2 * linux/drivers/mtd/onenand/onenand_base.c
4 * Copyright © 2005-2009 Samsung Electronics
5 * Copyright © 2007 Nokia Corporation
7 * Kyungmin Park <kyungmin.park@samsung.com>
10 * Adrian Hunter <ext-adrian.hunter@nokia.com>:
11 * auto-placement support, read-while load support, various fixes
13 * Vishak G <vishak.g at samsung.com>, Rohit Hagargundgi <h.rohit at samsung.com>
14 * Flex-OneNAND support
15 * Amul Kumar Saha <amul.saha at samsung.com>
18 * This program is free software; you can redistribute it and/or modify
19 * it under the terms of the GNU General Public License version 2 as
20 * published by the Free Software Foundation.
23 #include <linux/kernel.h>
24 #include <linux/module.h>
25 #include <linux/moduleparam.h>
26 #include <linux/slab.h>
27 #include <linux/sched.h>
28 #include <linux/delay.h>
29 #include <linux/interrupt.h>
30 #include <linux/jiffies.h>
31 #include <linux/mtd/mtd.h>
32 #include <linux/mtd/onenand.h>
33 #include <linux/mtd/partitions.h>
38 * Multiblock erase if number of blocks to erase is 2 or more.
39 * Maximum number of blocks for simultaneous erase is 64.
41 #define MB_ERASE_MIN_BLK_COUNT 2
42 #define MB_ERASE_MAX_BLK_COUNT 64
44 /* Default Flex-OneNAND boundary and lock respectively */
45 static int flex_bdry
[MAX_DIES
* 2] = { -1, 0, -1, 0 };
47 module_param_array(flex_bdry
, int, NULL
, 0400);
48 MODULE_PARM_DESC(flex_bdry
, "SLC Boundary information for Flex-OneNAND"
49 "Syntax:flex_bdry=DIE_BDRY,LOCK,..."
50 "DIE_BDRY: SLC boundary of the die"
51 "LOCK: Locking information for SLC boundary"
52 " : 0->Set boundary in unlocked status"
53 " : 1->Set boundary in locked status");
55 /* Default OneNAND/Flex-OneNAND OTP options*/
58 module_param(otp
, int, 0400);
59 MODULE_PARM_DESC(otp
, "Corresponding behaviour of OneNAND in OTP"
60 "Syntax : otp=LOCK_TYPE"
61 "LOCK_TYPE : Keys issued, for specific OTP Lock type"
62 " : 0 -> Default (No Blocks Locked)"
63 " : 1 -> OTP Block lock"
64 " : 2 -> 1st Block lock"
65 " : 3 -> BOTH OTP Block and 1st Block lock");
68 * flexonenand_oob_128 - oob info for Flex-Onenand with 4KB page
69 * For now, we expose only 64 out of 80 ecc bytes
71 static int flexonenand_ooblayout_ecc(struct mtd_info
*mtd
, int section
,
72 struct mtd_oob_region
*oobregion
)
77 oobregion
->offset
= (section
* 16) + 6;
78 oobregion
->length
= 10;
83 static int flexonenand_ooblayout_free(struct mtd_info
*mtd
, int section
,
84 struct mtd_oob_region
*oobregion
)
89 oobregion
->offset
= (section
* 16) + 2;
90 oobregion
->length
= 4;
95 static const struct mtd_ooblayout_ops flexonenand_ooblayout_ops
= {
96 .ecc
= flexonenand_ooblayout_ecc
,
97 .free
= flexonenand_ooblayout_free
,
101 * onenand_oob_128 - oob info for OneNAND with 4KB page
103 * Based on specification:
104 * 4Gb M-die OneNAND Flash (KFM4G16Q4M, KFN8G16Q4M). Rev. 1.3, Apr. 2010
107 static int onenand_ooblayout_128_ecc(struct mtd_info
*mtd
, int section
,
108 struct mtd_oob_region
*oobregion
)
113 oobregion
->offset
= (section
* 16) + 7;
114 oobregion
->length
= 9;
119 static int onenand_ooblayout_128_free(struct mtd_info
*mtd
, int section
,
120 struct mtd_oob_region
*oobregion
)
126 * free bytes are using the spare area fields marked as
127 * "Managed by internal ECC logic for Logical Sector Number area"
129 oobregion
->offset
= (section
* 16) + 2;
130 oobregion
->length
= 3;
135 static const struct mtd_ooblayout_ops onenand_oob_128_ooblayout_ops
= {
136 .ecc
= onenand_ooblayout_128_ecc
,
137 .free
= onenand_ooblayout_128_free
,
141 * onenand_oob_32_64 - oob info for large (2KB) page
143 static int onenand_ooblayout_32_64_ecc(struct mtd_info
*mtd
, int section
,
144 struct mtd_oob_region
*oobregion
)
149 oobregion
->offset
= (section
* 16) + 8;
150 oobregion
->length
= 5;
155 static int onenand_ooblayout_32_64_free(struct mtd_info
*mtd
, int section
,
156 struct mtd_oob_region
*oobregion
)
158 int sections
= (mtd
->oobsize
/ 32) * 2;
160 if (section
>= sections
)
164 oobregion
->offset
= ((section
- 1) * 16) + 14;
165 oobregion
->length
= 2;
167 oobregion
->offset
= (section
* 16) + 2;
168 oobregion
->length
= 3;
174 static const struct mtd_ooblayout_ops onenand_oob_32_64_ooblayout_ops
= {
175 .ecc
= onenand_ooblayout_32_64_ecc
,
176 .free
= onenand_ooblayout_32_64_free
,
179 static const unsigned char ffchars
[] = {
180 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
181 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 16 */
182 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
183 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 32 */
184 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
185 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 48 */
186 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
187 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 64 */
188 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
189 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 80 */
190 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
191 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 96 */
192 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
193 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 112 */
194 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
195 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 128 */
199 * onenand_readw - [OneNAND Interface] Read OneNAND register
200 * @param addr address to read
202 * Read OneNAND register
204 static unsigned short onenand_readw(void __iomem
*addr
)
210 * onenand_writew - [OneNAND Interface] Write OneNAND register with value
211 * @param value value to write
212 * @param addr address to write
214 * Write OneNAND register with value
216 static void onenand_writew(unsigned short value
, void __iomem
*addr
)
222 * onenand_block_address - [DEFAULT] Get block address
223 * @param this onenand chip data structure
224 * @param block the block
225 * @return translated block address if DDP, otherwise same
227 * Setup Start Address 1 Register (F100h)
229 static int onenand_block_address(struct onenand_chip
*this, int block
)
231 /* Device Flash Core select, NAND Flash Block Address */
232 if (block
& this->density_mask
)
233 return ONENAND_DDP_CHIP1
| (block
^ this->density_mask
);
239 * onenand_bufferram_address - [DEFAULT] Get bufferram address
240 * @param this onenand chip data structure
241 * @param block the block
242 * @return set DBS value if DDP, otherwise 0
244 * Setup Start Address 2 Register (F101h) for DDP
246 static int onenand_bufferram_address(struct onenand_chip
*this, int block
)
248 /* Device BufferRAM Select */
249 if (block
& this->density_mask
)
250 return ONENAND_DDP_CHIP1
;
252 return ONENAND_DDP_CHIP0
;
256 * onenand_page_address - [DEFAULT] Get page address
257 * @param page the page address
258 * @param sector the sector address
259 * @return combined page and sector address
261 * Setup Start Address 8 Register (F107h)
263 static int onenand_page_address(int page
, int sector
)
265 /* Flash Page Address, Flash Sector Address */
268 fpa
= page
& ONENAND_FPA_MASK
;
269 fsa
= sector
& ONENAND_FSA_MASK
;
271 return ((fpa
<< ONENAND_FPA_SHIFT
) | fsa
);
275 * onenand_buffer_address - [DEFAULT] Get buffer address
276 * @param dataram1 DataRAM index
277 * @param sectors the sector address
278 * @param count the number of sectors
279 * @return the start buffer value
281 * Setup Start Buffer Register (F200h)
283 static int onenand_buffer_address(int dataram1
, int sectors
, int count
)
287 /* BufferRAM Sector Address */
288 bsa
= sectors
& ONENAND_BSA_MASK
;
291 bsa
|= ONENAND_BSA_DATARAM1
; /* DataRAM1 */
293 bsa
|= ONENAND_BSA_DATARAM0
; /* DataRAM0 */
295 /* BufferRAM Sector Count */
296 bsc
= count
& ONENAND_BSC_MASK
;
298 return ((bsa
<< ONENAND_BSA_SHIFT
) | bsc
);
302 * flexonenand_block- For given address return block number
303 * @param this - OneNAND device structure
304 * @param addr - Address for which block number is needed
306 static unsigned flexonenand_block(struct onenand_chip
*this, loff_t addr
)
308 unsigned boundary
, blk
, die
= 0;
310 if (ONENAND_IS_DDP(this) && addr
>= this->diesize
[0]) {
312 addr
-= this->diesize
[0];
315 boundary
= this->boundary
[die
];
317 blk
= addr
>> (this->erase_shift
- 1);
319 blk
= (blk
+ boundary
+ 1) >> 1;
321 blk
+= die
? this->density_mask
: 0;
325 inline unsigned onenand_block(struct onenand_chip
*this, loff_t addr
)
327 if (!FLEXONENAND(this))
328 return addr
>> this->erase_shift
;
329 return flexonenand_block(this, addr
);
333 * flexonenand_addr - Return address of the block
334 * @this: OneNAND device structure
335 * @block: Block number on Flex-OneNAND
337 * Return address of the block
339 static loff_t
flexonenand_addr(struct onenand_chip
*this, int block
)
342 int die
= 0, boundary
;
344 if (ONENAND_IS_DDP(this) && block
>= this->density_mask
) {
345 block
-= this->density_mask
;
347 ofs
= this->diesize
[0];
350 boundary
= this->boundary
[die
];
351 ofs
+= (loff_t
)block
<< (this->erase_shift
- 1);
352 if (block
> (boundary
+ 1))
353 ofs
+= (loff_t
)(block
- boundary
- 1) << (this->erase_shift
- 1);
357 loff_t
onenand_addr(struct onenand_chip
*this, int block
)
359 if (!FLEXONENAND(this))
360 return (loff_t
)block
<< this->erase_shift
;
361 return flexonenand_addr(this, block
);
363 EXPORT_SYMBOL(onenand_addr
);
366 * onenand_get_density - [DEFAULT] Get OneNAND density
367 * @param dev_id OneNAND device ID
369 * Get OneNAND density from device ID
371 static inline int onenand_get_density(int dev_id
)
373 int density
= dev_id
>> ONENAND_DEVICE_DENSITY_SHIFT
;
374 return (density
& ONENAND_DEVICE_DENSITY_MASK
);
378 * flexonenand_region - [Flex-OneNAND] Return erase region of addr
379 * @param mtd MTD device structure
380 * @param addr address whose erase region needs to be identified
382 int flexonenand_region(struct mtd_info
*mtd
, loff_t addr
)
386 for (i
= 0; i
< mtd
->numeraseregions
; i
++)
387 if (addr
< mtd
->eraseregions
[i
].offset
)
391 EXPORT_SYMBOL(flexonenand_region
);
394 * onenand_command - [DEFAULT] Send command to OneNAND device
395 * @param mtd MTD device structure
396 * @param cmd the command to be sent
397 * @param addr offset to read from or write to
398 * @param len number of bytes to read or write
400 * Send command to OneNAND device. This function is used for middle/large page
401 * devices (1KB/2KB Bytes per page)
403 static int onenand_command(struct mtd_info
*mtd
, int cmd
, loff_t addr
, size_t len
)
405 struct onenand_chip
*this = mtd
->priv
;
406 int value
, block
, page
;
408 /* Address translation */
410 case ONENAND_CMD_UNLOCK
:
411 case ONENAND_CMD_LOCK
:
412 case ONENAND_CMD_LOCK_TIGHT
:
413 case ONENAND_CMD_UNLOCK_ALL
:
418 case FLEXONENAND_CMD_PI_ACCESS
:
419 /* addr contains die index */
420 block
= addr
* this->density_mask
;
424 case ONENAND_CMD_ERASE
:
425 case ONENAND_CMD_MULTIBLOCK_ERASE
:
426 case ONENAND_CMD_ERASE_VERIFY
:
427 case ONENAND_CMD_BUFFERRAM
:
428 case ONENAND_CMD_OTP_ACCESS
:
429 block
= onenand_block(this, addr
);
433 case FLEXONENAND_CMD_READ_PI
:
434 cmd
= ONENAND_CMD_READ
;
435 block
= addr
* this->density_mask
;
440 block
= onenand_block(this, addr
);
441 if (FLEXONENAND(this))
442 page
= (int) (addr
- onenand_addr(this, block
))>>\
445 page
= (int) (addr
>> this->page_shift
);
446 if (ONENAND_IS_2PLANE(this)) {
447 /* Make the even block number */
449 /* Is it the odd plane? */
450 if (addr
& this->writesize
)
454 page
&= this->page_mask
;
458 /* NOTE: The setting order of the registers is very important! */
459 if (cmd
== ONENAND_CMD_BUFFERRAM
) {
460 /* Select DataRAM for DDP */
461 value
= onenand_bufferram_address(this, block
);
462 this->write_word(value
, this->base
+ ONENAND_REG_START_ADDRESS2
);
464 if (ONENAND_IS_2PLANE(this) || ONENAND_IS_4KB_PAGE(this))
465 /* It is always BufferRAM0 */
466 ONENAND_SET_BUFFERRAM0(this);
468 /* Switch to the next data buffer */
469 ONENAND_SET_NEXT_BUFFERRAM(this);
475 /* Write 'DFS, FBA' of Flash */
476 value
= onenand_block_address(this, block
);
477 this->write_word(value
, this->base
+ ONENAND_REG_START_ADDRESS1
);
479 /* Select DataRAM for DDP */
480 value
= onenand_bufferram_address(this, block
);
481 this->write_word(value
, this->base
+ ONENAND_REG_START_ADDRESS2
);
485 /* Now we use page size operation */
486 int sectors
= 0, count
= 0;
490 case FLEXONENAND_CMD_RECOVER_LSB
:
491 case ONENAND_CMD_READ
:
492 case ONENAND_CMD_READOOB
:
493 if (ONENAND_IS_4KB_PAGE(this))
494 /* It is always BufferRAM0 */
495 dataram
= ONENAND_SET_BUFFERRAM0(this);
497 dataram
= ONENAND_SET_NEXT_BUFFERRAM(this);
501 if (ONENAND_IS_2PLANE(this) && cmd
== ONENAND_CMD_PROG
)
502 cmd
= ONENAND_CMD_2X_PROG
;
503 dataram
= ONENAND_CURRENT_BUFFERRAM(this);
507 /* Write 'FPA, FSA' of Flash */
508 value
= onenand_page_address(page
, sectors
);
509 this->write_word(value
, this->base
+ ONENAND_REG_START_ADDRESS8
);
511 /* Write 'BSA, BSC' of DataRAM */
512 value
= onenand_buffer_address(dataram
, sectors
, count
);
513 this->write_word(value
, this->base
+ ONENAND_REG_START_BUFFER
);
516 /* Interrupt clear */
517 this->write_word(ONENAND_INT_CLEAR
, this->base
+ ONENAND_REG_INTERRUPT
);
520 this->write_word(cmd
, this->base
+ ONENAND_REG_COMMAND
);
526 * onenand_read_ecc - return ecc status
527 * @param this onenand chip structure
529 static inline int onenand_read_ecc(struct onenand_chip
*this)
531 int ecc
, i
, result
= 0;
533 if (!FLEXONENAND(this) && !ONENAND_IS_4KB_PAGE(this))
534 return this->read_word(this->base
+ ONENAND_REG_ECC_STATUS
);
536 for (i
= 0; i
< 4; i
++) {
537 ecc
= this->read_word(this->base
+ ONENAND_REG_ECC_STATUS
+ i
*2);
540 if (ecc
& FLEXONENAND_UNCORRECTABLE_ERROR
)
541 return ONENAND_ECC_2BIT_ALL
;
543 result
= ONENAND_ECC_1BIT_ALL
;
550 * onenand_wait - [DEFAULT] wait until the command is done
551 * @param mtd MTD device structure
552 * @param state state to select the max. timeout value
554 * Wait for command done. This applies to all OneNAND command
555 * Read can take up to 30us, erase up to 2ms and program up to 350us
556 * according to general OneNAND specs
558 static int onenand_wait(struct mtd_info
*mtd
, int state
)
560 struct onenand_chip
* this = mtd
->priv
;
561 unsigned long timeout
;
562 unsigned int flags
= ONENAND_INT_MASTER
;
563 unsigned int interrupt
= 0;
566 /* The 20 msec is enough */
567 timeout
= jiffies
+ msecs_to_jiffies(20);
568 while (time_before(jiffies
, timeout
)) {
569 interrupt
= this->read_word(this->base
+ ONENAND_REG_INTERRUPT
);
571 if (interrupt
& flags
)
574 if (state
!= FL_READING
&& state
!= FL_PREPARING_ERASE
)
577 /* To get correct interrupt status in timeout case */
578 interrupt
= this->read_word(this->base
+ ONENAND_REG_INTERRUPT
);
580 ctrl
= this->read_word(this->base
+ ONENAND_REG_CTRL_STATUS
);
583 * In the Spec. it checks the controller status first
584 * However if you get the correct information in case of
585 * power off recovery (POR) test, it should read ECC status first
587 if (interrupt
& ONENAND_INT_READ
) {
588 int ecc
= onenand_read_ecc(this);
590 if (ecc
& ONENAND_ECC_2BIT_ALL
) {
591 printk(KERN_ERR
"%s: ECC error = 0x%04x\n",
593 mtd
->ecc_stats
.failed
++;
595 } else if (ecc
& ONENAND_ECC_1BIT_ALL
) {
596 printk(KERN_DEBUG
"%s: correctable ECC error = 0x%04x\n",
598 mtd
->ecc_stats
.corrected
++;
601 } else if (state
== FL_READING
) {
602 printk(KERN_ERR
"%s: read timeout! ctrl=0x%04x intr=0x%04x\n",
603 __func__
, ctrl
, interrupt
);
607 if (state
== FL_PREPARING_ERASE
&& !(interrupt
& ONENAND_INT_ERASE
)) {
608 printk(KERN_ERR
"%s: mb erase timeout! ctrl=0x%04x intr=0x%04x\n",
609 __func__
, ctrl
, interrupt
);
613 if (!(interrupt
& ONENAND_INT_MASTER
)) {
614 printk(KERN_ERR
"%s: timeout! ctrl=0x%04x intr=0x%04x\n",
615 __func__
, ctrl
, interrupt
);
619 /* If there's controller error, it's a real error */
620 if (ctrl
& ONENAND_CTRL_ERROR
) {
621 printk(KERN_ERR
"%s: controller error = 0x%04x\n",
623 if (ctrl
& ONENAND_CTRL_LOCK
)
624 printk(KERN_ERR
"%s: it's locked error.\n", __func__
);
632 * onenand_interrupt - [DEFAULT] onenand interrupt handler
633 * @param irq onenand interrupt number
634 * @param dev_id interrupt data
638 static irqreturn_t
onenand_interrupt(int irq
, void *data
)
640 struct onenand_chip
*this = data
;
642 /* To handle shared interrupt */
643 if (!this->complete
.done
)
644 complete(&this->complete
);
650 * onenand_interrupt_wait - [DEFAULT] wait until the command is done
651 * @param mtd MTD device structure
652 * @param state state to select the max. timeout value
654 * Wait for command done.
