Linux 4.16.11
[linux/fpc-iii.git] / drivers / misc / genwqe / card_utils.c
blob8f2e6442d88bec6519a3fa98688e3cae585258c9
1 /**
2 * IBM Accelerator Family 'GenWQE'
4 * (C) Copyright IBM Corp. 2013
6 * Author: Frank Haverkamp <haver@linux.vnet.ibm.com>
7 * Author: Joerg-Stephan Vogt <jsvogt@de.ibm.com>
8 * Author: Michael Jung <mijung@gmx.net>
9 * Author: Michael Ruettger <michael@ibmra.de>
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License (version 2 only)
13 * as published by the Free Software Foundation.
15 * This program is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 * GNU General Public License for more details.
22 * Miscelanous functionality used in the other GenWQE driver parts.
25 #include <linux/kernel.h>
26 #include <linux/dma-mapping.h>
27 #include <linux/sched.h>
28 #include <linux/vmalloc.h>
29 #include <linux/page-flags.h>
30 #include <linux/scatterlist.h>
31 #include <linux/hugetlb.h>
32 #include <linux/iommu.h>
33 #include <linux/delay.h>
34 #include <linux/pci.h>
35 #include <linux/dma-mapping.h>
36 #include <linux/ctype.h>
37 #include <linux/module.h>
38 #include <linux/platform_device.h>
39 #include <linux/delay.h>
40 #include <asm/pgtable.h>
42 #include "genwqe_driver.h"
43 #include "card_base.h"
44 #include "card_ddcb.h"
46 /**
47 * __genwqe_writeq() - Write 64-bit register
48 * @cd: genwqe device descriptor
49 * @byte_offs: byte offset within BAR
50 * @val: 64-bit value
52 * Return: 0 if success; < 0 if error
54 int __genwqe_writeq(struct genwqe_dev *cd, u64 byte_offs, u64 val)
56 struct pci_dev *pci_dev = cd->pci_dev;
58 if (cd->err_inject & GENWQE_INJECT_HARDWARE_FAILURE)
59 return -EIO;
61 if (cd->mmio == NULL)
62 return -EIO;
64 if (pci_channel_offline(pci_dev))
65 return -EIO;
67 __raw_writeq((__force u64)cpu_to_be64(val), cd->mmio + byte_offs);
68 return 0;
71 /**
72 * __genwqe_readq() - Read 64-bit register
73 * @cd: genwqe device descriptor
74 * @byte_offs: offset within BAR
76 * Return: value from register
78 u64 __genwqe_readq(struct genwqe_dev *cd, u64 byte_offs)
80 if (cd->err_inject & GENWQE_INJECT_HARDWARE_FAILURE)
81 return 0xffffffffffffffffull;
83 if ((cd->err_inject & GENWQE_INJECT_GFIR_FATAL) &&
84 (byte_offs == IO_SLC_CFGREG_GFIR))
85 return 0x000000000000ffffull;
87 if ((cd->err_inject & GENWQE_INJECT_GFIR_INFO) &&
88 (byte_offs == IO_SLC_CFGREG_GFIR))
89 return 0x00000000ffff0000ull;
91 if (cd->mmio == NULL)
92 return 0xffffffffffffffffull;
94 return be64_to_cpu((__force __be64)__raw_readq(cd->mmio + byte_offs));
97 /**
98 * __genwqe_writel() - Write 32-bit register
99 * @cd: genwqe device descriptor
100 * @byte_offs: byte offset within BAR
101 * @val: 32-bit value
103 * Return: 0 if success; < 0 if error
105 int __genwqe_writel(struct genwqe_dev *cd, u64 byte_offs, u32 val)
107 struct pci_dev *pci_dev = cd->pci_dev;
109 if (cd->err_inject & GENWQE_INJECT_HARDWARE_FAILURE)
110 return -EIO;
112 if (cd->mmio == NULL)
113 return -EIO;
115 if (pci_channel_offline(pci_dev))
116 return -EIO;
118 __raw_writel((__force u32)cpu_to_be32(val), cd->mmio + byte_offs);
119 return 0;
123 * __genwqe_readl() - Read 32-bit register
124 * @cd: genwqe device descriptor
125 * @byte_offs: offset within BAR
127 * Return: Value from register
129 u32 __genwqe_readl(struct genwqe_dev *cd, u64 byte_offs)
131 if (cd->err_inject & GENWQE_INJECT_HARDWARE_FAILURE)
132 return 0xffffffff;
134 if (cd->mmio == NULL)
135 return 0xffffffff;
137 return be32_to_cpu((__force __be32)__raw_readl(cd->mmio + byte_offs));
141 * genwqe_read_app_id() - Extract app_id
143 * app_unitcfg need to be filled with valid data first
145 int genwqe_read_app_id(struct genwqe_dev *cd, char *app_name, int len)
147 int i, j;
148 u32 app_id = (u32)cd->app_unitcfg;
150 memset(app_name, 0, len);
151 for (i = 0, j = 0; j < min(len, 4); j++) {
152 char ch = (char)((app_id >> (24 - j*8)) & 0xff);
154 if (ch == ' ')
155 continue;
156 app_name[i++] = isprint(ch) ? ch : 'X';
158 return i;
162 * genwqe_init_crc32() - Prepare a lookup table for fast crc32 calculations
164 * Existing kernel functions seem to use a different polynom,
165 * therefore we could not use them here.
