2 * Based on m25p80.c, by Mike Lavender (mike@steroidmicros.com), with
3 * influence from lart.c (Abraham Van Der Merwe) and mtd_dataflash.c
5 * Copyright (C) 2005, Intec Automation Inc.
6 * Copyright (C) 2014, Freescale Semiconductor, Inc.
8 * This code is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License version 2 as
10 * published by the Free Software Foundation.
13 #include <linux/err.h>
14 #include <linux/errno.h>
15 #include <linux/module.h>
16 #include <linux/device.h>
17 #include <linux/mutex.h>
18 #include <linux/math64.h>
19 #include <linux/sizes.h>
20 #include <linux/slab.h>
22 #include <linux/mtd/mtd.h>
23 #include <linux/of_platform.h>
24 #include <linux/spi/flash.h>
25 #include <linux/mtd/spi-nor.h>
27 /* Define max times to check status register before we give up. */
30 * For everything but full-chip erase; probably could be much smaller, but kept
31 * around for safety for now
33 #define DEFAULT_READY_WAIT_JIFFIES (40UL * HZ)
36 * For full-chip erase, calibrated to a 2MB flash (M25P16); should be scaled up
39 #define CHIP_ERASE_2MB_READY_WAIT_JIFFIES (40UL * HZ)
41 #define SPI_NOR_MAX_ID_LEN 6
42 #define SPI_NOR_MAX_ADDR_WIDTH 4
48 * This array stores the ID bytes.
49 * The first three bytes are the JEDIC ID.
50 * JEDEC ID zero means "no ID" (mostly older chips).
52 u8 id
[SPI_NOR_MAX_ID_LEN
];
55 /* The size listed here is what works with SPINOR_OP_SE, which isn't
56 * necessarily called a "sector" by the vendor.
65 #define SECT_4K BIT(0) /* SPINOR_OP_BE_4K works uniformly */
66 #define SPI_NOR_NO_ERASE BIT(1) /* No erase command needed */
67 #define SST_WRITE BIT(2) /* use SST byte programming */
68 #define SPI_NOR_NO_FR BIT(3) /* Can't do fastread */
69 #define SECT_4K_PMC BIT(4) /* SPINOR_OP_BE_4K_PMC works uniformly */
70 #define SPI_NOR_DUAL_READ BIT(5) /* Flash supports Dual Read */
71 #define SPI_NOR_QUAD_READ BIT(6) /* Flash supports Quad Read */
72 #define USE_FSR BIT(7) /* use flag status register */
73 #define SPI_NOR_HAS_LOCK BIT(8) /* Flash supports lock/unlock via SR */
74 #define SPI_NOR_HAS_TB BIT(9) /*
75 * Flash SR has Top/Bottom (TB) protect
76 * bit. Must be used with
79 #define SPI_S3AN BIT(10) /*
80 * Xilinx Spartan 3AN In-System Flash
81 * (MFR cannot be used for probing
82 * because it has the same value as
85 #define SPI_NOR_4B_OPCODES BIT(11) /*
86 * Use dedicated 4byte address op codes
87 * to support memory size above 128Mib.
89 #define NO_CHIP_ERASE BIT(12) /* Chip does not support chip erase */
90 #define SPI_NOR_SKIP_SFDP BIT(13) /* Skip parsing of SFDP tables */
91 #define USE_CLSR BIT(14) /* use CLSR command */
93 int (*quad_enable
)(struct spi_nor
*nor
);
96 #define JEDEC_MFR(info) ((info)->id[0])
98 static const struct flash_info
*spi_nor_match_id(const char *name
);
101 * Read the status register, returning its value in the location
102 * Return the status register value.
103 * Returns negative if error occurred.
105 static int read_sr(struct spi_nor
*nor
)
110 ret
= nor
->read_reg(nor
, SPINOR_OP_RDSR
, &val
, 1);
112 pr_err("error %d reading SR\n", (int) ret
);
120 * Read the flag status register, returning its value in the location
121 * Return the status register value.
122 * Returns negative if error occurred.
124 static int read_fsr(struct spi_nor
*nor
)
129 ret
= nor
->read_reg(nor
, SPINOR_OP_RDFSR
, &val
, 1);
131 pr_err("error %d reading FSR\n", ret
);
139 * Read configuration register, returning its value in the
140 * location. Return the configuration register value.
141 * Returns negative if error occurred.
143 static int read_cr(struct spi_nor
*nor
)
148 ret
= nor
->read_reg(nor
, SPINOR_OP_RDCR
, &val
, 1);
150 dev_err(nor
->dev
, "error %d reading CR\n", ret
);
158 * Write status register 1 byte
159 * Returns negative if error occurred.
161 static inline int write_sr(struct spi_nor
*nor
, u8 val
)
163 nor
->cmd_buf
[0] = val
;
164 return nor
->write_reg(nor
, SPINOR_OP_WRSR
, nor
->cmd_buf
, 1);
168 * Set write enable latch with Write Enable command.
169 * Returns negative if error occurred.
171 static inline int write_enable(struct spi_nor
*nor
)
173 return nor
->write_reg(nor
, SPINOR_OP_WREN
, NULL
, 0);
177 * Send write disable instruction to the chip.
179 static inline int write_disable(struct spi_nor
*nor
)
181 return nor
->write_reg(nor
, SPINOR_OP_WRDI
, NULL
, 0);
184 static inline struct spi_nor
*mtd_to_spi_nor(struct mtd_info
*mtd
)
190 static u8
spi_nor_convert_opcode(u8 opcode
, const u8 table
[][2], size_t size
)
194 for (i
= 0; i
< size
; i
++)
195 if (table
[i
][0] == opcode
)
198 /* No conversion found, keep input op code. */
202 static inline u8
spi_nor_convert_3to4_read(u8 opcode
)
204 static const u8 spi_nor_3to4_read
[][2] = {
205 { SPINOR_OP_READ
, SPINOR_OP_READ_4B
},
206 { SPINOR_OP_READ_FAST
, SPINOR_OP_READ_FAST_4B
},
207 { SPINOR_OP_READ_1_1_2
, SPINOR_OP_READ_1_1_2_4B
},
208 { SPINOR_OP_READ_1_2_2
, SPINOR_OP_READ_1_2_2_4B
},
209 { SPINOR_OP_READ_1_1_4
, SPINOR_OP_READ_1_1_4_4B
},
210 { SPINOR_OP_READ_1_4_4
, SPINOR_OP_READ_1_4_4_4B
},
212 { SPINOR_OP_READ_1_1_1_DTR
, SPINOR_OP_READ_1_1_1_DTR_4B
},
213 { SPINOR_OP_READ_1_2_2_DTR
, SPINOR_OP_READ_1_2_2_DTR_4B
},
214 { SPINOR_OP_READ_1_4_4_DTR
, SPINOR_OP_READ_1_4_4_DTR_4B
},
217 return spi_nor_convert_opcode(opcode
, spi_nor_3to4_read
,
218 ARRAY_SIZE(spi_nor_3to4_read
));
221 static inline u8
spi_nor_convert_3to4_program(u8 opcode
)
223 static const u8 spi_nor_3to4_program
[][2] = {
224 { SPINOR_OP_PP
, SPINOR_OP_PP_4B
},
225 { SPINOR_OP_PP_1_1_4
, SPINOR_OP_PP_1_1_4_4B
},
226 { SPINOR_OP_PP_1_4_4
, SPINOR_OP_PP_1_4_4_4B
},
229 return spi_nor_convert_opcode(opcode
, spi_nor_3to4_program
,
230 ARRAY_SIZE(spi_nor_3to4_program
));
233 static inline u8
spi_nor_convert_3to4_erase(u8 opcode
)
235 static const u8 spi_nor_3to4_erase
[][2] = {
236 { SPINOR_OP_BE_4K
, SPINOR_OP_BE_4K_4B
},
237 { SPINOR_OP_BE_32K
, SPINOR_OP_BE_32K_4B
},
238 { SPINOR_OP_SE
, SPINOR_OP_SE_4B
},
241 return spi_nor_convert_opcode(opcode
, spi_nor_3to4_erase
,
242 ARRAY_SIZE(spi_nor_3to4_erase
));
245 static void spi_nor_set_4byte_opcodes(struct spi_nor
*nor
,
246 const struct flash_info
*info
)
248 /* Do some manufacturer fixups first */
249 switch (JEDEC_MFR(info
)) {
250 case SNOR_MFR_SPANSION
:
251 /* No small sector erase for 4-byte command set */
252 nor
->erase_opcode
= SPINOR_OP_SE
;
253 nor
->mtd
.erasesize
= info
->sector_size
;
260 nor
->read_opcode
= spi_nor_convert_3to4_read(nor
->read_opcode
);
261 nor
->program_opcode
= spi_nor_convert_3to4_program(nor
->program_opcode
);
262 nor
->erase_opcode
= spi_nor_convert_3to4_erase(nor
->erase_opcode
);
265 /* Enable/disable 4-byte addressing mode. */
266 static inline int set_4byte(struct spi_nor
*nor
, const struct flash_info
*info
,
270 bool need_wren
= false;
273 switch (JEDEC_MFR(info
)) {
274 case SNOR_MFR_MICRON
:
275 /* Some Micron need WREN command; all will accept it */
277 case SNOR_MFR_MACRONIX
:
278 case SNOR_MFR_WINBOND
:
282 cmd
= enable
? SPINOR_OP_EN4B
: SPINOR_OP_EX4B
;
283 status
= nor
->write_reg(nor
, cmd
, NULL
, 0);
290 nor
->cmd_buf
[0] = enable
<< 7;
291 return nor
->write_reg(nor
, SPINOR_OP_BRWR
, nor
->cmd_buf
, 1);
295 static int s3an_sr_ready(struct spi_nor
*nor
)
300 ret
= nor
->read_reg(nor
, SPINOR_OP_XRDSR
, &val
, 1);
302 dev_err(nor
->dev
, "error %d reading XRDSR\n", (int) ret
);
306 return !!(val
& XSR_RDY
);
309 static inline int spi_nor_sr_ready(struct spi_nor
*nor
)
311 int sr
= read_sr(nor
);
315 if (nor
->flags
& SNOR_F_USE_CLSR
&& sr
& (SR_E_ERR
| SR_P_ERR
)) {
317 dev_err(nor
->dev
, "Erase Error occurred\n");
319 dev_err(nor
->dev
, "Programming Error occurred\n");
321 nor
->write_reg(nor
, SPINOR_OP_CLSR
, NULL
, 0);
325 return !(sr
& SR_WIP
);
328 static inline int spi_nor_fsr_ready(struct spi_nor
*nor
)
330 int fsr
= read_fsr(nor
);
334 if (fsr
& (FSR_E_ERR
| FSR_P_ERR
)) {
336 dev_err(nor
->dev
, "Erase operation failed.\n");
338 dev_err(nor
->dev
, "Program operation failed.\n");
340 if (fsr
& FSR_PT_ERR
)
342 "Attempted to modify a protected sector.\n");
344 nor
->write_reg(nor
, SPINOR_OP_CLFSR
, NULL
, 0);
348 return fsr
& FSR_READY
;
351 static int spi_nor_ready(struct spi_nor
*nor
)
355 if (nor
->flags
& SNOR_F_READY_XSR_RDY
)
356 sr
= s3an_sr_ready(nor
);
358 sr
= spi_nor_sr_ready(nor
);
361 fsr
= nor
->flags
& SNOR_F_USE_FSR
? spi_nor_fsr_ready(nor
) : 1;
368 * Service routine to read status register until ready, or timeout occurs.
369 * Returns non-zero if error.
371 static int spi_nor_wait_till_ready_with_timeout(struct spi_nor
*nor
,
372 unsigned long timeout_jiffies
)
374 unsigned long deadline
;
375 int timeout
= 0, ret
;
377 deadline
= jiffies
+ timeout_jiffies
;
380 if (time_after_eq(jiffies
, deadline
))
383 ret
= spi_nor_ready(nor
);
392 dev_err(nor
->dev
, "flash operation timed out\n");
397 static int spi_nor_wait_till_ready(struct spi_nor
*nor
)
399 return spi_nor_wait_till_ready_with_timeout(nor
,
400 DEFAULT_READY_WAIT_JIFFIES
);
404 * Erase the whole flash memory
406 * Returns 0 if successful, non-zero otherwise.