656 static int onenand_interrupt_wait(struct mtd_info
*mtd
, int state
)
658 struct onenand_chip
*this = mtd
->priv
;
660 wait_for_completion(&this->complete
);
662 return onenand_wait(mtd
, state
);
666 * onenand_try_interrupt_wait - [DEFAULT] try interrupt wait
667 * @param mtd MTD device structure
668 * @param state state to select the max. timeout value
670 * Try interrupt based wait (It is used one-time)
672 static int onenand_try_interrupt_wait(struct mtd_info
*mtd
, int state
)
674 struct onenand_chip
*this = mtd
->priv
;
675 unsigned long remain
, timeout
;
677 /* We use interrupt wait first */
678 this->wait
= onenand_interrupt_wait
;
680 timeout
= msecs_to_jiffies(100);
681 remain
= wait_for_completion_timeout(&this->complete
, timeout
);
683 printk(KERN_INFO
"OneNAND: There's no interrupt. "
684 "We use the normal wait\n");
686 /* Release the irq */
687 free_irq(this->irq
, this);
689 this->wait
= onenand_wait
;
692 return onenand_wait(mtd
, state
);
696 * onenand_setup_wait - [OneNAND Interface] setup onenand wait method
697 * @param mtd MTD device structure
699 * There's two method to wait onenand work
700 * 1. polling - read interrupt status register
701 * 2. interrupt - use the kernel interrupt method
703 static void onenand_setup_wait(struct mtd_info
*mtd
)
705 struct onenand_chip
*this = mtd
->priv
;
708 init_completion(&this->complete
);
710 if (this->irq
<= 0) {
711 this->wait
= onenand_wait
;
715 if (request_irq(this->irq
, &onenand_interrupt
,
716 IRQF_SHARED
, "onenand", this)) {
717 /* If we can't get irq, use the normal wait */
718 this->wait
= onenand_wait
;
722 /* Enable interrupt */
723 syscfg
= this->read_word(this->base
+ ONENAND_REG_SYS_CFG1
);
724 syscfg
|= ONENAND_SYS_CFG1_IOBE
;
725 this->write_word(syscfg
, this->base
+ ONENAND_REG_SYS_CFG1
);
727 this->wait
= onenand_try_interrupt_wait
;
731 * onenand_bufferram_offset - [DEFAULT] BufferRAM offset
732 * @param mtd MTD data structure
733 * @param area BufferRAM area
734 * @return offset given area
736 * Return BufferRAM offset given area
738 static inline int onenand_bufferram_offset(struct mtd_info
*mtd
, int area
)
740 struct onenand_chip
*this = mtd
->priv
;
742 if (ONENAND_CURRENT_BUFFERRAM(this)) {
743 /* Note: the 'this->writesize' is a real page size */
744 if (area
== ONENAND_DATARAM
)
745 return this->writesize
;
746 if (area
== ONENAND_SPARERAM
)
754 * onenand_read_bufferram - [OneNAND Interface] Read the bufferram area
755 * @param mtd MTD data structure
756 * @param area BufferRAM area
757 * @param buffer the databuffer to put/get data
758 * @param offset offset to read from or write to
759 * @param count number of bytes to read/write
761 * Read the BufferRAM area
763 static int onenand_read_bufferram(struct mtd_info
*mtd
, int area
,
764 unsigned char *buffer
, int offset
, size_t count
)
766 struct onenand_chip
*this = mtd
->priv
;
767 void __iomem
*bufferram
;
769 bufferram
= this->base
+ area
;
771 bufferram
+= onenand_bufferram_offset(mtd
, area
);
773 if (ONENAND_CHECK_BYTE_ACCESS(count
)) {
776 /* Align with word(16-bit) size */
779 /* Read word and save byte */
780 word
= this->read_word(bufferram
+ offset
+ count
);
781 buffer
[count
] = (word
& 0xff);
784 memcpy(buffer
, bufferram
+ offset
, count
);
790 * onenand_sync_read_bufferram - [OneNAND Interface] Read the bufferram area with Sync. Burst mode
791 * @param mtd MTD data structure
792 * @param area BufferRAM area
793 * @param buffer the databuffer to put/get data
794 * @param offset offset to read from or write to
795 * @param count number of bytes to read/write
797 * Read the BufferRAM area with Sync. Burst Mode
799 static int onenand_sync_read_bufferram(struct mtd_info
*mtd
, int area
,
800 unsigned char *buffer
, int offset
, size_t count
)
802 struct onenand_chip
*this = mtd
->priv
;
803 void __iomem
*bufferram
;
805 bufferram
= this->base
+ area
;
807 bufferram
+= onenand_bufferram_offset(mtd
, area
);
809 this->mmcontrol(mtd
, ONENAND_SYS_CFG1_SYNC_READ
);
811 if (ONENAND_CHECK_BYTE_ACCESS(count
)) {
814 /* Align with word(16-bit) size */
817 /* Read word and save byte */
818 word
= this->read_word(bufferram
+ offset
+ count
);
819 buffer
[count
] = (word
& 0xff);
822 memcpy(buffer
, bufferram
+ offset
, count
);
824 this->mmcontrol(mtd
, 0);
830 * onenand_write_bufferram - [OneNAND Interface] Write the bufferram area
831 * @param mtd MTD data structure
832 * @param area BufferRAM area
833 * @param buffer the databuffer to put/get data
834 * @param offset offset to read from or write to
835 * @param count number of bytes to read/write
837 * Write the BufferRAM area
839 static int onenand_write_bufferram(struct mtd_info
*mtd
, int area
,
840 const unsigned char *buffer
, int offset
, size_t count
)
842 struct onenand_chip
*this = mtd
->priv
;
843 void __iomem
*bufferram
;
845 bufferram
= this->base
+ area
;
847 bufferram
+= onenand_bufferram_offset(mtd
, area
);
849 if (ONENAND_CHECK_BYTE_ACCESS(count
)) {
853 /* Align with word(16-bit) size */
856 /* Calculate byte access offset */
857 byte_offset
= offset
+ count
;
859 /* Read word and save byte */
860 word
= this->read_word(bufferram
+ byte_offset
);
861 word
= (word
& ~0xff) | buffer
[count
];
862 this->write_word(word
, bufferram
+ byte_offset
);
865 memcpy(bufferram
+ offset
, buffer
, count
);
871 * onenand_get_2x_blockpage - [GENERIC] Get blockpage at 2x program mode
872 * @param mtd MTD data structure
873 * @param addr address to check
874 * @return blockpage address
876 * Get blockpage address at 2x program mode
878 static int onenand_get_2x_blockpage(struct mtd_info
*mtd
, loff_t addr
)
880 struct onenand_chip
*this = mtd
->priv
;
881 int blockpage
, block
, page
;
883 /* Calculate the even block number */
884 block
= (int) (addr
>> this->erase_shift
) & ~1;
885 /* Is it the odd plane? */
886 if (addr
& this->writesize
)
888 page
= (int) (addr
>> (this->page_shift
+ 1)) & this->page_mask
;
889 blockpage
= (block
<< 7) | page
;
895 * onenand_check_bufferram - [GENERIC] Check BufferRAM information
896 * @param mtd MTD data structure
897 * @param addr address to check
898 * @return 1 if there are valid data, otherwise 0
900 * Check bufferram if there is data we required
902 static int onenand_check_bufferram(struct mtd_info
*mtd
, loff_t addr
)
904 struct onenand_chip
*this = mtd
->priv
;
905 int blockpage
, found
= 0;
908 if (ONENAND_IS_2PLANE(this))
909 blockpage
= onenand_get_2x_blockpage(mtd
, addr
);
911 blockpage
= (int) (addr
>> this->page_shift
);
913 /* Is there valid data? */
914 i
= ONENAND_CURRENT_BUFFERRAM(this);
915 if (this->bufferram
[i
].blockpage
== blockpage
)
918 /* Check another BufferRAM */
919 i
= ONENAND_NEXT_BUFFERRAM(this);
920 if (this->bufferram
[i
].blockpage
== blockpage
) {
921 ONENAND_SET_NEXT_BUFFERRAM(this);
926 if (found
&& ONENAND_IS_DDP(this)) {
927 /* Select DataRAM for DDP */
928 int block
= onenand_block(this, addr
);
929 int value
= onenand_bufferram_address(this, block
);
930 this->write_word(value
, this->base
+ ONENAND_REG_START_ADDRESS2
);
937 * onenand_update_bufferram - [GENERIC] Update BufferRAM information
938 * @param mtd MTD data structure
939 * @param addr address to update
940 * @param valid valid flag
942 * Update BufferRAM information
944 static void onenand_update_bufferram(struct mtd_info
*mtd
, loff_t addr
,
947 struct onenand_chip
*this = mtd
->priv
;
951 if (ONENAND_IS_2PLANE(this))
952 blockpage
= onenand_get_2x_blockpage(mtd
, addr
);
954 blockpage
= (int) (addr
>> this->page_shift
);
956 /* Invalidate another BufferRAM */
957 i
= ONENAND_NEXT_BUFFERRAM(this);
958 if (this->bufferram
[i
].blockpage
== blockpage
)
959 this->bufferram
[i
].blockpage
= -1;
961 /* Update BufferRAM */
962 i
= ONENAND_CURRENT_BUFFERRAM(this);
964 this->bufferram
[i
].blockpage
= blockpage
;
966 this->bufferram
[i
].blockpage
= -1;
970 * onenand_invalidate_bufferram - [GENERIC] Invalidate BufferRAM information
971 * @param mtd MTD data structure
972 * @param addr start address to invalidate
973 * @param len length to invalidate
975 * Invalidate BufferRAM information
977 static void onenand_invalidate_bufferram(struct mtd_info
*mtd
, loff_t addr
,
980 struct onenand_chip
*this = mtd
->priv
;
982 loff_t end_addr
= addr
+ len
;
984 /* Invalidate BufferRAM */
985 for (i
= 0; i
< MAX_BUFFERRAM
; i
++) {
986 loff_t buf_addr
= this->bufferram
[i
].blockpage
<< this->page_shift
;
987 if (buf_addr
>= addr
&& buf_addr
< end_addr
)
988 this->bufferram
[i
].blockpage
= -1;
993 * onenand_get_device - [GENERIC] Get chip for selected access
994 * @param mtd MTD device structure
995 * @param new_state the state which is requested
997 * Get the device and lock it for exclusive access
999 static int onenand_get_device(struct mtd_info
*mtd
, int new_state
)
1001 struct onenand_chip
*this = mtd
->priv
;
1002 DECLARE_WAITQUEUE(wait
, current
);
1005 * Grab the lock and see if the device is available
1008 spin_lock(&this->chip_lock
);
1009 if (this->state
== FL_READY
) {
1010 this->state
= new_state
;
1011 spin_unlock(&this->chip_lock
);
1012 if (new_state
!= FL_PM_SUSPENDED
&& this->enable
)
1016 if (new_state
== FL_PM_SUSPENDED
) {
1017 spin_unlock(&this->chip_lock
);
1018 return (this->state
== FL_PM_SUSPENDED
) ? 0 : -EAGAIN
;
1020 set_current_state(TASK_UNINTERRUPTIBLE
);
1021 add_wait_queue(&this->wq
, &wait
);
1022 spin_unlock(&this->chip_lock
);
1024 remove_wait_queue(&this->wq
, &wait
);
1031 * onenand_release_device - [GENERIC] release chip
1032 * @param mtd MTD device structure
1034 * Deselect, release chip lock and wake up anyone waiting on the device
1036 static void onenand_release_device(struct mtd_info
*mtd
)
1038 struct onenand_chip
*this = mtd
->priv
;
1040 if (this->state
!= FL_PM_SUSPENDED
&& this->disable
)
1042 /* Release the chip */
1043 spin_lock(&this->chip_lock
);
1044 this->state
= FL_READY
;
1046 spin_unlock(&this->chip_lock
);
1050 * onenand_transfer_auto_oob - [INTERN] oob auto-placement transfer
1051 * @param mtd MTD device structure
1052 * @param buf destination address
1053 * @param column oob offset to read from
1054 * @param thislen oob length to read
1056 static int onenand_transfer_auto_oob(struct mtd_info
*mtd
, uint8_t *buf
, int column
,
1059 struct onenand_chip
*this = mtd
->priv
;
1062 this->read_bufferram(mtd
, ONENAND_SPARERAM
, this->oob_buf
, 0,
1064 ret
= mtd_ooblayout_get_databytes(mtd
, buf
, this->oob_buf
,
1073 * onenand_recover_lsb - [Flex-OneNAND] Recover LSB page data
1074 * @param mtd MTD device structure
1075 * @param addr address to recover
1076 * @param status return value from onenand_wait / onenand_bbt_wait
1078 * MLC NAND Flash cell has paired pages - LSB page and MSB page. LSB page has
1079 * lower page address and MSB page has higher page address in paired pages.
1080 * If power off occurs during MSB page program, the paired LSB page data can
1081 * become corrupt. LSB page recovery read is a way to read LSB page though page
1082 * data are corrupted. When uncorrectable error occurs as a result of LSB page
1083 * read after power up, issue LSB page recovery read.