167 * Genwqe's Polynomial = 0x20044009
169 #define CRC32_POLYNOMIAL 0x20044009
170 static u32 crc32_tab[256]; /* crc32 lookup table */
172 void genwqe_init_crc32(void)
174 int i, j;
175 u32 crc;
177 for (i = 0; i < 256; i++) {
178 crc = i << 24;
179 for (j = 0; j < 8; j++) {
180 if (crc & 0x80000000)
181 crc = (crc << 1) ^ CRC32_POLYNOMIAL;
182 else
183 crc = (crc << 1);
185 crc32_tab[i] = crc;
190 * genwqe_crc32() - Generate 32-bit crc as required for DDCBs
191 * @buff: pointer to data buffer
192 * @len: length of data for calculation
193 * @init: initial crc (0xffffffff at start)
195 * polynomial = x^32 * + x^29 + x^18 + x^14 + x^3 + 1 (0x20044009)
197 * Example: 4 bytes 0x01 0x02 0x03 0x04 with init=0xffffffff should
198 * result in a crc32 of 0xf33cb7d3.
200 * The existing kernel crc functions did not cover this polynom yet.
202 * Return: crc32 checksum.
204 u32 genwqe_crc32(u8 *buff, size_t len, u32 init)
206 int i;
207 u32 crc;
209 crc = init;
210 while (len--) {
211 i = ((crc >> 24) ^ *buff++) & 0xFF;
212 crc = (crc << 8) ^ crc32_tab[i];
214 return crc;
217 void *__genwqe_alloc_consistent(struct genwqe_dev *cd, size_t size,
218 dma_addr_t *dma_handle)
220 if (get_order(size) > MAX_ORDER)
221 return NULL;
223 return dma_zalloc_coherent(&cd->pci_dev->dev, size, dma_handle,
224 GFP_KERNEL);
227 void __genwqe_free_consistent(struct genwqe_dev *cd, size_t size,
228 void *vaddr, dma_addr_t dma_handle)
230 if (vaddr == NULL)
231 return;
233 dma_free_coherent(&cd->pci_dev->dev, size, vaddr, dma_handle);
236 static void genwqe_unmap_pages(struct genwqe_dev *cd, dma_addr_t *dma_list,
237 int num_pages)
239 int i;
240 struct pci_dev *pci_dev = cd->pci_dev;
242 for (i = 0; (i < num_pages) && (dma_list[i] != 0x0); i++) {
243 pci_unmap_page(pci_dev, dma_list[i],
244 PAGE_SIZE, PCI_DMA_BIDIRECTIONAL);
245 dma_list[i] = 0x0;
249 static int genwqe_map_pages(struct genwqe_dev *cd,
250 struct page **page_list, int num_pages,
251 dma_addr_t *dma_list)
253 int i;
254 struct pci_dev *pci_dev = cd->pci_dev;
256 /* establish DMA mapping for requested pages */
257 for (i = 0; i < num_pages; i++) {
258 dma_addr_t daddr;
260 dma_list[i] = 0x0;
261 daddr = pci_map_page(pci_dev, page_list[i],
262 0, /* map_offs */
263 PAGE_SIZE,
264 PCI_DMA_BIDIRECTIONAL); /* FIXME rd/rw */
266 if (pci_dma_mapping_error(pci_dev, daddr)) {
267 dev_err(&pci_dev->dev,
268 "[%s] err: no dma addr daddr=%016llx!\n",
269 __func__, (long long)daddr);
270 goto err;
273 dma_list[i] = daddr;
275 return 0;
277 err:
278 genwqe_unmap_pages(cd, dma_list, num_pages);
279 return -EIO;
282 static int genwqe_sgl_size(int num_pages)
284 int len, num_tlb = num_pages / 7;
286 len = sizeof(struct sg_entry) * (num_pages+num_tlb + 1);
287 return roundup(len, PAGE_SIZE);
291 * genwqe_alloc_sync_sgl() - Allocate memory for sgl and overlapping pages
293 * Allocates memory for sgl and overlapping pages. Pages which might
294 * overlap other user-space memory blocks are being cached for DMAs,
295 * such that we do not run into syncronization issues. Data is copied
296 * from user-space into the cached pages.