408 static int erase_chip(struct spi_nor
*nor
)
410 dev_dbg(nor
->dev
, " %lldKiB\n", (long long)(nor
->mtd
.size
>> 10));
412 return nor
->write_reg(nor
, SPINOR_OP_CHIP_ERASE
, NULL
, 0);
415 static int spi_nor_lock_and_prep(struct spi_nor
*nor
, enum spi_nor_ops ops
)
419 mutex_lock(&nor
->lock
);
422 ret
= nor
->prepare(nor
, ops
);
424 dev_err(nor
->dev
, "failed in the preparation.\n");
425 mutex_unlock(&nor
->lock
);
432 static void spi_nor_unlock_and_unprep(struct spi_nor
*nor
, enum spi_nor_ops ops
)
435 nor
->unprepare(nor
, ops
);
436 mutex_unlock(&nor
->lock
);
440 * This code converts an address to the Default Address Mode, that has non
441 * power of two page sizes. We must support this mode because it is the default
442 * mode supported by Xilinx tools, it can access the whole flash area and
443 * changing over to the Power-of-two mode is irreversible and corrupts the
445 * Addr can safely be unsigned int, the biggest S3AN device is smaller than
448 static loff_t
spi_nor_s3an_addr_convert(struct spi_nor
*nor
, unsigned int addr
)
453 offset
= addr
% nor
->page_size
;
454 page
= addr
/ nor
->page_size
;
455 page
<<= (nor
->page_size
> 512) ? 10 : 9;
457 return page
| offset
;
461 * Initiate the erasure of a single sector
463 static int spi_nor_erase_sector(struct spi_nor
*nor
, u32 addr
)
465 u8 buf
[SPI_NOR_MAX_ADDR_WIDTH
];
468 if (nor
->flags
& SNOR_F_S3AN_ADDR_DEFAULT
)
469 addr
= spi_nor_s3an_addr_convert(nor
, addr
);
472 return nor
->erase(nor
, addr
);
475 * Default implementation, if driver doesn't have a specialized HW
478 for (i
= nor
->addr_width
- 1; i
>= 0; i
--) {
479 buf
[i
] = addr
& 0xff;
483 return nor
->write_reg(nor
, nor
->erase_opcode
, buf
, nor
->addr_width
);
487 * Erase an address range on the nor chip. The address range may extend
488 * one or more erase sectors. Return an error is there is a problem erasing.
490 static int spi_nor_erase(struct mtd_info
*mtd
, struct erase_info
*instr
)
492 struct spi_nor
*nor
= mtd_to_spi_nor(mtd
);
497 dev_dbg(nor
->dev
, "at 0x%llx, len %lld\n", (long long)instr
->addr
,
498 (long long)instr
->len
);
500 div_u64_rem(instr
->len
, mtd
->erasesize
, &rem
);
507 ret
= spi_nor_lock_and_prep(nor
, SPI_NOR_OPS_ERASE
);
511 /* whole-chip erase? */
512 if (len
== mtd
->size
&& !(nor
->flags
& SNOR_F_NO_OP_CHIP_ERASE
)) {
513 unsigned long timeout
;
517 if (erase_chip(nor
)) {
523 * Scale the timeout linearly with the size of the flash, with
524 * a minimum calibrated to an old 2MB flash. We could try to
525 * pull these from CFI/SFDP, but these values should be good
528 timeout
= max(CHIP_ERASE_2MB_READY_WAIT_JIFFIES
,
529 CHIP_ERASE_2MB_READY_WAIT_JIFFIES
*
530 (unsigned long)(mtd
->size
/ SZ_2M
));
531 ret
= spi_nor_wait_till_ready_with_timeout(nor
, timeout
);
535 /* REVISIT in some cases we could speed up erasing large regions
536 * by using SPINOR_OP_SE instead of SPINOR_OP_BE_4K. We may have set up
537 * to use "small sector erase", but that's not always optimal.
540 /* "sector"-at-a-time erase */
545 ret
= spi_nor_erase_sector(nor
, addr
);
549 addr
+= mtd
->erasesize
;
550 len
-= mtd
->erasesize
;
552 ret
= spi_nor_wait_till_ready(nor
);
561 spi_nor_unlock_and_unprep(nor
, SPI_NOR_OPS_ERASE
);
563 instr
->state
= ret
? MTD_ERASE_FAILED
: MTD_ERASE_DONE
;
564 mtd_erase_callback(instr
);
569 /* Write status register and ensure bits in mask match written values */
570 static int write_sr_and_check(struct spi_nor
*nor
, u8 status_new
, u8 mask
)
575 ret
= write_sr(nor
, status_new
);
579 ret
= spi_nor_wait_till_ready(nor
);
587 return ((ret
& mask
) != (status_new
& mask
)) ? -EIO
: 0;
590 static void stm_get_locked_range(struct spi_nor
*nor
, u8 sr
, loff_t
*ofs
,
593 struct mtd_info
*mtd
= &nor
->mtd
;
594 u8 mask
= SR_BP2
| SR_BP1
| SR_BP0
;
595 int shift
= ffs(mask
) - 1;
603 pow
= ((sr
& mask
) ^ mask
) >> shift
;
604 *len
= mtd
->size
>> pow
;
605 if (nor
->flags
& SNOR_F_HAS_SR_TB
&& sr
& SR_TB
)
608 *ofs
= mtd
->size
- *len
;
613 * Return 1 if the entire region is locked (if @locked is true) or unlocked (if
614 * @locked is false); 0 otherwise
616 static int stm_check_lock_status_sr(struct spi_nor
*nor
, loff_t ofs
, uint64_t len
,
625 stm_get_locked_range(nor
, sr
, &lock_offs
, &lock_len
);
628 /* Requested range is a sub-range of locked range */
629 return (ofs
+ len
<= lock_offs
+ lock_len
) && (ofs
>= lock_offs
);
631 /* Requested range does not overlap with locked range */
632 return (ofs
>= lock_offs
+ lock_len
) || (ofs
+ len
<= lock_offs
);
635 static int stm_is_locked_sr(struct spi_nor
*nor
, loff_t ofs
, uint64_t len
,
638 return stm_check_lock_status_sr(nor
, ofs
, len
, sr
, true);
641 static int stm_is_unlocked_sr(struct spi_nor
*nor
, loff_t ofs
, uint64_t len
,
644 return stm_check_lock_status_sr(nor
, ofs
, len
, sr
, false);
648 * Lock a region of the flash. Compatible with ST Micro and similar flash.
649 * Supports the block protection bits BP{0,1,2} in the status register
650 * (SR). Does not support these features found in newer SR bitfields:
651 * - SEC: sector/block protect - only handle SEC=0 (block protect)
652 * - CMP: complement protect - only support CMP=0 (range is not complemented)
654 * Support for the following is provided conditionally for some flash:
655 * - TB: top/bottom protect
657 * Sample table portion for 8MB flash (Winbond w25q64fw):
659 * SEC | TB | BP2 | BP1 | BP0 | Prot Length | Protected Portion
660 * --------------------------------------------------------------------------
661 * X | X | 0 | 0 | 0 | NONE | NONE
662 * 0 | 0 | 0 | 0 | 1 | 128 KB | Upper 1/64
663 * 0 | 0 | 0 | 1 | 0 | 256 KB | Upper 1/32
664 * 0 | 0 | 0 | 1 | 1 | 512 KB | Upper 1/16
665 * 0 | 0 | 1 | 0 | 0 | 1 MB | Upper 1/8
666 * 0 | 0 | 1 | 0 | 1 | 2 MB | Upper 1/4
667 * 0 | 0 | 1 | 1 | 0 | 4 MB | Upper 1/2
668 * X | X | 1 | 1 | 1 | 8 MB | ALL
669 * ------|-------|-------|-------|-------|---------------|-------------------
670 * 0 | 1 | 0 | 0 | 1 | 128 KB | Lower 1/64
671 * 0 | 1 | 0 | 1 | 0 | 256 KB | Lower 1/32
672 * 0 | 1 | 0 | 1 | 1 | 512 KB | Lower 1/16
673 * 0 | 1 | 1 | 0 | 0 | 1 MB | Lower 1/8
674 * 0 | 1 | 1 | 0 | 1 | 2 MB | Lower 1/4
675 * 0 | 1 | 1 | 1 | 0 | 4 MB | Lower 1/2
677 * Returns negative on errors, 0 on success.
679 static int stm_lock(struct spi_nor
*nor
, loff_t ofs
, uint64_t len
)
681 struct mtd_info
*mtd
= &nor
->mtd
;
682 int status_old
, status_new
;
683 u8 mask
= SR_BP2
| SR_BP1
| SR_BP0
;
684 u8 shift
= ffs(mask
) - 1, pow
, val
;
686 bool can_be_top
= true, can_be_bottom
= nor
->flags
& SNOR_F_HAS_SR_TB
;
689 status_old
= read_sr(nor
);
693 /* If nothing in our range is unlocked, we don't need to do anything */
694 if (stm_is_locked_sr(nor
, ofs
, len
, status_old
))
697 /* If anything below us is unlocked, we can't use 'bottom' protection */
698 if (!stm_is_locked_sr(nor
, 0, ofs
, status_old
))
699 can_be_bottom
= false;
701 /* If anything above us is unlocked, we can't use 'top' protection */
702 if (!stm_is_locked_sr(nor
, ofs
+ len
, mtd
->size
- (ofs
+ len
),
706 if (!can_be_bottom
&& !can_be_top
)
709 /* Prefer top, if both are valid */
710 use_top
= can_be_top
;
712 /* lock_len: length of region that should end up locked */
714 lock_len
= mtd
->size
- ofs
;
716 lock_len
= ofs
+ len
;
719 * Need smallest pow such that:
721 * 1 / (2^pow) <= (len / size)
723 * so (assuming power-of-2 size) we do:
725 * pow = ceil(log2(size / len)) = log2(size) - floor(log2(len))
727 pow
= ilog2(mtd
->size
) - ilog2(lock_len
);
728 val
= mask
- (pow
<< shift
);
731 /* Don't "lock" with no region! */
735 status_new
= (status_old
& ~mask
& ~SR_TB
) | val
;
737 /* Disallow further writes if WP pin is asserted */
738 status_new
|= SR_SRWD
;
743 /* Don't bother if they're the same */
744 if (status_new
== status_old
)
747 /* Only modify protection if it will not unlock other areas */
748 if ((status_new
& mask
) < (status_old
& mask
))
751 return write_sr_and_check(nor
, status_new
, mask
);
755 * Unlock a region of the flash. See stm_lock() for more info
757 * Returns negative on errors, 0 on success.
