Linux 4.16.11
[linux/fpc-iii.git] / drivers / media / i2c / ks0127.c
blob5905ed6f8397ecd5b77b75f664b2eb2ecd94614f
1 /*
2 * Video Capture Driver (Video for Linux 1/2)
3 * for the Matrox Marvel G200,G400 and Rainbow Runner-G series
5 * This module is an interface to the KS0127 video decoder chip.
7 * Copyright (C) 1999 Ryan Drake <stiletto@mediaone.net>
9 * This program is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU General Public License
11 * as published by the Free Software Foundation; either version 2
12 * of the License, or (at your option) any later version.
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
19 *****************************************************************************
21 * Modified and extended by
22 * Mike Bernson <mike@mlb.org>
23 * Gerard v.d. Horst
24 * Leon van Stuivenberg <l.vanstuivenberg@chello.nl>
25 * Gernot Ziegler <gz@lysator.liu.se>
27 * Version History:
28 * V1.0 Ryan Drake Initial version by Ryan Drake
29 * V1.1 Gerard v.d. Horst Added some debugoutput, reset the video-standard
32 #include <linux/init.h>
33 #include <linux/module.h>
34 #include <linux/delay.h>
35 #include <linux/errno.h>
36 #include <linux/kernel.h>
37 #include <linux/i2c.h>
38 #include <linux/videodev2.h>
39 #include <linux/slab.h>
40 #include <media/v4l2-device.h>
41 #include "ks0127.h"
43 MODULE_DESCRIPTION("KS0127 video decoder driver");
44 MODULE_AUTHOR("Ryan Drake");
45 MODULE_LICENSE("GPL");
47 /* Addresses */
48 #define I2C_KS0127_ADDON 0xD8
49 #define I2C_KS0127_ONBOARD 0xDA
52 /* ks0127 control registers */
53 #define KS_STAT 0x00
54 #define KS_CMDA 0x01
55 #define KS_CMDB 0x02
56 #define KS_CMDC 0x03
57 #define KS_CMDD 0x04
58 #define KS_HAVB 0x05
59 #define KS_HAVE 0x06
60 #define KS_HS1B 0x07
61 #define KS_HS1E 0x08
62 #define KS_HS2B 0x09
63 #define KS_HS2E 0x0a
64 #define KS_AGC 0x0b
65 #define KS_HXTRA 0x0c
66 #define KS_CDEM 0x0d
67 #define KS_PORTAB 0x0e
68 #define KS_LUMA 0x0f
69 #define KS_CON 0x10
70 #define KS_BRT 0x11
71 #define KS_CHROMA 0x12
72 #define KS_CHROMB 0x13
73 #define KS_DEMOD 0x14
74 #define KS_SAT 0x15
75 #define KS_HUE 0x16
76 #define KS_VERTIA 0x17
77 #define KS_VERTIB 0x18
78 #define KS_VERTIC 0x19
79 #define KS_HSCLL 0x1a
80 #define KS_HSCLH 0x1b
81 #define KS_VSCLL 0x1c
82 #define KS_VSCLH 0x1d
83 #define KS_OFMTA 0x1e
84 #define KS_OFMTB 0x1f
85 #define KS_VBICTL 0x20
86 #define KS_CCDAT2 0x21
87 #define KS_CCDAT1 0x22
88 #define KS_VBIL30 0x23
89 #define KS_VBIL74 0x24
90 #define KS_VBIL118 0x25
91 #define KS_VBIL1512 0x26
92 #define KS_TTFRAM 0x27