298 int genwqe_alloc_sync_sgl(struct genwqe_dev *cd, struct genwqe_sgl *sgl,
299 void __user *user_addr, size_t user_size, int write)
301 int rc;
302 struct pci_dev *pci_dev = cd->pci_dev;
304 sgl->fpage_offs = offset_in_page((unsigned long)user_addr);
305 sgl->fpage_size = min_t(size_t, PAGE_SIZE-sgl->fpage_offs, user_size);
306 sgl->nr_pages = DIV_ROUND_UP(sgl->fpage_offs + user_size, PAGE_SIZE);
307 sgl->lpage_size = (user_size - sgl->fpage_size) % PAGE_SIZE;
309 dev_dbg(&pci_dev->dev, "[%s] uaddr=%p usize=%8ld nr_pages=%ld fpage_offs=%lx fpage_size=%ld lpage_size=%ld\n",
310 __func__, user_addr, user_size, sgl->nr_pages,
311 sgl->fpage_offs, sgl->fpage_size, sgl->lpage_size);
313 sgl->user_addr = user_addr;
314 sgl->user_size = user_size;
315 sgl->write = write;
316 sgl->sgl_size = genwqe_sgl_size(sgl->nr_pages);
318 if (get_order(sgl->sgl_size) > MAX_ORDER) {
319 dev_err(&pci_dev->dev,
320 "[%s] err: too much memory requested!\n", __func__);
321 return -ENOMEM;
324 sgl->sgl = __genwqe_alloc_consistent(cd, sgl->sgl_size,
325 &sgl->sgl_dma_addr);
326 if (sgl->sgl == NULL) {
327 dev_err(&pci_dev->dev,
328 "[%s] err: no memory available!\n", __func__);
329 return -ENOMEM;
332 /* Only use buffering on incomplete pages */
333 if ((sgl->fpage_size != 0) && (sgl->fpage_size != PAGE_SIZE)) {
334 sgl->fpage = __genwqe_alloc_consistent(cd, PAGE_SIZE,
335 &sgl->fpage_dma_addr);
336 if (sgl->fpage == NULL)
337 goto err_out;
339 /* Sync with user memory */
340 if (copy_from_user(sgl->fpage + sgl->fpage_offs,
341 user_addr, sgl->fpage_size)) {
342 rc = -EFAULT;
343 goto err_out;
346 if (sgl->lpage_size != 0) {
347 sgl->lpage = __genwqe_alloc_consistent(cd, PAGE_SIZE,
348 &sgl->lpage_dma_addr);
349 if (sgl->lpage == NULL)
350 goto err_out1;
352 /* Sync with user memory */
353 if (copy_from_user(sgl->lpage, user_addr + user_size -
354 sgl->lpage_size, sgl->lpage_size)) {
355 rc = -EFAULT;
356 goto err_out2;
359 return 0;
361 err_out2:
362 __genwqe_free_consistent(cd, PAGE_SIZE, sgl->lpage,
363 sgl->lpage_dma_addr);
364 sgl->lpage = NULL;
365 sgl->lpage_dma_addr = 0;
366 err_out1:
367 __genwqe_free_consistent(cd, PAGE_SIZE, sgl->fpage,
368 sgl->fpage_dma_addr);
369 sgl->fpage = NULL;
370 sgl->fpage_dma_addr = 0;
371 err_out:
372 __genwqe_free_consistent(cd, sgl->sgl_size, sgl->sgl,
373 sgl->sgl_dma_addr);
374 sgl->sgl = NULL;
375 sgl->sgl_dma_addr = 0;
376 sgl->sgl_size = 0;
377 return -ENOMEM;
380 int genwqe_setup_sgl(struct genwqe_dev *cd, struct genwqe_sgl *sgl,
381 dma_addr_t *dma_list)
383 int i = 0, j = 0, p;
384 unsigned long dma_offs, map_offs;
385 dma_addr_t prev_daddr = 0;
386 struct sg_entry *s, *last_s = NULL;
387 size_t size = sgl->user_size;
389 dma_offs = 128; /* next block if needed/dma_offset */
390 map_offs = sgl->fpage_offs; /* offset in first page */
392 s = &sgl->sgl[0]; /* first set of 8 entries */
393 p = 0; /* page */
394 while (p < sgl->nr_pages) {
395 dma_addr_t daddr;
396 unsigned int size_to_map;
398 /* always write the chaining entry, cleanup is done later */
399 j = 0;
400 s[j].target_addr = cpu_to_be64(sgl->sgl_dma_addr + dma_offs);
401 s[j].len = cpu_to_be32(128);
402 s[j].flags = cpu_to_be32(SG_CHAINED);
403 j++;
405 while (j < 8) {