759 static int stm_unlock(struct spi_nor
*nor
, loff_t ofs
, uint64_t len
)
761 struct mtd_info
*mtd
= &nor
->mtd
;
762 int status_old
, status_new
;
763 u8 mask
= SR_BP2
| SR_BP1
| SR_BP0
;
764 u8 shift
= ffs(mask
) - 1, pow
, val
;
766 bool can_be_top
= true, can_be_bottom
= nor
->flags
& SNOR_F_HAS_SR_TB
;
769 status_old
= read_sr(nor
);
773 /* If nothing in our range is locked, we don't need to do anything */
774 if (stm_is_unlocked_sr(nor
, ofs
, len
, status_old
))
777 /* If anything below us is locked, we can't use 'top' protection */
778 if (!stm_is_unlocked_sr(nor
, 0, ofs
, status_old
))
781 /* If anything above us is locked, we can't use 'bottom' protection */
782 if (!stm_is_unlocked_sr(nor
, ofs
+ len
, mtd
->size
- (ofs
+ len
),
784 can_be_bottom
= false;
786 if (!can_be_bottom
&& !can_be_top
)
789 /* Prefer top, if both are valid */
790 use_top
= can_be_top
;
792 /* lock_len: length of region that should remain locked */
794 lock_len
= mtd
->size
- (ofs
+ len
);
799 * Need largest pow such that:
801 * 1 / (2^pow) >= (len / size)
803 * so (assuming power-of-2 size) we do:
805 * pow = floor(log2(size / len)) = log2(size) - ceil(log2(len))
807 pow
= ilog2(mtd
->size
) - order_base_2(lock_len
);
809 val
= 0; /* fully unlocked */
811 val
= mask
- (pow
<< shift
);
812 /* Some power-of-two sizes are not supported */
817 status_new
= (status_old
& ~mask
& ~SR_TB
) | val
;
819 /* Don't protect status register if we're fully unlocked */
821 status_new
&= ~SR_SRWD
;
826 /* Don't bother if they're the same */
827 if (status_new
== status_old
)
830 /* Only modify protection if it will not lock other areas */
831 if ((status_new
& mask
) > (status_old
& mask
))
834 return write_sr_and_check(nor
, status_new
, mask
);
838 * Check if a region of the flash is (completely) locked. See stm_lock() for
841 * Returns 1 if entire region is locked, 0 if any portion is unlocked, and
842 * negative on errors.
844 static int stm_is_locked(struct spi_nor
*nor
, loff_t ofs
, uint64_t len
)
848 status
= read_sr(nor
);
852 return stm_is_locked_sr(nor
, ofs
, len
, status
);
855 static int spi_nor_lock(struct mtd_info
*mtd
, loff_t ofs
, uint64_t len
)
857 struct spi_nor
*nor
= mtd_to_spi_nor(mtd
);
860 ret
= spi_nor_lock_and_prep(nor
, SPI_NOR_OPS_LOCK
);
864 ret
= nor
->flash_lock(nor
, ofs
, len
);
866 spi_nor_unlock_and_unprep(nor
, SPI_NOR_OPS_UNLOCK
);
870 static int spi_nor_unlock(struct mtd_info
*mtd
, loff_t ofs
, uint64_t len
)
872 struct spi_nor
*nor
= mtd_to_spi_nor(mtd
);
875 ret
= spi_nor_lock_and_prep(nor
, SPI_NOR_OPS_UNLOCK
);
879 ret
= nor
->flash_unlock(nor
, ofs
, len
);
881 spi_nor_unlock_and_unprep(nor
, SPI_NOR_OPS_LOCK
);
885 static int spi_nor_is_locked(struct mtd_info
*mtd
, loff_t ofs
, uint64_t len
)
887 struct spi_nor
*nor
= mtd_to_spi_nor(mtd
);
890 ret
= spi_nor_lock_and_prep(nor
, SPI_NOR_OPS_UNLOCK
);
894 ret
= nor
->flash_is_locked(nor
, ofs
, len
);
896 spi_nor_unlock_and_unprep(nor
, SPI_NOR_OPS_LOCK
);
900 static int macronix_quad_enable(struct spi_nor
*nor
);
902 /* Used when the "_ext_id" is two bytes at most */
903 #define INFO(_jedec_id, _ext_id, _sector_size, _n_sectors, _flags) \
905 ((_jedec_id) >> 16) & 0xff, \
906 ((_jedec_id) >> 8) & 0xff, \
907 (_jedec_id) & 0xff, \
908 ((_ext_id) >> 8) & 0xff, \
911 .id_len = (!(_jedec_id) ? 0 : (3 + ((_ext_id) ? 2 : 0))), \
912 .sector_size = (_sector_size), \
913 .n_sectors = (_n_sectors), \
917 #define INFO6(_jedec_id, _ext_id, _sector_size, _n_sectors, _flags) \
919 ((_jedec_id) >> 16) & 0xff, \
920 ((_jedec_id) >> 8) & 0xff, \
921 (_jedec_id) & 0xff, \
922 ((_ext_id) >> 16) & 0xff, \
923 ((_ext_id) >> 8) & 0xff, \
927 .sector_size = (_sector_size), \
928 .n_sectors = (_n_sectors), \
932 #define CAT25_INFO(_sector_size, _n_sectors, _page_size, _addr_width, _flags) \
933 .sector_size = (_sector_size), \
934 .n_sectors = (_n_sectors), \
935 .page_size = (_page_size), \
936 .addr_width = (_addr_width), \
939 #define S3AN_INFO(_jedec_id, _n_sectors, _page_size) \
941 ((_jedec_id) >> 16) & 0xff, \
942 ((_jedec_id) >> 8) & 0xff, \
946 .sector_size = (8*_page_size), \
947 .n_sectors = (_n_sectors), \
948 .page_size = _page_size, \
950 .flags = SPI_NOR_NO_FR | SPI_S3AN,
952 /* NOTE: double check command sets and memory organization when you add
953 * more nor chips. This current list focusses on newer chips, which
954 * have been converging on command sets which including JEDEC ID.
956 * All newly added entries should describe *hardware* and should use SECT_4K
957 * (or SECT_4K_PMC) if hardware supports erasing 4 KiB sectors. For usage
958 * scenarios excluding small sectors there is config option that can be
959 * disabled: CONFIG_MTD_SPI_NOR_USE_4K_SECTORS.
960 * For historical (and compatibility) reasons (before we got above config) some
961 * old entries may be missing 4K flag.
963 static const struct flash_info spi_nor_ids
[] = {
964 /* Atmel -- some are (confusingly) marketed as "DataFlash" */
965 { "at25fs010", INFO(0x1f6601, 0, 32 * 1024, 4, SECT_4K
) },
966 { "at25fs040", INFO(0x1f6604, 0, 64 * 1024, 8, SECT_4K
) },
968 { "at25df041a", INFO(0x1f4401, 0, 64 * 1024, 8, SECT_4K
) },
969 { "at25df321", INFO(0x1f4700, 0, 64 * 1024, 64, SECT_4K
) },
970 { "at25df321a", INFO(0x1f4701, 0, 64 * 1024, 64, SECT_4K
) },
971 { "at25df641", INFO(0x1f4800, 0, 64 * 1024, 128, SECT_4K
) },
973 { "at26f004", INFO(0x1f0400, 0, 64 * 1024, 8, SECT_4K
) },
974 { "at26df081a", INFO(0x1f4501, 0, 64 * 1024, 16, SECT_4K
) },
975 { "at26df161a", INFO(0x1f4601, 0, 64 * 1024, 32, SECT_4K
) },
976 { "at26df321", INFO(0x1f4700, 0, 64 * 1024, 64, SECT_4K
) },
978 { "at45db081d", INFO(0x1f2500, 0, 64 * 1024, 16, SECT_4K
) },
981 { "en25f32", INFO(0x1c3116, 0, 64 * 1024, 64, SECT_4K
) },
982 { "en25p32", INFO(0x1c2016, 0, 64 * 1024, 64, 0) },
983 { "en25q32b", INFO(0x1c3016, 0, 64 * 1024, 64, 0) },
984 { "en25p64", INFO(0x1c2017, 0, 64 * 1024, 128, 0) },
985 { "en25q64", INFO(0x1c3017, 0, 64 * 1024, 128, SECT_4K
) },
986 { "en25qh128", INFO(0x1c7018, 0, 64 * 1024, 256, 0) },
987 { "en25qh256", INFO(0x1c7019, 0, 64 * 1024, 512, 0) },
988 { "en25s64", INFO(0x1c3817, 0, 64 * 1024, 128, SECT_4K
) },
991 { "f25l32pa", INFO(0x8c2016, 0, 64 * 1024, 64, SECT_4K
| SPI_NOR_HAS_LOCK
) },
992 { "f25l32qa", INFO(0x8c4116, 0, 64 * 1024, 64, SECT_4K
| SPI_NOR_HAS_LOCK
) },
993 { "f25l64qa", INFO(0x8c4117, 0, 64 * 1024, 128, SECT_4K
| SPI_NOR_HAS_LOCK
) },
996 { "mr25h128", CAT25_INFO( 16 * 1024, 1, 256, 2, SPI_NOR_NO_ERASE
| SPI_NOR_NO_FR
) },
997 { "mr25h256", CAT25_INFO( 32 * 1024, 1, 256, 2, SPI_NOR_NO_ERASE
| SPI_NOR_NO_FR
) },
998 { "mr25h10", CAT25_INFO(128 * 1024, 1, 256, 3, SPI_NOR_NO_ERASE
| SPI_NOR_NO_FR
) },
999 { "mr25h40", CAT25_INFO(512 * 1024, 1, 256, 3, SPI_NOR_NO_ERASE
| SPI_NOR_NO_FR
) },
1002 { "mb85rs1mt", INFO(0x047f27, 0, 128 * 1024, 1, SPI_NOR_NO_ERASE
) },
1006 "gd25q16", INFO(0xc84015, 0, 64 * 1024, 32,
1007 SECT_4K
| SPI_NOR_DUAL_READ
| SPI_NOR_QUAD_READ
|
1008 SPI_NOR_HAS_LOCK
| SPI_NOR_HAS_TB
)
1011 "gd25q32", INFO(0xc84016, 0, 64 * 1024, 64,
1012 SECT_4K
| SPI_NOR_DUAL_READ
| SPI_NOR_QUAD_READ
|
1013 SPI_NOR_HAS_LOCK
| SPI_NOR_HAS_TB
)
1016 "gd25lq32", INFO(0xc86016, 0, 64 * 1024, 64,
1017 SECT_4K
| SPI_NOR_DUAL_READ
| SPI_NOR_QUAD_READ
|
1018 SPI_NOR_HAS_LOCK
| SPI_NOR_HAS_TB
)
1021 "gd25q64", INFO(0xc84017, 0, 64 * 1024, 128,
1022 SECT_4K
| SPI_NOR_DUAL_READ
| SPI_NOR_QUAD_READ
|
1023 SPI_NOR_HAS_LOCK
| SPI_NOR_HAS_TB
)
1026 "gd25lq64c", INFO(0xc86017, 0, 64 * 1024, 128,
1027 SECT_4K