93 #define KS_TESTA 0x28
94 #define KS_UVOFFH 0x29
95 #define KS_UVOFFL 0x2a
96 #define KS_UGAIN 0x2b
97 #define KS_VGAIN 0x2c
98 #define KS_VAVB 0x2d
99 #define KS_VAVE 0x2e
100 #define KS_CTRACK 0x2f
101 #define KS_POLCTL 0x30
102 #define KS_REFCOD 0x31
103 #define KS_INVALY 0x32
104 #define KS_INVALU 0x33
105 #define KS_INVALV 0x34
106 #define KS_UNUSEY 0x35
107 #define KS_UNUSEU 0x36
108 #define KS_UNUSEV 0x37
109 #define KS_USRSAV 0x38
110 #define KS_USREAV 0x39
111 #define KS_SHS1A 0x3a
112 #define KS_SHS1B 0x3b
113 #define KS_SHS1C 0x3c
114 #define KS_CMDE 0x3d
115 #define KS_VSDEL 0x3e
116 #define KS_CMDF 0x3f
117 #define KS_GAMMA0 0x40
118 #define KS_GAMMA1 0x41
119 #define KS_GAMMA2 0x42
120 #define KS_GAMMA3 0x43
121 #define KS_GAMMA4 0x44
122 #define KS_GAMMA5 0x45
123 #define KS_GAMMA6 0x46
124 #define KS_GAMMA7 0x47
125 #define KS_GAMMA8 0x48
126 #define KS_GAMMA9 0x49
127 #define KS_GAMMA10 0x4a
128 #define KS_GAMMA11 0x4b
129 #define KS_GAMMA12 0x4c
130 #define KS_GAMMA13 0x4d
131 #define KS_GAMMA14 0x4e
132 #define KS_GAMMA15 0x4f
133 #define KS_GAMMA16 0x50
134 #define KS_GAMMA17 0x51
135 #define KS_GAMMA18 0x52
136 #define KS_GAMMA19 0x53
137 #define KS_GAMMA20 0x54
138 #define KS_GAMMA21 0x55
139 #define KS_GAMMA22 0x56
140 #define KS_GAMMA23 0x57
141 #define KS_GAMMA24 0x58
142 #define KS_GAMMA25 0x59
143 #define KS_GAMMA26 0x5a
144 #define KS_GAMMA27 0x5b
145 #define KS_GAMMA28 0x5c
146 #define KS_GAMMA29 0x5d
147 #define KS_GAMMA30 0x5e
148 #define KS_GAMMA31 0x5f
149 #define KS_GAMMAD0 0x60
150 #define KS_GAMMAD1 0x61
151 #define KS_GAMMAD2 0x62
152 #define KS_GAMMAD3 0x63
153 #define KS_GAMMAD4 0x64
154 #define KS_GAMMAD5 0x65
155 #define KS_GAMMAD6 0x66
156 #define KS_GAMMAD7 0x67
157 #define KS_GAMMAD8 0x68
158 #define KS_GAMMAD9 0x69
159 #define KS_GAMMAD10 0x6a
160 #define KS_GAMMAD11 0x6b
161 #define KS_GAMMAD12 0x6c
162 #define KS_GAMMAD13 0x6d
163 #define KS_GAMMAD14 0x6e
164 #define KS_GAMMAD15 0x6f
165 #define KS_GAMMAD16 0x70
166 #define KS_GAMMAD17 0x71
167 #define KS_GAMMAD18 0x72
168 #define KS_GAMMAD19 0x73
169 #define KS_GAMMAD20 0x74
170 #define KS_GAMMAD21 0x75
171 #define KS_GAMMAD22 0x76
172 #define KS_GAMMAD23 0x77
173 #define KS_GAMMAD24 0x78
174 #define KS_GAMMAD25 0x79
175 #define KS_GAMMAD26 0x7a
176 #define KS_GAMMAD27 0x7b
177 #define KS_GAMMAD28 0x7c
178 #define KS_GAMMAD29 0x7d
179 #define KS_GAMMAD30 0x7e
180 #define KS_GAMMAD31 0x7f
183 /****************************************************************************
184 * mga_dev : represents one ks0127 chip.
