferred && !test_bit(DMF_DEFERRED_REMOVE, &md->flags))
409 r = -EEXIST;
410 else
411 set_bit(DMF_DELETING, &md->flags);
413 spin_unlock(&_minor_lock);
415 return r;
418 int dm_cancel_deferred_remove(struct mapped_device *md)
420 int r = 0;
422 spin_lock(&_minor_lock);
424 if (test_bit(DMF_DELETING, &md->flags))
425 r = -EBUSY;
426 else
427 clear_bit(DMF_DEFERRED_REMOVE, &md->flags);
429 spin_unlock(&_minor_lock);
431 return r;
434 static void do_deferred_remove(struct work_struct *w)
436 dm_deferred_remove();
439 sector_t dm_get_size(struct mapped_device *md)
441 return get_capacity(md->disk);
444 struct request_queue *dm_get_md_queue(struct mapped_device *md)
446 return md->queue;
449 struct dm_stats *dm_get_stats(struct mapped_device *md)
451 return &md->stats;
454 static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
456 struct mapped_device *md = bdev->bd_disk->private_data;
458 return dm_get_geometry(md, geo);
461 static char *_dm_claim_ptr = "I belong to device-mapper";
463 static int dm_get_bdev_for_ioctl(struct mapped_device *md,
464 struct block_device **bdev,
465 fmode_t *mode)
467 struct dm_target *tgt;
468 struct dm_table *map;
469 int srcu_idx, r, r2;
471 retry:
472 r = -ENOTTY;
473 map = dm_get_live_table(md, &srcu_idx);
474 if (!map || !dm_table_get_size(map))
475 goto out;
477 /* We only support devices that have a single target */
478 if (dm_table_get_num_targets(map) != 1)
479 goto out;
481 tgt = dm_table_get_target(map, 0);
482 if (!tgt->type->prepare_ioctl)
483 goto out;
485 if (dm_suspended_md(md)) {
486 r = -EAGAIN;
487 goto out;
490 r = tgt->type->prepare_ioctl(tgt, bdev, mode);
491 if (r < 0)
492 goto out;
494 bdgrab(*bdev);
495 r2 = blkdev_get(*bdev, *mode, _dm_claim_ptr);
496 if (r2 < 0) {
497 r = r2;
498 goto out;
501 dm_put_live_table(md, srcu_idx);
502 return r;
504 out:
505 dm_put_live_table(md, srcu_idx);
506 if (r == -ENOTCONN && !fatal_signal_pending(current)) {
507 msleep(10);
508 goto retry;
510 return r;
513 static int dm_blk_ioctl(struct block_device *bdev, fmode_t mode,
514 unsigned int cmd, unsigned long arg)
516 struct mapped_device *md = bdev->bd_disk->private_data;
517 int r;
519 r = dm_get_bdev_for_ioctl(md, &bdev, &mode);
520 if (r < 0)
521 return r;
523 if (r > 0) {
525 * Target determined this ioctl is being issued against a
526 * subset of the parent bdev; require extra privileges.
528 if (!capable(CAP_SYS_RAWIO)) {
529 DMWARN_LIMIT(
530 "%s: sending ioctl %x to DM device without required privilege.",
531 current->comm, cmd);
532 r = -ENOIOCTLCMD;
533 goto out;
537 r = __blkdev_driver_ioctl(bdev, mode, cmd, arg);
538 out:
539 blkdev_put(bdev, mode);
540 return r;
543 static void start_io_acct(struct dm_io *io);
545 static struct dm_io *alloc_io(struct mapped_device *md, struct bio *bio)
547 struct dm_io *io;
548 struct dm_target_io *tio;
549 struct bio *clone;
551 clone = bio_alloc_bioset(GFP_NOIO, 0, md->io_bs);
552 if (!clone)
553 return NULL;
555 tio = container_of(clone, struct dm_target_io, clone);
556 tio->inside_dm_io = true;
557 tio->io = NULL;
559 io = container_of(tio, struct dm_io, tio);
560 io->magic = DM_IO_MAGIC;
561 io->status = 0;
562 atomic_set(&io->io_count, 1);
563 io->orig_bio = bio;
564 io->md = md;
565 spin_lock_init(&io->endio_lock);
567 start_io_acct(io);
569 return io;
572 static void free_io(struct mapped_device *md, struct dm_io *io)
574 bio_put(&io->tio.clone);
577 static struct dm_target_io *alloc_tio(struct clone_info *ci, struct dm_target *ti,
578 unsigned target_bio_nr, gfp_t gfp_mask)
580 struct dm_target_io *tio;
582 if (!ci->io->tio.io) {
583 /* the dm_target_io embedded in ci->io is available */
584 tio = &ci->io->tio;
585 } else {
586 struct bio *clone = bio_alloc_bioset(gfp_mask, 0, ci->io->md->bs);
587 if (!clone)
588 return NULL;
590 tio = container_of(clone, struct dm_target_io, clone);
591 tio->inside_dm_io = false;
594 tio->magic = DM_TIO_MAGIC;
595 tio->io = ci->io;
596 tio->ti = ti;
597 tio->target_bio_nr = target_bio_nr;
599 return tio;
602 static void free_tio(struct dm_target_io *tio)
604 if (tio->inside_dm_io)
605 return;
606 bio_put(&tio->clone);
609 int md_in_flight(struct mapped_device *md)
611 return atomic_read(&md->pending[READ]) +
612 atomic_read(&md->pending[WRITE]);
615 static void start_io_acct(struct dm_io *io)
617 struct mapped_device *md = io->md;
618 struct bio *bio = io->orig_bio;
619 int rw = bio_data_dir(bio);
621 io->start_time = jiffies;
623 generic_start_io_acct(md->queue, rw, bio_sectors(bio), &dm_disk(md)->part0);
625 atomic_set(&dm_disk(md)->part0.in_flight[rw],
626 atomic_inc_return(&md->pending[rw]));
628 if (unlikely(dm_stats_used(&md->stats)))
629 dm_stats_account_io(&md->stats, bio_data_dir(bio),
630 bio->bi_iter.bi_sector, bio_sectors(bio),
631 false, 0, &io->stats_aux);
634 static void end_io_acct(struct dm_io *io)
636 struct mapped_device *md = io->md;
637 struct bio *bio = io->orig_bio;
638 unsigned long duration = jiffies - io->start_time;
639 int pending;
640 int rw = bio_data_dir(bio);
642 generic_end_io_acct(md->queue, rw, &dm_disk(md)->part0, io->start_time);
644 if (unlikely(dm_stats_used(&md->stats)))
645 dm_stats_account_io(&md->stats, bio_data_dir(bio),
646 bio->bi_iter.bi_sector, bio_sectors(bio),
647 true, duration, &io->stats_aux);
650 * After this is decremented the bio must not be touched if it is
651 * a flush.
653 pending = atomic_dec_return(&md->pending[rw]);
654 atomic_set(&dm_disk(md)->part0.in_flight[rw], pending);
655 pending += atomic_read(&md->pending[rw^0x1]);
657 /* nudge anyone waiting on suspend queue */
658 if (!pending)
659 wake_up(&md->wait);
663 * Add the bio to the list of deferred io.
665 static void queue_io(struct mapped_device *md, struct bio *bio)
667 unsigned long flags;
669 spin_lock_irqsave(&md->deferred_lock, flags);
670 bio_list_add(&md->deferred, bio);
671 spin_unlock_irqrestore(&md->deferred_lock, flags);
672 queue_work(md->wq, &md->work);
676 * Everyone (including functions in this file), should use this
677 * function to access the md->map field, and make sure they call
678 * dm_put_live_table() when finished.
680 struct dm_table *dm_get_live_table(struct mapped_device *md, int *srcu_idx) __acquires(md->io_barrier)
682 *srcu_idx = srcu_read_lock(&md->io_barrier);
684 return srcu_dereference(md->map, &md->io_barrier);
687 void dm_put_live_table(struct mapped_device *md, int srcu_idx) __releases(md->io_barrier)
689 srcu_read_unlock(&md->io_barrier, srcu_idx);
692 void dm_sync_table(struct mapped_device *md)
694 synchronize_srcu(&md->io_barrier);
695 synchronize_rcu_expedited();
699 * A fast alternative to dm_get_live_table/dm_put_live_table.
700 * The caller must not block between these two functions.
702 static struct dm_table *dm_get_live_table_fast(struct mapped_device *md) __acquires(RCU)
704 rcu_read_lock();
705 return rcu_dereference(md->map);
708 static void dm_put_live_table_fast(struct mapped_device *md) __releases(RCU)
710 rcu_read_unlock();
714 * Open a table device so we can use it as a map destination.
716 static int open_table_device(struct table_device *td, dev_t dev,
717 struct mapped_device *md)
719 struct block_device *bdev;
721 int r;
723 BUG_ON(td->dm_dev.bdev);
725 bdev = blkdev_get_by_dev(dev, td->dm_dev.mode | FMODE_EXCL, _dm_claim_ptr);
726 if (IS_ERR(bdev))
727 return PTR_ERR(bdev);
729 r = bd_link_disk_holder(bdev, dm_disk(md));
730 if (r) {
731 blkdev_put(bdev, td->dm_dev.mode | FMODE_EXCL);
732 return r;
735 td->dm_dev.bdev = bdev;
736 td->dm_dev.dax_dev = dax_get_by_host(bdev->bd_disk->disk_name);
737 return 0;
741 * Close a table device that we've been using.