| SPI_NOR_DUAL_READ
| SPI_NOR_QUAD_READ
|
1028 SPI_NOR_HAS_LOCK
| SPI_NOR_HAS_TB
)
1031 "gd25q128", INFO(0xc84018, 0, 64 * 1024, 256,
1032 SECT_4K
| SPI_NOR_DUAL_READ
| SPI_NOR_QUAD_READ
|
1033 SPI_NOR_HAS_LOCK
| SPI_NOR_HAS_TB
)
1036 "gd25q256", INFO(0xc84019, 0, 64 * 1024, 512,
1037 SECT_4K
| SPI_NOR_DUAL_READ
| SPI_NOR_QUAD_READ
|
1038 SPI_NOR_4B_OPCODES
| SPI_NOR_HAS_LOCK
| SPI_NOR_HAS_TB
)
1039 .quad_enable
= macronix_quad_enable
,
1042 /* Intel/Numonyx -- xxxs33b */
1043 { "160s33b", INFO(0x898911, 0, 64 * 1024, 32, 0) },
1044 { "320s33b", INFO(0x898912, 0, 64 * 1024, 64, 0) },
1045 { "640s33b", INFO(0x898913, 0, 64 * 1024, 128, 0) },
1048 { "is25cd512", INFO(0x7f9d20, 0, 32 * 1024, 2, SECT_4K
) },
1049 { "is25lq040b", INFO(0x9d4013, 0, 64 * 1024, 8,
1050 SECT_4K
| SPI_NOR_DUAL_READ
| SPI_NOR_QUAD_READ
) },
1051 { "is25lp080d", INFO(0x9d6014, 0, 64 * 1024, 16,
1052 SECT_4K
| SPI_NOR_DUAL_READ
| SPI_NOR_QUAD_READ
) },
1053 { "is25lp128", INFO(0x9d6018, 0, 64 * 1024, 256,
1054 SECT_4K
| SPI_NOR_DUAL_READ
) },
1057 { "mx25l512e", INFO(0xc22010, 0, 64 * 1024, 1, SECT_4K
) },
1058 { "mx25l2005a", INFO(0xc22012, 0, 64 * 1024, 4, SECT_4K
) },
1059 { "mx25l4005a", INFO(0xc22013, 0, 64 * 1024, 8, SECT_4K
) },
1060 { "mx25l8005", INFO(0xc22014, 0, 64 * 1024, 16, 0) },
1061 { "mx25l1606e", INFO(0xc22015, 0, 64 * 1024, 32, SECT_4K
) },
1062 { "mx25l3205d", INFO(0xc22016, 0, 64 * 1024, 64, SECT_4K
) },
1063 { "mx25l3255e", INFO(0xc29e16, 0, 64 * 1024, 64, SECT_4K
) },
1064 { "mx25l6405d", INFO(0xc22017, 0, 64 * 1024, 128, SECT_4K
) },
1065 { "mx25u2033e", INFO(0xc22532, 0, 64 * 1024, 4, SECT_4K
) },
1066 { "mx25u4035", INFO(0xc22533, 0, 64 * 1024, 8, SECT_4K
) },
1067 { "mx25u8035", INFO(0xc22534, 0, 64 * 1024, 16, SECT_4K
) },
1068 { "mx25u6435f", INFO(0xc22537, 0, 64 * 1024, 128, SECT_4K
) },
1069 { "mx25l12805d", INFO(0xc22018, 0, 64 * 1024, 256, 0) },
1070 { "mx25l12855e", INFO(0xc22618, 0, 64 * 1024, 256, 0) },
1071 { "mx25l25635e", INFO(0xc22019, 0, 64 * 1024, 512, SPI_NOR_DUAL_READ
| SPI_NOR_QUAD_READ
) },
1072 { "mx25u25635f", INFO(0xc22539, 0, 64 * 1024, 512, SECT_4K
| SPI_NOR_4B_OPCODES
) },
1073 { "mx25l25655e", INFO(0xc22619, 0, 64 * 1024, 512, 0) },
1074 { "mx66l51235l", INFO(0xc2201a, 0, 64 * 1024, 1024, SPI_NOR_DUAL_READ
| SPI_NOR_QUAD_READ
| SPI_NOR_4B_OPCODES
) },
1075 { "mx66u51235f", INFO(0xc2253a, 0, 64 * 1024, 1024, SECT_4K
| SPI_NOR_DUAL_READ
| SPI_NOR_QUAD_READ
| SPI_NOR_4B_OPCODES
) },
1076 { "mx66l1g45g", INFO(0xc2201b, 0, 64 * 1024, 2048, SECT_4K
| SPI_NOR_DUAL_READ
| SPI_NOR_QUAD_READ
) },
1077 { "mx66l1g55g", INFO(0xc2261b, 0, 64 * 1024, 2048, SPI_NOR_QUAD_READ
) },
1080 { "n25q016a", INFO(0x20bb15, 0, 64 * 1024, 32, SECT_4K
| SPI_NOR_QUAD_READ
) },
1081 { "n25q032", INFO(0x20ba16, 0, 64 * 1024, 64, SPI_NOR_QUAD_READ
) },
1082 { "n25q032a", INFO(0x20bb16, 0, 64 * 1024, 64, SPI_NOR_QUAD_READ
) },
1083 { "n25q064", INFO(0x20ba17, 0, 64 * 1024, 128, SECT_4K
| SPI_NOR_QUAD_READ
) },
1084 { "n25q064a", INFO(0x20bb17, 0, 64 * 1024, 128, SECT_4K
| SPI_NOR_QUAD_READ
) },
1085 { "n25q128a11", INFO(0x20bb18, 0, 64 * 1024, 256, SECT_4K
| SPI_NOR_QUAD_READ
) },
1086 { "n25q128a13", INFO(0x20ba18, 0, 64 * 1024, 256, SECT_4K
| SPI_NOR_QUAD_READ
) },
1087 { "n25q256a", INFO(0x20ba19, 0, 64 * 1024, 512, SECT_4K
| SPI_NOR_DUAL_READ
| SPI_NOR_QUAD_READ
) },
1088 { "n25q256ax1", INFO(0x20bb19, 0, 64 * 1024, 512, SECT_4K
| SPI_NOR_QUAD_READ
) },
1089 { "n25q512a", INFO(0x20bb20, 0, 64 * 1024, 1024, SECT_4K
| USE_FSR
| SPI_NOR_QUAD_READ
) },
1090 { "n25q512ax3", INFO(0x20ba20, 0, 64 * 1024, 1024, SECT_4K
| USE_FSR
| SPI_NOR_QUAD_READ
) },
1091 { "n25q00", INFO(0x20ba21, 0, 64 * 1024, 2048, SECT_4K
| USE_FSR
| SPI_NOR_QUAD_READ
| NO_CHIP_ERASE
) },
1092 { "n25q00a", INFO(0x20bb21, 0, 64 * 1024, 2048, SECT_4K
| USE_FSR
| SPI_NOR_QUAD_READ
| NO_CHIP_ERASE
) },
1095 { "pm25lv512", INFO(0, 0, 32 * 1024, 2, SECT_4K_PMC
) },
1096 { "pm25lv010", INFO(0, 0, 32 * 1024, 4, SECT_4K_PMC
) },
1097 { "pm25lq032", INFO(0x7f9d46, 0, 64 * 1024, 64, SECT_4K
) },
1099 /* Spansion/Cypress -- single (large) sector size only, at least
1100 * for the chips listed here (without boot sectors).
1102 { "s25sl032p", INFO(0x010215, 0x4d00, 64 * 1024, 64, SPI_NOR_DUAL_READ
| SPI_NOR_QUAD_READ
) },
1103 { "s25sl064p", INFO(0x010216, 0x4d00, 64 * 1024, 128, SPI_NOR_DUAL_READ
| SPI_NOR_QUAD_READ
) },
1104 { "s25fl256s0", INFO(0x010219, 0x4d00, 256 * 1024, 128, USE_CLSR
) },
1105 { "s25fl256s1", INFO(0x010219, 0x4d01, 64 * 1024, 512, SPI_NOR_DUAL_READ
| SPI_NOR_QUAD_READ
| USE_CLSR
) },
1106 { "s25fl512s", INFO(0x010220, 0x4d00, 256 * 1024, 256, SPI_NOR_DUAL_READ
| SPI_NOR_QUAD_READ
| USE_CLSR
) },
1107 { "s70fl01gs", INFO(0x010221, 0x4d00, 256 * 1024, 256, 0) },
1108 { "s25sl12800", INFO(0x012018, 0x0300, 256 * 1024, 64, 0) },
1109 { "s25sl12801", INFO(0x012018, 0x0301, 64 * 1024, 256, 0) },
1110 { "s25fl128s", INFO6(0x012018, 0x4d0180, 64 * 1024, 256, SPI_NOR_DUAL_READ
| SPI_NOR_QUAD_READ
| USE_CLSR
) },
1111 { "s25fl129p0", INFO(0x012018, 0x4d00, 256 * 1024, 64, SPI_NOR_DUAL_READ
| SPI_NOR_QUAD_READ
| USE_CLSR
) },
1112 { "s25fl129p1", INFO(0x012018, 0x4d01, 64 * 1024, 256, SPI_NOR_DUAL_READ
| SPI_NOR_QUAD_READ
| USE_CLSR
) },
1113 { "s25sl004a", INFO(0x010212, 0, 64 * 1024, 8, 0) },
1114 { "s25sl008a", INFO(0x010213, 0, 64 * 1024, 16, 0) },
1115 { "s25sl016a", INFO(0x010214, 0, 64 * 1024, 32, 0) },
1116 { "s25sl032a", INFO(0x010215, 0, 64 * 1024, 64, 0) },
1117 { "s25sl064a", INFO(0x010216, 0, 64 * 1024, 128, 0) },
1118 { "s25fl004k", INFO(0xef4013, 0, 64 * 1024, 8, SECT_4K
| SPI_NOR_DUAL_READ
| SPI_NOR_QUAD_READ
) },
1119 { "s25fl008k", INFO(0xef4014, 0, 64 * 1024, 16, SECT_4K
| SPI_NOR_DUAL_READ
| SPI_NOR_QUAD_READ
) },
1120 { "s25fl016k", INFO(0xef4015, 0, 64 * 1024, 32, SECT_4K
| SPI_NOR_DUAL_READ
| SPI_NOR_QUAD_READ
) },
1121 { "s25fl064k", INFO(0xef4017, 0, 64 * 1024, 128, SECT_4K
) },
1122 { "s25fl116k", INFO(0x014015, 0, 64 * 1024, 32, SECT_4K
| SPI_NOR_DUAL_READ
| SPI_NOR_QUAD_READ
) },
1123 { "s25fl132k", INFO(0x014016, 0, 64 * 1024, 64, SECT_4K
) },
1124 { "s25fl164k", INFO(0x014017, 0, 64 * 1024, 128, SECT_4K
) },
1125 { "s25fl204k", INFO(0x014013, 0, 64 * 1024, 8, SECT_4K
| SPI_NOR_DUAL_READ
) },
1126 { "s25fl208k", INFO(0x014014, 0, 64 * 1024, 16, SECT_4K
| SPI_NOR_DUAL_READ
) },
1127 { "s25fl064l", INFO(0x016017, 0, 64 * 1024, 128, SECT_4K
| SPI_NOR_DUAL_READ
| SPI_NOR_QUAD_READ
| SPI_NOR_4B_OPCODES
) },
1128 { "s25fl128l", INFO(0x016018, 0, 64 * 1024, 256, SECT_4K
| SPI_NOR_DUAL_READ
| SPI_NOR_QUAD_READ
| SPI_NOR_4B_OPCODES
) },
1129 { "s25fl256l", INFO(0x016019, 0, 64 * 1024, 512, SECT_4K
| SPI_NOR_DUAL_READ
| SPI_NOR_QUAD_READ
| SPI_NOR_4B_OPCODES
) },
1131 /* SST -- large erase sizes are "overlays", "sectors" are 4K */
1132 { "sst25vf040b", INFO(0xbf258d, 0, 64 * 1024, 8, SECT_4K
| SST_WRITE
) },
1133 { "sst25vf080b", INFO(0xbf258e, 0, 64 * 1024, 16, SECT_4K
| SST_WRITE
) },
1134 { "sst25vf016b", INFO(0xbf2541, 0, 64 * 1024, 32, SECT_4K
| SST_WRITE
) },
1135 { "sst25vf032b", INFO(0xbf254a, 0, 64 * 1024, 64, SECT_4K
| SST_WRITE
) },
1136 { "sst25vf064c", INFO(0xbf254b, 0, 64 * 1024, 128, SECT_4K
) },
1137 { "sst25wf512", INFO(0xbf2501, 0, 64 * 1024, 1, SECT_4K
| SST_WRITE
) },
1138 { "sst25wf010", INFO(0xbf2502, 0, 64 * 1024, 2, SECT_4K
| SST_WRITE
) },
1139 { "sst25wf020", INFO(0xbf2503, 0, 64 * 1024, 4, SECT_4K
| SST_WRITE
) },
1140 { "sst25wf020a", INFO(0x621612, 0, 64 * 1024, 4, SECT_4K
) },
1141 { "sst25wf040b", INFO(0x621613, 0, 64 * 1024, 8, SECT_4K