185 ****************************************************************************/
187 struct adjust {
188 int contrast;
189 int bright;
190 int hue;
191 int ugain;
192 int vgain;
195 struct ks0127 {
196 struct v4l2_subdev sd;
197 v4l2_std_id norm;
198 u8 regs[256];
201 static inline struct ks0127 *to_ks0127(struct v4l2_subdev *sd)
203 return container_of(sd, struct ks0127, sd);
207 static int debug; /* insmod parameter */
209 module_param(debug, int, 0);
210 MODULE_PARM_DESC(debug, "Debug output");
212 static u8 reg_defaults[64];
214 static void init_reg_defaults(void)
216 static int initialized;
217 u8 *table = reg_defaults;
219 if (initialized)
220 return;
221 initialized = 1;
223 table[KS_CMDA] = 0x2c; /* VSE=0, CCIR 601, autodetect standard */
224 table[KS_CMDB] = 0x12; /* VALIGN=0, AGC control and input */
225 table[KS_CMDC] = 0x00; /* Test options */
226 /* clock & input select, write 1 to PORTA */
227 table[KS_CMDD] = 0x01;
228 table[KS_HAVB] = 0x00; /* HAV Start Control */
229 table[KS_HAVE] = 0x00; /* HAV End Control */
230 table[KS_HS1B] = 0x10; /* HS1 Start Control */
231 table[KS_HS1E] = 0x00; /* HS1 End Control */
232 table[KS_HS2B] = 0x00; /* HS2 Start Control */
233 table[KS_HS2E] = 0x00; /* HS2 End Control */
234 table[KS_AGC] = 0x53; /* Manual setting for AGC */
235 table[KS_HXTRA] = 0x00; /* Extra Bits for HAV and HS1/2 */
236 table[KS_CDEM] = 0x00; /* Chroma Demodulation Control */
237 table[KS_PORTAB] = 0x0f; /* port B is input, port A output GPPORT */
238 table[KS_LUMA] = 0x01; /* Luma control */
239 table[KS_CON] = 0x00; /* Contrast Control */
240 table[KS_BRT] = 0x00; /* Brightness Control */
241 table[KS_CHROMA] = 0x2a; /* Chroma control A */
242 table[KS_CHROMB] = 0x90; /* Chroma control B */
243 table[KS_DEMOD] = 0x00; /* Chroma Demodulation Control & Status */
244 table[KS_SAT] = 0x00; /* Color Saturation Control*/
245 table[KS_HUE] = 0x00; /* Hue Control */
246 table[KS_VERTIA] = 0x00; /* Vertical Processing Control A */
247 /* Vertical Processing Control B, luma 1 line delayed */
248 table[KS_VERTIB] = 0x12;
249 table[KS_VERTIC] = 0x0b; /* Vertical Processing Control C */
250 table[KS_HSCLL] = 0x00; /* Horizontal Scaling Ratio Low */
251 table[KS_HSCLH] = 0x00; /* Horizontal Scaling Ratio High */
252 table[KS_VSCLL] = 0x00; /* Vertical Scaling Ratio Low */
253 table[KS_VSCLH] = 0x00; /* Vertical Scaling Ratio High */
254 /* 16 bit YCbCr 4:2:2 output; I can't make the bt866 like 8 bit /Sam */
255 table[KS_OFMTA] = 0x30;
256 table[KS_OFMTB] = 0x00; /* Output Control B */
257 /* VBI Decoder Control; 4bit fmt: avoid Y overflow */
258 table[KS_VBICTL] = 0x5d;
259 table[KS_CCDAT2] = 0x00; /* Read Only register */