1085 static int onenand_recover_lsb(struct mtd_info
*mtd
, loff_t addr
, int status
)
1087 struct onenand_chip
*this = mtd
->priv
;
1090 /* Recovery is only for Flex-OneNAND */
1091 if (!FLEXONENAND(this))
1094 /* check if we failed due to uncorrectable error */
1095 if (!mtd_is_eccerr(status
) && status
!= ONENAND_BBT_READ_ECC_ERROR
)
1098 /* check if address lies in MLC region */
1099 i
= flexonenand_region(mtd
, addr
);
1100 if (mtd
->eraseregions
[i
].erasesize
< (1 << this->erase_shift
))
1103 /* We are attempting to reread, so decrement stats.failed
1104 * which was incremented by onenand_wait due to read failure
1106 printk(KERN_INFO
"%s: Attempting to recover from uncorrectable read\n",
1108 mtd
->ecc_stats
.failed
--;
1110 /* Issue the LSB page recovery command */
1111 this->command(mtd
, FLEXONENAND_CMD_RECOVER_LSB
, addr
, this->writesize
);
1112 return this->wait(mtd
, FL_READING
);
1116 * onenand_mlc_read_ops_nolock - MLC OneNAND read main and/or out-of-band
1117 * @param mtd MTD device structure
1118 * @param from offset to read from
1119 * @param ops: oob operation description structure
1121 * MLC OneNAND / Flex-OneNAND has 4KB page size and 4KB dataram.
1122 * So, read-while-load is not present.
1124 static int onenand_mlc_read_ops_nolock(struct mtd_info
*mtd
, loff_t from
,
1125 struct mtd_oob_ops
*ops
)
1127 struct onenand_chip
*this = mtd
->priv
;
1128 struct mtd_ecc_stats stats
;
1129 size_t len
= ops
->len
;
1130 size_t ooblen
= ops
->ooblen
;
1131 u_char
*buf
= ops
->datbuf
;
1132 u_char
*oobbuf
= ops
->oobbuf
;
1133 int read
= 0, column
, thislen
;
1134 int oobread
= 0, oobcolumn
, thisooblen
, oobsize
;
1136 int writesize
= this->writesize
;
1138 pr_debug("%s: from = 0x%08x, len = %i\n", __func__
, (unsigned int)from
,
1141 oobsize
= mtd_oobavail(mtd
, ops
);
1142 oobcolumn
= from
& (mtd
->oobsize
- 1);
1144 /* Do not allow reads past end of device */
1145 if (from
+ len
> mtd
->size
) {
1146 printk(KERN_ERR
"%s: Attempt read beyond end of device\n",
1153 stats
= mtd
->ecc_stats
;
1155 while (read
< len
) {
1158 thislen
= min_t(int, writesize
, len
- read
);
1160 column
= from
& (writesize
- 1);
1161 if (column
+ thislen
> writesize
)
1162 thislen
= writesize
- column
;
1164 if (!onenand_check_bufferram(mtd
, from
)) {
1165 this->command(mtd
, ONENAND_CMD_READ
, from
, writesize
);
1167 ret
= this->wait(mtd
, FL_READING
);
1169 ret
= onenand_recover_lsb(mtd
, from
, ret
);
1170 onenand_update_bufferram(mtd
, from
, !ret
);
1171 if (mtd_is_eccerr(ret
))
1177 this->read_bufferram(mtd
, ONENAND_DATARAM
, buf
, column
, thislen
);
1179 thisooblen
= oobsize
- oobcolumn
;
1180 thisooblen
= min_t(int, thisooblen
, ooblen
- oobread
);
1182 if (ops
->mode
== MTD_OPS_AUTO_OOB
)
1183 onenand_transfer_auto_oob(mtd
, oobbuf
, oobcolumn
, thisooblen
);
1185 this->read_bufferram(mtd
, ONENAND_SPARERAM
, oobbuf
, oobcolumn
, thisooblen
);
1186 oobread
+= thisooblen
;
1187 oobbuf
+= thisooblen
;
1200 * Return success, if no ECC failures, else -EBADMSG
1201 * fs driver will take care of that, because
1202 * retlen == desired len and result == -EBADMSG
1205 ops
->oobretlen
= oobread
;
1210 if (mtd
->ecc_stats
.failed
- stats
.failed
)
1213 /* return max bitflips per ecc step; ONENANDs correct 1 bit only */
1214 return mtd
->ecc_stats
.corrected
!= stats
.corrected
? 1 : 0;
1218 * onenand_read_ops_nolock - [OneNAND Interface] OneNAND read main and/or out-of-band
1219 * @param mtd MTD device structure
1220 * @param from offset to read from
1221 * @param ops: oob operation description structure
1223 * OneNAND read main and/or out-of-band data
1225 static int onenand_read_ops_nolock(struct mtd_info
*mtd
, loff_t from
,
1226 struct mtd_oob_ops
*ops
)
1228 struct onenand_chip
*this = mtd
->priv
;
1229 struct mtd_ecc_stats stats
;
1230 size_t len
= ops
->len
;
1231 size_t ooblen
= ops
->ooblen
;
1232 u_char
*buf
= ops
->datbuf
;
1233 u_char
*oobbuf
= ops
->oobbuf
;
1234 int read
= 0, column
, thislen
;
1235 int oobread
= 0, oobcolumn
, thisooblen
, oobsize
;
1236 int ret
= 0, boundary
= 0;
1237 int writesize
= this->writesize
;
1239 pr_debug("%s: from = 0x%08x, len = %i\n", __func__
, (unsigned int)from
,
1242 oobsize
= mtd_oobavail(mtd
, ops
);
1243 oobcolumn
= from
& (mtd
->oobsize
- 1);
1245 /* Do not allow reads past end of device */
1246 if ((from
+ len
) > mtd
->size
) {
1247 printk(KERN_ERR
"%s: Attempt read beyond end of device\n",
1254 stats
= mtd
->ecc_stats
;
1256 /* Read-while-load method */
1258 /* Do first load to bufferRAM */
1260 if (!onenand_check_bufferram(mtd
, from
)) {
1261 this->command(mtd
, ONENAND_CMD_READ
, from
, writesize
);
1262 ret
= this->wait(mtd
, FL_READING
);
1263 onenand_update_bufferram(mtd
, from
, !ret
);
1264 if (mtd_is_eccerr(ret
))
1269 thislen
= min_t(int, writesize
, len
- read
);
1270 column
= from
& (writesize
- 1);
1271 if (column
+ thislen
> writesize
)
1272 thislen
= writesize
- column
;
1275 /* If there is more to load then start next load */
1277 if (read
+ thislen
< len
) {
1278 this->command(mtd
, ONENAND_CMD_READ
, from
, writesize
);
1280 * Chip boundary handling in DDP
1281 * Now we issued chip 1 read and pointed chip 1
1282 * bufferram so we have to point chip 0 bufferram.
1284 if (ONENAND_IS_DDP(this) &&
1285 unlikely(from
== (this->chipsize
>> 1))) {
1286 this->write_word(ONENAND_DDP_CHIP0
, this->base
+ ONENAND_REG_START_ADDRESS2
);
1290 ONENAND_SET_PREV_BUFFERRAM(this);
1292 /* While load is going, read from last bufferRAM */
1293 this->read_bufferram(mtd
, ONENAND_DATARAM
, buf
, column
, thislen
);
1295 /* Read oob area if needed */
1297 thisooblen
= oobsize
- oobcolumn
;
1298 thisooblen
= min_t(int, thisooblen
, ooblen
- oobread
);
1300 if (ops
->mode
== MTD_OPS_AUTO_OOB
)
1301 onenand_transfer_auto_oob(mtd
, oobbuf
, oobcolumn
, thisooblen
);
1303 this->read_bufferram(mtd
, ONENAND_SPARERAM
, oobbuf
, oobcolumn
, thisooblen
);
1304 oobread
+= thisooblen
;
1305 oobbuf
+= thisooblen
;
1309 /* See if we are done */
1313 /* Set up for next read from bufferRAM */
1314 if (unlikely(boundary
))
1315 this->write_word(ONENAND_DDP_CHIP1
, this->base
+ ONENAND_REG_START_ADDRESS2
);
1316 ONENAND_SET_NEXT_BUFFERRAM(this);
1318 thislen
= min_t(int, writesize
, len
- read
);
1321 /* Now wait for load */
1322 ret
= this->wait(mtd
, FL_READING
);
1323 onenand_update_bufferram(mtd
, from
, !ret
);
1324 if (mtd_is_eccerr(ret
))
1329 * Return success, if no ECC failures, else -EBADMSG
1330 * fs driver will take care of that, because
1331 * retlen == desired len and result == -EBADMSG
1334 ops
->oobretlen
= oobread
;
1339 if (mtd
->ecc_stats
.failed
- stats
.failed
)
1342 /* return max bitflips per ecc step; ONENANDs correct 1 bit only */
1343 return mtd
->ecc_stats
.corrected
!= stats
.corrected
? 1 : 0;
1347 * onenand_read_oob_nolock - [MTD Interface] OneNAND read out-of-band
1348 * @param mtd MTD device structure
1349 * @param from offset to read from
1350 * @param ops: oob operation description structure
1352 * OneNAND read out-of-band data from the spare area
1354 static int onenand_read_oob_nolock(struct mtd_info
*mtd
, loff_t from
,
1355 struct mtd_oob_ops
*ops
)
1357 struct onenand_chip
*this = mtd
->priv
;
1358 struct mtd_ecc_stats stats
;
1359 int read
= 0, thislen
, column
, oobsize
;
1360 size_t len
= ops
->ooblen
;
1361 unsigned int mode
= ops
->mode
;
1362 u_char
*buf
= ops
->oobbuf
;
1363 int ret
= 0, readcmd
;
1365 from
+= ops
->ooboffs
;
1367 pr_debug("%s: from = 0x%08x, len = %i\n", __func__
, (unsigned int)from
,
1370 /* Initialize return length value */
1373 if (mode
== MTD_OPS_AUTO_OOB
)
1374 oobsize
= mtd
->oobavail
;
1376 oobsize
= mtd
->oobsize
;
1378 column
= from
& (mtd
->oobsize
- 1);
1380 if (unlikely(column
>= oobsize
)) {
1381 printk(KERN_ERR
"%s: Attempted to start read outside oob\n",
1386 stats
= mtd
->ecc_stats
;
1388 readcmd
= ONENAND_IS_4KB_PAGE(this) ? ONENAND_CMD_READ
: ONENAND_CMD_READOOB
;
1390 while (read
< len
) {
1393 thislen
= oobsize
- column
;
1394 thislen
= min_t(int, thislen
, len
);
1396 this->command(mtd
, readcmd
, from
, mtd
->oobsize
);
1398 onenand_update_bufferram(mtd
, from
, 0);
1400 ret
= this->wait(mtd
, FL_READING
);
1402 ret
= onenand_recover_lsb(mtd
, from
, ret
);
1404 if (ret
&& !mtd_is_eccerr(ret
)) {
1405 printk(KERN_ERR
"%s: read failed = 0x%x\n",
1410 if (mode
== MTD_OPS_AUTO_OOB
)
1411 onenand_transfer_auto_oob(mtd
, buf
, column
, thislen
);
1413 this->read_bufferram(mtd
, ONENAND_SPARERAM
, buf
, column
, thislen
);
1425 from
+= mtd
->writesize
;
1430 ops
->oobretlen
= read
;
1435 if (mtd
->ecc_stats
.failed
- stats
.failed
)
1442 * onenand_read_oob - [MTD Interface] Read main and/or out-of-band
1443 * @param mtd: MTD device structure
1444 * @param from: offset to read from
1445 * @param ops: oob operation description structure
1447 * Read main and/or out-of-band
1449 static int onenand_read_oob(struct mtd_info
*mtd
, loff_t from
,
1450 struct mtd_oob_ops
*ops
)
1452 struct onenand_chip
*this = mtd
->priv
;
1455 switch (ops
->mode
) {
1456 case MTD_OPS_PLACE_OOB
:
1457 case MTD_OPS_AUTO_OOB
:
1460 /* Not implemented yet */
1465 onenand_get_device(mtd
, FL_READING
);
1467 ret
= ONENAND_IS_4KB_PAGE(this) ?
1468 onenand_mlc_read_ops_nolock(mtd
, from
, ops
) :
1469 onenand_read_ops_nolock(mtd
, from
, ops
);
1471 ret
= onenand_read_oob_nolock(mtd
, from
, ops
);
1472 onenand_release_device(mtd
);
1478 * onenand_bbt_wait - [DEFAULT] wait until the command is done
1479 * @param mtd MTD device structure
1480 * @param state state to select the max. timeout value
1482 * Wait for command done.