406 /* DMA mapping for requested page, offs, size */
407 size_to_map = min(size, PAGE_SIZE - map_offs);
409 if ((p == 0) && (sgl->fpage != NULL)) {
410 daddr = sgl->fpage_dma_addr + map_offs;
412 } else if ((p == sgl->nr_pages - 1) &&
413 (sgl->lpage != NULL)) {
414 daddr = sgl->lpage_dma_addr;
415 } else {
416 daddr = dma_list[p] + map_offs;
419 size -= size_to_map;
420 map_offs = 0;
422 if (prev_daddr == daddr) {
423 u32 prev_len = be32_to_cpu(last_s->len);
425 /* pr_info("daddr combining: "
426 "%016llx/%08x -> %016llx\n",
427 prev_daddr, prev_len, daddr); */
429 last_s->len = cpu_to_be32(prev_len +
430 size_to_map);
432 p++; /* process next page */
433 if (p == sgl->nr_pages)
434 goto fixup; /* nothing to do */
436 prev_daddr = daddr + size_to_map;
437 continue;
440 /* start new entry */
441 s[j].target_addr = cpu_to_be64(daddr);
442 s[j].len = cpu_to_be32(size_to_map);
443 s[j].flags = cpu_to_be32(SG_DATA);
444 prev_daddr = daddr + size_to_map;
445 last_s = &s[j];
446 j++;
448 p++; /* process next page */
449 if (p == sgl->nr_pages)
450 goto fixup; /* nothing to do */
452 dma_offs += 128;
453 s += 8; /* continue 8 elements further */
455 fixup:
456 if (j == 1) { /* combining happend on last entry! */
457 s -= 8; /* full shift needed on previous sgl block */
458 j = 7; /* shift all elements */
461 for (i = 0; i < j; i++) /* move elements 1 up */
462 s[i] = s[i + 1];
464 s[i].target_addr = cpu_to_be64(0);
465 s[i].len = cpu_to_be32(0);
466 s[i].flags = cpu_to_be32(SG_END_LIST);
467 return 0;
471 * genwqe_free_sync_sgl() - Free memory for sgl and overlapping pages
473 * After the DMA transfer has been completed we free the memory for
474 * the sgl and the cached pages. Data is being transfered from cached
475 * pages into user-space buffers.
477 int genwqe_free_sync_sgl(struct genwqe_dev *cd, struct genwqe_sgl *sgl)
479 int rc = 0;
480 size_t offset;
481 unsigned long res;
482 struct pci_dev *pci_dev = cd->pci_dev;
484 if (sgl->fpage) {
485 if (sgl->write) {
486 res = copy_to_user(sgl->user_addr,
487 sgl->fpage + sgl->fpage_offs, sgl->fpage_size);
488 if (res) {
489 dev_err(&pci_dev->dev,
490 "[%s] err: copying fpage! (res=%lu)\n",
491 __func__, res);
492 rc = -EFAULT;
495 __genwqe_free_consistent(cd, PAGE_SIZE, sgl->fpage,
496 sgl->fpage_dma_addr);
497 sgl->fpage = NULL;
498 sgl->fpage_dma_addr = 0;
500 if (sgl->lpage) {
501 if (sgl->write) {
502 offset = sgl->user_size - sgl->lpage_size;
503 res = copy_to_user(sgl->user_addr + offset, sgl->lpage,
504 sgl->lpage_size);
505 if (res) {
506 dev_err(&pci_dev->dev,
507 "[%s] err: copying lpage! (res=%lu)\n",
508 __func__, res);
509 rc = -EFAULT;
512 __genwqe_free_consistent(cd, PAGE_SIZE, sgl->lpage,
513 sgl->lpage_dma_addr);
514 sgl->lpage = NULL;
515 sgl->lpage_dma_addr = 0;
517 __genwqe_free_consistent(cd, sgl->sgl_size, sgl->sgl,
518 sgl->sgl_dma_addr);
520 sgl->sgl = NULL;
521 sgl->sgl_dma_addr = 0x0;
522 sgl->sgl_size = 0;
523 return rc;
527 * genwqe_free_user_pages() - Give pinned pages back
529 * Documentation of get_user_pages is in mm/gup.c:
531 * If the page is written to, set_page_dirty (or set_page_dirty_lock,
532 * as appropriate) must be called after the page is finished with, and
533 * before put_page is called.