) },
1142 { "sst25wf040", INFO(0xbf2504, 0, 64 * 1024, 8, SECT_4K
| SST_WRITE
) },
1143 { "sst25wf080", INFO(0xbf2505, 0, 64 * 1024, 16, SECT_4K
| SST_WRITE
) },
1144 { "sst26vf064b", INFO(0xbf2643, 0, 64 * 1024, 128, SECT_4K
| SPI_NOR_DUAL_READ
| SPI_NOR_QUAD_READ
) },
1146 /* ST Microelectronics -- newer production may have feature updates */
1147 { "m25p05", INFO(0x202010, 0, 32 * 1024, 2, 0) },
1148 { "m25p10", INFO(0x202011, 0, 32 * 1024, 4, 0) },
1149 { "m25p20", INFO(0x202012, 0, 64 * 1024, 4, 0) },
1150 { "m25p40", INFO(0x202013, 0, 64 * 1024, 8, 0) },
1151 { "m25p80", INFO(0x202014, 0, 64 * 1024, 16, 0) },
1152 { "m25p16", INFO(0x202015, 0, 64 * 1024, 32, 0) },
1153 { "m25p32", INFO(0x202016, 0, 64 * 1024, 64, 0) },
1154 { "m25p64", INFO(0x202017, 0, 64 * 1024, 128, 0) },
1155 { "m25p128", INFO(0x202018, 0, 256 * 1024, 64, 0) },
1157 { "m25p05-nonjedec", INFO(0, 0, 32 * 1024, 2, 0) },
1158 { "m25p10-nonjedec", INFO(0, 0, 32 * 1024, 4, 0) },
1159 { "m25p20-nonjedec", INFO(0, 0, 64 * 1024, 4, 0) },
1160 { "m25p40-nonjedec", INFO(0, 0, 64 * 1024, 8, 0) },
1161 { "m25p80-nonjedec", INFO(0, 0, 64 * 1024, 16, 0) },
1162 { "m25p16-nonjedec", INFO(0, 0, 64 * 1024, 32, 0) },
1163 { "m25p32-nonjedec", INFO(0, 0, 64 * 1024, 64, 0) },
1164 { "m25p64-nonjedec", INFO(0, 0, 64 * 1024, 128, 0) },
1165 { "m25p128-nonjedec", INFO(0, 0, 256 * 1024, 64, 0) },
1167 { "m45pe10", INFO(0x204011, 0, 64 * 1024, 2, 0) },
1168 { "m45pe80", INFO(0x204014, 0, 64 * 1024, 16, 0) },
1169 { "m45pe16", INFO(0x204015, 0, 64 * 1024, 32, 0) },
1171 { "m25pe20", INFO(0x208012, 0, 64 * 1024, 4, 0) },
1172 { "m25pe80", INFO(0x208014, 0, 64 * 1024, 16, 0) },
1173 { "m25pe16", INFO(0x208015, 0, 64 * 1024, 32, SECT_4K
) },
1175 { "m25px16", INFO(0x207115, 0, 64 * 1024, 32, SECT_4K
) },
1176 { "m25px32", INFO(0x207116, 0, 64 * 1024, 64, SECT_4K
) },
1177 { "m25px32-s0", INFO(0x207316, 0, 64 * 1024, 64, SECT_4K
) },
1178 { "m25px32-s1", INFO(0x206316, 0, 64 * 1024, 64, SECT_4K
) },
1179 { "m25px64", INFO(0x207117, 0, 64 * 1024, 128, 0) },
1180 { "m25px80", INFO(0x207114, 0, 64 * 1024, 16, 0) },
1182 /* Winbond -- w25x "blocks" are 64K, "sectors" are 4KiB */
1183 { "w25x05", INFO(0xef3010, 0, 64 * 1024, 1, SECT_4K
) },
1184 { "w25x10", INFO(0xef3011, 0, 64 * 1024, 2, SECT_4K
) },
1185 { "w25x20", INFO(0xef3012, 0, 64 * 1024, 4, SECT_4K
) },
1186 { "w25x40", INFO(0xef3013, 0, 64 * 1024, 8, SECT_4K
) },
1187 { "w25x80", INFO(0xef3014, 0, 64 * 1024, 16, SECT_4K
) },
1188 { "w25x16", INFO(0xef3015, 0, 64 * 1024, 32, SECT_4K
) },
1190 "w25q16dw", INFO(0xef6015, 0, 64 * 1024, 32,
1191 SECT_4K
| SPI_NOR_DUAL_READ
| SPI_NOR_QUAD_READ
|
1192 SPI_NOR_HAS_LOCK
| SPI_NOR_HAS_TB
)
1194 { "w25x32", INFO(0xef3016, 0, 64 * 1024, 64, SECT_4K
) },
1195 { "w25q20cl", INFO(0xef4012, 0, 64 * 1024, 4, SECT_4K
) },
1196 { "w25q20bw", INFO(0xef5012, 0, 64 * 1024, 4, SECT_4K
) },
1197 { "w25q20ew", INFO(0xef6012, 0, 64 * 1024, 4, SECT_4K
) },
1198 { "w25q32", INFO(0xef4016, 0, 64 * 1024, 64, SECT_4K
) },
1200 "w25q32dw", INFO(0xef6016, 0, 64 * 1024, 64,
1201 SECT_4K
| SPI_NOR_DUAL_READ
| SPI_NOR_QUAD_READ
|
1202 SPI_NOR_HAS_LOCK
| SPI_NOR_HAS_TB
)
1204 { "w25x64", INFO(0xef3017, 0, 64 * 1024, 128, SECT_4K
) },
1205 { "w25q64", INFO(0xef4017, 0, 64 * 1024, 128, SECT_4K
) },
1207 "w25q64dw", INFO(0xef6017, 0, 64 * 1024, 128,
1208 SECT_4K
| SPI_NOR_DUAL_READ
| SPI_NOR_QUAD_READ
|
1209 SPI_NOR_HAS_LOCK
| SPI_NOR_HAS_TB
)
1212 "w25q128fw", INFO(0xef6018, 0, 64 * 1024, 256,
1213 SECT_4K
| SPI_NOR_DUAL_READ
| SPI_NOR_QUAD_READ
|
1214 SPI_NOR_HAS_LOCK
| SPI_NOR_HAS_TB
)
1216 { "w25q80", INFO(0xef5014, 0, 64 * 1024, 16, SECT_4K
) },
1217 { "w25q80bl", INFO(0xef4014, 0, 64 * 1024, 16, SECT_4K
) },
1218 { "w25q128", INFO(0xef4018, 0, 64 * 1024, 256, SECT_4K
) },
1219 { "w25q256", INFO(0xef4019, 0, 64 * 1024, 512, SECT_4K
| SPI_NOR_DUAL_READ
| SPI_NOR_QUAD_READ
) },
1220 { "w25m512jv", INFO(0xef7119, 0, 64 * 1024, 1024,
1221 SECT_4K
| SPI_NOR_QUAD_READ
| SPI_NOR_DUAL_READ
) },
1223 /* Catalyst / On Semiconductor -- non-JEDEC */
1224 { "cat25c11", CAT25_INFO( 16, 8, 16, 1, SPI_NOR_NO_ERASE
| SPI_NOR_NO_FR
) },
1225 { "cat25c03", CAT25_INFO( 32, 8, 16, 2, SPI_NOR_NO_ERASE
| SPI_NOR_NO_FR
) },
1226 { "cat25c09", CAT25_INFO( 128, 8, 32, 2, SPI_NOR_NO_ERASE
| SPI_NOR_NO_FR
) },
1227 { "cat25c17", CAT25_INFO( 256, 8, 32, 2, SPI_NOR_NO_ERASE
| SPI_NOR_NO_FR
) },
1228 { "cat25128", CAT25_INFO(2048, 8, 64, 2, SPI_NOR_NO_ERASE
| SPI_NOR_NO_FR
) },
1230 /* Xilinx S3AN Internal Flash */
1231 { "3S50AN", S3AN_INFO(0x1f2200, 64, 264) },
1232 { "3S200AN", S3AN_INFO(0x1f2400, 256, 264) },
1233 { "3S400AN", S3AN_INFO(0x1f2400, 256, 264) },
1234 { "3S700AN", S3AN_INFO(0x1f2500, 512, 264) },
1235 { "3S1400AN", S3AN_INFO(0x1f2600, 512, 528) },
1239 static const struct flash_info
*spi_nor_read_id(struct spi_nor
*nor
)
1242 u8 id
[SPI_NOR_MAX_ID_LEN
];
1243 const struct flash_info
*info
;
1245 tmp
= nor
->read_reg(nor
, SPINOR_OP_RDID
, id
, SPI_NOR_MAX_ID_LEN
);
1247 dev_dbg(nor
->dev
, "error %d reading JEDEC ID\n", tmp
);
1248 return ERR_PTR(tmp
);
1251 for (tmp
= 0; tmp
< ARRAY_SIZE(spi_nor_ids
) - 1; tmp
++) {
1252 info
= &spi_nor_ids
[tmp
];
1254 if (!memcmp(info
->id
, id
, info
->id_len
))
1255 return &spi_nor_ids
[tmp
];
1258 dev_err(nor
->dev
, "unrecognized JEDEC id bytes: %02x, %02x, %02x\n",
1259 id
[0], id
[1], id
[2]);
1260 return ERR_PTR(-ENODEV
);
1263 static int spi_nor_read(struct mtd_info
*mtd
, loff_t from
, size_t len
,
1264 size_t *retlen
, u_char
*buf
)
1266 struct spi_nor
*nor
= mtd_to_spi_nor(mtd
);
1269 dev_dbg(nor
->dev
, "from 0x%08x, len %zd\n", (u32
)from
, len
);
1271 ret
= spi_nor_lock_and_prep(nor
, SPI_NOR_OPS_READ
);
1278 if (nor
->flags
& SNOR_F_S3AN_ADDR_DEFAULT
)
1279 addr
= spi_nor_s3an_addr_convert(nor
, addr
);
1281 ret
= nor
->read(nor
, addr
, len
, buf
);
1283 /* We shouldn't see 0-length reads */
1299 spi_nor_unlock_and_unprep(nor
, SPI_NOR_OPS_READ
);
1303 static int sst_write(struct mtd_info
*mtd
, loff_t to
, size_t len
,
1304 size_t *retlen
, const u_char
*buf
)
1306 struct spi_nor
*nor
= mtd_to_spi_nor(mtd
);
1310 dev_dbg(nor
->dev
, "to 0x%08x, len %zd\n", (u32
)to
, len
);
1312 ret
= spi_nor_lock_and_prep(nor
, SPI_NOR_OPS_WRITE
);
1318 nor
->sst_write_second
= false;
1321 /* Start write from odd address. */
1323 nor
->program_opcode
= SPINOR_OP_BP
;
1325 /* write one byte. */
1326 ret
= nor
->write(nor
, to
, 1, buf
);
1329 WARN(ret
!= 1, "While writing 1 byte written %i bytes\n",
1331 ret
= spi_nor_wait_till_ready(nor
);
1337 /* Write out most of the data here. */
1338 for (; actual
< len
- 1; actual
+= 2) {
1339 nor
->program_opcode
= SPINOR_OP_AAI_WP
;
1341 /* write two bytes. */
1342 ret
= nor
->write(nor
, to
, 2, buf
+ actual
);
1345 WARN(ret
!= 2, "While writing 2 bytes written %i bytes\n",
1347 ret
= spi_nor_wait_till_ready(nor
);
1351 nor
->sst_write_second
= true;
1353 nor
->sst_write_second
= false;
1356 ret
= spi_nor_wait_till_ready(nor
);
1360 /* Write out trailing byte if it exists. */
1361 if (actual
!= len
) {
1364 nor
->program_opcode
= SPINOR_OP_BP
;
1365 ret
= nor
->write(nor
, to
, 1, buf
+ actual
);
1368 WARN(ret
!= 1, "While writing 1 byte written %i bytes\n",
1370 ret
= spi_nor_wait_till_ready(nor
);
1378 spi_nor_unlock_and_unprep(nor
, SPI_NOR_OPS_WRITE
);
1383 * Write an address range to the nor chip. Data must be written in
1384 * FLASH_PAGESIZE chunks. The address range may be any size provided
1385 * it is within the physical boundaries.