1484 static int onenand_bbt_wait(struct mtd_info
*mtd
, int state
)
1486 struct onenand_chip
*this = mtd
->priv
;
1487 unsigned long timeout
;
1488 unsigned int interrupt
, ctrl
, ecc
, addr1
, addr8
;
1490 /* The 20 msec is enough */
1491 timeout
= jiffies
+ msecs_to_jiffies(20);
1492 while (time_before(jiffies
, timeout
)) {
1493 interrupt
= this->read_word(this->base
+ ONENAND_REG_INTERRUPT
);
1494 if (interrupt
& ONENAND_INT_MASTER
)
1497 /* To get correct interrupt status in timeout case */
1498 interrupt
= this->read_word(this->base
+ ONENAND_REG_INTERRUPT
);
1499 ctrl
= this->read_word(this->base
+ ONENAND_REG_CTRL_STATUS
);
1500 addr1
= this->read_word(this->base
+ ONENAND_REG_START_ADDRESS1
);
1501 addr8
= this->read_word(this->base
+ ONENAND_REG_START_ADDRESS8
);
1503 if (interrupt
& ONENAND_INT_READ
) {
1504 ecc
= onenand_read_ecc(this);
1505 if (ecc
& ONENAND_ECC_2BIT_ALL
) {
1506 printk(KERN_DEBUG
"%s: ecc 0x%04x ctrl 0x%04x "
1507 "intr 0x%04x addr1 %#x addr8 %#x\n",
1508 __func__
, ecc
, ctrl
, interrupt
, addr1
, addr8
);
1509 return ONENAND_BBT_READ_ECC_ERROR
;
1512 printk(KERN_ERR
"%s: read timeout! ctrl 0x%04x "
1513 "intr 0x%04x addr1 %#x addr8 %#x\n",
1514 __func__
, ctrl
, interrupt
, addr1
, addr8
);
1515 return ONENAND_BBT_READ_FATAL_ERROR
;
1518 /* Initial bad block case: 0x2400 or 0x0400 */
1519 if (ctrl
& ONENAND_CTRL_ERROR
) {
1520 printk(KERN_DEBUG
"%s: ctrl 0x%04x intr 0x%04x addr1 %#x "
1521 "addr8 %#x\n", __func__
, ctrl
, interrupt
, addr1
, addr8
);
1522 return ONENAND_BBT_READ_ERROR
;
1529 * onenand_bbt_read_oob - [MTD Interface] OneNAND read out-of-band for bbt scan
1530 * @param mtd MTD device structure
1531 * @param from offset to read from
1532 * @param ops oob operation description structure
1534 * OneNAND read out-of-band data from the spare area for bbt scan
1536 int onenand_bbt_read_oob(struct mtd_info
*mtd
, loff_t from
,
1537 struct mtd_oob_ops
*ops
)
1539 struct onenand_chip
*this = mtd
->priv
;
1540 int read
= 0, thislen
, column
;
1541 int ret
= 0, readcmd
;
1542 size_t len
= ops
->ooblen
;
1543 u_char
*buf
= ops
->oobbuf
;
1545 pr_debug("%s: from = 0x%08x, len = %zi\n", __func__
, (unsigned int)from
,
1548 /* Initialize return value */
1551 /* Do not allow reads past end of device */
1552 if (unlikely((from
+ len
) > mtd
->size
)) {
1553 printk(KERN_ERR
"%s: Attempt read beyond end of device\n",
1555 return ONENAND_BBT_READ_FATAL_ERROR
;
1558 /* Grab the lock and see if the device is available */
1559 onenand_get_device(mtd
, FL_READING
);
1561 column
= from
& (mtd
->oobsize
- 1);
1563 readcmd
= ONENAND_IS_4KB_PAGE(this) ? ONENAND_CMD_READ
: ONENAND_CMD_READOOB
;
1565 while (read
< len
) {
1568 thislen
= mtd
->oobsize
- column
;
1569 thislen
= min_t(int, thislen
, len
);
1571 this->command(mtd
, readcmd
, from
, mtd
->oobsize
);
1573 onenand_update_bufferram(mtd
, from
, 0);
1575 ret
= this->bbt_wait(mtd
, FL_READING
);
1577 ret
= onenand_recover_lsb(mtd
, from
, ret
);
1582 this->read_bufferram(mtd
, ONENAND_SPARERAM
, buf
, column
, thislen
);
1591 /* Update Page size */
1592 from
+= this->writesize
;
1597 /* Deselect and wake up anyone waiting on the device */
1598 onenand_release_device(mtd
);
1600 ops
->oobretlen
= read
;
1604 #ifdef CONFIG_MTD_ONENAND_VERIFY_WRITE
1606 * onenand_verify_oob - [GENERIC] verify the oob contents after a write
1607 * @param mtd MTD device structure
1608 * @param buf the databuffer to verify
1609 * @param to offset to read from
1611 static int onenand_verify_oob(struct mtd_info
*mtd
, const u_char
*buf
, loff_t to
)
1613 struct onenand_chip
*this = mtd
->priv
;
1614 u_char
*oob_buf
= this->oob_buf
;
1615 int status
, i
, readcmd
;
1617 readcmd
= ONENAND_IS_4KB_PAGE(this) ? ONENAND_CMD_READ
: ONENAND_CMD_READOOB
;
1619 this->command(mtd
, readcmd
, to
, mtd
->oobsize
);
1620 onenand_update_bufferram(mtd
, to
, 0);
1621 status
= this->wait(mtd
, FL_READING
);
1625 this->read_bufferram(mtd
, ONENAND_SPARERAM
, oob_buf
, 0, mtd
->oobsize
);
1626 for (i
= 0; i
< mtd
->oobsize
; i
++)
1627 if (buf
[i
] != 0xFF && buf
[i
] != oob_buf
[i
])
1634 * onenand_verify - [GENERIC] verify the chip contents after a write
1635 * @param mtd MTD device structure
1636 * @param buf the databuffer to verify
1637 * @param addr offset to read from
1638 * @param len number of bytes to read and compare
1640 static int onenand_verify(struct mtd_info
*mtd
, const u_char
*buf
, loff_t addr
, size_t len
)
1642 struct onenand_chip
*this = mtd
->priv
;
1644 int thislen
, column
;
1646 column
= addr
& (this->writesize
- 1);
1649 thislen
= min_t(int, this->writesize
- column
, len
);
1651 this->command(mtd
, ONENAND_CMD_READ
, addr
, this->writesize
);
1653 onenand_update_bufferram(mtd
, addr
, 0);
1655 ret
= this->wait(mtd
, FL_READING
);
1659 onenand_update_bufferram(mtd
, addr
, 1);
1661 this->read_bufferram(mtd
, ONENAND_DATARAM
, this->verify_buf
, 0, mtd
->writesize
);
1663 if (memcmp(buf
, this->verify_buf
+ column
, thislen
))
1675 #define onenand_verify(...) (0)
1676 #define onenand_verify_oob(...) (0)
1679 #define NOTALIGNED(x) ((x & (this->subpagesize - 1)) != 0)
1681 static void onenand_panic_wait(struct mtd_info
*mtd
)
1683 struct onenand_chip
*this = mtd
->priv
;
1684 unsigned int interrupt
;
1687 for (i
= 0; i
< 2000; i
++) {
1688 interrupt
= this->read_word(this->base
+ ONENAND_REG_INTERRUPT
);
1689 if (interrupt
& ONENAND_INT_MASTER
)
1696 * onenand_panic_write - [MTD Interface] write buffer to FLASH in a panic context
1697 * @param mtd MTD device structure
1698 * @param to offset to write to
1699 * @param len number of bytes to write
1700 * @param retlen pointer to variable to store the number of written bytes
1701 * @param buf the data to write
1705 static int onenand_panic_write(struct mtd_info
*mtd
, loff_t to
, size_t len
,
1706 size_t *retlen
, const u_char
*buf
)
1708 struct onenand_chip
*this = mtd
->priv
;
1709 int column
, subpage
;
1712 if (this->state
== FL_PM_SUSPENDED
)
1715 /* Wait for any existing operation to clear */
1716 onenand_panic_wait(mtd
);
1718 pr_debug("%s: to = 0x%08x, len = %i\n", __func__
, (unsigned int)to
,
1721 /* Reject writes, which are not page aligned */
1722 if (unlikely(NOTALIGNED(to
) || NOTALIGNED(len
))) {
1723 printk(KERN_ERR
"%s: Attempt to write not page aligned data\n",
1728 column
= to
& (mtd
->writesize
- 1);
1730 /* Loop until all data write */
1731 while (written
< len
) {
1732 int thislen
= min_t(int, mtd
->writesize
- column
, len
- written
);
1733 u_char
*wbuf
= (u_char
*) buf
;
1735 this->command(mtd
, ONENAND_CMD_BUFFERRAM
, to
, thislen
);
1737 /* Partial page write */
1738 subpage
= thislen
< mtd
->writesize
;
1740 memset(this->page_buf
, 0xff, mtd
->writesize
);
1741 memcpy(this->page_buf
+ column
, buf
, thislen
);
1742 wbuf
= this->page_buf
;
1745 this->write_bufferram(mtd
, ONENAND_DATARAM
, wbuf
, 0, mtd
->writesize
);
1746 this->write_bufferram(mtd
, ONENAND_SPARERAM
, ffchars
, 0, mtd
->oobsize
);
1748 this->command(mtd
, ONENAND_CMD_PROG
, to
, mtd
->writesize
);
1750 onenand_panic_wait(mtd
);
1752 /* In partial page write we don't update bufferram */
1753 onenand_update_bufferram(mtd
, to
, !subpage
);
1754 if (ONENAND_IS_2PLANE(this)) {
1755 ONENAND_SET_BUFFERRAM1(this);
1756 onenand_update_bufferram(mtd
, to
+ this->writesize
, !subpage
);
1774 * onenand_fill_auto_oob - [INTERN] oob auto-placement transfer
1775 * @param mtd MTD device structure
1776 * @param oob_buf oob buffer
1777 * @param buf source address
1778 * @param column oob offset to write to
1779 * @param thislen oob length to write
1781 static int onenand_fill_auto_oob(struct mtd_info
*mtd
, u_char
*oob_buf
,
1782 const u_char
*buf
, int column
, int thislen
)
1784 return mtd_ooblayout_set_databytes(mtd
, buf
, oob_buf
, column
, thislen
);
1788 * onenand_write_ops_nolock - [OneNAND Interface] write main and/or out-of-band
1789 * @param mtd MTD device structure
1790 * @param to offset to write to
1791 * @param ops oob operation description structure
1793 * Write main and/or oob with ECC
1795 static int onenand_write_ops_nolock(struct mtd_info
*mtd
, loff_t to
,
1796 struct mtd_oob_ops
*ops
)
1798 struct onenand_chip
*this = mtd
->priv
;
1799 int written
= 0, column
, thislen
= 0, subpage
= 0;
1800 int prev
= 0, prevlen
= 0, prev_subpage
= 0, first
= 1;
1801 int oobwritten
= 0, oobcolumn
, thisooblen
, oobsize
;
1802 size_t len
= ops
->len
;
1803 size_t ooblen
= ops
->ooblen
;
1804 const u_char
*buf
= ops
->datbuf
;
1805 const u_char
*oob
= ops
->oobbuf
;
1809 pr_debug("%s: to = 0x%08x, len = %i\n", __func__
, (unsigned int)to
,
1812 /* Initialize retlen, in case of early exit */
1816 /* Reject writes, which are not page aligned */
1817 if (unlikely(NOTALIGNED(to
) || NOTALIGNED(len
))) {
1818 printk(KERN_ERR
"%s: Attempt to write not page aligned data\n",
1823 /* Check zero length */
1826 oobsize
= mtd_oobavail(mtd
, ops
);
1827 oobcolumn
= to
& (mtd
->oobsize
- 1);
1829 column
= to
& (mtd
->writesize
- 1);
1831 /* Loop until all data write */
1833 if (written
< len
) {
1834 u_char
*wbuf
= (u_char
*) buf
;
1836 thislen
= min_t(int, mtd
->writesize
- column
, len
- written
);
1837 thisooblen
= min_t(int, oobsize
- oobcolumn
, ooblen
- oobwritten
);
1841 this->command(mtd
, ONENAND_CMD_BUFFERRAM
, to
, thislen
);
1843 /* Partial page write */
1844 subpage
= thislen
< mtd
->writesize
;
1846 memset(this->page_buf
, 0xff, mtd
->writesize
);
1847 memcpy(this->page_buf
+ column
, buf
, thislen
);
1848 wbuf
= this->page_buf
;
1851 this->write_bufferram(mtd
, ONENAND_DATARAM
, wbuf
, 0, mtd
->writesize
);
1854 oobbuf
= this->oob_buf
;
1856 /* We send data to spare ram with oobsize
1857 * to prevent byte access */
1858 memset(oobbuf
, 0xff, mtd
->oobsize
);
1859 if (ops
->mode
== MTD_OPS_AUTO_OOB
)
1860 onenand_fill_auto_oob(mtd
, oobbuf
, oob
, oobcolumn
, thisooblen
);
1862 memcpy(oobbuf
+ oobcolumn
, oob
, thisooblen
);
1864 oobwritten
+= thisooblen
;
1868 oobbuf
= (u_char
*) ffchars
;
1870 this->write_bufferram(mtd
, ONENAND_SPARERAM
, oobbuf
, 0, mtd
->oobsize
);
1872 ONENAND_SET_NEXT_BUFFERRAM(this);
1875 * 2 PLANE, MLC, and Flex-OneNAND do not support
1876 * write-while-program feature.
1878 if (!ONENAND_IS_2PLANE(this) && !ONENAND_IS_4KB_PAGE(this) && !first
) {
1879 ONENAND_SET_PREV_BUFFERRAM(this);
1881 ret
= this->wait(mtd
, FL_WRITING
);
1883 /* In partial page write we don't update bufferram */
1884 onenand_update_bufferram(mtd
, prev
, !ret
&& !prev_subpage
);
1887 printk(KERN_ERR
"%s: write failed %d\n",
1892 if (written
== len
) {
1893 /* Only check verify write turn on */
1894 ret
= onenand_verify(mtd
, buf
- len
, to
- len
, len
);
1896 printk(KERN_ERR
"%s: verify failed %d\n",
1901 ONENAND_SET_NEXT_BUFFERRAM(this);
1905 cmd
= ONENAND_CMD_PROG
;
1907 /* Exclude 1st OTP and OTP blocks for cache program feature */
1908 if (ONENAND_IS_CACHE_PROGRAM(this) &&
1909 likely(onenand_block(this, to
) != 0) &&
1910 ONENAND_IS_4KB_PAGE(this) &&
1911 ((written
+ thislen
) < len
)) {
1912 cmd
= ONENAND_CMD_2X_CACHE_PROG
;
1916 this->command(mtd
, cmd
, to
, mtd
->writesize
);
1919 * 2 PLANE, MLC, and Flex-OneNAND wait here
1921 if (ONENAND_IS_2PLANE(this) || ONENAND_IS_4KB_PAGE(this)) {
1922 ret
= this->wait(mtd
, FL_WRITING
);
1924 /* In partial page write we don't update bufferram */
1925 onenand_update_bufferram(mtd
, to
, !ret
&& !subpage
);
1927 printk(KERN_ERR
"%s: write failed %d\n",
1932 /* Only check verify write turn on */
1933 ret
= onenand_verify(mtd
, buf
, to
, thislen
);
1935 printk(KERN_ERR
"%s: verify failed %d\n",
1949 prev_subpage
= subpage
;
1957 /* In error case, clear all bufferrams */
1959 onenand_invalidate_bufferram(mtd
, 0, -1);
1961 ops
->retlen
= written
;
1962 ops
->oobretlen
= oobwritten
;
1969 * onenand_write_oob_nolock - [INTERN] OneNAND write out-of-band
1970 * @param mtd MTD device structure
1971 * @param to offset to write to
1972 * @param len number of bytes to write
1973 * @param retlen pointer to variable to store the number of written bytes
1974 * @param buf the data to write
1975 * @param mode operation mode
1977 * OneNAND write out-of-band
1979 static int onenand_write_oob_nolock(struct mtd_info
*mtd
, loff_t to
,
1980 struct mtd_oob_ops
*ops
)
1982 struct onenand_chip
*this = mtd
->priv
;
1983 int column
, ret
= 0, oobsize
;
1984 int written
= 0, oobcmd
;
1986 size_t len
= ops
->ooblen
;
1987 const u_char
*buf
= ops
->oobbuf
;
1988 unsigned int mode
= ops
->mode
;
1992 pr_debug("%s: to = 0x%08x, len = %i\n", __func__
, (unsigned int)to
,
1995 /* Initialize retlen, in case of early exit */
1998 if (mode
== MTD_OPS_AUTO_OOB
)
1999 oobsize
= mtd
->oobavail
;
2001 oobsize
= mtd
->oobsize
;
2003 column
= to
& (mtd
->oobsize
- 1);
2005 if (unlikely(column
>= oobsize
)) {
2006 printk(KERN_ERR
"%s: Attempted to start write outside oob\n",
2011 /* For compatibility with NAND: Do not allow write past end of page */
2012 if (unlikely(column
+ len
> oobsize
)) {
2013 printk(KERN_ERR
"%s: Attempt to write past end of page\n",
2018 oobbuf
= this->oob_buf
;
2020 oobcmd
= ONENAND_IS_4KB_PAGE(this) ? ONENAND_CMD_PROG
: ONENAND_CMD_PROGOOB
;
2022 /* Loop until all data write */
2023 while (written
< len
) {
2024 int thislen
= min_t(int, oobsize
, len
- written
);
2028 this->command(mtd
, ONENAND_CMD_BUFFERRAM
, to
, mtd
->oobsize
);
2030 /* We send data to spare ram with oobsize
2031 * to prevent byte access */
2032 memset(oobbuf
, 0xff, mtd
->oobsize
);
2033 if (mode
== MTD_OPS_AUTO_OOB
)
2034 onenand_fill_auto_oob(mtd
, oobbuf
, buf
, column
, thislen
);
2036 memcpy(oobbuf
+ column
, buf
, thislen
);
2037 this->write_bufferram(mtd
, ONENAND_SPARERAM
, oobbuf
, 0, mtd
->oobsize
);
2039 if (ONENAND_IS_4KB_PAGE(this)) {
2040 /* Set main area of DataRAM to 0xff*/
2041 memset(this->page_buf
, 0xff, mtd
->writesize
);
2042 this->write_bufferram(mtd
, ONENAND_DATARAM
,
2043 this->page_buf
, 0, mtd
->writesize
);
2046 this->command(mtd
, oobcmd
, to
, mtd
->oobsize
);
2048 onenand_update_bufferram(mtd
, to
, 0);
2049 if (ONENAND_IS_2PLANE(this)) {
2050 ONENAND_SET_BUFFERRAM1(this);
2051 onenand_update_bufferram(mtd
, to
+ this->writesize
, 0);
2054 ret
= this->wait(mtd
, FL_WRITING
);
2056 printk(KERN_ERR
"%s: write failed %d\n", __func__
, ret
);
2060 ret
= onenand_verify_oob(mtd
, oobbuf
, to
);
2062 printk(KERN_ERR
"%s: verify failed %d\n",
2071 to
+= mtd
->writesize
;
2076 ops
->oobretlen
= written
;
2082 * onenand_write_oob - [MTD Interface] NAND write data and/or out-of-band
2083 * @param mtd: MTD device structure
2084 * @param to: offset to write
2085 * @param ops: oob operation description structure
2087 static int onenand_write_oob(struct mtd_info
*mtd
, loff_t to
,
2088 struct mtd_oob_ops
*ops
)
2092 switch (ops
->mode
) {
2093 case MTD_OPS_PLACE_OOB
:
2094 case MTD_OPS_AUTO_OOB
:
2097 /* Not implemented yet */
2102 onenand_get_device(mtd
, FL_WRITING
);
2104 ret
= onenand_write_ops_nolock(mtd
, to
, ops
);
2106 ret
= onenand_write_oob_nolock(mtd
, to
, ops
);
2107 onenand_release_device(mtd
);
2113 * onenand_block_isbad_nolock - [GENERIC] Check if a block is marked bad
2114 * @param mtd MTD device structure
2115 * @param ofs offset from device start
2116 * @param allowbbt 1, if its allowed to access the bbt area
2118 * Check, if the block is bad. Either by reading the bad block table or
2119 * calling of the scan function.