743 static void close_table_device(struct table_device *td, struct mapped_device *md)
745 if (!td->dm_dev.bdev)
746 return;
748 bd_unlink_disk_holder(td->dm_dev.bdev, dm_disk(md));
749 blkdev_put(td->dm_dev.bdev, td->dm_dev.mode | FMODE_EXCL);
750 put_dax(td->dm_dev.dax_dev);
751 td->dm_dev.bdev = NULL;
752 td->dm_dev.dax_dev = NULL;
755 static struct table_device *find_table_device(struct list_head *l, dev_t dev,
756 fmode_t mode) {
757 struct table_device *td;
759 list_for_each_entry(td, l, list)
760 if (td->dm_dev.bdev->bd_dev == dev && td->dm_dev.mode == mode)
761 return td;
763 return NULL;
766 int dm_get_table_device(struct mapped_device *md, dev_t dev, fmode_t mode,
767 struct dm_dev **result) {
768 int r;
769 struct table_device *td;
771 mutex_lock(&md->table_devices_lock);
772 td = find_table_device(&md->table_devices, dev, mode);
773 if (!td) {
774 td = kmalloc_node(sizeof(*td), GFP_KERNEL, md->numa_node_id);
775 if (!td) {
776 mutex_unlock(&md->table_devices_lock);
777 return -ENOMEM;
780 td->dm_dev.mode = mode;
781 td->dm_dev.bdev = NULL;
783 if ((r = open_table_device(td, dev, md))) {
784 mutex_unlock(&md->table_devices_lock);
785 kfree(td);
786 return r;
789 format_dev_t(td->dm_dev.name, dev);
791 refcount_set(&td->count, 1);
792 list_add(&td->list, &md->table_devices);
793 } else {
794 refcount_inc(&td->count);
796 mutex_unlock(&md->table_devices_lock);
798 *result = &td->dm_dev;
799 return 0;
801 EXPORT_SYMBOL_GPL(dm_get_table_device);
803 void dm_put_table_device(struct mapped_device *md, struct dm_dev *d)
805 struct table_device *td = container_of(d, struct table_device, dm_dev);
807 mutex_lock(&md->table_devices_lock);
808 if (refcount_dec_and_test(&td->count)) {
809 close_table_device(td, md);
810 list_del(&td->list);
811 kfree(td);
813 mutex_unlock(&md->table_devices_lock);
815 EXPORT_SYMBOL(dm_put_table_device);
817 static void free_table_devices(struct list_head *devices)
819 struct list_head *tmp, *next;
821 list_for_each_safe(tmp, next, devices) {
822 struct table_device *td = list_entry(tmp, struct table_device, list);
824 DMWARN("dm_destroy: %s still exists with %d references",
825 td->dm_dev.name, refcount_read(&td->count));
826 kfree(td);
831 * Get the geometry associated with a dm device
833 int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo)
835 *geo = md->geometry;
837 return 0;
841 * Set the geometry of a device.
843 int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo)
845 sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors;
847 if (geo->start > sz) {
848 DMWARN("Start sector is beyond the geometry limits.");
849 return -EINVAL;
852 md->geometry = *geo;
854 return 0;
857 static int __noflush_suspending(struct mapped_device *md)
859 return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
863 * Decrements the number of outstanding ios that a bio has been
864 * cloned into, completing the original io if necc.
866 static void dec_pending(struct dm_io *io, blk_status_t error)
868 unsigned long flags;
869 blk_status_t io_error;
870 struct bio *bio;
871 struct mapped_device *md = io->md;
873 /* Push-back supersedes any I/O errors */
874 if (unlikely(error)) {
875 spin_lock_irqsave(&io->endio_lock, flags);
876 if (!(io->status == BLK_STS_DM_REQUEUE && __noflush_suspending(md)))
877 io->status = error;
878 spin_unlock_irqrestore(&io->endio_lock, flags);
881 if (atomic_dec_and_test(&io->io_count)) {
882 if (io->status == BLK_STS_DM_REQUEUE) {
884 * Target requested pushing back the I/O.
886 spin_lock_irqsave(&md->deferred_lock, flags);
887 if (__noflush_suspending(md))
888 /* NOTE early return due to BLK_STS_DM_REQUEUE below */
889 bio_list_add_head(&md->deferred, io->orig_bio);
890 else
891 /* noflush suspend was interrupted. */
892 io->status = BLK_STS_IOERR;
893 spin_unlock_irqrestore(&md->deferred_lock, flags);
896 io_error = io->status;
897 bio = io->orig_bio;
898 end_io_acct(io);
899 free_io(md, io);
901 if (io_error == BLK_STS_DM_REQUEUE)
902 return;
904 if ((bio->bi_opf & REQ_PREFLUSH) && bio->bi_iter.bi_size) {
906 * Preflush done for flush with data, reissue
907 * without REQ_PREFLUSH.
909 bio->bi_opf &= ~REQ_PREFLUSH;
910 queue_io(md, bio);
911 } else {
912 /* done with normal IO or empty flush */
913 if (io_error)
914 bio->bi_status = io_error;
915 bio_endio(bio);
920 void disable_write_same(struct mapped_device *md)
922 struct queue_limits *limits = dm_get_queue_limits(md);
924 /* device doesn't really support WRITE SAME, disable it */
925 limits->max_write_same_sectors = 0;
928 void disable_write_zeroes(struct mapped_device *md)
930 struct queue_limits *limits = dm_get_queue_limits(md);
932 /* device doesn't really support WRITE ZEROES, disable it */
933 limits->max_write_zeroes_sectors = 0;
936 static void clone_endio(struct bio *bio)
938 blk_status_t error = bio->bi_status;
939 struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
940 struct dm_io *io = tio->io;
941 struct mapped_device *md = tio->io->md;
942 dm_endio_fn endio = tio->ti->type->end_io;
944 if (unlikely(error == BLK_STS_TARGET) && md->type != DM_TYPE_NVME_BIO_BASED) {
945 if (bio_op(bio) == REQ_OP_WRITE_SAME &&
946 !bio->bi_disk->queue->limits.max_write_same_sectors)
947 disable_write_same(md);
948 if (bio_op(bio) == REQ_OP_WRITE_ZEROES &&
949 !bio->bi_disk->queue->limits.max_write_zeroes_sectors)
950 disable_write_zeroes(md);
953 if (endio) {
954 int r = endio(tio->ti, bio, &error);
955 switch (r) {
956 case DM_ENDIO_REQUEUE:
957 error = BLK_STS_DM_REQUEUE;
958 /*FALLTHRU*/
959 case DM_ENDIO_DONE:
960 break;
961 case DM_ENDIO_INCOMPLETE:
962 /* The target will handle the io */
963 return;
964 default:
965 DMWARN("unimplemented target endio return value: %d", r);
966 BUG();
970 free_tio(tio);
971 dec_pending(io, error);
975 * Return maximum size of I/O possible at the supplied sector up to the current
976 * target boundary.
978 static sector_t max_io_len_target_boundary(sector_t sector, struct dm_target *ti)
980 sector_t target_offset = dm_target_offset(ti, sector);
982 return ti->len - target_offset;
985 static sector_t max_io_len(sector_t sector, struct dm_target *ti)
987 sector_t len = max_io_len_target_boundary(sector, ti);
988 sector_t offset, max_len;
991 * Does the target need to split even further?
993 if (ti->max_io_len) {
994 offset = dm_target_offset(ti, sector);
995 if (unlikely(ti->max_io_len & (ti->max_io_len - 1)))
996 max_len = sector_div(offset, ti->max_io_len);
997 else
998 max_len = offset & (ti->max_io_len - 1);
999 max_len = ti->max_io_len - max_len;
1001 if (len > max_len)
1002 len = max_len;
1005 return len;
1008 int dm_set_target_max_io_len(struct dm_target *ti, sector_t len)
1010 if (len > UINT_MAX) {
1011 DMERR("Specified maximum size of target IO (%llu) exceeds limit (%u)",
1012 (unsigned long long)len, UINT_MAX);
1013 ti->error = "Maximum size of target IO is too large";
1014 return -EINVAL;
1018 * BIO based queue uses its own splitting. When multipage bvecs
1019 * is switched on, size of the incoming bio may be too big to
1020 * be handled in some targets, such as crypt.
1022 * When these targets are ready for the big bio, we can remove
1023 * the limit.
1025 ti->max_io_len = min_t(uint32_t, len, BIO_MAX_PAGES * PAGE_SIZE);
1027 return 0;
1029 EXPORT_SYMBOL_GPL(dm_set_target_max_io_len);
1031 static struct dm_target *dm_dax_get_live_target(struct mapped_device *md,
1032 sector_t sector, int *srcu_idx)
1034 struct dm_table *map;
1035 struct dm_target *ti;
1037 map = dm_get_live_table(md, srcu_idx);
1038 if (!map)
1039 return NULL;
1041 ti = dm_table_find_target(map, sector);
1042 if (!dm_target_is_valid(ti))
1043 return NULL;
1045 return ti;
1048 static long dm_dax_direct_access(struct dax_device *dax_dev, pgoff_t pgoff,
1049 long nr_pages, void **kaddr, pfn_t *pfn)
1051 struct mapped_device *md = dax_get_private(dax_dev);
1052 sector_t sector = pgoff * PAGE_SECTORS;
1053 struct dm_target *ti;
1054 long len, ret = -EIO;
1055 int srcu_idx;
1057 ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1059 if (!ti)
1060 goto out;
1061 if (!ti->type->direct_access)
1062 goto out;
1063 len = max_io_len(sector, ti) / PAGE_SECTORS;
1064 if (len < 1)
1065 goto out;
1066 nr_pages = min(len, nr_pages);
1067 if (ti->type->direct_access)
1068 ret = ti->type->direct_access(ti, pgoff, nr_pages, kaddr, pfn);
1070 out:
1071 dm_put_live_table(md, srcu_idx);
1073 return ret;
1076 static size_t dm_dax_copy_from_iter(struct dax_device *dax_dev, pgoff_t pgoff,
1077 void *addr, size_t bytes, struct iov_iter *i)
1079 struct mapped_device *md = dax_get_private(dax_dev);
1080 sector_t sector = pgoff * PAGE_SECTORS;
1081 struct dm_target *ti;
1082 long ret = 0;
1083 int srcu_idx;
1085 ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1087 if (!ti)
1088 goto out;
1089 if (!ti->type->dax_copy_from_iter) {
1090 ret = copy_from_iter(addr, bytes, i);
1091 goto out;
1093 ret = ti->type->dax_copy_from_iter(ti, pgoff, addr, bytes, i);
1094 out:
1095 dm_put_live_table(md, srcu_idx);
1097 return ret;
1101 * A target may call dm_accept_partial_bio only from the map routine. It is
1102 * allowed for all bio types except REQ_PREFLUSH and REQ_OP_ZONE_RESET.
1104 * dm_accept_partial_bio informs the dm that the target only wants to process
1105 * additional n_sectors sectors of the bio and the rest of the data should be
1106 * sent in a next bio.
1108 * A diagram that explains the arithmetics:
1109 * +--------------------+---------------+-------+
1110 * | 1 | 2 | 3 |
1111 * +--------------------+---------------+-------+
1113 * <-------------- *tio->len_ptr --------------->
1114 * <------- bi_size ------->
1115 * <-- n_sectors -->
1117 * Region 1 was already iterated over with bio_advance or similar function.
1118 * (it may be empty if the target doesn't use bio_advance)
1119 * Region 2 is the remaining bio size that the target wants to process.