260 table[KS_CCDAT1] = 0x00; /* Read Only register */
261 table[KS_VBIL30] = 0xa8; /* VBI data decoding options */
262 table[KS_VBIL74] = 0xaa; /* VBI data decoding options */
263 table[KS_VBIL118] = 0x2a; /* VBI data decoding options */
264 table[KS_VBIL1512] = 0x00; /* VBI data decoding options */
265 table[KS_TTFRAM] = 0x00; /* Teletext frame alignment pattern */
266 table[KS_TESTA] = 0x00; /* test register, shouldn't be written */
267 table[KS_UVOFFH] = 0x00; /* UV Offset Adjustment High */
268 table[KS_UVOFFL] = 0x00; /* UV Offset Adjustment Low */
269 table[KS_UGAIN] = 0x00; /* U Component Gain Adjustment */
270 table[KS_VGAIN] = 0x00; /* V Component Gain Adjustment */
271 table[KS_VAVB] = 0x07; /* VAV Begin */
272 table[KS_VAVE] = 0x00; /* VAV End */
273 table[KS_CTRACK] = 0x00; /* Chroma Tracking Control */
274 table[KS_POLCTL] = 0x41; /* Timing Signal Polarity Control */
275 table[KS_REFCOD] = 0x80; /* Reference Code Insertion Control */
276 table[KS_INVALY] = 0x10; /* Invalid Y Code */
277 table[KS_INVALU] = 0x80; /* Invalid U Code */
278 table[KS_INVALV] = 0x80; /* Invalid V Code */
279 table[KS_UNUSEY] = 0x10; /* Unused Y Code */
280 table[KS_UNUSEU] = 0x80; /* Unused U Code */
281 table[KS_UNUSEV] = 0x80; /* Unused V Code */
282 table[KS_USRSAV] = 0x00; /* reserved */
283 table[KS_USREAV] = 0x00; /* reserved */
284 table[KS_SHS1A] = 0x00; /* User Defined SHS1 A */
285 /* User Defined SHS1 B, ALT656=1 on 0127B */
286 table[KS_SHS1B] = 0x80;
287 table[KS_SHS1C] = 0x00; /* User Defined SHS1 C */
288 table[KS_CMDE] = 0x00; /* Command Register E */
289 table[KS_VSDEL] = 0x00; /* VS Delay Control */
290 /* Command Register F, update -immediately- */
291 /* (there might come no vsync)*/
292 table[KS_CMDF] = 0x02;
296 /* We need to manually read because of a bug in the KS0127 chip.
298 * An explanation from kayork@mail.utexas.edu:
300 * During I2C reads, the KS0127 only samples for a stop condition
301 * during the place where the acknowledge bit should be. Any standard
302 * I2C implementation (correctly) throws in another clock transition
303 * at the 9th bit, and the KS0127 will not recognize the stop condition
304 * and will continue to clock out data.
306 * So we have to do the read ourself. Big deal.
307 * workaround in i2c-algo-bit
311 static u8 ks0127_read(struct v4l2_subdev *sd, u8 reg)
313 struct i2c_client *client = v4l2_get_subdevdata(sd);
314 char val = 0;
315 struct i2c_msg msgs[] = {
317 .addr = client->addr,
318 .len = sizeof(reg),
319 .buf = &reg
322 .addr = client->addr,
323 .flags = I2C_M_RD | I2C_M_NO_RD_ACK,
324 .len = sizeof(val),
325 .buf = &val
328 int ret;