2121 static int onenand_block_isbad_nolock(struct mtd_info
*mtd
, loff_t ofs
, int allowbbt
)
2123 struct onenand_chip
*this = mtd
->priv
;
2124 struct bbm_info
*bbm
= this->bbm
;
2126 /* Return info from the table */
2127 return bbm
->isbad_bbt(mtd
, ofs
, allowbbt
);
2131 static int onenand_multiblock_erase_verify(struct mtd_info
*mtd
,
2132 struct erase_info
*instr
)
2134 struct onenand_chip
*this = mtd
->priv
;
2135 loff_t addr
= instr
->addr
;
2136 int len
= instr
->len
;
2137 unsigned int block_size
= (1 << this->erase_shift
);
2141 this->command(mtd
, ONENAND_CMD_ERASE_VERIFY
, addr
, block_size
);
2142 ret
= this->wait(mtd
, FL_VERIFYING_ERASE
);
2144 printk(KERN_ERR
"%s: Failed verify, block %d\n",
2145 __func__
, onenand_block(this, addr
));
2146 instr
->state
= MTD_ERASE_FAILED
;
2147 instr
->fail_addr
= addr
;
2157 * onenand_multiblock_erase - [INTERN] erase block(s) using multiblock erase
2158 * @param mtd MTD device structure
2159 * @param instr erase instruction
2160 * @param region erase region
2162 * Erase one or more blocks up to 64 block at a time
2164 static int onenand_multiblock_erase(struct mtd_info
*mtd
,
2165 struct erase_info
*instr
,
2166 unsigned int block_size
)
2168 struct onenand_chip
*this = mtd
->priv
;
2169 loff_t addr
= instr
->addr
;
2170 int len
= instr
->len
;
2175 instr
->state
= MTD_ERASING
;
2177 if (ONENAND_IS_DDP(this)) {
2178 loff_t bdry_addr
= this->chipsize
>> 1;
2179 if (addr
< bdry_addr
&& (addr
+ len
) > bdry_addr
)
2180 bdry_block
= bdry_addr
>> this->erase_shift
;
2185 /* Check if we have a bad block, we do not erase bad blocks */
2186 if (onenand_block_isbad_nolock(mtd
, addr
, 0)) {
2187 printk(KERN_WARNING
"%s: attempt to erase a bad block "
2188 "at addr 0x%012llx\n",
2189 __func__
, (unsigned long long) addr
);
2190 instr
->state
= MTD_ERASE_FAILED
;
2200 /* loop over 64 eb batches */
2202 struct erase_info verify_instr
= *instr
;
2203 int max_eb_count
= MB_ERASE_MAX_BLK_COUNT
;
2205 verify_instr
.addr
= addr
;
2206 verify_instr
.len
= 0;
2208 /* do not cross chip boundary */
2210 int this_block
= (addr
>> this->erase_shift
);
2212 if (this_block
< bdry_block
) {
2213 max_eb_count
= min(max_eb_count
,
2214 (bdry_block
- this_block
));
2220 while (len
> block_size
&& eb_count
< (max_eb_count
- 1)) {
2221 this->command(mtd
, ONENAND_CMD_MULTIBLOCK_ERASE
,
2223 onenand_invalidate_bufferram(mtd
, addr
, block_size
);
2225 ret
= this->wait(mtd
, FL_PREPARING_ERASE
);
2227 printk(KERN_ERR
"%s: Failed multiblock erase, "
2228 "block %d\n", __func__
,
2229 onenand_block(this, addr
));
2230 instr
->state
= MTD_ERASE_FAILED
;
2231 instr
->fail_addr
= MTD_FAIL_ADDR_UNKNOWN
;
2240 /* last block of 64-eb series */
2242 this->command(mtd
, ONENAND_CMD_ERASE
, addr
, block_size
);
2243 onenand_invalidate_bufferram(mtd
, addr
, block_size
);
2245 ret
= this->wait(mtd
, FL_ERASING
);
2246 /* Check if it is write protected */
2248 printk(KERN_ERR
"%s: Failed erase, block %d\n",
2249 __func__
, onenand_block(this, addr
));
2250 instr
->state
= MTD_ERASE_FAILED
;
2251 instr
->fail_addr
= MTD_FAIL_ADDR_UNKNOWN
;
2260 verify_instr
.len
= eb_count
* block_size
;
2261 if (onenand_multiblock_erase_verify(mtd
, &verify_instr
)) {
2262 instr
->state
= verify_instr
.state
;
2263 instr
->fail_addr
= verify_instr
.fail_addr
;
2273 * onenand_block_by_block_erase - [INTERN] erase block(s) using regular erase
2274 * @param mtd MTD device structure
2275 * @param instr erase instruction
2276 * @param region erase region
2277 * @param block_size erase block size
2279 * Erase one or more blocks one block at a time
2281 static int onenand_block_by_block_erase(struct mtd_info
*mtd
,
2282 struct erase_info
*instr
,
2283 struct mtd_erase_region_info
*region
,
2284 unsigned int block_size
)
2286 struct onenand_chip
*this = mtd
->priv
;
2287 loff_t addr
= instr
->addr
;
2288 int len
= instr
->len
;
2289 loff_t region_end
= 0;
2293 /* region is set for Flex-OneNAND */
2294 region_end
= region
->offset
+ region
->erasesize
* region
->numblocks
;
2297 instr
->state
= MTD_ERASING
;
2299 /* Loop through the blocks */
2303 /* Check if we have a bad block, we do not erase bad blocks */
2304 if (onenand_block_isbad_nolock(mtd
, addr
, 0)) {
2305 printk(KERN_WARNING
"%s: attempt to erase a bad block "
2306 "at addr 0x%012llx\n",
2307 __func__
, (unsigned long long) addr
);
2308 instr
->state
= MTD_ERASE_FAILED
;
2312 this->command(mtd
, ONENAND_CMD_ERASE
, addr
, block_size
);
2314 onenand_invalidate_bufferram(mtd
, addr
, block_size
);
2316 ret
= this->wait(mtd
, FL_ERASING
);
2317 /* Check, if it is write protected */
2319 printk(KERN_ERR
"%s: Failed erase, block %d\n",
2320 __func__
, onenand_block(this, addr
));
2321 instr
->state
= MTD_ERASE_FAILED
;
2322 instr
->fail_addr
= addr
;
2329 if (region
&& addr
== region_end
) {
2334 block_size
= region
->erasesize
;
2335 region_end
= region
->offset
+ region
->erasesize
* region
->numblocks
;
2337 if (len
& (block_size
- 1)) {
2338 /* FIXME: This should be handled at MTD partitioning level. */
2339 printk(KERN_ERR
"%s: Unaligned address\n",
2349 * onenand_erase - [MTD Interface] erase block(s)
2350 * @param mtd MTD device structure
2351 * @param instr erase instruction
2353 * Erase one or more blocks
2355 static int onenand_erase(struct mtd_info
*mtd
, struct erase_info
*instr
)
2357 struct onenand_chip
*this = mtd
->priv
;
2358 unsigned int block_size
;
2359 loff_t addr
= instr
->addr
;
2360 loff_t len
= instr
->len
;
2362 struct mtd_erase_region_info
*region
= NULL
;
2363 loff_t region_offset
= 0;
2365 pr_debug("%s: start=0x%012llx, len=%llu\n", __func__
,
2366 (unsigned long long)instr
->addr
,
2367 (unsigned long long)instr
->len
);
2369 if (FLEXONENAND(this)) {
2370 /* Find the eraseregion of this address */
2371 int i
= flexonenand_region(mtd
, addr
);
2373 region
= &mtd
->eraseregions
[i
];
2374 block_size
= region
->erasesize
;
2376 /* Start address within region must align on block boundary.
2377 * Erase region's start offset is always block start address.
2379 region_offset
= region
->offset
;
2381 block_size
= 1 << this->erase_shift
;
2383 /* Start address must align on block boundary */
2384 if (unlikely((addr
- region_offset
) & (block_size
- 1))) {
2385 printk(KERN_ERR
"%s: Unaligned address\n", __func__
);
2389 /* Length must align on block boundary */
2390 if (unlikely(len
& (block_size
- 1))) {
2391 printk(KERN_ERR
"%s: Length not block aligned\n", __func__
);
2395 /* Grab the lock and see if the device is available */
2396 onenand_get_device(mtd
, FL_ERASING
);
2398 if (ONENAND_IS_4KB_PAGE(this) || region
||
2399 instr
->len
< MB_ERASE_MIN_BLK_COUNT
* block_size
) {
2400 /* region is set for Flex-OneNAND (no mb erase) */
2401 ret
= onenand_block_by_block_erase(mtd
, instr
,
2402 region
, block_size
);
2404 ret
= onenand_multiblock_erase(mtd
, instr
, block_size
);
2407 /* Deselect and wake up anyone waiting on the device */
2408 onenand_release_device(mtd
);
2410 /* Do call back function */
2412 instr
->state
= MTD_ERASE_DONE
;
2413 mtd_erase_callback(instr
);
2420 * onenand_sync - [MTD Interface] sync
2421 * @param mtd MTD device structure
2423 * Sync is actually a wait for chip ready function
2425 static void onenand_sync(struct mtd_info
*mtd
)
2427 pr_debug("%s: called\n", __func__
);
2429 /* Grab the lock and see if the device is available */
2430 onenand_get_device(mtd
, FL_SYNCING
);
2432 /* Release it and go back */
2433 onenand_release_device(mtd
);
2437 * onenand_block_isbad - [MTD Interface] Check whether the block at the given offset is bad
2438 * @param mtd MTD device structure
2439 * @param ofs offset relative to mtd start
2441 * Check whether the block is bad
2443 static int onenand_block_isbad(struct mtd_info
*mtd
, loff_t ofs
)
2447 onenand_get_device(mtd
, FL_READING
);
2448 ret
= onenand_block_isbad_nolock(mtd
, ofs
, 0);
2449 onenand_release_device(mtd
);
2454 * onenand_default_block_markbad - [DEFAULT] mark a block bad
2455 * @param mtd MTD device structure
2456 * @param ofs offset from device start
2458 * This is the default implementation, which can be overridden by
2459 * a hardware specific driver.
2461 static int onenand_default_block_markbad(struct mtd_info
*mtd
, loff_t ofs
)
2463 struct onenand_chip
*this = mtd
->priv
;
2464 struct bbm_info
*bbm
= this->bbm
;
2465 u_char buf
[2] = {0, 0};
2466 struct mtd_oob_ops ops
= {
2467 .mode
= MTD_OPS_PLACE_OOB
,
2474 /* Get block number */
2475 block
= onenand_block(this, ofs
);
2477 bbm
->bbt
[block
>> 2] |= 0x01 << ((block
& 0x03) << 1);
2479 /* We write two bytes, so we don't have to mess with 16-bit access */
2480 ofs
+= mtd
->oobsize
+ (bbm
->badblockpos
& ~0x01);
2481 /* FIXME : What to do when marking SLC block in partition
2482 * with MLC erasesize? For now, it is not advisable to
2483 * create partitions containing both SLC and MLC regions.
2485 return onenand_write_oob_nolock(mtd
, ofs
, &ops
);
2489 * onenand_block_markbad - [MTD Interface] Mark the block at the given offset as bad
2490 * @param mtd MTD device structure
2491 * @param ofs offset relative to mtd start
2493 * Mark the block as bad
2495 static int onenand_block_markbad(struct mtd_info
*mtd
, loff_t ofs
)
2497 struct onenand_chip
*this = mtd
->priv
;
2500 ret
= onenand_block_isbad(mtd
, ofs
);
2502 /* If it was bad already, return success and do nothing */
2508 onenand_get_device(mtd
, FL_WRITING
);
2509 ret
= this->block_markbad(mtd
, ofs
);
2510 onenand_release_device(mtd
);
2515 * onenand_do_lock_cmd - [OneNAND Interface] Lock or unlock block(s)
2516 * @param mtd MTD device structure
2517 * @param ofs offset relative to mtd start
2518 * @param len number of bytes to lock or unlock
2519 * @param cmd lock or unlock command
2521 * Lock or unlock one or more blocks
2523 static int onenand_do_lock_cmd(struct mtd_info
*mtd
, loff_t ofs
, size_t len
, int cmd
)
2525 struct onenand_chip
*this = mtd
->priv
;
2526 int start
, end
, block
, value
, status
;
2529 start
= onenand_block(this, ofs
);
2530 end
= onenand_block(this, ofs
+ len
) - 1;
2532 if (cmd
== ONENAND_CMD_LOCK
)
2533 wp_status_mask
= ONENAND_WP_LS
;
2535 wp_status_mask
= ONENAND_WP_US
;
2537 /* Continuous lock scheme */
2538 if (this->options
& ONENAND_HAS_CONT_LOCK
) {
2539 /* Set start block address */
2540 this->write_word(start
, this->base
+ ONENAND_REG_START_BLOCK_ADDRESS
);
2541 /* Set end block address */
2542 this->write_word(end
, this->base
+ ONENAND_REG_END_BLOCK_ADDRESS
);
2543 /* Write lock command */
2544 this->command(mtd
, cmd
, 0, 0);
2546 /* There's no return value */
2547 this->wait(mtd
, FL_LOCKING
);
2550 while (this->read_word(this->base
+ ONENAND_REG_CTRL_STATUS
)
2551 & ONENAND_CTRL_ONGO
)
2554 /* Check lock status */
2555 status
= this->read_word(this->base
+ ONENAND_REG_WP_STATUS
);
2556 if (!(status
& wp_status_mask
))
2557 printk(KERN_ERR
"%s: wp status = 0x%x\n",
2563 /* Block lock scheme */
2564 for (block
= start
; block
< end
+ 1; block
++) {
2565 /* Set block address */
2566 value
= onenand_block_address(this, block
);
2567 this->write_word(value
, this->base
+ ONENAND_REG_START_ADDRESS1
);
2568 /* Select DataRAM for DDP */
2569 value
= onenand_bufferram_address(this, block
);
2570 this->write_word(value
, this->base
+ ONENAND_REG_START_ADDRESS2
);
2571 /* Set start block address */
2572 this->write_word(block
, this->base
+ ONENAND_REG_START_BLOCK_ADDRESS
);
2573 /* Write lock command */
2574 this->command(mtd
, cmd
, 0, 0);
2576 /* There's no return value */
2577 this->wait(mtd
, FL_LOCKING
);
2580 while (this->read_word(this->base
+ ONENAND_REG_CTRL_STATUS
)
2581 & ONENAND_CTRL_ONGO
)
2584 /* Check lock status */
2585 status
= this->read_word(this->base
+ ONENAND_REG_WP_STATUS
);
2586 if (!(status
& wp_status_mask
))
2587 printk(KERN_ERR
"%s: block = %d, wp status = 0x%x\n",
2588 __func__
, block
, status
);
2595 * onenand_lock - [MTD Interface] Lock block(s)
2596 * @param mtd MTD device structure
2597 * @param ofs offset relative to mtd start
2598 * @param len number of bytes to unlock
2600 * Lock one or more blocks
2602 static int onenand_lock(struct mtd_info
*mtd
, loff_t ofs
, uint64_t len
)
2606 onenand_get_device(mtd
, FL_LOCKING
);
2607 ret
= onenand_do_lock_cmd(mtd
, ofs
, len
, ONENAND_CMD_LOCK
);
2608 onenand_release_device(mtd
);
2613 * onenand_unlock - [MTD Interface] Unlock block(s)
2614 * @param mtd MTD device structure
2615 * @param ofs offset relative to mtd start
2616 * @param len number of bytes to unlock
2618 * Unlock one or more blocks
2620 static int onenand_unlock(struct mtd_info
*mtd
, loff_t ofs
, uint64_t len
)
2624 onenand_get_device(mtd
, FL_LOCKING
);
2625 ret
= onenand_do_lock_cmd(mtd
, ofs
, len
, ONENAND_CMD_UNLOCK
);
2626 onenand_release_device(mtd
);
2631 * onenand_check_lock_status - [OneNAND Interface] Check lock status
2632 * @param this onenand chip data structure
2636 static int onenand_check_lock_status(struct onenand_chip