1387 static int spi_nor_write(struct mtd_info
*mtd
, loff_t to
, size_t len
,
1388 size_t *retlen
, const u_char
*buf
)
1390 struct spi_nor
*nor
= mtd_to_spi_nor(mtd
);
1391 size_t page_offset
, page_remain
, i
;
1394 dev_dbg(nor
->dev
, "to 0x%08x, len %zd\n", (u32
)to
, len
);
1396 ret
= spi_nor_lock_and_prep(nor
, SPI_NOR_OPS_WRITE
);
1400 for (i
= 0; i
< len
; ) {
1402 loff_t addr
= to
+ i
;
1405 * If page_size is a power of two, the offset can be quickly
1406 * calculated with an AND operation. On the other cases we
1407 * need to do a modulus operation (more expensive).
1408 * Power of two numbers have only one bit set and we can use
1409 * the instruction hweight32 to detect if we need to do a
1410 * modulus (do_div()) or not.
1412 if (hweight32(nor
->page_size
) == 1) {
1413 page_offset
= addr
& (nor
->page_size
- 1);
1415 uint64_t aux
= addr
;
1417 page_offset
= do_div(aux
, nor
->page_size
);
1419 /* the size of data remaining on the first page */
1420 page_remain
= min_t(size_t,
1421 nor
->page_size
- page_offset
, len
- i
);
1423 if (nor
->flags
& SNOR_F_S3AN_ADDR_DEFAULT
)
1424 addr
= spi_nor_s3an_addr_convert(nor
, addr
);
1427 ret
= nor
->write(nor
, addr
, page_remain
, buf
+ i
);
1432 ret
= spi_nor_wait_till_ready(nor
);
1437 if (written
!= page_remain
) {
1439 "While writing %zu bytes written %zd bytes\n",
1440 page_remain
, written
);
1447 spi_nor_unlock_and_unprep(nor
, SPI_NOR_OPS_WRITE
);
1452 * macronix_quad_enable() - set QE bit in Status Register.
1453 * @nor: pointer to a 'struct spi_nor'
1455 * Set the Quad Enable (QE) bit in the Status Register.
1457 * bit 6 of the Status Register is the QE bit for Macronix like QSPI memories.
1459 * Return: 0 on success, -errno otherwise.
1461 static int macronix_quad_enable(struct spi_nor
*nor
)
1468 if (val
& SR_QUAD_EN_MX
)
1473 write_sr(nor
, val
| SR_QUAD_EN_MX
);
1475 ret
= spi_nor_wait_till_ready(nor
);
1480 if (!(ret
> 0 && (ret
& SR_QUAD_EN_MX
))) {
1481 dev_err(nor
->dev
, "Macronix Quad bit not set\n");
1489 * Write status Register and configuration register with 2 bytes
1490 * The first byte will be written to the status register, while the
1491 * second byte will be written to the configuration register.
1492 * Return negative if error occurred.
1494 static int write_sr_cr(struct spi_nor
*nor
, u8
*sr_cr
)
1500 ret
= nor
->write_reg(nor
, SPINOR_OP_WRSR
, sr_cr
, 2);
1503 "error while writing configuration register\n");
1507 ret
= spi_nor_wait_till_ready(nor
);
1510 "timeout while writing configuration register\n");
1518 * spansion_quad_enable() - set QE bit in Configuraiton Register.
1519 * @nor: pointer to a 'struct spi_nor'
1521 * Set the Quad Enable (QE) bit in the Configuration Register.
1522 * This function is kept for legacy purpose because it has been used for a
1523 * long time without anybody complaining but it should be considered as
1524 * deprecated and maybe buggy.
1525 * First, this function doesn't care about the previous values of the Status
1526 * and Configuration Registers when it sets the QE bit (bit 1) in the
1527 * Configuration Register: all other bits are cleared, which may have unwanted
1528 * side effects like removing some block protections.
1529 * Secondly, it uses the Read Configuration Register (35h) instruction though
1530 * some very old and few memories don't support this instruction. If a pull-up
1531 * resistor is present on the MISO/IO1 line, we might still be able to pass the
1532 * "read back" test because the QSPI memory doesn't recognize the command,
1533 * so leaves the MISO/IO1 line state unchanged, hence read_cr() returns 0xFF.
1535 * bit 1 of the Configuration Register is the QE bit for Spansion like QSPI
1538 * Return: 0 on success, -errno otherwise.
1540 static int spansion_quad_enable(struct spi_nor
*nor
)
1542 u8 sr_cr
[2] = {0, CR_QUAD_EN_SPAN
};
1545 ret
= write_sr_cr(nor
, sr_cr
);
1549 /* read back and check it */
1551 if (!(ret
> 0 && (ret
& CR_QUAD_EN_SPAN
))) {
1552 dev_err(nor
->dev
, "Spansion Quad bit not set\n");
1560 * spansion_no_read_cr_quad_enable() - set QE bit in Configuration Register.
1561 * @nor: pointer to a 'struct spi_nor'
1563 * Set the Quad Enable (QE) bit in the Configuration Register.
1564 * This function should be used with QSPI memories not supporting the Read
1565 * Configuration Register (35h) instruction.
1567 * bit 1 of the Configuration Register is the QE bit for Spansion like QSPI
1570 * Return: 0 on success, -errno otherwise.
1572 static int spansion_no_read_cr_quad_enable(struct spi_nor
*nor
)
1577 /* Keep the current value of the Status Register. */
1580 dev_err(nor
->dev
, "error while reading status register\n");
1584 sr_cr
[1] = CR_QUAD_EN_SPAN
;
1586 return write_sr_cr(nor
, sr_cr
);
1590 * spansion_read_cr_quad_enable() - set QE bit in Configuration Register.
1591 * @nor: pointer to a 'struct spi_nor'
1593 * Set the Quad Enable (QE) bit in the Configuration Register.
1594 * This function should be used with QSPI memories supporting the Read
1595 * Configuration Register (35h) instruction.
1597 * bit 1 of the Configuration Register is the QE bit for Spansion like QSPI
1600 * Return: 0 on success, -errno otherwise.
1602 static int spansion_read_cr_quad_enable(struct spi_nor
*nor
)
1604 struct device
*dev
= nor
->dev
;
1608 /* Check current Quad Enable bit value. */
1611 dev_err(dev
, "error while reading configuration register\n");
1615 if (ret
& CR_QUAD_EN_SPAN
)
1618 sr_cr
[1] = ret
| CR_QUAD_EN_SPAN
;
1620 /* Keep the current value of the Status Register. */
1623 dev_err(dev
, "error while reading status register\n");
1628 ret
= write_sr_cr(nor
, sr_cr
);
1632 /* Read back and check it. */
1634 if (!(ret
> 0 && (ret
& CR_QUAD_EN_SPAN
))) {
1635 dev_err(nor
->dev
, "Spansion Quad bit not set\n");
1643 * sr2_bit7_quad_enable() - set QE bit in Status Register 2.
1644 * @nor: pointer to a 'struct spi_nor'
1646 * Set the Quad Enable (QE) bit in the Status Register 2.
1648 * This is one of the procedures to set the QE bit described in the SFDP
1649 * (JESD216 rev B) specification but no manufacturer using this procedure has
1650 * been identified yet, hence the name of the function.
1652 * Return: 0 on success, -errno otherwise.
1654 static int sr2_bit7_quad_enable(struct spi_nor
*nor
)
1659 /* Check current Quad Enable bit value. */
1660 ret
= nor
->read_reg(nor
, SPINOR_OP_RDSR2
, &sr2
, 1);
1663 if (sr2
& SR2_QUAD_EN_BIT7
)
1666 /* Update the Quad Enable bit. */
1667 sr2
|= SR2_QUAD_EN_BIT7
;
1671 ret
= nor
->write_reg(nor
, SPINOR_OP_WRSR2
, &sr2
, 1);
1673 dev_err(nor
->dev
, "error while writing status register 2\n");
1677 ret
= spi_nor_wait_till_ready(nor
);
1679 dev_err(nor
->dev
, "timeout while writing status register 2\n");
1683 /* Read back and check it. */
1684 ret
= nor
->read_reg(nor
, SPINOR_OP_RDSR2
, &sr2
, 1);
1685 if (!(ret
> 0 && (sr2
& SR2_QUAD_EN_BIT7
))) {
1686 dev_err(nor
->dev
, "SR2 Quad bit not set\n");
1693 static int spi_nor_check(struct spi_nor
*nor
)
1695 if (!nor
->dev
|| !nor
->read
|| !nor
->write
||
1696 !nor
->read_reg
|| !nor
->write_reg
) {
1697 pr_err("spi-nor: please fill all the necessary fields!\n");
1704 static int s3an_nor_scan(const struct flash_info
*info
, struct spi_nor
*nor
)
1709 ret
= nor
->read_reg(nor
, SPINOR_OP_XRDSR
, &val
, 1);
1711 dev_err(nor
->dev
, "error %d reading XRDSR\n", (int) ret
);
1715 nor
->erase_opcode
= SPINOR_OP_XSE
;
1716 nor
->program_opcode
= SPINOR_OP_XPP
;
1717 nor
->read_opcode
= SPINOR_OP_READ
;
1718 nor
->flags
|= SNOR_F_NO_OP_CHIP_ERASE
;
1721 * This flashes have a page size of 264 or 528 bytes (known as
1722 * Default addressing mode). It can be changed to a more standard
1723 * Power of two mode where the page size is 256/512. This comes
1724 * with a price: there is 3% less of space, the data is corrupted
1725 * and the page size cannot be changed back to default addressing
1728 * The current addressing mode can be read from the XRDSR register
1729 * and should not be changed, because is a destructive operation.
1731 if (val
& XSR_PAGESIZE
) {
1732 /* Flash in Power of 2 mode */
1733 nor
->page_size
= (nor
->page_size
== 264) ? 256 : 512;
1734 nor
->mtd
.writebufsize
= nor
->page_size
;
1735 nor
->mtd
.size
= 8 * nor
->page_size
* info
->n_sectors
;
1736 nor
->mtd
.erasesize
= 8 * nor
->page_size
;
1738 /* Flash in Default addressing mode */
1739 nor
->flags
|= SNOR_F_S3AN_ADDR_DEFAULT
;
1745 struct spi_nor_read_command
{
1749 enum spi_nor_protocol proto
;
1752 struct spi_nor_pp_command
{
1754 enum spi_nor_protocol proto
;
1757 enum spi_nor_read_command_index
{
1760 SNOR_CMD_READ_1_1_1_DTR
,
1763 SNOR_CMD_READ_1_1_2
,
1764 SNOR_CMD_READ_1_2_2
,
1765 SNOR_CMD_READ_2_2_2
,
1766 SNOR_CMD_READ_1_2_2_DTR
,
1769 SNOR_CMD_READ_1_1_4
,
1770 SNOR_CMD_READ_1_4_4
,
1771 SNOR_CMD_READ_4_4_4
,
1772 SNOR_CMD_READ_1_4_4_DTR
,
1775 SNOR_CMD_READ_1_1_8
,
1776 SNOR_CMD_READ_1_8_8
,
1777 SNOR_CMD_READ_8_8_8
,
1778 SNOR_CMD_READ_1_8_8_DTR
,
1783 enum spi_nor_pp_command_index
{
1799 struct spi_nor_flash_parameter
{
1803 struct spi_nor_hwcaps hwcaps
;
1804 struct spi_nor_read_command reads
[SNOR_CMD_READ_MAX
];
1805 struct spi_nor_pp_command page_programs
[SNOR_CMD_PP_MAX
];
1807 int (*quad_enable
)(struct spi_nor
*nor
);
1811 spi_nor_set_read_settings(struct spi_nor_read_command
*read
,
1815 enum spi_nor_protocol proto
)
1817 read
->num_mode_clocks
= num_mode_clocks
;
1818 read
->num_wait_states
= num_wait_states
;
1819 read
->opcode
= opcode
;
1820 read
->proto
= proto
;
1824 spi_nor_set_pp_settings(struct spi_nor_pp_command
*pp
,
1826 enum spi_nor_protocol proto
)
1828 pp
->opcode
= opcode
;
1833 * Serial Flash Discoverable Parameters (SFDP) parsing.
1837 * spi_nor_read_sfdp() - read Serial Flash Discoverable Parameters.