535 static int genwqe_free_user_pages(struct page **page_list,
536 unsigned int nr_pages, int dirty)
538 unsigned int i;
540 for (i = 0; i < nr_pages; i++) {
541 if (page_list[i] != NULL) {
542 if (dirty)
543 set_page_dirty_lock(page_list[i]);
544 put_page(page_list[i]);
547 return 0;
551 * genwqe_user_vmap() - Map user-space memory to virtual kernel memory
552 * @cd: pointer to genwqe device
553 * @m: mapping params
554 * @uaddr: user virtual address
555 * @size: size of memory to be mapped
557 * We need to think about how we could speed this up. Of course it is
558 * not a good idea to do this over and over again, like we are
559 * currently doing it. Nevertheless, I am curious where on the path
560 * the performance is spend. Most probably within the memory
561 * allocation functions, but maybe also in the DMA mapping code.
563 * Restrictions: The maximum size of the possible mapping currently depends
564 * on the amount of memory we can get using kzalloc() for the
565 * page_list and pci_alloc_consistent for the sg_list.
566 * The sg_list is currently itself not scattered, which could
567 * be fixed with some effort. The page_list must be split into
568 * PAGE_SIZE chunks too. All that will make the complicated
569 * code more complicated.
571 * Return: 0 if success
573 int genwqe_user_vmap(struct genwqe_dev *cd, struct dma_mapping *m, void *uaddr,
574 unsigned long size)
576 int rc = -EINVAL;
577 unsigned long data, offs;
578 struct pci_dev *pci_dev = cd->pci_dev;
580 if ((uaddr == NULL) || (size == 0)) {
581 m->size = 0; /* mark unused and not added */
582 return -EINVAL;
584 m->u_vaddr = uaddr;
585 m->size = size;
587 /* determine space needed for page_list. */
588 data = (unsigned long)uaddr;
589 offs = offset_in_page(data);
590 m->nr_pages = DIV_ROUND_UP(offs + size, PAGE_SIZE);
592 m->page_list = kcalloc(m->nr_pages,
593 sizeof(struct page *) + sizeof(dma_addr_t),
594 GFP_KERNEL);
595 if (!m->page_list) {
596 dev_err(&pci_dev->dev, "err: alloc page_list failed\n");
597 m->nr_pages = 0;
598 m->u_vaddr = NULL;
599 m->size = 0; /* mark unused and not added */
600 return -ENOMEM;
602 m->dma_list = (dma_addr_t *)(m->page_list + m->nr_pages);
604 /* pin user pages in memory */
605 rc = get_user_pages_fast(data & PAGE_MASK, /* page aligned addr */
606 m->nr_pages,
607 m->write, /* readable/writable */
608 m->page_list); /* ptrs to pages */
609 if (rc < 0)
610 goto fail_get_user_pages;
612 /* assumption: get_user_pages can be killed by signals. */
613 if (rc < m->nr_pages) {
614 genwqe_free_user_pages(m->page_list, rc, m->write);
615 rc = -EFAULT;
616 goto fail_get_user_pages;
619 rc = genwqe_map_pages(cd, m->page_list, m->nr_pages, m->dma_list);
620 if (rc != 0)
621 goto fail_free_user_pages;
623 return 0;
625 fail_free_user_pages:
626 genwqe_free_user_pages(m->page_list, m->nr_pages, m->write);
628 fail_get_user_pages:
629 kfree(m->page_list);
630 m->page_list = NULL;
631 m->dma_list = NULL;
632 m->nr_pages = 0;
633 m->u_vaddr = NULL;
634 m->size = 0; /* mark unused and not added */
635 return rc;
639 * genwqe_user_vunmap() - Undo mapping of user-space mem to virtual kernel
640 * memory
641 * @cd: pointer to genwqe device
642 * @m: mapping params
644 int genwqe_user_vunmap(struct genwqe_dev *cd, struct dma_mapping *m)
646 struct pci_dev *pci_dev = cd->pci_dev;
648 if (!dma_mapping_used(m)) {
649 dev_err(&pci_dev->dev, "[%s] err: mapping %p not used!\n",
650 __func__, m);
651 return -EINVAL;
654 if (m->dma_list)
655 genwqe_unmap_pages(cd, m->dma_list, m->nr_pages);
657 if (m->page_list) {
658 genwqe_free_user_pages(m->page_list, m->nr_pages, m->write);
660 kfree(m->page_list);
661 m->page_list = NULL;
662 m->dma_list = NULL;
663 m->nr_pages = 0;
666 m->u_vaddr = NULL;
667 m->size = 0; /* mark as unused and not added */
668 return 0;
672 * genwqe_card_type() - Get chip type SLU Configuration Register
673 * @cd: pointer to the genwqe device descriptor
674 * Return: 0: Altera Stratix-IV 230
675 * 1: Altera Stratix-IV 530
676 * 2: Altera Stratix-V A4
677 * 3: Altera Stratix-V A7
679 u8 genwqe_card_type(struct genwqe_dev *cd)
681 u64 card_type = cd->slu_unitcfg;
683 return (u8)((card_type & IO_SLU_UNITCFG_TYPE_MASK) >> 20);
687 * genwqe_card_reset() - Reset the card
688 * @cd: pointer to the genwqe device descriptor
690 int genwqe_card_reset(struct genwqe_dev *cd)
692 u64 softrst;
693 struct pci_dev *pci_dev = cd->pci_dev;
695 if (!genwqe_is_privileged(cd))
696 return -ENODEV;
698 /* new SL */
699 __genwqe_writeq(cd, IO_SLC_CFGREG_SOFTRESET, 0x1ull);
700 msleep(1000);
701 __genwqe_readq(cd, IO_HSU_FIR_CLR);
702 __genwqe_readq(cd, IO_APP_FIR_CLR);
703 __genwqe_readq(cd, IO_SLU_FIR_CLR);
706 * Read-modify-write to preserve the stealth bits
708 * For SL >= 039, Stealth WE bit allows removing
709 * the read-modify-wrote.