1120 * (it may be empty if region 1 is non-empty, although there is no reason
1121 * to make it empty)
1122 * The target requires that region 3 is to be sent in the next bio.
1124 * If the target wants to receive multiple copies of the bio (via num_*bios, etc),
1125 * the partially processed part (the sum of regions 1+2) must be the same for all
1126 * copies of the bio.
1128 void dm_accept_partial_bio(struct bio *bio, unsigned n_sectors)
1130 struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
1131 unsigned bi_size = bio->bi_iter.bi_size >> SECTOR_SHIFT;
1132 BUG_ON(bio->bi_opf & REQ_PREFLUSH);
1133 BUG_ON(bi_size > *tio->len_ptr);
1134 BUG_ON(n_sectors > bi_size);
1135 *tio->len_ptr -= bi_size - n_sectors;
1136 bio->bi_iter.bi_size = n_sectors << SECTOR_SHIFT;
1138 EXPORT_SYMBOL_GPL(dm_accept_partial_bio);
1141 * The zone descriptors obtained with a zone report indicate
1142 * zone positions within the target device. The zone descriptors
1143 * must be remapped to match their position within the dm device.
1144 * A target may call dm_remap_zone_report after completion of a
1145 * REQ_OP_ZONE_REPORT bio to remap the zone descriptors obtained
1146 * from the target device mapping to the dm device.
1148 void dm_remap_zone_report(struct dm_target *ti, struct bio *bio, sector_t start)
1150 #ifdef CONFIG_BLK_DEV_ZONED
1151 struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
1152 struct bio *report_bio = tio->io->orig_bio;
1153 struct blk_zone_report_hdr *hdr = NULL;
1154 struct blk_zone *zone;
1155 unsigned int nr_rep = 0;
1156 unsigned int ofst;
1157 struct bio_vec bvec;
1158 struct bvec_iter iter;
1159 void *addr;
1161 if (bio->bi_status)
1162 return;
1165 * Remap the start sector of the reported zones. For sequential zones,
1166 * also remap the write pointer position.
1168 bio_for_each_segment(bvec, report_bio, iter) {
1169 addr = kmap_atomic(bvec.bv_page);
1171 /* Remember the report header in the first page */
1172 if (!hdr) {
1173 hdr = addr;
1174 ofst = sizeof(struct blk_zone_report_hdr);
1175 } else
1176 ofst = 0;
1178 /* Set zones start sector */
1179 while (hdr->nr_zones && ofst < bvec.bv_len) {
1180 zone = addr + ofst;
1181 if (zone->start >= start + ti->len) {
1182 hdr->nr_zones = 0;
1183 break;
1185 zone->start = zone->start + ti->begin - start;
1186 if (zone->type != BLK_ZONE_TYPE_CONVENTIONAL) {
1187 if (zone->cond == BLK_ZONE_COND_FULL)
1188 zone->wp = zone->start + zone->len;
1189 else if (zone->cond == BLK_ZONE_COND_EMPTY)
1190 zone->wp = zone->start;
1191 else
1192 zone->wp = zone->wp + ti->begin - start;
1194 ofst += sizeof(struct blk_zone);
1195 hdr->nr_zones--;
1196 nr_rep++;
1199 if (addr != hdr)
1200 kunmap_atomic(addr);
1202 if (!hdr->nr_zones)
1203 break;
1206 if (hdr) {
1207 hdr->nr_zones = nr_rep;
1208 kunmap_atomic(hdr);
1211 bio_advance(report_bio, report_bio->bi_iter.bi_size);
1213 #else /* !CONFIG_BLK_DEV_ZONED */
1214 bio->bi_status = BLK_STS_NOTSUPP;
1215 #endif
1217 EXPORT_SYMBOL_GPL(dm_remap_zone_report);
1219 static blk_qc_t __map_bio(struct dm_target_io *tio)
1221 int r;
1222 sector_t sector;
1223 struct bio *clone = &tio->clone;
1224 struct dm_io *io = tio->io;
1225 struct mapped_device *md = io->md;
1226 struct dm_target *ti = tio->ti;
1227 blk_qc_t ret = BLK_QC_T_NONE;
1229 clone->bi_end_io = clone_endio;
1232 * Map the clone. If r == 0 we don't need to do
1233 * anything, the target has assumed ownership of
1234 * this io.
1236 atomic_inc(&io->io_count);
1237 sector = clone->bi_iter.bi_sector;
1239 r = ti->type->map(ti, clone);
1240 switch (r) {
1241 case DM_MAPIO_SUBMITTED:
1242 break;
1243 case DM_MAPIO_REMAPPED:
1244 /* the bio has been remapped so dispatch it */
1245 trace_block_bio_remap(clone->bi_disk->queue, clone,
1246 bio_dev(io->orig_bio), sector);
1247 if (md->type == DM_TYPE_NVME_BIO_BASED)
1248 ret = direct_make_request(clone);
1249 else
1250 ret = generic_make_request(clone);
1251 break;
1252 case DM_MAPIO_KILL:
1253 free_tio(tio);
1254 dec_pending(io, BLK_STS_IOERR);
1255 break;
1256 case DM_MAPIO_REQUEUE:
1257 free_tio(tio);
1258 dec_pending(io, BLK_STS_DM_REQUEUE);
1259 break;
1260 default:
1261 DMWARN("unimplemented target map return value: %d", r);
1262 BUG();
1265 return ret;
1268 static void bio_setup_sector(struct bio *bio, sector_t sector, unsigned len)
1270 bio->bi_iter.bi_sector = sector;
1271 bio->bi_iter.bi_size = to_bytes(len);
1275 * Creates a bio that consists of range of complete bvecs.
1277 static int clone_bio(struct dm_target_io *tio, struct bio *bio,
1278 sector_t sector, unsigned len)
1280 struct bio *clone = &tio->clone;
1282 __bio_clone_fast(clone, bio);
1284 if (unlikely(bio_integrity(bio) != NULL)) {
1285 int r;
1287 if (unlikely(!dm_target_has_integrity(tio->ti->type) &&
1288 !dm_target_passes_integrity(tio->ti->type))) {
1289 DMWARN("%s: the target %s doesn't support integrity data.",
1290 dm_device_name(tio->io->md),
1291 tio->ti->type->name);
1292 return -EIO;
1295 r = bio_integrity_clone(clone, bio, GFP_NOIO);
1296 if (r < 0)
1297 return r;
1300 if (bio_op(bio) != REQ_OP_ZONE_REPORT)
1301 bio_advance(clone, to_bytes(sector - clone->bi_iter.bi_sector));
1302 clone->bi_iter.bi_size = to_bytes(len);
1304 if (unlikely(bio_integrity(bio) != NULL))
1305 bio_integrity_trim(clone);
1307 return 0;
1310 static void alloc_multiple_bios(struct bio_list *blist, struct clone_info *ci,
1311 struct dm_target *ti, unsigned num_bios)
1313 struct dm_target_io *tio;
1314 int try;
1316 if (!num_bios)
1317 return;
1319 if (num_bios == 1) {
1320 tio = alloc_tio(ci, ti, 0, GFP_NOIO);
1321 bio_list_add(blist, &tio->clone);
1322 return;
1325 for (try = 0; try < 2; try++) {
1326 int bio_nr;
1327 struct bio *bio;
1329 if (try)
1330 mutex_lock(&ci->io->md->table_devices_lock);
1331 for (bio_nr = 0; bio_nr < num_bios; bio_nr++) {
1332 tio = alloc_tio(ci, ti, bio_nr, try ? GFP_NOIO : GFP_NOWAIT);
1333 if (!tio)
1334 break;
1336 bio_list_add(blist, &tio->clone);
1338 if (try)
1339 mutex_unlock(&ci->io->md->table_devices_lock);
1340 if (bio_nr == num_bios)
1341 return;
1343 while ((bio = bio_list_pop(blist))) {
1344 tio = container_of(bio, struct dm_target_io, clone);
1345 free_tio(tio);
1350 static blk_qc_t __clone_and_map_simple_bio(struct clone_info *ci,
1351 struct dm_target_io *tio, unsigned *len)
1353 struct bio *clone = &tio->clone;
1355 tio->len_ptr = len;
1357 __bio_clone_fast(clone, ci->bio);
1358 if (len)
1359 bio_setup_sector(clone, ci->sector, *len);
1361 return __map_bio(tio);
1364 static void __send_duplicate_bios(struct clone_info *ci, struct dm_target *ti,
1365 unsigned num_bios, unsigned *len)
1367 struct bio_list blist = BIO_EMPTY_LIST;
1368 struct bio *bio;
1369 struct dm_target_io *tio;
1371 alloc_multiple_bios(&blist, ci, ti, num_bios);
1373 while ((bio = bio_list_pop(&blist))) {
1374 tio = container_of(bio, struct dm_target_io, clone);
1375 (void) __clone_and_map_simple_bio(ci, tio, len);
1379 static int __send_empty_flush(struct clone_info *ci)
1381 unsigned target_nr = 0;
1382 struct dm_target *ti;
1384 BUG_ON(bio_has_data(ci->bio));
1385 while ((ti = dm_table_get_target(ci->map, target_nr++)))
1386 __send_duplicate_bios(ci, ti, ti->num_flush_bios, NULL);
1388 return 0;
1391 static int __clone_and_map_data_bio(struct clone_info *ci, struct dm_target *ti,
1392 sector_t sector, unsigned *len)
1394 struct bio *bio = ci->bio;
1395 struct dm_target_io *tio;
1396 int r;
1398 tio = alloc_tio(ci, ti, 0, GFP_NOIO);
1399 tio->len_ptr = len;
1400 r = clone_bio(tio, bio, sector, *len);
1401 if (r < 0) {
1402 free_tio(tio);
1403 return r;
1405 (void) __map_bio(tio);
1407 return 0;
1410 typedef unsigned (*get_num_bios_fn)(struct dm_target *ti);
1412 static unsigned get_num_discard_bios(struct dm_target *ti)
1414 return ti->num_discard_bios;
1417 static unsigned get_num_write_same_bios(struct dm_target *ti)
1419 return ti->num_write_same_bios;
1422 static unsigned get_num_write_zeroes_bios(struct dm_target *ti)
1424 return ti->num_write_zeroes_bios;
1427 typedef bool (*is_split_required_fn)(struct dm_target *ti);
1429 static bool is_split_required_for_discard(struct dm_target *ti)
1431 return ti->split_discard_bios;
1434 static int __send_changing_extent_only(struct clone_info *ci, struct dm_target *ti,
1435 get_num_bios_fn get_num_bios,
1436 is_split_required_fn is_split_required)
1438 unsigned len;
1439 unsigned num_bios;
1442 * Even though the device advertised support for this type of
1443 * request, that does not mean every target supports it, and
1444 * reconfiguration might also have changed that since the
1445 * check was performed.