330 ret = i2c_transfer(client->adapter, msgs, ARRAY_SIZE(msgs));
331 if (ret != ARRAY_SIZE(msgs))
332 v4l2_dbg(1, debug, sd, "read error\n");
334 return val;
338 static void ks0127_write(struct v4l2_subdev *sd, u8 reg, u8 val)
340 struct i2c_client *client = v4l2_get_subdevdata(sd);
341 struct ks0127 *ks = to_ks0127(sd);
342 char msg[] = { reg, val };
344 if (i2c_master_send(client, msg, sizeof(msg)) != sizeof(msg))
345 v4l2_dbg(1, debug, sd, "write error\n");
347 ks->regs[reg] = val;
351 /* generic bit-twiddling */
352 static void ks0127_and_or(struct v4l2_subdev *sd, u8 reg, u8 and_v, u8 or_v)
354 struct ks0127 *ks = to_ks0127(sd);
356 u8 val = ks->regs[reg];
357 val = (val & and_v) | or_v;
358 ks0127_write(sd, reg, val);
363 /****************************************************************************
364 * ks0127 private api
365 ****************************************************************************/
366 static void ks0127_init(struct v4l2_subdev *sd)
368 u8 *table = reg_defaults;
369 int i;
371 v4l2_dbg(1, debug, sd, "reset\n");
372 msleep(1);
374 /* initialize all registers to known values */
375 /* (except STAT, 0x21, 0x22, TEST and 0x38,0x39) */
377 for (i = 1; i < 33; i++)
378 ks0127_write(sd, i, table[i]);
380 for (i = 35; i < 40; i++)
381 ks0127_write(sd, i, table[i]);
383 for (i = 41; i < 56; i++)
384 ks0127_write(sd, i, table[i]);
386 for (i = 58; i < 64; i++)
387 ks0127_write(sd, i, table[i]);
390 if ((ks0127_read(sd, KS_STAT) & 0x80) == 0) {
391 v4l2_dbg(1, debug, sd, "ks0122s found\n");
392 return;
395 switch (ks0127_read(sd, KS_CMDE) & 0x0f) {
396 case 0:
397 v4l2_dbg(1, debug, sd, "ks0127 found\n");
398 break;
400 case 9:
401 v4l2_dbg(1, debug, sd, "ks0127B Revision A found\n");
402 break;
404 default:
405 v4l2_dbg(1, debug, sd, "unknown revision\n");
406 break;
410 static int ks0127_s_routing(struct v4l2_subdev *sd,
411 u32 input, u32 output, u32 config)
413 struct ks0127 *ks = to_ks0127(sd);
415 switch (input) {
416 case KS_INPUT_COMPOSITE_1:
417 case KS_INPUT_COMPOSITE_2:
418 case KS_INPUT_COMPOSITE_3:
419 case KS_INPUT_COMPOSITE_4:
420 case KS_INPUT_COMPOSITE_5:
421 case KS_INPUT_COMPOSITE_6:
422 v4l2_dbg(1, debug, sd,
423 "s_routing %d: Composite\n", input);
424 /* autodetect 50/60 Hz */
425 ks0127_and_or(sd, KS_CMDA, 0xfc, 0x00);
426 /* VSE=0 */
427 ks0127_and_or(sd, KS_CMDA, ~0x40, 0x00);
428 /* set input line */
429 ks0127_and_or(sd, KS_CMDB, 0xb0, input);
430 /* non-freerunning mode */
431 ks0127_and_or(sd, KS_CMDC, 0x70, 0x0a);
432 /* analog input */
433 ks0127_and_or(sd, KS_CMDD, 0x03, 0x00);
434 /* enable chroma demodulation */
435 ks0127_and_or(sd, KS_CTRACK, 0xcf, 0x00);
436 /* chroma trap, HYBWR=1 */