1838 * @nor: pointer to a 'struct spi_nor'
1839 * @addr: offset in the SFDP area to start reading data from
1840 * @len: number of bytes to read
1841 * @buf: buffer where the SFDP data are copied into (dma-safe memory)
1843 * Whatever the actual numbers of bytes for address and dummy cycles are
1844 * for (Fast) Read commands, the Read SFDP (5Ah) instruction is always
1845 * followed by a 3-byte address and 8 dummy clock cycles.
1847 * Return: 0 on success, -errno otherwise.
1849 static int spi_nor_read_sfdp(struct spi_nor
*nor
, u32 addr
,
1850 size_t len
, void *buf
)
1852 u8 addr_width
, read_opcode
, read_dummy
;
1855 read_opcode
= nor
->read_opcode
;
1856 addr_width
= nor
->addr_width
;
1857 read_dummy
= nor
->read_dummy
;
1859 nor
->read_opcode
= SPINOR_OP_RDSFDP
;
1860 nor
->addr_width
= 3;
1861 nor
->read_dummy
= 8;
1864 ret
= nor
->read(nor
, addr
, len
, (u8
*)buf
);
1865 if (!ret
|| ret
> len
) {
1879 nor
->read_opcode
= read_opcode
;
1880 nor
->addr_width
= addr_width
;
1881 nor
->read_dummy
= read_dummy
;
1887 * spi_nor_read_sfdp_dma_unsafe() - read Serial Flash Discoverable Parameters.
1888 * @nor: pointer to a 'struct spi_nor'
1889 * @addr: offset in the SFDP area to start reading data from
1890 * @len: number of bytes to read
1891 * @buf: buffer where the SFDP data are copied into
1893 * Wrap spi_nor_read_sfdp() using a kmalloc'ed bounce buffer as @buf is now not
1894 * guaranteed to be dma-safe.
1896 * Return: -ENOMEM if kmalloc() fails, the return code of spi_nor_read_sfdp()
1899 static int spi_nor_read_sfdp_dma_unsafe(struct spi_nor
*nor
, u32 addr
,
1900 size_t len
, void *buf
)
1905 dma_safe_buf
= kmalloc(len
, GFP_KERNEL
);
1909 ret
= spi_nor_read_sfdp(nor
, addr
, len
, dma_safe_buf
);
1910 memcpy(buf
, dma_safe_buf
, len
);
1911 kfree(dma_safe_buf
);
1916 struct sfdp_parameter_header
{
1920 u8 length
; /* in double words */
1921 u8 parameter_table_pointer
[3]; /* byte address */
1925 #define SFDP_PARAM_HEADER_ID(p) (((p)->id_msb << 8) | (p)->id_lsb)
1926 #define SFDP_PARAM_HEADER_PTP(p) \
1927 (((p)->parameter_table_pointer[2] << 16) | \
1928 ((p)->parameter_table_pointer[1] << 8) | \
1929 ((p)->parameter_table_pointer[0] << 0))
1931 #define SFDP_BFPT_ID 0xff00 /* Basic Flash Parameter Table */
1932 #define SFDP_SECTOR_MAP_ID 0xff81 /* Sector Map Table */
1934 #define SFDP_SIGNATURE 0x50444653U
1935 #define SFDP_JESD216_MAJOR 1
1936 #define SFDP_JESD216_MINOR 0
1937 #define SFDP_JESD216A_MINOR 5
1938 #define SFDP_JESD216B_MINOR 6
1940 struct sfdp_header
{
1941 u32 signature
; /* Ox50444653U <=> "SFDP" */
1944 u8 nph
; /* 0-base number of parameter headers */
1947 /* Basic Flash Parameter Table. */
1948 struct sfdp_parameter_header bfpt_header
;
1951 /* Basic Flash Parameter Table */
1954 * JESD216 rev B defines a Basic Flash Parameter Table of 16 DWORDs.
1955 * They are indexed from 1 but C arrays are indexed from 0.
1957 #define BFPT_DWORD(i) ((i) - 1)
1958 #define BFPT_DWORD_MAX 16
1960 /* The first version of JESB216 defined only 9 DWORDs. */
1961 #define BFPT_DWORD_MAX_JESD216 9
1964 #define BFPT_DWORD1_FAST_READ_1_1_2 BIT(16)
1965 #define BFPT_DWORD1_ADDRESS_BYTES_MASK GENMASK(18, 17)
1966 #define BFPT_DWORD1_ADDRESS_BYTES_3_ONLY (0x0UL << 17)
1967 #define BFPT_DWORD1_ADDRESS_BYTES_3_OR_4 (0x1UL << 17)
1968 #define BFPT_DWORD1_ADDRESS_BYTES_4_ONLY (0x2UL << 17)
1969 #define BFPT_DWORD1_DTR BIT(19)
1970 #define BFPT_DWORD1_FAST_READ_1_2_2 BIT(20)
1971 #define BFPT_DWORD1_FAST_READ_1_4_4 BIT(21)
1972 #define BFPT_DWORD1_FAST_READ_1_1_4 BIT(22)
1975 #define BFPT_DWORD5_FAST_READ_2_2_2 BIT(0)
1976 #define BFPT_DWORD5_FAST_READ_4_4_4 BIT(4)
1979 #define BFPT_DWORD11_PAGE_SIZE_SHIFT 4
1980 #define BFPT_DWORD11_PAGE_SIZE_MASK GENMASK(7, 4)
1985 * (from JESD216 rev B)
1986 * Quad Enable Requirements (QER):
1987 * - 000b: Device does not have a QE bit. Device detects 1-1-4 and 1-4-4
1988 * reads based on instruction. DQ3/HOLD# functions are hold during
1989 * instruction phase.
1990 * - 001b: QE is bit 1 of status register 2. It is set via Write Status with
1991 * two data bytes where bit 1 of the second byte is one.
1993 * Writing only one byte to the status register has the side-effect of
1994 * clearing status register 2, including the QE bit. The 100b code is
1995 * used if writing one byte to the status register does not modify
1996 * status register 2.
1997 * - 010b: QE is bit 6 of status register 1. It is set via Write Status with
1998 * one data byte where bit 6 is one.
2000 * - 011b: QE is bit 7 of status register 2. It is set via Write status
2001 * register 2 instruction 3Eh with one data byte where bit 7 is one.
2003 * The status register 2 is read using instruction 3Fh.
2004 * - 100b: QE is bit 1 of status register 2. It is set via Write Status with
2005 * two data bytes where bit 1 of the second byte is one.
2007 * In contrast to the 001b code, writing one byte to the status
2008 * register does not modify status register 2.
2009 * - 101b: QE is bit 1 of status register 2. Status register 1 is read using
2010 * Read Status instruction 05h. Status register2 is read using
2011 * instruction 35h. QE is set via Writ Status instruction 01h with
2012 * two data bytes where bit 1 of the second byte is one.
2015 #define BFPT_DWORD15_QER_MASK GENMASK(22, 20)
2016 #define BFPT_DWORD15_QER_NONE (0x0UL << 20) /* Micron */
2017 #define BFPT_DWORD15_QER_SR2_BIT1_BUGGY (0x1UL << 20)
2018 #define BFPT_DWORD15_QER_SR1_BIT6 (0x2UL << 20) /* Macronix */
2019 #define BFPT_DWORD15_QER_SR2_BIT7 (0x3UL << 20)
2020 #define BFPT_DWORD15_QER_SR2_BIT1_NO_RD (0x4UL << 20)
2021 #define BFPT_DWORD15_QER_SR2_BIT1 (0x5UL << 20) /* Spansion */
2024 u32 dwords
[BFPT_DWORD_MAX
];
2027 /* Fast Read settings. */
2030 spi_nor_set_read_settings_from_bfpt(struct spi_nor_read_command
*read
,
2032 enum spi_nor_protocol proto
)
2034 read
->num_mode_clocks
= (half
>> 5) & 0x07;
2035 read
->num_wait_states
= (half
>> 0) & 0x1f;
2036 read
->opcode
= (half
>> 8) & 0xff;
2037 read
->proto
= proto
;
2040 struct sfdp_bfpt_read
{
2041 /* The Fast Read x-y-z hardware capability in params->hwcaps.mask. */
2045 * The <supported_bit> bit in <supported_dword> BFPT DWORD tells us
2046 * whether the Fast Read x-y-z command is supported.
2048 u32 supported_dword
;
2052 * The half-word at offset <setting_shift> in <setting_dword> BFPT DWORD
2053 * encodes the op code, the number of mode clocks and the number of wait
2054 * states to be used by Fast Read x-y-z command.
2059 /* The SPI protocol for this Fast Read x-y-z command. */
2060 enum spi_nor_protocol proto
;
2063 static const struct sfdp_bfpt_read sfdp_bfpt_reads
[] = {
2064 /* Fast Read 1-1-2 */
2066 SNOR_HWCAPS_READ_1_1_2
,
2067 BFPT_DWORD(1), BIT(16), /* Supported bit */
2068 BFPT_DWORD(4), 0, /* Settings */
2072 /* Fast Read 1-2-2 */
2074 SNOR_HWCAPS_READ_1_2_2
,
2075 BFPT_DWORD(1), BIT(20), /* Supported bit */
2076 BFPT_DWORD(4), 16, /* Settings */
2080 /* Fast Read 2-2-2 */
2082 SNOR_HWCAPS_READ_2_2_2
,
2083 BFPT_DWORD(5), BIT(0), /* Supported bit */
2084 BFPT_DWORD(6), 16, /* Settings */
2088 /* Fast Read 1-1-4 */
2090 SNOR_HWCAPS_READ_1_1_4
,
2091 BFPT_DWORD(1), BIT(22), /* Supported bit */
2092 BFPT_DWORD(3), 16, /* Settings */
2096 /* Fast Read 1-4-4 */
2098 SNOR_HWCAPS_READ_1_4_4
,
2099 BFPT_DWORD(1), BIT(21), /* Supported bit */
2100 BFPT_DWORD(3), 0, /* Settings */
2104 /* Fast Read 4-4-4 */
2106 SNOR_HWCAPS_READ_4_4_4
,
2107 BFPT_DWORD(5), BIT(4), /* Supported bit */
2108 BFPT_DWORD(7), 16, /* Settings */
2113 struct sfdp_bfpt_erase
{
2115 * The half-word at offset <shift> in DWORD <dwoard> encodes the
2116 * op code and erase sector size to be used by Sector Erase commands.
2122 static const struct sfdp_bfpt_erase sfdp_bfpt_erases
[] = {
2123 /* Erase Type 1 in DWORD8 bits[15:0] */
2126 /* Erase Type 2 in DWORD8 bits[31:16] */
2127 {BFPT_DWORD(8), 16},
2129 /* Erase Type 3 in DWORD9 bits[15:0] */
2132 /* Erase Type 4 in DWORD9 bits[31:16] */
2133 {BFPT_DWORD(9), 16},
2136 static int spi_nor_hwcaps_read2cmd(u32 hwcaps
);
2139 * spi_nor_parse_bfpt() - read and parse the Basic Flash Parameter Table.
2140 * @nor: pointer to a 'struct spi_nor'
2141 * @bfpt_header: pointer to the 'struct sfdp_parameter_header' describing
2142 * the Basic Flash Parameter Table length and version
2143 * @params: pointer to the 'struct spi_nor_flash_parameter' to be
2146 * The Basic Flash Parameter Table is the main and only mandatory table as
2147 * defined by the SFDP (JESD216) specification.
2148 * It provides us with the total size (memory density) of the data array and
2149 * the number of address bytes for Fast Read, Page Program and Sector Erase
2151 * For Fast READ commands, it also gives the number of mode clock cycles and
2152 * wait states (regrouped in the number of dummy clock cycles) for each
2153 * supported instruction op code.
2154 * For Page Program, the page size is now available since JESD216 rev A, however
2155 * the supported instruction op codes are still not provided.
2156 * For Sector Erase commands, this table stores the supported instruction op
2157 * codes and the associated sector sizes.