710 * r-m-w may require a mask 0x3C to avoid hitting hard
711 * reset again for error reset (should be 0, chicken).
713 softrst = __genwqe_readq(cd, IO_SLC_CFGREG_SOFTRESET) & 0x3cull;
714 __genwqe_writeq(cd, IO_SLC_CFGREG_SOFTRESET, softrst | 0x2ull);
716 /* give ERRORRESET some time to finish */
717 msleep(50);
719 if (genwqe_need_err_masking(cd)) {
720 dev_info(&pci_dev->dev,
721 "[%s] masking errors for old bitstreams\n", __func__);
722 __genwqe_writeq(cd, IO_SLC_MISC_DEBUG, 0x0aull);
724 return 0;
727 int genwqe_read_softreset(struct genwqe_dev *cd)
729 u64 bitstream;
731 if (!genwqe_is_privileged(cd))
732 return -ENODEV;
734 bitstream = __genwqe_readq(cd, IO_SLU_BITSTREAM) & 0x1;
735 cd->softreset = (bitstream == 0) ? 0x8ull : 0xcull;
736 return 0;
740 * genwqe_set_interrupt_capability() - Configure MSI capability structure
741 * @cd: pointer to the device
742 * Return: 0 if no error
744 int genwqe_set_interrupt_capability(struct genwqe_dev *cd, int count)
746 int rc;
748 rc = pci_alloc_irq_vectors(cd->pci_dev, 1, count, PCI_IRQ_MSI);
749 if (rc < 0)
750 return rc;
751 return 0;
755 * genwqe_reset_interrupt_capability() - Undo genwqe_set_interrupt_capability()
756 * @cd: pointer to the device
758 void genwqe_reset_interrupt_capability(struct genwqe_dev *cd)
760 pci_free_irq_vectors(cd->pci_dev);
764 * set_reg_idx() - Fill array with data. Ignore illegal offsets.
765 * @cd: card device
766 * @r: debug register array
767 * @i: index to desired entry
768 * @m: maximum possible entries
769 * @addr: addr which is read
770 * @index: index in debug array
771 * @val: read value
773 static int set_reg_idx(struct genwqe_dev *cd, struct genwqe_reg *r,
774 unsigned int *i, unsigned int m, u32 addr, u32 idx,
775 u64 val)
777 if (WARN_ON_ONCE(*i >= m))
778 return -EFAULT;
780 r[*i].addr = addr;
781 r[*i].idx = idx;
782 r[*i].val = val;
783 ++*i;
784 return 0;
787 static int set_reg(struct genwqe_dev *cd, struct genwqe_reg *r,
788 unsigned int *i, unsigned int m, u32 addr, u64 val)
790 return set_reg_idx(cd, r, i, m, addr, 0, val);
793 int genwqe_read_ffdc_regs(struct genwqe_dev *cd, struct genwqe_reg *regs,
794 unsigned int max_regs, int all)
796 unsigned int i, j, idx = 0;
797 u32 ufir_addr, ufec_addr, sfir_addr, sfec_addr;
798 u64 gfir, sluid, appid, ufir, ufec, sfir, sfec;
800 /* Global FIR */
801 gfir = __genwqe_readq(cd, IO_SLC_CFGREG_GFIR);
802 set_reg(cd, regs, &idx, max_regs, IO_SLC_CFGREG_GFIR, gfir);
804 /* UnitCfg for SLU */
805 sluid = __genwqe_readq(cd, IO_SLU_UNITCFG); /* 0x00000000 */
806 set_reg(cd, regs, &idx, max_regs, IO_SLU_UNITCFG, sluid);
808 /* UnitCfg for APP */
809 appid = __genwqe_readq(cd, IO_APP_UNITCFG); /* 0x02000000 */
810 set_reg(cd, regs, &idx, max_regs, IO_APP_UNITCFG, appid);
812 /* Check all chip Units */
813 for (i = 0; i < GENWQE_MAX_UNITS; i++) {
815 /* Unit FIR */
816 ufir_addr = (i << 24) | 0x008;
817 ufir = __genwqe_readq(cd, ufir_addr);
818 set_reg(cd, regs, &idx, max_regs, ufir_addr, ufir);
820 /* Unit FEC */
821 ufec_addr = (i << 24) | 0x018;
822 ufec = __genwqe_readq(cd, ufec_addr);
823 set_reg(cd, regs, &idx, max_regs, ufec_addr, ufec);
825 for (j = 0; j < 64; j++) {