437 ks0127_and_or(sd, KS_LUMA, 0x00,
438 (reg_defaults[KS_LUMA])|0x0c);
439 /* scaler fullbw, luma comb off */
440 ks0127_and_or(sd, KS_VERTIA, 0x08, 0x81);
441 /* manual chroma comb .25 .5 .25 */
442 ks0127_and_or(sd, KS_VERTIC, 0x0f, 0x90);
444 /* chroma path delay */
445 ks0127_and_or(sd, KS_CHROMB, 0x0f, 0x90);
447 ks0127_write(sd, KS_UGAIN, reg_defaults[KS_UGAIN]);
448 ks0127_write(sd, KS_VGAIN, reg_defaults[KS_VGAIN]);
449 ks0127_write(sd, KS_UVOFFH, reg_defaults[KS_UVOFFH]);
450 ks0127_write(sd, KS_UVOFFL, reg_defaults[KS_UVOFFL]);
451 break;
453 case KS_INPUT_SVIDEO_1:
454 case KS_INPUT_SVIDEO_2:
455 case KS_INPUT_SVIDEO_3:
456 v4l2_dbg(1, debug, sd,
457 "s_routing %d: S-Video\n", input);
458 /* autodetect 50/60 Hz */
459 ks0127_and_or(sd, KS_CMDA, 0xfc, 0x00);
460 /* VSE=0 */
461 ks0127_and_or(sd, KS_CMDA, ~0x40, 0x00);
462 /* set input line */
463 ks0127_and_or(sd, KS_CMDB, 0xb0, input);
464 /* non-freerunning mode */
465 ks0127_and_or(sd, KS_CMDC, 0x70, 0x0a);
466 /* analog input */
467 ks0127_and_or(sd, KS_CMDD, 0x03, 0x00);
468 /* enable chroma demodulation */
469 ks0127_and_or(sd, KS_CTRACK, 0xcf, 0x00);
470 ks0127_and_or(sd, KS_LUMA, 0x00,
471 reg_defaults[KS_LUMA]);
472 /* disable luma comb */
473 ks0127_and_or(sd, KS_VERTIA, 0x08,
474 (reg_defaults[KS_VERTIA]&0xf0)|0x01);
475 ks0127_and_or(sd, KS_VERTIC, 0x0f,
476 reg_defaults[KS_VERTIC]&0xf0);
478 ks0127_and_or(sd, KS_CHROMB, 0x0f,
479 reg_defaults[KS_CHROMB]&0xf0);
481 ks0127_write(sd, KS_UGAIN, reg_defaults[KS_UGAIN]);
482 ks0127_write(sd, KS_VGAIN, reg_defaults[KS_VGAIN]);
483 ks0127_write(sd, KS_UVOFFH, reg_defaults[KS_UVOFFH]);
484 ks0127_write(sd, KS_UVOFFL, reg_defaults[KS_UVOFFL]);
485 break;
487 case KS_INPUT_YUV656:
488 v4l2_dbg(1, debug, sd, "s_routing 15: YUV656\n");
489 if (ks->norm & V4L2_STD_525_60)
490 /* force 60 Hz */
491 ks0127_and_or(sd, KS_CMDA, 0xfc, 0x03);
492 else
493 /* force 50 Hz */
494 ks0127_and_or(sd, KS_CMDA, 0xfc, 0x02);
496 ks0127_and_or(sd, KS_CMDA, 0xff, 0x40); /* VSE=1 */
497 /* set input line and VALIGN */
498 ks0127_and_or(sd, KS_CMDB, 0xb0, (input | 0x40));
499 /* freerunning mode, */
500 /* TSTGEN = 1 TSTGFR=11 TSTGPH=0 TSTGPK=0 VMEM=1*/
501 ks0127_and_or(sd, KS_CMDC, 0x70, 0x87);
502 /* digital input, SYNDIR = 0 INPSL=01 CLKDIR=0 EAV=0 */
503 ks0127_and_or(sd, KS_CMDD, 0x03, 0x08);
504 /* disable chroma demodulation */
505 ks0127_and_or(sd, KS_CTRACK, 0xcf, 0x30);
506 /* HYPK =01 CTRAP = 0 HYBWR=0 PED=1 RGBH=1 UNIT=1 */
507 ks0127_and_or(sd, KS_LUMA, 0x00, 0x71);
508 ks0127_and_or(sd, KS_VERTIC, 0x0f,
509 reg_defaults[KS_VERTIC]&0xf0);
511 /* scaler fullbw, luma comb off */