1447 num_bios = get_num_bios ? get_num_bios(ti) : 0;
1448 if (!num_bios)
1449 return -EOPNOTSUPP;
1451 if (is_split_required && !is_split_required(ti))
1452 len = min((sector_t)ci->sector_count, max_io_len_target_boundary(ci->sector, ti));
1453 else
1454 len = min((sector_t)ci->sector_count, max_io_len(ci->sector, ti));
1456 __send_duplicate_bios(ci, ti, num_bios, &len);
1458 ci->sector += len;
1459 ci->sector_count -= len;
1461 return 0;
1464 static int __send_discard(struct clone_info *ci, struct dm_target *ti)
1466 return __send_changing_extent_only(ci, ti, get_num_discard_bios,
1467 is_split_required_for_discard);
1470 static int __send_write_same(struct clone_info *ci, struct dm_target *ti)
1472 return __send_changing_extent_only(ci, ti, get_num_write_same_bios, NULL);
1475 static int __send_write_zeroes(struct clone_info *ci, struct dm_target *ti)
1477 return __send_changing_extent_only(ci, ti, get_num_write_zeroes_bios, NULL);
1480 static bool __process_abnormal_io(struct clone_info *ci, struct dm_target *ti,
1481 int *result)
1483 struct bio *bio = ci->bio;
1485 if (bio_op(bio) == REQ_OP_DISCARD)
1486 *result = __send_discard(ci, ti);
1487 else if (bio_op(bio) == REQ_OP_WRITE_SAME)
1488 *result = __send_write_same(ci, ti);
1489 else if (bio_op(bio) == REQ_OP_WRITE_ZEROES)
1490 *result = __send_write_zeroes(ci, ti);
1491 else
1492 return false;
1494 return true;
1498 * Select the correct strategy for processing a non-flush bio.
1500 static int __split_and_process_non_flush(struct clone_info *ci)
1502 struct bio *bio = ci->bio;
1503 struct dm_target *ti;
1504 unsigned len;
1505 int r;
1507 ti = dm_table_find_target(ci->map, ci->sector);
1508 if (!dm_target_is_valid(ti))
1509 return -EIO;
1511 if (unlikely(__process_abnormal_io(ci, ti, &r)))
1512 return r;
1514 if (bio_op(bio) == REQ_OP_ZONE_REPORT)
1515 len = ci->sector_count;
1516 else
1517 len = min_t(sector_t, max_io_len(ci->sector, ti),
1518 ci->sector_count);
1520 r = __clone_and_map_data_bio(ci, ti, ci->sector, &len);
1521 if (r < 0)
1522 return r;
1524 ci->sector += len;
1525 ci->sector_count -= len;
1527 return 0;
1530 static void init_clone_info(struct clone_info *ci, struct mapped_device *md,
1531 struct dm_table *map, struct bio *bio)
1533 ci->map = map;
1534 ci->io = alloc_io(md, bio);
1535 ci->sector = bio->bi_iter.bi_sector;
1539 * Entry point to split a bio into clones and submit them to the targets.
1541 static blk_qc_t __split_and_process_bio(struct mapped_device *md,
1542 struct dm_table *map, struct bio *bio)
1544 struct clone_info ci;
1545 blk_qc_t ret = BLK_QC_T_NONE;
1546 int error = 0;
1548 if (unlikely(!map)) {
1549 bio_io_error(bio);
1550 return ret;
1553 init_clone_info(&ci, md, map, bio);
1555 if (bio->bi_opf & REQ_PREFLUSH) {
1556 ci.bio = &ci.io->md->flush_bio;
1557 ci.sector_count = 0;
1558 error = __send_empty_flush(&ci);
1559 /* dec_pending submits any data associated with flush */
1560 } else if (bio_op(bio) == REQ_OP_ZONE_RESET) {
1561 ci.bio = bio;
1562 ci.sector_count = 0;
1563 error = __split_and_process_non_flush(&ci);
1564 } else {
1565 ci.bio = bio;
1566 ci.sector_count = bio_sectors(bio);
1567 while (ci.sector_count && !error) {
1568 error = __split_and_process_non_flush(&ci);
1569 if (current->bio_list && ci.sector_count && !error) {
1571 * Remainder must be passed to generic_make_request()
1572 * so that it gets handled *after* bios already submitted
1573 * have been completely processed.
1574 * We take a clone of the original to store in
1575 * ci.io->orig_bio to be used by end_io_acct() and
1576 * for dec_pending to use for completion handling.
1577 * As this path is not used for REQ_OP_ZONE_REPORT,
1578 * the usage of io->orig_bio in dm_remap_zone_report()
1579 * won't be affected by this reassignment.
1581 struct bio *b = bio_clone_bioset(bio, GFP_NOIO,
1582 md->queue->bio_split);
1583 ci.io->orig_bio = b;
1584 bio_advance(bio, (bio_sectors(bio) - ci.sector_count) << 9);
1585 bio_chain(b, bio);
1586 ret = generic_make_request(bio);
1587 break;
1592 /* drop the extra reference count */
1593 dec_pending(ci.io, errno_to_blk_status(error));
1594 return ret;
1598 * Optimized variant of __split_and_process_bio that leverages the
1599 * fact that targets that use it do _not_ have a need to split bios.
1601 static blk_qc_t __process_bio(struct mapped_device *md,
1602 struct dm_table *map, struct bio *bio)
1604 struct clone_info ci;
1605 blk_qc_t ret = BLK_QC_T_NONE;
1606 int error = 0;
1608 if (unlikely(!map)) {
1609 bio_io_error(bio);
1610 return ret;
1613 init_clone_info(&ci, md, map, bio);
1615 if (bio->bi_opf & REQ_PREFLUSH) {
1616 ci.bio = &ci.io->md->flush_bio;
1617 ci.sector_count = 0;
1618 error = __send_empty_flush(&ci);
1619 /* dec_pending submits any data associated with flush */
1620 } else {
1621 struct dm_target *ti = md->immutable_target;
1622 struct dm_target_io *tio;
1625 * Defend against IO still getting in during teardown
1626 * - as was seen for a time with nvme-fcloop
1628 if (unlikely(WARN_ON_ONCE(!ti || !dm_target_is_valid(ti)))) {
1629 error = -EIO;
1630 goto out;
1633 ci.bio = bio;
1634 ci.sector_count = bio_sectors(bio);
1635 if (unlikely(__process_abnormal_io(&ci, ti, &error)))
1636 goto out;
1638 tio = alloc_tio(&ci, ti, 0, GFP_NOIO);
1639 ret = __clone_and_map_simple_bio(&ci, tio, NULL);
1641 out:
1642 /* drop the extra reference count */
1643 dec_pending(ci.io, errno_to_blk_status(error));
1644 return ret;
1647 typedef blk_qc_t (process_bio_fn)(struct mapped_device *, struct dm_table *, struct bio *);
1649 static blk_qc_t __dm_make_request(struct request_queue *q, struct bio *bio,
1650 process_bio_fn process_bio)
1652 struct mapped_device *md = q->queuedata;
1653 blk_qc_t ret = BLK_QC_T_NONE;
1654 int srcu_idx;
1655 struct dm_table *map;
1657 map = dm_get_live_table(md, &srcu_idx);
1659 /* if we're suspended, we have to queue this io for later */
1660 if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags))) {
1661 dm_put_live_table(md, srcu_idx);
1663 if (!(bio->bi_opf & REQ_RAHEAD))
1664 queue_io(md, bio);
1665 else
1666 bio_io_error(bio);
1667 return ret;
1670 ret = process_bio(md, map, bio);
1672 dm_put_live_table(md, srcu_idx);
1673 return ret;
1677 * The request function that remaps the bio to one target and
1678 * splits off any remainder.
1680 static blk_qc_t dm_make_request(struct request_queue *q, struct bio *bio)
1682 return __dm_make_request(q, bio, __split_and_process_bio);
1685 static blk_qc_t dm_make_request_nvme(struct request_queue *q, struct bio *bio)
1687 return __dm_make_request(q, bio, __process_bio);
1690 static int dm_any_congested(void *congested_data, int bdi_bits)
1692 int r = bdi_bits;
1693 struct mapped_device *md = congested_data;
1694 struct dm_table *map;
1696 if (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
1697 if (dm_request_based(md)) {
1699 * With request-based DM we only need to check the
1700 * top-level queue for congestion.
1702 r = md->queue->backing_dev_info->wb.state & bdi_bits;
1703 } else {
1704 map = dm_get_live_table_fast(md);
1705 if (map)
1706 r = dm_table_any_congested(map, bdi_bits);
1707 dm_put_live_table_fast(md);
1711 return r;
1714 /*-----------------------------------------------------------------
1715 * An IDR is used to keep track of allocated minor numbers.
1716 *---------------------------------------------------------------*/
1717 static void free_minor(int minor)
1719 spin_lock(&_minor_lock);
1720 idr_remove(&_minor_idr, minor);
1721 spin_unlock(&_minor_lock);
1725 * See if the device with a specific minor # is free.