826 /* wherever there is a primary 1, read the 2ndary */
827 if (!all && (!(ufir & (1ull << j))))
828 continue;
830 sfir_addr = (i << 24) | (0x100 + 8 * j);
831 sfir = __genwqe_readq(cd, sfir_addr);
832 set_reg(cd, regs, &idx, max_regs, sfir_addr, sfir);
834 sfec_addr = (i << 24) | (0x300 + 8 * j);
835 sfec = __genwqe_readq(cd, sfec_addr);
836 set_reg(cd, regs, &idx, max_regs, sfec_addr, sfec);
840 /* fill with invalid data until end */
841 for (i = idx; i < max_regs; i++) {
842 regs[i].addr = 0xffffffff;
843 regs[i].val = 0xffffffffffffffffull;
845 return idx;
849 * genwqe_ffdc_buff_size() - Calculates the number of dump registers
851 int genwqe_ffdc_buff_size(struct genwqe_dev *cd, int uid)
853 int entries = 0, ring, traps, traces, trace_entries;
854 u32 eevptr_addr, l_addr, d_len, d_type;
855 u64 eevptr, val, addr;
857 eevptr_addr = GENWQE_UID_OFFS(uid) | IO_EXTENDED_ERROR_POINTER;
858 eevptr = __genwqe_readq(cd, eevptr_addr);
860 if ((eevptr != 0x0) && (eevptr != -1ull)) {
861 l_addr = GENWQE_UID_OFFS(uid) | eevptr;
863 while (1) {
864 val = __genwqe_readq(cd, l_addr);
866 if ((val == 0x0) || (val == -1ull))
867 break;
869 /* 38:24 */
870 d_len = (val & 0x0000007fff000000ull) >> 24;
872 /* 39 */
873 d_type = (val & 0x0000008000000000ull) >> 36;
875 if (d_type) { /* repeat */
876 entries += d_len;
877 } else { /* size in bytes! */
878 entries += d_len >> 3;
881 l_addr += 8;
885 for (ring = 0; ring < 8; ring++) {
886 addr = GENWQE_UID_OFFS(uid) | IO_EXTENDED_DIAG_MAP(ring);
887 val = __genwqe_readq(cd, addr);
889 if ((val == 0x0ull) || (val == -1ull))
890 continue;
892 traps = (val >> 24) & 0xff;
893 traces = (val >> 16) & 0xff;
894 trace_entries = val & 0xffff;
896 entries += traps + (traces * trace_entries);
898 return entries;
902 * genwqe_ffdc_buff_read() - Implements LogoutExtendedErrorRegisters procedure
904 int genwqe_ffdc_buff_read(struct genwqe_dev *cd, int uid,
905 struct genwqe_reg *regs, unsigned int max_regs)
907 int i, traps, traces, trace, trace_entries, trace_entry, ring;
908 unsigned int idx = 0;
909 u32 eevptr_addr, l_addr, d_addr, d_len, d_type;
910 u64 eevptr, e, val, addr;
912 eevptr_addr = GENWQE_UID_OFFS(uid) | IO_EXTENDED_ERROR_POINTER;
913 eevptr = __genwqe_readq(cd, eevptr_addr);
915 if ((eevptr != 0x0) && (eevptr != 0xffffffffffffffffull)) {
916 l_addr = GENWQE_UID_OFFS(uid) | eevptr;
917 while (1) {
918 e = __genwqe_readq(cd, l_addr);
919 if ((e == 0x0) || (e == 0xffffffffffffffffull))
920 break;
922 d_addr = (e & 0x0000000000ffffffull); /* 23:0 */
923 d_len = (e & 0x0000007fff000000ull) >> 24; /* 38:24 */
924 d_type = (e & 0x0000008000000000ull) >> 36; /* 39 */
925 d_addr |= GENWQE_UID_OFFS(uid);
927 if (d_type) {
928 for (i = 0; i < (int)d_len; i++) {
929 val = __genwqe_readq(cd, d_addr);
930 set_reg_idx(cd, regs, &idx, max_regs,
931 d_addr, i, val);
933 } else {
934 d_len >>= 3; /* Size in bytes! */
935 for (i = 0; i < (int)d_len; i++, d_addr += 8) {
936 val = __genwqe_readq(cd, d_addr);
937 set_reg_idx(cd, regs, &idx, max_regs,
938 d_addr, 0, val);
941 l_addr += 8;
946 * To save time, there are only 6 traces poplulated on Uid=2,
947 * Ring=1. each with iters=512.