512 ks0127_and_or(sd, KS_VERTIA, 0x08, 0x81);
514 ks0127_and_or(sd, KS_CHROMB, 0x0f,
515 reg_defaults[KS_CHROMB]&0xf0);
517 ks0127_and_or(sd, KS_CON, 0x00, 0x00);
518 ks0127_and_or(sd, KS_BRT, 0x00, 32); /* spec: 34 */
519 /* spec: 229 (e5) */
520 ks0127_and_or(sd, KS_SAT, 0x00, 0xe8);
521 ks0127_and_or(sd, KS_HUE, 0x00, 0);
523 ks0127_and_or(sd, KS_UGAIN, 0x00, 238);
524 ks0127_and_or(sd, KS_VGAIN, 0x00, 0x00);
526 /*UOFF:0x30, VOFF:0x30, TSTCGN=1 */
527 ks0127_and_or(sd, KS_UVOFFH, 0x00, 0x4f);
528 ks0127_and_or(sd, KS_UVOFFL, 0x00, 0x00);
529 break;
531 default:
532 v4l2_dbg(1, debug, sd,
533 "s_routing: Unknown input %d\n", input);
534 break;
537 /* hack: CDMLPF sometimes spontaneously switches on; */
538 /* force back off */
539 ks0127_write(sd, KS_DEMOD, reg_defaults[KS_DEMOD]);
540 return 0;
543 static int ks0127_s_std(struct v4l2_subdev *sd, v4l2_std_id std)
545 struct ks0127 *ks = to_ks0127(sd);
547 /* Set to automatic SECAM/Fsc mode */
548 ks0127_and_or(sd, KS_DEMOD, 0xf0, 0x00);
550 ks->norm = std;
551 if (std & V4L2_STD_NTSC) {
552 v4l2_dbg(1, debug, sd,
553 "s_std: NTSC_M\n");
554 ks0127_and_or(sd, KS_CHROMA, 0x9f, 0x20);
555 } else if (std & V4L2_STD_PAL_N) {
556 v4l2_dbg(1, debug, sd,
557 "s_std: NTSC_N (fixme)\n");
558 ks0127_and_or(sd, KS_CHROMA, 0x9f, 0x40);
559 } else if (std & V4L2_STD_PAL) {
560 v4l2_dbg(1, debug, sd,
561 "s_std: PAL_N\n");
562 ks0127_and_or(sd, KS_CHROMA, 0x9f, 0x20);
563 } else if (std & V4L2_STD_PAL_M) {
564 v4l2_dbg(1, debug, sd,
565 "s_std: PAL_M (fixme)\n");
566 ks0127_and_or(sd, KS_CHROMA, 0x9f, 0x40);
567 } else if (std & V4L2_STD_SECAM) {
568 v4l2_dbg(1, debug, sd,
569 "s_std: SECAM\n");
571 /* set to secam autodetection */
572 ks0127_and_or(sd, KS_CHROMA, 0xdf, 0x20);
573 ks0127_and_or(sd, KS_DEMOD, 0xf0, 0x00);
574 schedule_timeout_interruptible(HZ/10+1);
576 /* did it autodetect? */
577 if (!(ks0127_read(sd, KS_DEMOD) & 0x40))
578 /* force to secam mode */
579 ks0127_and_or(sd, KS_DEMOD, 0xf0, 0x0f);
580 } else {
581 v4l2_dbg(1, debug, sd, "s_std: Unknown norm %llx\n",
582 (unsigned long long)std);
584 return 0;
587 static int ks0127_s_stream(struct v4l2_subdev *sd, int enable)
589 v4l2_dbg(1, debug, sd, "s_stream(%d)\n", enable);
590 if (enable) {
591 /* All output pins on */
592 ks0127_and_or(sd, KS_OFMTA, 0xcf, 0x30);
593 /* Obey the OEN pin */
594 ks0127_and_or(sd, KS_CDEM, 0x7f, 0x00);
595 } else {
596 /* Video output pins off */
597 ks0127_and_or(sd, KS_OFMTA, 0xcf, 0x00);
598 /* Ignore the OEN pin */
599 ks0127_and_or(sd, KS_CDEM, 0x7f, 0x80);
601 return 0;
604 static int ks0127_status(struct v4l2_subdev *sd, u32 *pstatus, v4l2_std_id *pstd)
606 int stat = V4L2_IN_ST_NO_SIGNAL;