1727 static int specific_minor(int minor)
1729 int r;
1731 if (minor >= (1 << MINORBITS))
1732 return -EINVAL;
1734 idr_preload(GFP_KERNEL);
1735 spin_lock(&_minor_lock);
1737 r = idr_alloc(&_minor_idr, MINOR_ALLOCED, minor, minor + 1, GFP_NOWAIT);
1739 spin_unlock(&_minor_lock);
1740 idr_preload_end();
1741 if (r < 0)
1742 return r == -ENOSPC ? -EBUSY : r;
1743 return 0;
1746 static int next_free_minor(int *minor)
1748 int r;
1750 idr_preload(GFP_KERNEL);
1751 spin_lock(&_minor_lock);
1753 r = idr_alloc(&_minor_idr, MINOR_ALLOCED, 0, 1 << MINORBITS, GFP_NOWAIT);
1755 spin_unlock(&_minor_lock);
1756 idr_preload_end();
1757 if (r < 0)
1758 return r;
1759 *minor = r;
1760 return 0;
1763 static const struct block_device_operations dm_blk_dops;
1764 static const struct dax_operations dm_dax_ops;
1766 static void dm_wq_work(struct work_struct *work);
1768 static void dm_init_normal_md_queue(struct mapped_device *md)
1770 md->use_blk_mq = false;
1773 * Initialize aspects of queue that aren't relevant for blk-mq
1775 md->queue->backing_dev_info->congested_fn = dm_any_congested;
1778 static void cleanup_mapped_device(struct mapped_device *md)
1780 if (md->wq)
1781 destroy_workqueue(md->wq);
1782 if (md->kworker_task)
1783 kthread_stop(md->kworker_task);
1784 if (md->bs)
1785 bioset_free(md->bs);
1786 if (md->io_bs)
1787 bioset_free(md->io_bs);
1789 if (md->dax_dev) {
1790 kill_dax(md->dax_dev);
1791 put_dax(md->dax_dev);
1792 md->dax_dev = NULL;
1795 if (md->disk) {
1796 spin_lock(&_minor_lock);
1797 md->disk->private_data = NULL;
1798 spin_unlock(&_minor_lock);
1799 del_gendisk(md->disk);
1800 put_disk(md->disk);
1803 if (md->queue)
1804 blk_cleanup_queue(md->queue);
1806 cleanup_srcu_struct(&md->io_barrier);
1808 if (md->bdev) {
1809 bdput(md->bdev);
1810 md->bdev = NULL;
1813 mutex_destroy(&md->suspend_lock);
1814 mutex_destroy(&md->type_lock);
1815 mutex_destroy(&md->table_devices_lock);
1817 dm_mq_cleanup_mapped_device(md);
1821 * Allocate and initialise a blank device with a given minor.
1823 static struct mapped_device *alloc_dev(int minor)
1825 int r, numa_node_id = dm_get_numa_node();
1826 struct dax_device *dax_dev;
1827 struct mapped_device *md;
1828 void *old_md;
1830 md = kvzalloc_node(sizeof(*md), GFP_KERNEL, numa_node_id);
1831 if (!md) {
1832 DMWARN("unable to allocate device, out of memory.");
1833 return NULL;
1836 if (!try_module_get(THIS_MODULE))
1837 goto bad_module_get;
1839 /* get a minor number for the dev */
1840 if (minor == DM_ANY_MINOR)
1841 r = next_free_minor(&minor);
1842 else
1843 r = specific_minor(minor);
1844 if (r < 0)
1845 goto bad_minor;
1847 r = init_srcu_struct(&md->io_barrier);
1848 if (r < 0)
1849 goto bad_io_barrier;
1851 md->numa_node_id = numa_node_id;
1852 md->use_blk_mq = dm_use_blk_mq_default();
1853 md->init_tio_pdu = false;
1854 md->type = DM_TYPE_NONE;
1855 mutex_init(&md->suspend_lock);
1856 mutex_init(&md->type_lock);
1857 mutex_init(&md->table_devices_lock);
1858 spin_lock_init(&md->deferred_lock);
1859 atomic_set(&md->holders, 1);
1860 atomic_set(&md->open_count, 0);
1861 atomic_set(&md->event_nr, 0);
1862 atomic_set(&md->uevent_seq, 0);
1863 INIT_LIST_HEAD(&md->uevent_list);
1864 INIT_LIST_HEAD(&md->table_devices);
1865 spin_lock_init(&md->uevent_lock);
1867 md->queue = blk_alloc_queue_node(GFP_KERNEL, numa_node_id);
1868 if (!md->queue)
1869 goto bad;
1870 md->queue->queuedata = md;
1871 md->queue->backing_dev_info->congested_data = md;
1873 md->disk = alloc_disk_node(1, md->numa_node_id);
1874 if (!md->disk)
1875 goto bad;
1877 atomic_set(&md->pending[0], 0);
1878 atomic_set(&md->pending[1], 0);
1879 init_waitqueue_head(&md->wait);
1880 INIT_WORK(&md->work, dm_wq_work);
1881 init_waitqueue_head(&md->eventq);
1882 init_completion(&md->kobj_holder.completion);
1883 md->kworker_task = NULL;
1885 md->disk->major = _major;
1886 md->disk->first_minor = minor;
1887 md->disk->fops = &dm_blk_dops;
1888 md->disk->queue = md->queue;
1889 md->disk->private_data = md;
1890 sprintf(md->disk->disk_name, "dm-%d", minor);
1892 dax_dev = alloc_dax(md, md->disk->disk_name, &dm_dax_ops);
1893 if (!dax_dev)
1894 goto bad;
1895 md->dax_dev = dax_dev;
1897 add_disk_no_queue_reg(md->disk);
1898 format_dev_t(md->name, MKDEV(_major, minor));
1900 md->wq = alloc_workqueue("kdmflush", WQ_MEM_RECLAIM, 0);
1901 if (!md->wq)
1902 goto bad;
1904 md->bdev = bdget_disk(md->disk, 0);
1905 if (!md->bdev)
1906 goto bad;
1908 bio_init(&md->flush_bio, NULL, 0);
1909 bio_set_dev(&md->flush_bio, md->bdev);
1910 md->flush_bio.bi_opf = REQ_OP_WRITE | REQ_PREFLUSH | REQ_SYNC;
1912 dm_stats_init(&md->stats);
1914 /* Populate the mapping, nobody knows we exist yet */
1915 spin_lock(&_minor_lock);
1916 old_md = idr_replace(&_minor_idr, md, minor);
1917 spin_unlock(&_minor_lock);
1919 BUG_ON(old_md != MINOR_ALLOCED);
1921 return md;
1923 bad:
1924 cleanup_mapped_device(md);
1925 bad_io_barrier:
1926 free_minor(minor);
1927 bad_minor:
1928 module_put(THIS_MODULE);
1929 bad_module_get:
1930 kvfree(md);
1931 return NULL;
1934 static void unlock_fs(struct mapped_device *md);
1936 static void free_dev(struct mapped_device *md)
1938 int minor = MINOR(disk_devt(md->disk));
1940 unlock_fs(md);
1942 cleanup_mapped_device(md);
1944 free_table_devices(&md->table_devices);
1945 dm_stats_cleanup(&md->stats);
1946 free_minor(minor);
1948 module_put(THIS_MODULE);
1949 kvfree(md);
1952 static void __bind_mempools(struct mapped_device *md, struct dm_table *t)
1954 struct dm_md_mempools *p = dm_table_get_md_mempools(t);
1956 if (dm_table_bio_based(t)) {
1958 * The md may already have mempools that need changing.
1959 * If so, reload bioset because front_pad may have changed
1960 * because a different table was loaded.
1962 if (md->bs) {
1963 bioset_free(md->bs);
1964 md->bs = NULL;
1966 if (md->io_bs) {
1967 bioset_free(md->io_bs);
1968 md->io_bs = NULL;
1971 } else if (md->bs) {
1973 * There's no need to reload with request-based dm
1974 * because the size of front_pad doesn't change.
1975 * Note for future: If you are to reload bioset,
1976 * prep-ed requests in the queue may refer
1977 * to bio from the old bioset, so you must walk
1978 * through the queue to unprep.
1980 goto out;
1983 BUG_ON(!p || md->bs || md->io_bs);
1985 md->bs = p->bs;
1986 p->bs = NULL;
1987 md->io_bs = p->io_bs;
1988 p->io_bs = NULL;
1989 out:
1990 /* mempool bind completed, no longer need any mempools in the table */
1991 dm_table_free_md_mempools(t);
1995 * Bind a table to the device.
1997 static void event_callback(void *context)
1999 unsigned long flags;
2000 LIST_HEAD(uevents);
2001 struct mapped_device *md = (struct mapped_device *) context;
2003 spin_lock_irqsave(&md->uevent_lock, flags);
2004 list_splice_init(&md->uevent_list, &uevents);
2005 spin_unlock_irqrestore(&md->uevent_lock, flags);
2007 dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj);
2009 atomic_inc(&md->event_nr);
2010 wake_up(&md->eventq);
2011 dm_issue_global_event();
2015 * Protected by md->suspend_lock obtained by dm_swap_table().
2017 static void __set_size(struct mapped_device *md, sector_t size)
2019 lockdep_assert_held(&md->suspend_lock);
2021 set_capacity(md->disk, size);
2023 i_size_write(md->bdev->bd_inode, (loff_t)size << SECTOR_SHIFT);
2027 * Returns old map, which caller must destroy.
2029 static struct dm_table *__bind(struct mapped_device *md, struct dm_table *t,
2030 struct queue_limits *limits)
2032 struct dm_table *old_map;
2033 struct request_queue *q = md->queue;
2034 bool request_based = dm_table_request_based(t);
2035 sector_t size;
2037 lockdep_assert_held(&md->suspend_lock);
2039 size = dm_table_get_size(t);
2042 * Wipe any geometry if the size of the table changed.
2044 if (size != dm_get_size(md))
2045 memset(&md->geometry, 0, sizeof(md->geometry));
2047 __set_size(md, size);
2049 dm_table_event_callback(t, event_callback, md);
2052 * The queue hasn't been stopped yet, if the old table type wasn't
2053 * for request-based during suspension. So stop it to prevent
2054 * I/O mapping before resume.
2055 * This must be done before setting the queue restrictions,
2056 * because request-based dm may be run just after the setting.
2058 if (request_based)
2059 dm_stop_queue(q);
2061 if (request_based || md->type == DM_TYPE_NVME_BIO_BASED) {
2063 * Leverage the fact that request-based DM targets and
2064 * NVMe bio based targets are immutable singletons
2065 * - used to optimize both dm_request_fn and dm_mq_queue_rq;
2066 * and __process_bio.
2068 md->immutable_target = dm_table_get_immutable_target(t);
2071 __bind_mempools(md, t);
2073 old_map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2074 rcu_assign_pointer(md->map, (void *)t);
2075 md->immutable_target_type = dm_table_get_immutable_target_type(t);
2077 dm_table_set_restrictions(t, q, limits);
2078 if (old_map)
2079 dm_sync_table(md);
2081 return old_map;
2085 * Returns unbound table for the caller to free.
2087 static struct dm_table *__unbind(struct mapped_device *md)
2089 struct dm_table *map = rcu_dereference_protected(md->map, 1);
2091 if (!map)
2092 return NULL;
2094 dm_table_event_callback(map, NULL, NULL);
2095 RCU_INIT_POINTER(md->map, NULL);
2096 dm_sync_table(md);
2098 return map;
2102 * Constructor for a new device.