*this)
2638 unsigned int value
, block
, status
;
2641 end
= this->chipsize
>> this->erase_shift
;
2642 for (block
= 0; block
< end
; block
++) {
2643 /* Set block address */
2644 value
= onenand_block_address(this, block
);
2645 this->write_word(value
, this->base
+ ONENAND_REG_START_ADDRESS1
);
2646 /* Select DataRAM for DDP */
2647 value
= onenand_bufferram_address(this, block
);
2648 this->write_word(value
, this->base
+ ONENAND_REG_START_ADDRESS2
);
2649 /* Set start block address */
2650 this->write_word(block
, this->base
+ ONENAND_REG_START_BLOCK_ADDRESS
);
2652 /* Check lock status */
2653 status
= this->read_word(this->base
+ ONENAND_REG_WP_STATUS
);
2654 if (!(status
& ONENAND_WP_US
)) {
2655 printk(KERN_ERR
"%s: block = %d, wp status = 0x%x\n",
2656 __func__
, block
, status
);
2665 * onenand_unlock_all - [OneNAND Interface] unlock all blocks
2666 * @param mtd MTD device structure
2670 static void onenand_unlock_all(struct mtd_info
*mtd
)
2672 struct onenand_chip
*this = mtd
->priv
;
2674 loff_t len
= mtd
->size
;
2676 if (this->options
& ONENAND_HAS_UNLOCK_ALL
) {
2677 /* Set start block address */
2678 this->write_word(0, this->base
+ ONENAND_REG_START_BLOCK_ADDRESS
);
2679 /* Write unlock command */
2680 this->command(mtd
, ONENAND_CMD_UNLOCK_ALL
, 0, 0);
2682 /* There's no return value */
2683 this->wait(mtd
, FL_LOCKING
);
2686 while (this->read_word(this->base
+ ONENAND_REG_CTRL_STATUS
)
2687 & ONENAND_CTRL_ONGO
)
2690 /* Don't check lock status */
2691 if (this->options
& ONENAND_SKIP_UNLOCK_CHECK
)
2694 /* Check lock status */
2695 if (onenand_check_lock_status(this))
2698 /* Workaround for all block unlock in DDP */
2699 if (ONENAND_IS_DDP(this) && !FLEXONENAND(this)) {
2700 /* All blocks on another chip */
2701 ofs
= this->chipsize
>> 1;
2702 len
= this->chipsize
>> 1;
2706 onenand_do_lock_cmd(mtd
, ofs
, len
, ONENAND_CMD_UNLOCK
);
2709 #ifdef CONFIG_MTD_ONENAND_OTP
2712 * onenand_otp_command - Send OTP specific command to OneNAND device
2713 * @param mtd MTD device structure
2714 * @param cmd the command to be sent
2715 * @param addr offset to read from or write to
2716 * @param len number of bytes to read or write
2718 static int onenand_otp_command(struct mtd_info
*mtd
, int cmd
, loff_t addr
,
2721 struct onenand_chip
*this = mtd
->priv
;
2722 int value
, block
, page
;
2724 /* Address translation */
2726 case ONENAND_CMD_OTP_ACCESS
:
2727 block
= (int) (addr
>> this->erase_shift
);
2732 block
= (int) (addr
>> this->erase_shift
);
2733 page
= (int) (addr
>> this->page_shift
);
2735 if (ONENAND_IS_2PLANE(this)) {
2736 /* Make the even block number */
2738 /* Is it the odd plane? */
2739 if (addr
& this->writesize
)
2743 page
&= this->page_mask
;
2748 /* Write 'DFS, FBA' of Flash */
2749 value
= onenand_block_address(this, block
);
2750 this->write_word(value
, this->base
+
2751 ONENAND_REG_START_ADDRESS1
);
2755 /* Now we use page size operation */
2756 int sectors
= 4, count
= 4;
2761 if (ONENAND_IS_2PLANE(this) && cmd
== ONENAND_CMD_PROG
)
2762 cmd
= ONENAND_CMD_2X_PROG
;
2763 dataram
= ONENAND_CURRENT_BUFFERRAM(this);
2767 /* Write 'FPA, FSA' of Flash */
2768 value
= onenand_page_address(page
, sectors
);
2769 this->write_word(value
, this->base
+
2770 ONENAND_REG_START_ADDRESS8
);
2772 /* Write 'BSA, BSC' of DataRAM */
2773 value
= onenand_buffer_address(dataram
, sectors
, count
);
2774 this->write_word(value
, this->base
+ ONENAND_REG_START_BUFFER
);
2777 /* Interrupt clear */
2778 this->write_word(ONENAND_INT_CLEAR
, this->base
+ ONENAND_REG_INTERRUPT
);
2781 this->write_word(cmd
, this->base
+ ONENAND_REG_COMMAND
);
2787 * onenand_otp_write_oob_nolock - [INTERN] OneNAND write out-of-band, specific to OTP
2788 * @param mtd MTD device structure
2789 * @param to offset to write to
2790 * @param len number of bytes to write
2791 * @param retlen pointer to variable to store the number of written bytes
2792 * @param buf the data to write
2794 * OneNAND write out-of-band only for OTP
2796 static int onenand_otp_write_oob_nolock(struct mtd_info
*mtd
, loff_t to
,
2797 struct mtd_oob_ops
*ops
)
2799 struct onenand_chip
*this = mtd
->priv
;
2800 int column
, ret
= 0, oobsize
;
2803 size_t len
= ops
->ooblen
;
2804 const u_char
*buf
= ops
->oobbuf
;
2805 int block
, value
, status
;
2809 /* Initialize retlen, in case of early exit */
2812 oobsize
= mtd
->oobsize
;
2814 column
= to
& (mtd
->oobsize
- 1);
2816 oobbuf
= this->oob_buf
;
2818 /* Loop until all data write */
2819 while (written
< len
) {
2820 int thislen
= min_t(int, oobsize
, len
- written
);
2824 block
= (int) (to
>> this->erase_shift
);
2826 * Write 'DFS, FBA' of Flash
2827 * Add: F100h DQ=DFS, FBA
2830 value
= onenand_block_address(this, block
);
2831 this->write_word(value
, this->base
+
2832 ONENAND_REG_START_ADDRESS1
);
2835 * Select DataRAM for DDP
2839 value
= onenand_bufferram_address(this, block
);
2840 this->write_word(value
, this->base
+
2841 ONENAND_REG_START_ADDRESS2
);
2842 ONENAND_SET_NEXT_BUFFERRAM(this);
2845 * Enter OTP access mode
2847 this->command(mtd
, ONENAND_CMD_OTP_ACCESS
, 0, 0);
2848 this->wait(mtd
, FL_OTPING
);
2850 /* We send data to spare ram with oobsize
2851 * to prevent byte access */
2852 memcpy(oobbuf
+ column
, buf
, thislen
);
2855 * Write Data into DataRAM
2857 * in sector0/spare/page0
2860 this->write_bufferram(mtd
, ONENAND_SPARERAM
,
2861 oobbuf
, 0, mtd
->oobsize
);
2863 onenand_otp_command(mtd
, ONENAND_CMD_PROGOOB
, to
, mtd
->oobsize
);
2864 onenand_update_bufferram(mtd
, to
, 0);
2865 if (ONENAND_IS_2PLANE(this)) {
2866 ONENAND_SET_BUFFERRAM1(this);
2867 onenand_update_bufferram(mtd
, to
+ this->writesize
, 0);
2870 ret
= this->wait(mtd
, FL_WRITING
);
2872 printk(KERN_ERR
"%s: write failed %d\n", __func__
, ret
);
2876 /* Exit OTP access mode */
2877 this->command(mtd
, ONENAND_CMD_RESET
, 0, 0);
2878 this->wait(mtd
, FL_RESETING
);
2880 status
= this->read_word(this->base
+ ONENAND_REG_CTRL_STATUS
);
2883 if (status
== 0x60) {
2884 printk(KERN_DEBUG
"\nBLOCK\tSTATUS\n");
2885 printk(KERN_DEBUG
"1st Block\tLOCKED\n");
2886 printk(KERN_DEBUG
"OTP Block\tLOCKED\n");
2887 } else if (status
== 0x20) {
2888 printk(KERN_DEBUG
"\nBLOCK\tSTATUS\n");
2889 printk(KERN_DEBUG
"1st Block\tLOCKED\n");
2890 printk(KERN_DEBUG
"OTP Block\tUN-LOCKED\n");
2891 } else if (status
== 0x40) {
2892 printk(KERN_DEBUG
"\nBLOCK\tSTATUS\n");
2893 printk(KERN_DEBUG
"1st Block\tUN-LOCKED\n");
2894 printk(KERN_DEBUG
"OTP Block\tLOCKED\n");
2896 printk(KERN_DEBUG
"Reboot to check\n");
2903 to
+= mtd
->writesize
;
2908 ops
->oobretlen
= written
;
2913 /* Internal OTP operation */
2914 typedef int (*otp_op_t
)(struct mtd_info
*mtd
, loff_t form
, size_t len
,
2915 size_t *retlen
, u_char
*buf
);
2918 * do_otp_read - [DEFAULT] Read OTP block area
2919 * @param mtd MTD device structure
2920 * @param from The offset to read
2921 * @param len number of bytes to read
2922 * @param retlen pointer to variable to store the number of readbytes
2923 * @param buf the databuffer to put/get data
2925 * Read OTP block area.
2927 static int do_otp_read(struct mtd_info
*mtd
, loff_t from
, size_t len
,
2928 size_t *retlen
, u_char
*buf
)
2930 struct onenand_chip
*this = mtd
->priv
;
2931 struct mtd_oob_ops ops
= {
2939 /* Enter OTP access mode */
2940 this->command(mtd
, ONENAND_CMD_OTP_ACCESS
, 0, 0);
2941 this->wait(mtd
, FL_OTPING
);
2943 ret
= ONENAND_IS_4KB_PAGE(this) ?
2944 onenand_mlc_read_ops_nolock(mtd
, from
, &ops
) :
2945 onenand_read_ops_nolock(mtd
, from
, &ops
);
2947 /* Exit OTP access mode */
2948 this->command(mtd
, ONENAND_CMD_RESET
, 0, 0);
2949 this->wait(mtd
, FL_RESETING
);
2955 * do_otp_write - [DEFAULT] Write OTP block area
2956 * @param mtd MTD device structure
2957 * @param to The offset to write
2958 * @param len number of bytes to write
2959 * @param retlen pointer to variable to store the number of write bytes
2960 * @param buf the databuffer to put/get data
2962 * Write OTP block area.
2964 static int do_otp_write(struct mtd_info
*mtd
, loff_t to
, size_t len
,
2965 size_t *retlen
, u_char
*buf
)
2967 struct onenand_chip
*this = mtd
->priv
;
2968 unsigned char *pbuf
= buf
;
2970 struct mtd_oob_ops ops
;
2972 /* Force buffer page aligned */
2973 if (len
< mtd
->writesize
) {
2974 memcpy(this->page_buf
, buf
, len
);
2975 memset(this->page_buf
+ len
, 0xff, mtd
->writesize
- len
);
2976 pbuf
= this->page_buf
;
2977 len
= mtd
->writesize
;
2980 /* Enter OTP access mode */
2981 this->command(mtd
, ONENAND_CMD_OTP_ACCESS
, 0, 0);
2982 this->wait(mtd
, FL_OTPING
);
2988 ret
= onenand_write_ops_nolock(mtd
, to
, &ops
);
2989 *retlen
= ops
.retlen
;
2991 /* Exit OTP access mode */
2992 this->command(mtd
, ONENAND_CMD_RESET
, 0, 0);
2993 this->wait(mtd
, FL_RESETING
);
2999 * do_otp_lock - [DEFAULT] Lock OTP block area
3000 * @param mtd MTD device structure
3001 * @param from The offset to lock
3002 * @param len number of bytes to lock
3003 * @param retlen pointer to variable to store the number of lock bytes
3004 * @param buf the databuffer to put/get data
3006 * Lock OTP block area.
3008 static int do_otp_lock(struct mtd_info
*mtd
, loff_t from
, size_t len
,
3009 size_t *retlen
, u_char
*buf
)
3011 struct onenand_chip
*this = mtd
->priv
;
3012 struct mtd_oob_ops ops
;
3015 if (FLEXONENAND(this)) {
3017 /* Enter OTP access mode */
3018 this->command(mtd
, ONENAND_CMD_OTP_ACCESS
, 0, 0);
3019 this->wait(mtd
, FL_OTPING
);
3021 * For Flex-OneNAND, we write lock mark to 1st word of sector 4 of
3022 * main area of page 49.
3024 ops
.len
= mtd
->writesize
;
3028 ret
= onenand_write_ops_nolock(mtd
, mtd
->writesize
* 49, &ops
);
3029 *retlen
= ops
.retlen
;
3031 /* Exit OTP access mode */
3032 this->command(mtd
, ONENAND_CMD_RESET
, 0, 0);
3033 this->wait(mtd
, FL_RESETING
);
3035 ops
.mode
= MTD_OPS_PLACE_OOB
;
3039 ret
= onenand_otp_write_oob_nolock(mtd
, from
, &ops
);
3040 *retlen
= ops
.oobretlen
;
3047 * onenand_otp_walk - [DEFAULT] Handle OTP operation
3048 * @param mtd MTD device structure
3049 * @param from The offset to read/write
3050 * @param len number of bytes to read/write
3051 * @param retlen pointer to variable to store the number of read bytes
3052 * @param buf the databuffer to put/get data
3053 * @param action do given action
3054 * @param mode specify user and factory
3056 * Handle OTP operation.
3058 static int onenand_otp_walk(struct mtd_info
*mtd
, loff_t from
, size_t len
,
3059 size_t *retlen
, u_char
*buf
,
3060 otp_op_t action
, int mode
)
3062 struct onenand_chip
*this = mtd
->priv
;
3069 density
= onenand_get_density(this->device_id
);
3070 if (density
< ONENAND_DEVICE_DENSITY_512Mb
)
3075 if (mode
== MTD_OTP_FACTORY
) {
3076 from
+= mtd
->writesize
* otp_pages
;
3077 otp_pages
= ONENAND_PAGES_PER_BLOCK
- otp_pages
;
3080 /* Check User/Factory boundary */
3081 if (mode
== MTD_OTP_USER
) {
3082 if (mtd
->writesize
* otp_pages
< from
+ len
)
3085 if (mtd
->writesize
* otp_pages
< len
)
3089 onenand_get_device(mtd
, FL_OTPING
);
3090 while (len
> 0 && otp_pages
> 0) {
3091 if (!action
) { /* OTP Info functions */
3092 struct otp_info
*otpinfo
;
3094 len
-= sizeof(struct otp_info
);
3100 otpinfo
= (struct otp_info
*) buf
;
3101 otpinfo
->start
= from
;
3102 otpinfo
->length
= mtd
->writesize
;
3103 otpinfo
->locked
= 0;
3105 from
+= mtd
->writesize
;
3106 buf
+= sizeof(struct otp_info
);
3107 *retlen
+= sizeof(struct otp_info
);
3111 ret
= action(mtd
, from
, len
, &tmp_retlen
, buf
);
3117 *retlen
+= tmp_retlen
;
3122 onenand_release_device(mtd
);
3128 * onenand_get_fact_prot_info - [MTD Interface] Read factory OTP info
3129 * @param mtd MTD device structure
3130 * @param len number of bytes to read
3131 * @param retlen pointer to variable to store the number of read bytes
3132 * @param buf the databuffer to put/get data
3134 * Read factory OTP info.
3136 static int onenand_get_fact_prot_info(struct mtd_info
*mtd
, size_t len
,
3137 size_t *retlen
, struct otp_info
*buf
)
3139 return onenand_otp_walk(mtd
, 0, len
, retlen
, (u_char
*) buf
, NULL
,
3144 * onenand_read_fact_prot_reg - [MTD Interface] Read factory OTP area
3145 * @param mtd MTD device structure
3146 * @param from The offset to read
3147 * @param len number of bytes to read
3148 * @param retlen pointer to variable to store the number of read bytes
3149 * @param buf the databuffer to put/get data
3151 * Read factory OTP area.
3153 static int onenand_read_fact_prot_reg(struct mtd_info
*mtd
, loff_t from
,
3154 size_t len
, size_t *retlen
, u_char
*buf
)
3156 return onenand_otp_walk(mtd
, from
, len
, retlen
, buf
, do_otp_read
, MTD_OTP_FACTORY
);
3160 * onenand_get_user_prot_info - [MTD Interface] Read user OTP info
3161 * @param mtd MTD device structure
3162 * @param retlen pointer to variable to store the number of read bytes
3163 * @param len number of bytes to read
3164 * @param buf the databuffer to put/get data
3166 * Read user OTP info.