607 u8 status;
608 v4l2_std_id std = pstd ? *pstd : V4L2_STD_ALL;
610 status = ks0127_read(sd, KS_STAT);
611 if (!(status & 0x20)) /* NOVID not set */
612 stat = 0;
613 if (!(status & 0x01)) { /* CLOCK set */
614 stat |= V4L2_IN_ST_NO_COLOR;
615 std = V4L2_STD_UNKNOWN;
616 } else {
617 if ((status & 0x08)) /* PALDET set */
618 std &= V4L2_STD_PAL;
619 else
620 std &= V4L2_STD_NTSC;
622 if ((status & 0x10)) /* PALDET set */
623 std &= V4L2_STD_525_60;
624 else
625 std &= V4L2_STD_625_50;
626 if (pstd)
627 *pstd = std;
628 if (pstatus)
629 *pstatus = stat;
630 return 0;
633 static int ks0127_querystd(struct v4l2_subdev *sd, v4l2_std_id *std)
635 v4l2_dbg(1, debug, sd, "querystd\n");
636 return ks0127_status(sd, NULL, std);
639 static int ks0127_g_input_status(struct v4l2_subdev *sd, u32 *status)
641 v4l2_dbg(1, debug, sd, "g_input_status\n");
642 return ks0127_status(sd, status, NULL);
645 /* ----------------------------------------------------------------------- */
647 static const struct v4l2_subdev_video_ops ks0127_video_ops = {
648 .s_std = ks0127_s_std,
649 .s_routing = ks0127_s_routing,
650 .s_stream = ks0127_s_stream,
651 .querystd = ks0127_querystd,
652 .g_input_status = ks0127_g_input_status,
655 static const struct v4l2_subdev_ops ks0127_ops = {
656 .video = &ks0127_video_ops,
659 /* ----------------------------------------------------------------------- */
662 static int ks0127_probe(struct i2c_client *client, const struct i2c_device_id *id)
664 struct ks0127 *ks;
665 struct v4l2_subdev *sd;
667 v4l_info(client, "%s chip found @ 0x%x (%s)\n",
668 client->addr == (I2C_KS0127_ADDON >> 1) ? "addon" : "on-board",
669 client->addr << 1, client->adapter->name);
671 ks = devm_kzalloc(&client->dev, sizeof(*ks), GFP_KERNEL);
672 if (ks == NULL)
673 return -ENOMEM;
674 sd = &ks->sd;
675 v4l2_i2c_subdev_init(sd, client, &ks0127_ops);
677 /* power up */
678 init_reg_defaults();
679 ks0127_write(sd, KS_CMDA, 0x2c);
680 mdelay(10);
682 /* reset the device */
683 ks0127_init(sd);
684 return 0;
687 static int ks0127_remove(struct i2c_client *client)
689 struct v4l2_subdev *sd = i2c_get_clientdata(client);
691 v4l2_device_unregister_subdev(sd);
692 ks0127_write(sd, KS_OFMTA, 0x20); /* tristate */
693 ks0127_write(sd, KS_CMDA, 0x2c | 0x80); /* power down */
694 return 0;
697 static const struct i2c_device_id ks0127_id[] = {
698 { "ks0127", 0 },
699 { "ks0127b", 0 },
700 { "ks0122s", 0 },
703 MODULE_DEVICE_TABLE(i2c, ks0127_id);
705 static struct i2c_driver ks0127_driver = {
706 .driver = {
707 .name = "ks0127",
709 .probe = ks0127_probe,
710 .remove = ks0127_remove,
711 .id_table = ks0127_id,
714 module_i2c_driver(ks0127_driver);