2104 int dm_create(int minor, struct mapped_device **result)
2106 int r;
2107 struct mapped_device *md;
2109 md = alloc_dev(minor);
2110 if (!md)
2111 return -ENXIO;
2113 r = dm_sysfs_init(md);
2114 if (r) {
2115 free_dev(md);
2116 return r;
2119 *result = md;
2120 return 0;
2124 * Functions to manage md->type.
2125 * All are required to hold md->type_lock.
2127 void dm_lock_md_type(struct mapped_device *md)
2129 mutex_lock(&md->type_lock);
2132 void dm_unlock_md_type(struct mapped_device *md)
2134 mutex_unlock(&md->type_lock);
2137 void dm_set_md_type(struct mapped_device *md, enum dm_queue_mode type)
2139 BUG_ON(!mutex_is_locked(&md->type_lock));
2140 md->type = type;
2143 enum dm_queue_mode dm_get_md_type(struct mapped_device *md)
2145 return md->type;
2148 struct target_type *dm_get_immutable_target_type(struct mapped_device *md)
2150 return md->immutable_target_type;
2154 * The queue_limits are only valid as long as you have a reference
2155 * count on 'md'.
2157 struct queue_limits *dm_get_queue_limits(struct mapped_device *md)
2159 BUG_ON(!atomic_read(&md->holders));
2160 return &md->queue->limits;
2162 EXPORT_SYMBOL_GPL(dm_get_queue_limits);
2165 * Setup the DM device's queue based on md's type
2167 int dm_setup_md_queue(struct mapped_device *md, struct dm_table *t)
2169 int r;
2170 struct queue_limits limits;
2171 enum dm_queue_mode type = dm_get_md_type(md);
2173 switch (type) {
2174 case DM_TYPE_REQUEST_BASED:
2175 dm_init_normal_md_queue(md);
2176 r = dm_old_init_request_queue(md, t);
2177 if (r) {
2178 DMERR("Cannot initialize queue for request-based mapped device");
2179 return r;
2181 break;
2182 case DM_TYPE_MQ_REQUEST_BASED:
2183 r = dm_mq_init_request_queue(md, t);
2184 if (r) {
2185 DMERR("Cannot initialize queue for request-based dm-mq mapped device");
2186 return r;
2188 break;
2189 case DM_TYPE_BIO_BASED:
2190 case DM_TYPE_DAX_BIO_BASED:
2191 dm_init_normal_md_queue(md);
2192 blk_queue_make_request(md->queue, dm_make_request);
2193 break;
2194 case DM_TYPE_NVME_BIO_BASED:
2195 dm_init_normal_md_queue(md);
2196 blk_queue_make_request(md->queue, dm_make_request_nvme);
2197 break;
2198 case DM_TYPE_NONE:
2199 WARN_ON_ONCE(true);
2200 break;
2203 r = dm_calculate_queue_limits(t, &limits);
2204 if (r) {
2205 DMERR("Cannot calculate initial queue limits");
2206 return r;
2208 dm_table_set_restrictions(t, md->queue, &limits);
2209 blk_register_queue(md->disk);
2211 return 0;
2214 struct mapped_device *dm_get_md(dev_t dev)
2216 struct mapped_device *md;
2217 unsigned minor = MINOR(dev);
2219 if (MAJOR(dev) != _major || minor >= (1 << MINORBITS))
2220 return NULL;
2222 spin_lock(&_minor_lock);
2224 md = idr_find(&_minor_idr, minor);
2225 if (!md || md == MINOR_ALLOCED || (MINOR(disk_devt(dm_disk(md))) != minor) ||
2226 test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) {
2227 md = NULL;
2228 goto out;
2230 dm_get(md);
2231 out:
2232 spin_unlock(&_minor_lock);
2234 return md;
2236 EXPORT_SYMBOL_GPL(dm_get_md);
2238 void *dm_get_mdptr(struct mapped_device *md)
2240 return md->interface_ptr;
2243 void dm_set_mdptr(struct mapped_device *md, void *ptr)
2245 md->interface_ptr = ptr;
2248 void dm_get(struct mapped_device *md)
2250 atomic_inc(&md->holders);
2251 BUG_ON(test_bit(DMF_FREEING, &md->flags));
2254 int dm_hold(struct mapped_device *md)
2256 spin_lock(&_minor_lock);
2257 if (test_bit(DMF_FREEING, &md->flags)) {
2258 spin_unlock(&_minor_lock);
2259 return -EBUSY;
2261 dm_get(md);
2262 spin_unlock(&_minor_lock);
2263 return 0;
2265 EXPORT_SYMBOL_GPL(dm_hold);
2267 const char *dm_device_name(struct mapped_device *md)
2269 return md->name;
2271 EXPORT_SYMBOL_GPL(dm_device_name);
2273 static void __dm_destroy(struct mapped_device *md, bool wait)
2275 struct dm_table *map;
2276 int srcu_idx;
2278 might_sleep();
2280 spin_lock(&_minor_lock);
2281 idr_replace(&_minor_idr, MINOR_ALLOCED, MINOR(disk_devt(dm_disk(md))));
2282 set_bit(DMF_FREEING, &md->flags);
2283 spin_unlock(&_minor_lock);
2285 blk_set_queue_dying(md->queue);
2287 if (dm_request_based(md) && md->kworker_task)
2288 kthread_flush_worker(&md->kworker);
2291 * Take suspend_lock so that presuspend and postsuspend methods
2292 * do not race with internal suspend.
2294 mutex_lock(&md->suspend_lock);
2295 map = dm_get_live_table(md, &srcu_idx);
2296 if (!dm_suspended_md(md)) {
2297 dm_table_presuspend_targets(map);
2298 dm_table_postsuspend_targets(map);
2300 /* dm_put_live_table must be before msleep, otherwise deadlock is possible */
2301 dm_put_live_table(md, srcu_idx);
2302 mutex_unlock(&md->suspend_lock);
2305 * Rare, but there may be I/O requests still going to complete,
2306 * for example. Wait for all references to disappear.
2307 * No one should increment the reference count of the mapped_device,
2308 * after the mapped_device state becomes DMF_FREEING.
2310 if (wait)
2311 while (atomic_read(&md->holders))
2312 msleep(1);
2313 else if (atomic_read(&md->holders))
2314 DMWARN("%s: Forcibly removing mapped_device still in use! (%d users)",
2315 dm_device_name(md), atomic_read(&md->holders));
2317 dm_sysfs_exit(md);
2318 dm_table_destroy(__unbind(md));
2319 free_dev(md);
2322 void dm_destroy(struct mapped_device *md)
2324 __dm_destroy(md, true);
2327 void dm_destroy_immediate(struct mapped_device *md)
2329 __dm_destroy(md, false);
2332 void dm_put(struct mapped_device *md)
2334 atomic_dec(&md->holders);
2336 EXPORT_SYMBOL_GPL(dm_put);
2338 static int dm_wait_for_completion(struct mapped_device *md, long task_state)
2340 int r = 0;
2341 DEFINE_WAIT(wait);
2343 while (1) {
2344 prepare_to_wait(&md->wait, &wait, task_state);
2346 if (!md_in_flight(md))
2347 break;
2349 if (signal_pending_state(task_state, current)) {
2350 r = -EINTR;
2351 break;
2354 io_schedule();
2356 finish_wait(&md->wait, &wait);
2358 return r;
2362 * Process the deferred bios
2364 static void dm_wq_work(struct work_struct *work)
2366 struct mapped_device *md = container_of(work, struct mapped_device,
2367 work);
2368 struct bio *c;
2369 int srcu_idx;
2370 struct dm_table *map;
2372 map = dm_get_live_table(md, &srcu_idx);
2374 while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
2375 spin_lock_irq(&md->deferred_lock);
2376 c = bio_list_pop(&md->deferred);
2377 spin_unlock_irq(&md->deferred_lock);
2379 if (!c)
2380 break;
2382 if (dm_request_based(md))
2383 generic_make_request(c);
2384 else
2385 __split_and_process_bio(md, map, c);
2388 dm_put_live_table(md, srcu_idx);
2391 static void dm_queue_flush(struct mapped_device *md)
2393 clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2394 smp_mb__after_atomic();
2395 queue_work(md->wq, &md->work);
2399 * Swap in a new table, returning the old one for the caller to destroy.
2401 struct dm_table *dm_swap_table(struct mapped_device *md, struct dm_table *table)
2403 struct dm_table *live_map = NULL, *map = ERR_PTR(-EINVAL);
2404 struct queue_limits limits;
2405 int r;
2407 mutex_lock(&md->suspend_lock);
2409 /* device must be suspended */
2410 if (!dm_suspended_md(md))
2411 goto out;
2414 * If the new table has no data devices, retain the existing limits.
2415 * This helps multipath with queue_if_no_path if all paths disappear,
2416 * then new I/O is queued based on these limits, and then some paths
2417 * reappear.
2419 if (dm_table_has_no_data_devices(table)) {
2420 live_map = dm_get_live_table_fast(md);
2421 if (live_map)
2422 limits = md->queue->limits;
2423 dm_put_live_table_fast(md);
2426 if (!live_map) {
2427 r = dm_calculate_queue_limits(table, &limits);
2428 if (r) {
2429 map = ERR_PTR(r);
2430 goto out;
2434 map = __bind(md, table, &limits);
2435 dm_issue_global_event();
2437 out:
2438 mutex_unlock(&md->suspend_lock);
2439 return map;
2443 * Functions to lock and unlock any filesystem running on the
2444 * device.
2446 static int lock_fs(struct mapped_device *md)
2448 int r;
2450 WARN_ON(md->frozen_sb);
2452 md->frozen_sb = freeze_bdev(md->bdev);
2453 if (IS_ERR(md->frozen_sb)) {
2454 r = PTR_ERR(md->frozen_sb);
2455 md->frozen_sb = NULL;
2456 return r;
2459 set_bit(DMF_FROZEN, &md->flags);
2461 return 0;
2464 static void unlock_fs(struct mapped_device *md)
2466 if (!test_bit(DMF_FROZEN, &md->flags))
2467 return;
2469 thaw_bdev(md->bdev, md->frozen_sb);
2470 md->frozen_sb = NULL;
2471 clear_bit(DMF_FROZEN, &md->flags);
2475 * @suspend_flags: DM_SUSPEND_LOCKFS_FLAG and/or DM_SUSPEND_NOFLUSH_FLAG
2476 * @task_state: e.g. TASK_INTERRUPTIBLE or TASK_UNINTERRUPTIBLE
2477 * @dmf_suspended_flag: DMF_SUSPENDED or DMF_SUSPENDED_INTERNALLY
2479 * If __dm_suspend returns 0, the device is completely quiescent
2480 * now. There is no request-processing activity. All new requests
2481 * are being added to md->deferred list.