3168 static int onenand_get_user_prot_info(struct mtd_info
*mtd
, size_t len
,
3169 size_t *retlen
, struct otp_info
*buf
)
3171 return onenand_otp_walk(mtd
, 0, len
, retlen
, (u_char
*) buf
, NULL
,
3176 * onenand_read_user_prot_reg - [MTD Interface] Read user OTP area
3177 * @param mtd MTD device structure
3178 * @param from The offset to read
3179 * @param len number of bytes to read
3180 * @param retlen pointer to variable to store the number of read bytes
3181 * @param buf the databuffer to put/get data
3183 * Read user OTP area.
3185 static int onenand_read_user_prot_reg(struct mtd_info
*mtd
, loff_t from
,
3186 size_t len
, size_t *retlen
, u_char
*buf
)
3188 return onenand_otp_walk(mtd
, from
, len
, retlen
, buf
, do_otp_read
, MTD_OTP_USER
);
3192 * onenand_write_user_prot_reg - [MTD Interface] Write user OTP area
3193 * @param mtd MTD device structure
3194 * @param from The offset to write
3195 * @param len number of bytes to write
3196 * @param retlen pointer to variable to store the number of write bytes
3197 * @param buf the databuffer to put/get data
3199 * Write user OTP area.
3201 static int onenand_write_user_prot_reg(struct mtd_info
*mtd
, loff_t from
,
3202 size_t len
, size_t *retlen
, u_char
*buf
)
3204 return onenand_otp_walk(mtd
, from
, len
, retlen
, buf
, do_otp_write
, MTD_OTP_USER
);
3208 * onenand_lock_user_prot_reg - [MTD Interface] Lock user OTP area
3209 * @param mtd MTD device structure
3210 * @param from The offset to lock
3211 * @param len number of bytes to unlock
3213 * Write lock mark on spare area in page 0 in OTP block
3215 static int onenand_lock_user_prot_reg(struct mtd_info
*mtd
, loff_t from
,
3218 struct onenand_chip
*this = mtd
->priv
;
3219 u_char
*buf
= FLEXONENAND(this) ? this->page_buf
: this->oob_buf
;
3222 unsigned int otp_lock_offset
= ONENAND_OTP_LOCK_OFFSET
;
3224 memset(buf
, 0xff, FLEXONENAND(this) ? this->writesize
3227 * Write lock mark to 8th word of sector0 of page0 of the spare0.
3228 * We write 16 bytes spare area instead of 2 bytes.
3229 * For Flex-OneNAND, we write lock mark to 1st word of sector 4 of
3230 * main area of page 49.
3234 len
= FLEXONENAND(this) ? mtd
->writesize
: 16;
3237 * Note: OTP lock operation
3238 * OTP block : 0xXXFC XX 1111 1100
3239 * 1st block : 0xXXF3 (If chip support) XX 1111 0011
3240 * Both : 0xXXF0 (If chip support) XX 1111 0000
3242 if (FLEXONENAND(this))
3243 otp_lock_offset
= FLEXONENAND_OTP_LOCK_OFFSET
;
3245 /* ONENAND_OTP_AREA | ONENAND_OTP_BLOCK0 | ONENAND_OTP_AREA_BLOCK0 */
3247 buf
[otp_lock_offset
] = 0xFC;
3249 buf
[otp_lock_offset
] = 0xF3;
3251 buf
[otp_lock_offset
] = 0xF0;
3253 printk(KERN_DEBUG
"[OneNAND] Invalid option selected for OTP\n");
3255 ret
= onenand_otp_walk(mtd
, from
, len
, &retlen
, buf
, do_otp_lock
, MTD_OTP_USER
);
3257 return ret
? : retlen
;
3260 #endif /* CONFIG_MTD_ONENAND_OTP */
3263 * onenand_check_features - Check and set OneNAND features
3264 * @param mtd MTD data structure
3266 * Check and set OneNAND features
3270 static void onenand_check_features(struct mtd_info
*mtd
)
3272 struct onenand_chip
*this = mtd
->priv
;
3273 unsigned int density
, process
, numbufs
;
3275 /* Lock scheme depends on density and process */
3276 density
= onenand_get_density(this->device_id
);
3277 process
= this->version_id
>> ONENAND_VERSION_PROCESS_SHIFT
;
3278 numbufs
= this->read_word(this->base
+ ONENAND_REG_NUM_BUFFERS
) >> 8;
3282 case ONENAND_DEVICE_DENSITY_4Gb
:
3283 if (ONENAND_IS_DDP(this))
3284 this->options
|= ONENAND_HAS_2PLANE
;
3285 else if (numbufs
== 1) {
3286 this->options
|= ONENAND_HAS_4KB_PAGE
;
3287 this->options
|= ONENAND_HAS_CACHE_PROGRAM
;
3289 * There are two different 4KiB pagesize chips
3290 * and no way to detect it by H/W config values.
3292 * To detect the correct NOP for each chips,
3293 * It should check the version ID as workaround.
3295 * Now it has as following
3296 * KFM4G16Q4M has NOP 4 with version ID 0x0131
3297 * KFM4G16Q5M has NOP 1 with versoin ID 0x013e
3299 if ((this->version_id
& 0xf) == 0xe)
3300 this->options
|= ONENAND_HAS_NOP_1
;
3303 case ONENAND_DEVICE_DENSITY_2Gb
:
3304 /* 2Gb DDP does not have 2 plane */
3305 if (!ONENAND_IS_DDP(this))
3306 this->options
|= ONENAND_HAS_2PLANE
;
3307 this->options
|= ONENAND_HAS_UNLOCK_ALL
;
3309 case ONENAND_DEVICE_DENSITY_1Gb
:
3310 /* A-Die has all block unlock */
3312 this->options
|= ONENAND_HAS_UNLOCK_ALL
;
3316 /* Some OneNAND has continuous lock scheme */
3318 this->options
|= ONENAND_HAS_CONT_LOCK
;
3322 /* The MLC has 4KiB pagesize. */
3323 if (ONENAND_IS_MLC(this))
3324 this->options
|= ONENAND_HAS_4KB_PAGE
;
3326 if (ONENAND_IS_4KB_PAGE(this))
3327 this->options
&= ~ONENAND_HAS_2PLANE
;
3329 if (FLEXONENAND(this)) {
3330 this->options
&= ~ONENAND_HAS_CONT_LOCK
;
3331 this->options
|= ONENAND_HAS_UNLOCK_ALL
;
3334 if (this->options
& ONENAND_HAS_CONT_LOCK
)
3335 printk(KERN_DEBUG
"Lock scheme is Continuous Lock\n");
3336 if (this->options
& ONENAND_HAS_UNLOCK_ALL
)
3337 printk(KERN_DEBUG
"Chip support all block unlock\n");
3338 if (this->options
& ONENAND_HAS_2PLANE
)
3339 printk(KERN_DEBUG
"Chip has 2 plane\n");
3340 if (this->options
& ONENAND_HAS_4KB_PAGE
)
3341 printk(KERN_DEBUG
"Chip has 4KiB pagesize\n");
3342 if (this->options
& ONENAND_HAS_CACHE_PROGRAM
)
3343 printk(KERN_DEBUG
"Chip has cache program feature\n");
3347 * onenand_print_device_info - Print device & version ID
3348 * @param device device ID
3349 * @param version version ID
3351 * Print device & version ID
3353 static void onenand_print_device_info(int device
, int version
)
3355 int vcc
, demuxed
, ddp
, density
, flexonenand
;
3357 vcc
= device
& ONENAND_DEVICE_VCC_MASK
;
3358 demuxed
= device
& ONENAND_DEVICE_IS_DEMUX
;
3359 ddp
= device
& ONENAND_DEVICE_IS_DDP
;
3360 density
= onenand_get_density(device
);
3361 flexonenand
= device
& DEVICE_IS_FLEXONENAND
;
3362 printk(KERN_INFO
"%s%sOneNAND%s %dMB %sV 16-bit (0x%02x)\n",
3363 demuxed
? "" : "Muxed ",
3364 flexonenand
? "Flex-" : "",
3367 vcc
? "2.65/3.3" : "1.8",
3369 printk(KERN_INFO
"OneNAND version = 0x%04x\n", version
);
3372 static const struct onenand_manufacturers onenand_manuf_ids
[] = {
3373 {ONENAND_MFR_SAMSUNG
, "Samsung"},
3374 {ONENAND_MFR_NUMONYX
, "Numonyx"},
3378 * onenand_check_maf - Check manufacturer ID
3379 * @param manuf manufacturer ID
3381 * Check manufacturer ID
3383 static int onenand_check_maf(int manuf
)
3385 int size
= ARRAY_SIZE(onenand_manuf_ids
);
3389 for (i
= 0; i
< size
; i
++)
3390 if (manuf
== onenand_manuf_ids
[i
].id
)
3394 name
= onenand_manuf_ids
[i
].name
;
3398 printk(KERN_DEBUG
"OneNAND Manufacturer: %s (0x%0x)\n", name
, manuf
);
3404 * flexonenand_get_boundary - Reads the SLC boundary
3405 * @param onenand_info - onenand info structure
3407 static int flexonenand_get_boundary(struct mtd_info
*mtd
)
3409 struct onenand_chip
*this = mtd
->priv
;
3414 syscfg
= this->read_word(this->base
+ ONENAND_REG_SYS_CFG1
);
3415 this->write_word((syscfg
| 0x0100), this->base
+ ONENAND_REG_SYS_CFG1
);
3417 for (die
= 0; die
< this->dies
; die
++) {
3418 this->command(mtd
, FLEXONENAND_CMD_PI_ACCESS
, die
, 0);
3419 this->wait(mtd
, FL_SYNCING
);
3421 this->command(mtd
, FLEXONENAND_CMD_READ_PI
, die
, 0);
3422 this->wait(mtd
, FL_READING
);
3424 bdry
= this->read_word(this->base
+ ONENAND_DATARAM
);
3425 if ((bdry
>> FLEXONENAND_PI_UNLOCK_SHIFT
) == 3)
3429 this->boundary
[die
] = bdry
& FLEXONENAND_PI_MASK
;
3431 this->command(mtd
, ONENAND_CMD_RESET
, 0, 0);
3432 this->wait(mtd
, FL_RESETING
);
3434 printk(KERN_INFO
"Die %d boundary: %d%s\n", die
,
3435 this->boundary
[die
], locked
? "(Locked)" : "(Unlocked)");
3439 this->write_word(syscfg
, this->base
+ ONENAND_REG_SYS_CFG1
);
3444 * flexonenand_get_size - Fill up fields in onenand_chip and mtd_info
3445 * boundary[], diesize[], mtd->size, mtd->erasesize
3446 * @param mtd - MTD device structure
3448 static void flexonenand_get_size(struct mtd_info
*mtd
)
3450 struct onenand_chip
*this = mtd
->priv
;
3451 int die
, i
, eraseshift
, density
;
3452 int blksperdie
, maxbdry
;
3455 density
= onenand_get_density(this->device_id
);
3456 blksperdie
= ((loff_t
)(16 << density
) << 20) >> (this->erase_shift
);
3457 blksperdie
>>= ONENAND_IS_DDP(this) ? 1 : 0;
3458 maxbdry
= blksperdie
- 1;
3459 eraseshift
= this->erase_shift
- 1;
3461 mtd
->numeraseregions
= this->dies
<< 1;
3463 /* This fills up the device boundary */
3464 flexonenand_get_boundary(mtd
);
3467 for (; die
< this->dies
; die
++) {
3468 if (!die
|| this->boundary
[die
-1] != maxbdry
) {
3470 mtd
->eraseregions
[i
].offset
= ofs
;
3471 mtd
->eraseregions
[i
].erasesize
= 1 << eraseshift
;
3472 mtd
->eraseregions
[i
].numblocks
=
3473 this->boundary
[die
] + 1;
3474 ofs
+= mtd
->eraseregions
[i
].numblocks
<< eraseshift
;
3477 mtd
->numeraseregions
-= 1;
3478 mtd
->eraseregions
[i
].numblocks
+=
3479 this->boundary
[die
] + 1;
3480 ofs
+= (this->boundary
[die
] + 1) << (eraseshift
- 1);
3482 if (this->boundary
[die
] != maxbdry
) {
3484 mtd
->eraseregions
[i
].offset
= ofs
;
3485 mtd
->eraseregions
[i
].erasesize
= 1 << eraseshift
;
3486 mtd
->eraseregions
[i
].numblocks
= maxbdry
^
3487 this->boundary
[die
];
3488 ofs
+= mtd
->eraseregions
[i
].numblocks
<< eraseshift
;
3491 mtd
->numeraseregions
-= 1;
3494 /* Expose MLC erase size except when all blocks are SLC */
3495 mtd
->erasesize
= 1 << this->erase_shift
;
3496 if (mtd
->numeraseregions
== 1)
3497 mtd
->erasesize
>>= 1;
3499 printk(KERN_INFO
"Device has %d eraseregions\n", mtd
->numeraseregions
);
3500 for (i
= 0; i
< mtd
->numeraseregions
; i
++)
3501 printk(KERN_INFO
"[offset: 0x%08x, erasesize: 0x%05x,"
3502 " numblocks: %04u]\n",
3503 (unsigned int) mtd
->eraseregions
[i
].offset
,
3504 mtd
->eraseregions
[i
].erasesize
,
3505 mtd
->eraseregions
[i
].numblocks
);
3507 for (die
= 0, mtd
->size
= 0; die
< this->dies
; die
++) {
3508 this->diesize
[die
] = (loff_t
)blksperdie
<< this->erase_shift
;
3509 this->diesize
[die
] -= (loff_t
)(this->boundary
[die
] + 1)
3510 << (this->erase_shift
- 1);
3511 mtd
->size
+= this->diesize
[die
];
3516 * flexonenand_check_blocks_erased - Check if blocks are erased
3517 * @param mtd_info - mtd info structure
3518 * @param start - first erase block to check
3519 * @param end - last erase block to check
3521 * Converting an unerased block from MLC to SLC
3522 * causes byte values to change. Since both data and its ECC
3523 * have changed, reads on the block give uncorrectable error.
3524 * This might lead to the block being detected as bad.
3526 * Avoid this by ensuring that the block to be converted is
3529 static int flexonenand_check_blocks_erased(struct mtd_info
*mtd
, int start
, int end
)
3531 struct onenand_chip
*this = mtd
->priv
;
3534 struct mtd_oob_ops ops
= {
3535 .mode
= MTD_OPS_PLACE_OOB
,
3537 .ooblen
= mtd
->oobsize
,
3539 .oobbuf
= this->oob_buf
,
3543 printk(KERN_DEBUG
"Check blocks from %d to %d\n", start
, end
);
3545 for (block
= start
; block
<= end
; block
++) {
3546 addr
= flexonenand_addr(this, block
);
3547 if (onenand_block_isbad_nolock(mtd
, addr
, 0))
3551 * Since main area write results in ECC write to spare,
3552 * it is sufficient to check only ECC bytes for change.