949 for (ring = 0; ring < 8; ring++) { /* 0 is fls, 1 is fds,
950 2...7 are ASI rings */
951 addr = GENWQE_UID_OFFS(uid) | IO_EXTENDED_DIAG_MAP(ring);
952 val = __genwqe_readq(cd, addr);
954 if ((val == 0x0ull) || (val == -1ull))
955 continue;
957 traps = (val >> 24) & 0xff; /* Number of Traps */
958 traces = (val >> 16) & 0xff; /* Number of Traces */
959 trace_entries = val & 0xffff; /* Entries per trace */
961 /* Note: This is a combined loop that dumps both the traps */
962 /* (for the trace == 0 case) as well as the traces 1 to */
963 /* 'traces'. */
964 for (trace = 0; trace <= traces; trace++) {
965 u32 diag_sel =
966 GENWQE_EXTENDED_DIAG_SELECTOR(ring, trace);
968 addr = (GENWQE_UID_OFFS(uid) |
969 IO_EXTENDED_DIAG_SELECTOR);
970 __genwqe_writeq(cd, addr, diag_sel);
972 for (trace_entry = 0;
973 trace_entry < (trace ? trace_entries : traps);
974 trace_entry++) {
975 addr = (GENWQE_UID_OFFS(uid) |
976 IO_EXTENDED_DIAG_READ_MBX);
977 val = __genwqe_readq(cd, addr);
978 set_reg_idx(cd, regs, &idx, max_regs, addr,
979 (diag_sel<<16) | trace_entry, val);
983 return 0;
987 * genwqe_write_vreg() - Write register in virtual window
989 * Note, these registers are only accessible to the PF through the
990 * VF-window. It is not intended for the VF to access.
992 int genwqe_write_vreg(struct genwqe_dev *cd, u32 reg, u64 val, int func)
994 __genwqe_writeq(cd, IO_PF_SLC_VIRTUAL_WINDOW, func & 0xf);
995 __genwqe_writeq(cd, reg, val);
996 return 0;
1000 * genwqe_read_vreg() - Read register in virtual window
1002 * Note, these registers are only accessible to the PF through the
1003 * VF-window. It is not intended for the VF to access.
1005 u64 genwqe_read_vreg(struct genwqe_dev *cd, u32 reg, int func)
1007 __genwqe_writeq(cd, IO_PF_SLC_VIRTUAL_WINDOW, func & 0xf);
1008 return __genwqe_readq(cd, reg);
1012 * genwqe_base_clock_frequency() - Deteremine base clock frequency of the card
1014 * Note: From a design perspective it turned out to be a bad idea to
1015 * use codes here to specifiy the frequency/speed values. An old
1016 * driver cannot understand new codes and is therefore always a
1017 * problem. Better is to measure out the value or put the
1018 * speed/frequency directly into a register which is always a valid
1019 * value for old as well as for new software.
1021 * Return: Card clock in MHz
1023 int genwqe_base_clock_frequency(struct genwqe_dev *cd)
1025 u16 speed; /* MHz MHz MHz MHz */
1026 static const int speed_grade[] = { 250, 200, 166, 175 };
1028 speed = (u16)((cd->slu_unitcfg >> 28) & 0x0full);
1029 if (speed >= ARRAY_SIZE(speed_grade))
1030 return 0; /* illegal value */
1032 return speed_grade[speed];
1036 * genwqe_stop_traps() - Stop traps
1038 * Before reading out the analysis data, we need to stop the traps.
1040 void genwqe_stop_traps(struct genwqe_dev *cd)
1042 __genwqe_writeq(cd, IO_SLC_MISC_DEBUG_SET, 0xcull);
1046 * genwqe_start_traps() - Start traps
1048 * After having read the data, we can/must enable the traps again.
1050 void genwqe_start_traps(struct genwqe_dev *cd)
1052 __genwqe_writeq(cd, IO_SLC_MISC_DEBUG_CLR, 0xcull);
1054 if (genwqe_need_err_masking(cd))
1055 __genwqe_writeq(cd, IO_SLC_MISC_DEBUG, 0x0aull);