2483 static int __dm_suspend(struct mapped_device *md, struct dm_table *map,
2484 unsigned suspend_flags, long task_state,
2485 int dmf_suspended_flag)
2487 bool do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG;
2488 bool noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG;
2489 int r;
2491 lockdep_assert_held(&md->suspend_lock);
2494 * DMF_NOFLUSH_SUSPENDING must be set before presuspend.
2495 * This flag is cleared before dm_suspend returns.
2497 if (noflush)
2498 set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2499 else
2500 pr_debug("%s: suspending with flush\n", dm_device_name(md));
2503 * This gets reverted if there's an error later and the targets
2504 * provide the .presuspend_undo hook.
2506 dm_table_presuspend_targets(map);
2509 * Flush I/O to the device.
2510 * Any I/O submitted after lock_fs() may not be flushed.
2511 * noflush takes precedence over do_lockfs.
2512 * (lock_fs() flushes I/Os and waits for them to complete.)
2514 if (!noflush && do_lockfs) {
2515 r = lock_fs(md);
2516 if (r) {
2517 dm_table_presuspend_undo_targets(map);
2518 return r;
2523 * Here we must make sure that no processes are submitting requests
2524 * to target drivers i.e. no one may be executing
2525 * __split_and_process_bio. This is called from dm_request and
2526 * dm_wq_work.
2528 * To get all processes out of __split_and_process_bio in dm_request,
2529 * we take the write lock. To prevent any process from reentering
2530 * __split_and_process_bio from dm_request and quiesce the thread
2531 * (dm_wq_work), we set BMF_BLOCK_IO_FOR_SUSPEND and call
2532 * flush_workqueue(md->wq).
2534 set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2535 if (map)
2536 synchronize_srcu(&md->io_barrier);
2539 * Stop md->queue before flushing md->wq in case request-based
2540 * dm defers requests to md->wq from md->queue.
2542 if (dm_request_based(md)) {
2543 dm_stop_queue(md->queue);
2544 if (md->kworker_task)
2545 kthread_flush_worker(&md->kworker);
2548 flush_workqueue(md->wq);
2551 * At this point no more requests are entering target request routines.
2552 * We call dm_wait_for_completion to wait for all existing requests
2553 * to finish.
2555 r = dm_wait_for_completion(md, task_state);
2556 if (!r)
2557 set_bit(dmf_suspended_flag, &md->flags);
2559 if (noflush)
2560 clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2561 if (map)
2562 synchronize_srcu(&md->io_barrier);
2564 /* were we interrupted ? */
2565 if (r < 0) {
2566 dm_queue_flush(md);
2568 if (dm_request_based(md))
2569 dm_start_queue(md->queue);
2571 unlock_fs(md);
2572 dm_table_presuspend_undo_targets(map);
2573 /* pushback list is already flushed, so skip flush */
2576 return r;
2580 * We need to be able to change a mapping table under a mounted
2581 * filesystem. For example we might want to move some data in
2582 * the background. Before the table can be swapped with
2583 * dm_bind_table, dm_suspend must be called to flush any in
2584 * flight bios and ensure that any further io gets deferred.
2587 * Suspend mechanism in request-based dm.
2589 * 1. Flush all I/Os by lock_fs() if needed.
2590 * 2. Stop dispatching any I/O by stopping the request_queue.
2591 * 3. Wait for all in-flight I/Os to be completed or requeued.
2593 * To abort suspend, start the request_queue.
2595 int dm_suspend(struct mapped_device *md, unsigned suspend_flags)
2597 struct dm_table *map = NULL;
2598 int r = 0;
2600 retry:
2601 mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
2603 if (dm_suspended_md(md)) {
2604 r = -EINVAL;
2605 goto out_unlock;
2608 if (dm_suspended_internally_md(md)) {
2609 /* already internally suspended, wait for internal resume */
2610 mutex_unlock(&md->suspend_lock);
2611 r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
2612 if (r)
2613 return r;
2614 goto retry;
2617 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2619 r = __dm_suspend(md, map, suspend_flags, TASK_INTERRUPTIBLE, DMF_SUSPENDED);
2620 if (r)
2621 goto out_unlock;
2623 dm_table_postsuspend_targets(map);
2625 out_unlock:
2626 mutex_unlock(&md->suspend_lock);
2627 return r;
2630 static int __dm_resume(struct mapped_device *md, struct dm_table *map)
2632 if (map) {
2633 int r = dm_table_resume_targets(map);
2634 if (r)
2635 return r;
2638 dm_queue_flush(md);
2641 * Flushing deferred I/Os must be done after targets are resumed
2642 * so that mapping of targets can work correctly.
2643 * Request-based dm is queueing the deferred I/Os in its request_queue.
2645 if (dm_request_based(md))
2646 dm_start_queue(md->queue);
2648 unlock_fs(md);
2650 return 0;
2653 int dm_resume(struct mapped_device *md)
2655 int r;
2656 struct dm_table *map = NULL;
2658 retry:
2659 r = -EINVAL;
2660 mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
2662 if (!dm_suspended_md(md))
2663 goto out;
2665 if (dm_suspended_internally_md(md)) {
2666 /* already internally suspended, wait for internal resume */
2667 mutex_unlock(&md->suspend_lock);
2668 r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
2669 if (r)
2670 return r;
2671 goto retry;
2674 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2675 if (!map || !dm_table_get_size(map))
2676 goto out;
2678 r = __dm_resume(md, map);
2679 if (r)
2680 goto out;
2682 clear_bit(DMF_SUSPENDED, &md->flags);
2683 out:
2684 mutex_unlock(&md->suspend_lock);
2686 return r;
2690 * Internal suspend/resume works like userspace-driven suspend. It waits
2691 * until all bios finish and prevents issuing new bios to the target drivers.
2692 * It may be used only from the kernel.
2695 static void __dm_internal_suspend(struct mapped_device *md, unsigned suspend_flags)
2697 struct dm_table *map = NULL;
2699 lockdep_assert_held(&md->suspend_lock);
2701 if (md->internal_suspend_count++)
2702 return; /* nested internal suspend */
2704 if (dm_suspended_md(md)) {
2705 set_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2706 return; /* nest suspend */
2709 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2712 * Using TASK_UNINTERRUPTIBLE because only NOFLUSH internal suspend is
2713 * supported. Properly supporting a TASK_INTERRUPTIBLE internal suspend
2714 * would require changing .presuspend to return an error -- avoid this
2715 * until there is a need for more elaborate variants of internal suspend.
2717 (void) __dm_suspend(md, map, suspend_flags, TASK_UNINTERRUPTIBLE,
2718 DMF_SUSPENDED_INTERNALLY);
2720 dm_table_postsuspend_targets(map);
2723 static void __dm_internal_resume(struct mapped_device *md)
2725 BUG_ON(!md->internal_suspend_count);
2727 if (--md->internal_suspend_count)
2728 return; /* resume from nested internal suspend */
2730 if (dm_suspended_md(md))
2731 goto done; /* resume from nested suspend */
2734 * NOTE: existing callers don't need to call dm_table_resume_targets
2735 * (which may fail -- so best to avoid it for now by passing NULL map)
2737 (void) __dm_resume(md, NULL);
2739 done:
2740 clear_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2741 smp_mb__after_atomic();
2742 wake_up_bit(&md->flags, DMF_SUSPENDED_INTERNALLY);
2745 void dm_internal_suspend_noflush(struct mapped_device *md)
2747 mutex_lock(&md->suspend_lock);
2748 __dm_internal_suspend(md, DM_SUSPEND_NOFLUSH_FLAG);
2749 mutex_unlock(&md->suspend_lock);
2751 EXPORT_SYMBOL_GPL(dm_internal_suspend_noflush);
2753 void dm_internal_resume(struct mapped_device *md)
2755 mutex_lock(&md->suspend_lock);
2756 __dm_internal_resume(md);
2757 mutex_unlock(&md->suspend_lock);
2759 EXPORT_SYMBOL_GPL(dm_internal_resume);
2762 * Fast variants of internal suspend/resume hold md->suspend_lock,
2763 * which prevents interaction with userspace-driven suspend.
2766 void dm_internal_suspend_fast(struct mapped_device *md)
2768 mutex_lock(&md->suspend_lock);
2769 if (dm_suspended_md(md) || dm_suspended_internally_md(md))
2770 return;
2772 set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2773 synchronize_srcu(&md->io_barrier);
2774 flush_workqueue(md->wq);
2775 dm_wait_for_completion(md, TASK_UNINTERRUPTIBLE);
2777 EXPORT_SYMBOL_GPL(dm_internal_suspend_fast);
2779 void dm_internal_resume_fast(struct mapped_device *md)
2781 if (dm_suspended_md(md) || dm_suspended_internally_md(md))
2782 goto done;
2784 dm_queue_flush(md);
2786 done:
2787 mutex_unlock(&md->suspend_lock);
2789 EXPORT_SYMBOL_GPL(dm_internal_resume_fast);
2791 /*-----------------------------------------------------------------
2792 * Event notification.
2793 *---------------------------------------------------------------*/
2794 int dm_kobject_uevent(struct mapped_device *md, enum kobject_action action,
2795 unsigned cookie)
2797 char udev_cookie[DM_COOKIE_LENGTH];
2798 char *envp[] = { udev_cookie, NULL };
2800 if (!cookie)
2801 return kobject_uevent(&disk_to_dev(md->disk)->kobj, action);
2802 else {
2803 snprintf(udev_cookie, DM_COOKIE_LENGTH, "%s=%u",
2804 DM_COOKIE_ENV_VAR_NAME, cookie);
2805 return kobject_uevent_env(&disk_to_dev(md->disk)->kobj,
2806 action, envp);
2810 uint32_t dm_next_uevent_seq(struct mapped_device *md)
2812 return atomic_add_return(1, &md->uevent_seq);
2815 uint32_t dm_get_event_nr(struct mapped_device *md)
2817 return atomic_read(&md->event_nr);
2820 int dm_wait_event(struct mapped_device *md, int event_nr)
2822 return wait_event_interruptible(md->eventq,
2823 (event_nr != atomic_read(&md->event_nr)));
2826 void dm_uevent_add(struct mapped_device *md, struct list_head *elist)
2828 unsigned long flags;
2830 spin_lock_irqsave(&md->uevent_lock, flags);
2831 list_add(elist, &md->uevent_list);
2832 spin_unlock_irqrestore(&md->uevent_lock, flags);
2836 * The gendisk is only valid as long as you have a reference
2837 * count on 'md'.