3554 ret
= onenand_read_oob_nolock(mtd
, addr
, &ops
);
3558 for (i
= 0; i
< mtd
->oobsize
; i
++)
3559 if (this->oob_buf
[i
] != 0xff)
3562 if (i
!= mtd
->oobsize
) {
3563 printk(KERN_WARNING
"%s: Block %d not erased.\n",
3573 * flexonenand_set_boundary - Writes the SLC boundary
3574 * @param mtd - mtd info structure
3576 static int flexonenand_set_boundary(struct mtd_info
*mtd
, int die
,
3577 int boundary
, int lock
)
3579 struct onenand_chip
*this = mtd
->priv
;
3580 int ret
, density
, blksperdie
, old
, new, thisboundary
;
3583 /* Change only once for SDP Flex-OneNAND */
3584 if (die
&& (!ONENAND_IS_DDP(this)))
3587 /* boundary value of -1 indicates no required change */
3588 if (boundary
< 0 || boundary
== this->boundary
[die
])
3591 density
= onenand_get_density(this->device_id
);
3592 blksperdie
= ((16 << density
) << 20) >> this->erase_shift
;
3593 blksperdie
>>= ONENAND_IS_DDP(this) ? 1 : 0;
3595 if (boundary
>= blksperdie
) {
3596 printk(KERN_ERR
"%s: Invalid boundary value. "
3597 "Boundary not changed.\n", __func__
);
3601 /* Check if converting blocks are erased */
3602 old
= this->boundary
[die
] + (die
* this->density_mask
);
3603 new = boundary
+ (die
* this->density_mask
);
3604 ret
= flexonenand_check_blocks_erased(mtd
, min(old
, new) + 1, max(old
, new));
3606 printk(KERN_ERR
"%s: Please erase blocks "
3607 "before boundary change\n", __func__
);
3611 this->command(mtd
, FLEXONENAND_CMD_PI_ACCESS
, die
, 0);
3612 this->wait(mtd
, FL_SYNCING
);
3614 /* Check is boundary is locked */
3615 this->command(mtd
, FLEXONENAND_CMD_READ_PI
, die
, 0);
3616 this->wait(mtd
, FL_READING
);
3618 thisboundary
= this->read_word(this->base
+ ONENAND_DATARAM
);
3619 if ((thisboundary
>> FLEXONENAND_PI_UNLOCK_SHIFT
) != 3) {
3620 printk(KERN_ERR
"%s: boundary locked\n", __func__
);
3625 printk(KERN_INFO
"Changing die %d boundary: %d%s\n",
3626 die
, boundary
, lock
? "(Locked)" : "(Unlocked)");
3628 addr
= die
? this->diesize
[0] : 0;
3630 boundary
&= FLEXONENAND_PI_MASK
;
3631 boundary
|= lock
? 0 : (3 << FLEXONENAND_PI_UNLOCK_SHIFT
);
3633 this->command(mtd
, ONENAND_CMD_ERASE
, addr
, 0);
3634 ret
= this->wait(mtd
, FL_ERASING
);
3636 printk(KERN_ERR
"%s: Failed PI erase for Die %d\n",
3641 this->write_word(boundary
, this->base
+ ONENAND_DATARAM
);
3642 this->command(mtd
, ONENAND_CMD_PROG
, addr
, 0);
3643 ret
= this->wait(mtd
, FL_WRITING
);
3645 printk(KERN_ERR
"%s: Failed PI write for Die %d\n",
3650 this->command(mtd
, FLEXONENAND_CMD_PI_UPDATE
, die
, 0);
3651 ret
= this->wait(mtd
, FL_WRITING
);
3653 this->write_word(ONENAND_CMD_RESET
, this->base
+ ONENAND_REG_COMMAND
);
3654 this->wait(mtd
, FL_RESETING
);
3656 /* Recalculate device size on boundary change*/
3657 flexonenand_get_size(mtd
);
3663 * onenand_chip_probe - [OneNAND Interface] The generic chip probe
3664 * @param mtd MTD device structure
3666 * OneNAND detection method:
3667 * Compare the values from command with ones from register
3669 static int onenand_chip_probe(struct mtd_info
*mtd
)
3671 struct onenand_chip
*this = mtd
->priv
;
3672 int bram_maf_id
, bram_dev_id
, maf_id
, dev_id
;
3675 /* Save system configuration 1 */
3676 syscfg
= this->read_word(this->base
+ ONENAND_REG_SYS_CFG1
);
3677 /* Clear Sync. Burst Read mode to read BootRAM */
3678 this->write_word((syscfg
& ~ONENAND_SYS_CFG1_SYNC_READ
& ~ONENAND_SYS_CFG1_SYNC_WRITE
), this->base
+ ONENAND_REG_SYS_CFG1
);
3680 /* Send the command for reading device ID from BootRAM */
3681 this->write_word(ONENAND_CMD_READID
, this->base
+ ONENAND_BOOTRAM
);
3683 /* Read manufacturer and device IDs from BootRAM */
3684 bram_maf_id
= this->read_word(this->base
+ ONENAND_BOOTRAM
+ 0x0);
3685 bram_dev_id
= this->read_word(this->base
+ ONENAND_BOOTRAM
+ 0x2);
3687 /* Reset OneNAND to read default register values */
3688 this->write_word(ONENAND_CMD_RESET
, this->base
+ ONENAND_BOOTRAM
);
3690 this->wait(mtd
, FL_RESETING
);
3692 /* Restore system configuration 1 */
3693 this->write_word(syscfg
, this->base
+ ONENAND_REG_SYS_CFG1
);
3695 /* Check manufacturer ID */
3696 if (onenand_check_maf(bram_maf_id
))
3699 /* Read manufacturer and device IDs from Register */
3700 maf_id
= this->read_word(this->base
+ ONENAND_REG_MANUFACTURER_ID
);
3701 dev_id
= this->read_word(this->base
+ ONENAND_REG_DEVICE_ID
);
3703 /* Check OneNAND device */
3704 if (maf_id
!= bram_maf_id
|| dev_id
!= bram_dev_id
)
3711 * onenand_probe - [OneNAND Interface] Probe the OneNAND device
3712 * @param mtd MTD device structure
3714 static int onenand_probe(struct mtd_info
*mtd
)
3716 struct onenand_chip
*this = mtd
->priv
;
3721 ret
= this->chip_probe(mtd
);
3725 /* Device and version IDs from Register */
3726 dev_id
= this->read_word(this->base
+ ONENAND_REG_DEVICE_ID
);
3727 ver_id
= this->read_word(this->base
+ ONENAND_REG_VERSION_ID
);
3728 this->technology
= this->read_word(this->base
+ ONENAND_REG_TECHNOLOGY
);
3730 /* Flash device information */
3731 onenand_print_device_info(dev_id
, ver_id
);
3732 this->device_id
= dev_id
;
3733 this->version_id
= ver_id
;
3735 /* Check OneNAND features */
3736 onenand_check_features(mtd
);
3738 density
= onenand_get_density(dev_id
);
3739 if (FLEXONENAND(this)) {
3740 this->dies
= ONENAND_IS_DDP(this) ? 2 : 1;
3741 /* Maximum possible erase regions */
3742 mtd
->numeraseregions
= this->dies
<< 1;
3743 mtd
->eraseregions
= kzalloc(sizeof(struct mtd_erase_region_info
)
3744 * (this->dies
<< 1), GFP_KERNEL
);
3745 if (!mtd
->eraseregions
)
3750 * For Flex-OneNAND, chipsize represents maximum possible device size.
3751 * mtd->size represents the actual device size.
3753 this->chipsize
= (16 << density
) << 20;
3755 /* OneNAND page size & block size */
3756 /* The data buffer size is equal to page size */
3757 mtd
->writesize
= this->read_word(this->base
+ ONENAND_REG_DATA_BUFFER_SIZE
);
3758 /* We use the full BufferRAM */
3759 if (ONENAND_IS_4KB_PAGE(this))
3760 mtd
->writesize
<<= 1;
3762 mtd
->oobsize
= mtd
->writesize
>> 5;
3763 /* Pages per a block are always 64 in OneNAND */
3764 mtd
->erasesize
= mtd
->writesize
<< 6;
3766 * Flex-OneNAND SLC area has 64 pages per block.
3767 * Flex-OneNAND MLC area has 128 pages per block.
3768 * Expose MLC erase size to find erase_shift and page_mask.
3770 if (FLEXONENAND(this))
3771 mtd
->erasesize
<<= 1;
3773 this->erase_shift
= ffs(mtd
->erasesize
) - 1;
3774 this->page_shift
= ffs(mtd
->writesize
) - 1;
3775 this->page_mask
= (1 << (this->erase_shift
- this->page_shift
)) - 1;
3776 /* Set density mask. it is used for DDP */
3777 if (ONENAND_IS_DDP(this))
3778 this->density_mask
= this->chipsize
>> (this->erase_shift
+ 1);
3779 /* It's real page size */
3780 this->writesize
= mtd
->writesize
;
3782 /* REVISIT: Multichip handling */
3784 if (FLEXONENAND(this))
3785 flexonenand_get_size(mtd
);
3787 mtd
->size
= this->chipsize
;
3790 * We emulate the 4KiB page and 256KiB erase block size
3791 * But oobsize is still 64 bytes.
3792 * It is only valid if you turn on 2X program support,
3793 * Otherwise it will be ignored by compiler.
3795 if (ONENAND_IS_2PLANE(this)) {
3796 mtd
->writesize
<<= 1;
3797 mtd
->erasesize
<<= 1;
3804 * onenand_suspend - [MTD Interface] Suspend the OneNAND flash
3805 * @param mtd MTD device structure
3807 static int onenand_suspend(struct mtd_info
*mtd
)
3809 return onenand_get_device(mtd
, FL_PM_SUSPENDED
);
3813 * onenand_resume - [MTD Interface] Resume the OneNAND flash
3814 * @param mtd MTD device structure
3816 static void onenand_resume(struct mtd_info
*mtd
)
3818 struct onenand_chip
*this = mtd
->priv
;
3820 if (this->state
== FL_PM_SUSPENDED
)
3821 onenand_release_device(mtd
);
3823 printk(KERN_ERR
"%s: resume() called for the chip which is not "
3824 "in suspended state\n", __func__
);
3828 * onenand_scan - [OneNAND Interface] Scan for the OneNAND device
3829 * @param mtd MTD device structure
3830 * @param maxchips Number of chips to scan for
3832 * This fills out all the not initialized function pointers
3833 * with the defaults.
3834 * The flash ID is read and the mtd/chip structures are
3835 * filled with the appropriate values.
3837 int onenand_scan(struct mtd_info
*mtd
, int maxchips
)
3840 struct onenand_chip
*this = mtd
->priv
;
3842 if (!this->read_word
)
3843 this->read_word
= onenand_readw
;
3844 if (!this->write_word
)
3845 this->write_word
= onenand_writew
;
3848 this->command
= onenand_command
;
3850 onenand_setup_wait(mtd
);
3851 if (!this->bbt_wait
)
3852 this->bbt_wait
= onenand_bbt_wait
;
3853 if (!this->unlock_all
)
3854 this->unlock_all
= onenand_unlock_all
;
3856 if (!this->chip_probe
)
3857 this->chip_probe
= onenand_chip_probe
;
3859 if (!this->read_bufferram
)
3860 this->read_bufferram
= onenand_read_bufferram
;
3861 if (!this->write_bufferram
)
3862 this->write_bufferram
= onenand_write_bufferram
;
3864 if (!this->block_markbad
)
3865 this->block_markbad
= onenand_default_block_markbad
;
3866 if (!this->scan_bbt
)
3867 this->scan_bbt
= onenand_default_bbt
;
3869 if (onenand_probe(mtd
))
3872 /* Set Sync. Burst Read after probing */
3873 if (this->mmcontrol
) {
3874 printk(KERN_INFO
"OneNAND Sync. Burst Read support\n");
3875 this->read_bufferram
= onenand_sync_read_bufferram
;
3878 /* Allocate buffers, if necessary */
3879 if (!this->page_buf
) {
3880 this->page_buf
= kzalloc(mtd
->writesize
, GFP_KERNEL
);
3881 if (!this->page_buf
)
3883 #ifdef CONFIG_MTD_ONENAND_VERIFY_WRITE
3884 this->verify_buf
= kzalloc(mtd
->writesize
, GFP_KERNEL
);
3885 if (!this->verify_buf
) {
3886 kfree(this->page_buf
);
3890 this->options
|= ONENAND_PAGEBUF_ALLOC
;
3892 if (!this->oob_buf
) {
3893 this->oob_buf
= kzalloc(mtd
->oobsize
, GFP_KERNEL
);
3894 if (!this->oob_buf
) {
3895 if (this->options
& ONENAND_PAGEBUF_ALLOC
) {
3896 this->options
&= ~ONENAND_PAGEBUF_ALLOC
;
3897 kfree(this->page_buf
);
3901 this->options
|= ONENAND_OOBBUF_ALLOC
;
3904 this->state
= FL_READY
;
3905 init_waitqueue_head(&this->wq
);
3906 spin_lock_init(&this->chip_lock
);
3909 * Allow subpage writes up to oobsize.
3911 switch (mtd
->oobsize
) {
3913 if (FLEXONENAND(this)) {
3914 mtd_set_ooblayout(mtd
, &flexonenand_ooblayout_ops
);
3915 mtd
->subpage_sft
= 0;
3917 mtd_set_ooblayout(mtd
, &onenand_oob_128_ooblayout_ops
);
3918 mtd
->subpage_sft
= 2;
3920 if (ONENAND_IS_NOP_1(this))
3921 mtd
->subpage_sft
= 0;
3924 mtd_set_ooblayout(mtd
, &onenand_oob_32_64_ooblayout_ops
);
3925 mtd
->subpage_sft
= 2;
3929 mtd_set_ooblayout(mtd
, &onenand_oob_32_64_ooblayout_ops
);
3930 mtd
->subpage_sft
= 1;
3934 printk(KERN_WARNING
"%s: No OOB scheme defined for oobsize %d\n",
3935 __func__
, mtd
->oobsize
);
3936 mtd
->subpage_sft
= 0;
3937 /* To prevent kernel oops */
3938 mtd_set_ooblayout(mtd
, &onenand_oob_32_64_ooblayout_ops
);
3942 this->subpagesize
= mtd
->writesize
>> mtd
->subpage_sft
;
3945 * The number of bytes available for a client to place data into
3946 * the out of band area
3948 ret
= mtd_ooblayout_count_freebytes(mtd
);
3952 mtd
->oobavail
= ret
;
3954 mtd
->ecc_strength
= 1;
3956 /* Fill in remaining MTD driver data */
3957 mtd
->type
= ONENAND_IS_MLC(this) ? MTD_MLCNANDFLASH
: MTD_NANDFLASH
;
3958 mtd
->flags
= MTD_CAP_NANDFLASH
;
3959 mtd
->_erase
= onenand_erase
;
3961 mtd
->_unpoint
= NULL
;
3962 mtd
->_read_oob
= onenand_read_oob
;
3963 mtd
->_write_oob
= onenand_write_oob
;
3964 mtd
->_panic_write
= onenand_panic_write
;
3965 #ifdef CONFIG_MTD_ONENAND_OTP
3966 mtd
->_get_fact_prot_info
= onenand_get_fact_prot_info
;
3967 mtd
->_read_fact_prot_reg
= onenand_read_fact_prot_reg
;
3968 mtd
->_get_user_prot_info
= onenand_get_user_prot_info
;
3969 mtd
->_read_user_prot_reg
= onenand_read_user_prot_reg
;
3970 mtd
->_write_user_prot_reg
= onenand_write_user_prot_reg
;
3971 mtd
->_lock_user_prot_reg
= onenand_lock_user_prot_reg
;
3973 mtd
->_sync
= onenand_sync
;
3974 mtd
->_lock
= onenand_lock
;
3975 mtd
->_unlock
= onenand_unlock
;
3976 mtd
->_suspend
= onenand_suspend
;
3977 mtd
->_resume
= onenand_resume
;
3978 mtd
->_block_isbad
= onenand_block_isbad
;
3979 mtd
->_block_markbad
= onenand_block_markbad
;
3980 mtd
->owner
= THIS_MODULE
;
3981 mtd
->writebufsize
= mtd
->writesize
;
3983 /* Unlock whole block */
3984 if (!(this->options
& ONENAND_SKIP_INITIAL_UNLOCKING
))
3985 this->unlock_all(mtd
);
3987 ret
= this->scan_bbt(mtd
);
3988 if ((!FLEXONENAND(this)) || ret
)
3991 /* Change Flex-OneNAND boundaries if required */
3992 for (i
= 0; i
< MAX_DIES
; i
++)
3993 flexonenand_set_boundary(mtd
, i
, flex_bdry
[2 * i
],
3994 flex_bdry
[(2 * i
) + 1]);
4000 * onenand_release - [OneNAND Interface] Free resources held by the OneNAND device
4001 * @param mtd MTD device structure
4003 void onenand_release(struct mtd_info
*mtd
)
4005 struct onenand_chip
*this = mtd
->priv
;
4007 /* Deregister partitions */
4008 mtd_device_unregister(mtd
);
4010 /* Free bad block table memory, if allocated */
4012 struct bbm_info
*bbm
= this->bbm
;
4016 /* Buffers allocated by onenand_scan */
4017 if (this->options
& ONENAND_PAGEBUF_ALLOC
) {
4018 kfree(this->page_buf
);
4019 #ifdef CONFIG_MTD_ONENAND_VERIFY_WRITE
4020 kfree(this->verify_buf
);
4023 if (this->options
& ONENAND_OOBBUF_ALLOC
)
4024 kfree(this->oob_buf
);
4025 kfree(mtd
->eraseregions
);
4028 EXPORT_SYMBOL_GPL(onenand_scan
);
4029 EXPORT_SYMBOL_GPL(onenand_release
);
4031 MODULE_LICENSE("GPL");
4032 MODULE_AUTHOR("Kyungmin Park <kyungmin.park@samsung.com>");
4033 MODULE_DESCRIPTION("Generic OneNAND flash driver code");