2839 struct gendisk *dm_disk(struct mapped_device *md)
2841 return md->disk;
2843 EXPORT_SYMBOL_GPL(dm_disk);
2845 struct kobject *dm_kobject(struct mapped_device *md)
2847 return &md->kobj_holder.kobj;
2850 struct mapped_device *dm_get_from_kobject(struct kobject *kobj)
2852 struct mapped_device *md;
2854 md = container_of(kobj, struct mapped_device, kobj_holder.kobj);
2856 spin_lock(&_minor_lock);
2857 if (test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) {
2858 md = NULL;
2859 goto out;
2861 dm_get(md);
2862 out:
2863 spin_unlock(&_minor_lock);
2865 return md;
2868 int dm_suspended_md(struct mapped_device *md)
2870 return test_bit(DMF_SUSPENDED, &md->flags);
2873 int dm_suspended_internally_md(struct mapped_device *md)
2875 return test_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2878 int dm_test_deferred_remove_flag(struct mapped_device *md)
2880 return test_bit(DMF_DEFERRED_REMOVE, &md->flags);
2883 int dm_suspended(struct dm_target *ti)
2885 return dm_suspended_md(dm_table_get_md(ti->table));
2887 EXPORT_SYMBOL_GPL(dm_suspended);
2889 int dm_noflush_suspending(struct dm_target *ti)
2891 return __noflush_suspending(dm_table_get_md(ti->table));
2893 EXPORT_SYMBOL_GPL(dm_noflush_suspending);
2895 struct dm_md_mempools *dm_alloc_md_mempools(struct mapped_device *md, enum dm_queue_mode type,
2896 unsigned integrity, unsigned per_io_data_size,
2897 unsigned min_pool_size)
2899 struct dm_md_mempools *pools = kzalloc_node(sizeof(*pools), GFP_KERNEL, md->numa_node_id);
2900 unsigned int pool_size = 0;
2901 unsigned int front_pad, io_front_pad;
2903 if (!pools)
2904 return NULL;
2906 switch (type) {
2907 case DM_TYPE_BIO_BASED:
2908 case DM_TYPE_DAX_BIO_BASED:
2909 case DM_TYPE_NVME_BIO_BASED:
2910 pool_size = max(dm_get_reserved_bio_based_ios(), min_pool_size);
2911 front_pad = roundup(per_io_data_size, __alignof__(struct dm_target_io)) + offsetof(struct dm_target_io, clone);
2912 io_front_pad = roundup(front_pad, __alignof__(struct dm_io)) + offsetof(struct dm_io, tio);
2913 pools->io_bs = bioset_create(pool_size, io_front_pad, 0);
2914 if (!pools->io_bs)
2915 goto out;
2916 if (integrity && bioset_integrity_create(pools->io_bs, pool_size))
2917 goto out;
2918 break;
2919 case DM_TYPE_REQUEST_BASED:
2920 case DM_TYPE_MQ_REQUEST_BASED:
2921 pool_size = max(dm_get_reserved_rq_based_ios(), min_pool_size);
2922 front_pad = offsetof(struct dm_rq_clone_bio_info, clone);
2923 /* per_io_data_size is used for blk-mq pdu at queue allocation */
2924 break;
2925 default:
2926 BUG();
2929 pools->bs = bioset_create(pool_size, front_pad, 0);
2930 if (!pools->bs)
2931 goto out;
2933 if (integrity && bioset_integrity_create(pools->bs, pool_size))
2934 goto out;
2936 return pools;
2938 out:
2939 dm_free_md_mempools(pools);
2941 return NULL;
2944 void dm_free_md_mempools(struct dm_md_mempools *pools)
2946 if (!pools)
2947 return;
2949 if (pools->bs)
2950 bioset_free(pools->bs);
2951 if (pools->io_bs)
2952 bioset_free(pools->io_bs);
2954 kfree(pools);
2957 struct dm_pr {
2958 u64 old_key;
2959 u64 new_key;
2960 u32 flags;
2961 bool fail_early;
2964 static int dm_call_pr(struct block_device *bdev, iterate_devices_callout_fn fn,
2965 void *data)
2967 struct mapped_device *md = bdev->bd_disk->private_data;
2968 struct dm_table *table;
2969 struct dm_target *ti;
2970 int ret = -ENOTTY, srcu_idx;
2972 table = dm_get_live_table(md, &srcu_idx);
2973 if (!table || !dm_table_get_size(table))
2974 goto out;
2976 /* We only support devices that have a single target */
2977 if (dm_table_get_num_targets(table) != 1)
2978 goto out;
2979 ti = dm_table_get_target(table, 0);
2981 ret = -EINVAL;
2982 if (!ti->type->iterate_devices)
2983 goto out;
2985 ret = ti->type->iterate_devices(ti, fn, data);
2986 out:
2987 dm_put_live_table(md, srcu_idx);
2988 return ret;
2992 * For register / unregister we need to manually call out to every path.
2994 static int __dm_pr_register(struct dm_target *ti, struct dm_dev *dev,
2995 sector_t start, sector_t len, void *data)
2997 struct dm_pr *pr = data;
2998 const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops;
3000 if (!ops || !ops->pr_register)
3001 return -EOPNOTSUPP;
3002 return ops->pr_register(dev->bdev, pr->old_key, pr->new_key, pr->flags);
3005 static int dm_pr_register(struct block_device *bdev, u64 old_key, u64 new_key,
3006 u32 flags)
3008 struct dm_pr pr = {
3009 .old_key = old_key,
3010 .new_key = new_key,
3011 .flags = flags,
3012 .fail_early = true,
3014 int ret;
3016 ret = dm_call_pr(bdev, __dm_pr_register, &pr);
3017 if (ret && new_key) {
3018 /* unregister all paths if we failed to register any path */
3019 pr.old_key = new_key;
3020 pr.new_key = 0;
3021 pr.flags = 0;
3022 pr.fail_early = false;
3023 dm_call_pr(bdev, __dm_pr_register, &pr);
3026 return ret;
3029 static int dm_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type,
3030 u32 flags)
3032 struct mapped_device *md = bdev->bd_disk->private_data;
3033 const struct pr_ops *ops;
3034 fmode_t mode;
3035 int r;
3037 r = dm_get_bdev_for_ioctl(md, &bdev, &mode);
3038 if (r < 0)
3039 return r;
3041 ops = bdev->bd_disk->fops->pr_ops;
3042 if (ops && ops->pr_reserve)
3043 r = ops->pr_reserve(bdev, key, type, flags);
3044 else
3045 r = -EOPNOTSUPP;
3047 blkdev_put(bdev, mode);
3048 return r;
3051 static int dm_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
3053 struct mapped_device *md = bdev->bd_disk->private_data;
3054 const struct pr_ops *ops;
3055 fmode_t mode;
3056 int r;
3058 r = dm_get_bdev_for_ioctl(md, &bdev, &mode);
3059 if (r < 0)
3060 return r;
3062 ops = bdev->bd_disk->fops->pr_ops;
3063 if (ops && ops->pr_release)
3064 r = ops->pr_release(bdev, key, type);
3065 else
3066 r = -EOPNOTSUPP;
3068 blkdev_put(bdev, mode);
3069 return r;
3072 static int dm_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key,
3073 enum pr_type type, bool abort)
3075 struct mapped_device *md = bdev->bd_disk->private_data;
3076 const struct pr_ops *ops;
3077 fmode_t mode;
3078 int r;
3080 r = dm_get_bdev_for_ioctl(md, &bdev, &mode);
3081 if (r < 0)
3082 return r;
3084 ops = bdev->bd_disk->fops->pr_ops;
3085 if (ops && ops->pr_preempt)
3086 r = ops->pr_preempt(bdev, old_key, new_key, type, abort);
3087 else
3088 r = -EOPNOTSUPP;
3090 blkdev_put(bdev, mode);
3091 return r;
3094 static int dm_pr_clear(struct block_device *bdev, u64 key)
3096 struct mapped_device *md = bdev->bd_disk->private_data;
3097 const struct pr_ops *ops;
3098 fmode_t mode;
3099 int r;
3101 r = dm_get_bdev_for_ioctl(md, &bdev, &mode);
3102 if (r < 0)
3103 return r;
3105 ops = bdev->bd_disk->fops->pr_ops;
3106 if (ops && ops->pr_clear)
3107 r = ops->pr_clear(bdev, key);
3108 else
3109 r = -EOPNOTSUPP;
3111 blkdev_put(bdev, mode);
3112 return r;
3115 static const struct pr_ops dm_pr_ops = {
3116 .pr_register = dm_pr_register,
3117 .pr_reserve = dm_pr_reserve,
3118 .pr_release = dm_pr_release,
3119 .pr_preempt = dm_pr_preempt,
3120 .pr_clear = dm_pr_clear,
3123 static const struct block_device_operations dm_blk_dops = {
3124 .open = dm_blk_open,
3125 .release = dm_blk_close,
3126 .ioctl = dm_blk_ioctl,
3127 .getgeo = dm_blk_getgeo,
3128 .pr_ops = &dm_pr_ops,
3129 .owner = THIS_MODULE
3132 static const struct dax_operations dm_dax_ops = {
3133 .direct_access = dm_dax_direct_access,
3134 .copy_from_iter = dm_dax_copy_from_iter,
3138 * module hooks
3140 module_init(dm_init);
3141 module_exit(dm_exit);
3143 module_param(major, uint, 0);
3144 MODULE_PARM_DESC(major, "The major number of the device mapper");
3146 module_param(reserved_bio_based_ios, uint, S_IRUGO | S_IWUSR);
3147 MODULE_PARM_DESC(reserved_bio_based_ios, "Reserved IOs in bio-based mempools");
3149 module_param(dm_numa_node, int, S_IRUGO | S_IWUSR);
3150 MODULE_PARM_DESC(dm_numa_node, "NUMA node for DM device memory allocations");
3152 MODULE_DESCRIPTION(DM_NAME " driver");
3153 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
3154 MODULE_LICENSE("GPL");