2158 * Finally, the Quad Enable Requirements (QER) are also available since JESD216
2159 * rev A. The QER bits encode the manufacturer dependent procedure to be
2160 * executed to set the Quad Enable (QE) bit in some internal register of the
2161 * Quad SPI memory. Indeed the QE bit, when it exists, must be set before
2162 * sending any Quad SPI command to the memory. Actually, setting the QE bit
2163 * tells the memory to reassign its WP# and HOLD#/RESET# pins to functions IO2
2164 * and IO3 hence enabling 4 (Quad) I/O lines.
2166 * Return: 0 on success, -errno otherwise.
2168 static int spi_nor_parse_bfpt(struct spi_nor
*nor
,
2169 const struct sfdp_parameter_header
*bfpt_header
,
2170 struct spi_nor_flash_parameter
*params
)
2172 struct mtd_info
*mtd
= &nor
->mtd
;
2173 struct sfdp_bfpt bfpt
;
2179 /* JESD216 Basic Flash Parameter Table length is at least 9 DWORDs. */
2180 if (bfpt_header
->length
< BFPT_DWORD_MAX_JESD216
)
2183 /* Read the Basic Flash Parameter Table. */
2184 len
= min_t(size_t, sizeof(bfpt
),
2185 bfpt_header
->length
* sizeof(u32
));
2186 addr
= SFDP_PARAM_HEADER_PTP(bfpt_header
);
2187 memset(&bfpt
, 0, sizeof(bfpt
));
2188 err
= spi_nor_read_sfdp_dma_unsafe(nor
, addr
, len
, &bfpt
);
2192 /* Fix endianness of the BFPT DWORDs. */
2193 for (i
= 0; i
< BFPT_DWORD_MAX
; i
++)
2194 bfpt
.dwords
[i
] = le32_to_cpu(bfpt
.dwords
[i
]);
2196 /* Number of address bytes. */
2197 switch (bfpt
.dwords
[BFPT_DWORD(1)] & BFPT_DWORD1_ADDRESS_BYTES_MASK
) {
2198 case BFPT_DWORD1_ADDRESS_BYTES_3_ONLY
:
2199 nor
->addr_width
= 3;
2202 case BFPT_DWORD1_ADDRESS_BYTES_4_ONLY
:
2203 nor
->addr_width
= 4;
2210 /* Flash Memory Density (in bits). */
2211 params
->size
= bfpt
.dwords
[BFPT_DWORD(2)];
2212 if (params
->size
& BIT(31)) {
2213 params
->size
&= ~BIT(31);
2216 * Prevent overflows on params->size. Anyway, a NOR of 2^64
2217 * bits is unlikely to exist so this error probably means
2218 * the BFPT we are reading is corrupted/wrong.
2220 if (params
->size
> 63)
2223 params
->size
= 1ULL << params
->size
;
2227 params
->size
>>= 3; /* Convert to bytes. */
2229 /* Fast Read settings. */
2230 for (i
= 0; i
< ARRAY_SIZE(sfdp_bfpt_reads
); i
++) {
2231 const struct sfdp_bfpt_read
*rd
= &sfdp_bfpt_reads
[i
];
2232 struct spi_nor_read_command
*read
;
2234 if (!(bfpt
.dwords
[rd
->supported_dword
] & rd
->supported_bit
)) {
2235 params
->hwcaps
.mask
&= ~rd
->hwcaps
;
2239 params
->hwcaps
.mask
|= rd
->hwcaps
;
2240 cmd
= spi_nor_hwcaps_read2cmd(rd
->hwcaps
);
2241 read
= ¶ms
->reads
[cmd
];
2242 half
= bfpt
.dwords
[rd
->settings_dword
] >> rd
->settings_shift
;
2243 spi_nor_set_read_settings_from_bfpt(read
, half
, rd
->proto
);
2246 /* Sector Erase settings. */
2247 for (i
= 0; i
< ARRAY_SIZE(sfdp_bfpt_erases
); i
++) {
2248 const struct sfdp_bfpt_erase
*er
= &sfdp_bfpt_erases
[i
];
2252 half
= bfpt
.dwords
[er
->dword
] >> er
->shift
;
2253 erasesize
= half
& 0xff;
2255 /* erasesize == 0 means this Erase Type is not supported. */
2259 erasesize
= 1U << erasesize
;
2260 opcode
= (half
>> 8) & 0xff;
2261 #ifdef CONFIG_MTD_SPI_NOR_USE_4K_SECTORS
2262 if (erasesize
== SZ_4K
) {
2263 nor
->erase_opcode
= opcode
;
2264 mtd
->erasesize
= erasesize
;
2268 if (!mtd
->erasesize
|| mtd
->erasesize
< erasesize
) {
2269 nor
->erase_opcode
= opcode
;
2270 mtd
->erasesize
= erasesize
;
2274 /* Stop here if not JESD216 rev A or later. */
2275 if (bfpt_header
->length
< BFPT_DWORD_MAX
)
2278 /* Page size: this field specifies 'N' so the page size = 2^N bytes. */
2279 params
->page_size
= bfpt
.dwords
[BFPT_DWORD(11)];
2280 params
->page_size
&= BFPT_DWORD11_PAGE_SIZE_MASK
;
2281 params
->page_size
>>= BFPT_DWORD11_PAGE_SIZE_SHIFT
;
2282 params
->page_size
= 1U << params
->page_size
;
2284 /* Quad Enable Requirements. */
2285 switch (bfpt
.dwords
[BFPT_DWORD(15)] & BFPT_DWORD15_QER_MASK
) {
2286 case BFPT_DWORD15_QER_NONE
:
2287 params
->quad_enable
= NULL
;
2290 case BFPT_DWORD15_QER_SR2_BIT1_BUGGY
:
2291 case BFPT_DWORD15_QER_SR2_BIT1_NO_RD
:
2292 params
->quad_enable
= spansion_no_read_cr_quad_enable
;
2295 case BFPT_DWORD15_QER_SR1_BIT6
:
2296 params
->quad_enable
= macronix_quad_enable
;
2299 case BFPT_DWORD15_QER_SR2_BIT7
:
2300 params
->quad_enable
= sr2_bit7_quad_enable
;
2303 case BFPT_DWORD15_QER_SR2_BIT1
:
2304 params
->quad_enable
= spansion_read_cr_quad_enable
;
2315 * spi_nor_parse_sfdp() - parse the Serial Flash Discoverable Parameters.
2316 * @nor: pointer to a 'struct spi_nor'
2317 * @params: pointer to the 'struct spi_nor_flash_parameter' to be
2320 * The Serial Flash Discoverable Parameters are described by the JEDEC JESD216
2321 * specification. This is a standard which tends to supported by almost all
2322 * (Q)SPI memory manufacturers. Those hard-coded tables allow us to learn at
2323 * runtime the main parameters needed to perform basic SPI flash operations such
2324 * as Fast Read, Page Program or Sector Erase commands.
2326 * Return: 0 on success, -errno otherwise.
2328 static int spi_nor_parse_sfdp(struct spi_nor
*nor
,
2329 struct spi_nor_flash_parameter
*params
)
2331 const struct sfdp_parameter_header
*param_header
, *bfpt_header
;
2332 struct sfdp_parameter_header
*param_headers
= NULL
;
2333 struct sfdp_header header
;
2334 struct device
*dev
= nor
->dev
;
2338 /* Get the SFDP header. */
2339 err
= spi_nor_read_sfdp_dma_unsafe(nor
, 0, sizeof(header
), &header
);
2343 /* Check the SFDP header version. */
2344 if (le32_to_cpu(header
.signature
) != SFDP_SIGNATURE
||
2345 header
.major
!= SFDP_JESD216_MAJOR
)
2349 * Verify that the first and only mandatory parameter header is a
2350 * Basic Flash Parameter Table header as specified in JESD216.
2352 bfpt_header
= &header
.bfpt_header
;
2353 if (SFDP_PARAM_HEADER_ID(bfpt_header
) != SFDP_BFPT_ID
||
2354 bfpt_header
->major
!= SFDP_JESD216_MAJOR
)
2358 * Allocate memory then read all parameter headers with a single
2359 * Read SFDP command. These parameter headers will actually be parsed
2360 * twice: a first time to get the latest revision of the basic flash
2361 * parameter table, then a second time to handle the supported optional
2363 * Hence we read the parameter headers once for all to reduce the
2364 * processing time. Also we use kmalloc() instead of devm_kmalloc()
2365 * because we don't need to keep these parameter headers: the allocated
2366 * memory is always released with kfree() before exiting this function.
2369 psize
= header
.nph
* sizeof(*param_headers
);
2371 param_headers
= kmalloc(psize
, GFP_KERNEL
);
2375 err
= spi_nor_read_sfdp(nor
, sizeof(header
),
2376 psize
, param_headers
);
2378 dev_err(dev
, "failed to read SFDP parameter headers\n");
2384 * Check other parameter headers to get the latest revision of
2385 * the basic flash parameter table.
2387 for (i
= 0; i
< header
.nph
; i
++) {
2388 param_header
= ¶m_headers
[i
];
2390 if (SFDP_PARAM_HEADER_ID(param_header
) == SFDP_BFPT_ID
&&
2391 param_header
->major
== SFDP_JESD216_MAJOR
&&
2392 (param_header
->minor
> bfpt_header
->minor
||
2393 (param_header
->minor
== bfpt_header
->minor
&&
2394 param_header
->length
> bfpt_header
->length
)))
2395 bfpt_header
= param_header
;
2398 err
= spi_nor_parse_bfpt(nor
, bfpt_header
, params
);
2402 /* Parse other parameter headers. */
2403 for (i
= 0; i
< header
.nph
; i
++) {
2404 param_header
= ¶m_headers
[i
];
2406 switch (SFDP_PARAM_HEADER_ID(param_header
)) {
2407 case SFDP_SECTOR_MAP_ID
:
2408 dev_info(dev
, "non-uniform erase sector maps are not supported yet.\n");
2420 kfree(param_headers
);
2424 static int spi_nor_init_params(struct spi_nor
*nor
,
2425 const struct flash_info
*info
,
2426 struct spi_nor_flash_parameter
*params
)
2428 /* Set legacy flash parameters as default. */
2429 memset(params
, 0, sizeof(*params
));
2431 /* Set SPI NOR sizes. */
2432 params
->size
= info
->sector_size
* info
->n_sectors
;
2433 params
->page_size
= info
->page_size
;
2435 /* (Fast) Read settings. */
2436 params
->hwcaps
.mask
|= SNOR_HWCAPS_READ
;
2437 spi_nor_set_read_settings(¶ms
->reads
[SNOR_CMD_READ
],
2438 0, 0, SPINOR_OP_READ
,
2441 if (!(info
->flags
& SPI_NOR_NO_FR
)) {
2442 params
->hwcaps
.mask
|= SNOR_HWCAPS_READ_FAST
;
2443 spi_nor_set_read_settings(¶ms
->reads
[SNOR_CMD_READ_FAST
],
2444 0, 8, SPINOR_OP_READ_FAST
,
2448 if (info
->flags
& SPI_NOR_DUAL_READ
) {
2449 params
->hwcaps
.mask
|= SNOR_HWCAPS_READ_1_1_2
;
2450 spi_nor_set_read_settings(¶ms
->reads
[SNOR_CMD_READ_1_1_2
],
2451 0, 8, SPINOR_OP_READ_1_1_2
,
2455 if (info
->flags
& SPI_NOR_QUAD_READ
) {
2456 params
->hwcaps
.mask
|= SNOR_HWCAPS_READ_1_1_4
;
2457 spi_nor_set_read_settings(¶ms
->reads
[SNOR_CMD_READ_1_1_4
],
2458 0, 8, SPINOR_OP_READ_1_1_4
,
2462 /* Page Program settings. */
2463 params
->hwcaps
.mask
|= SNOR_HWCAPS_PP
;
2464 spi_nor_set_pp_settings(¶ms
->page_programs
[SNOR_CMD_PP
],
2465 SPINOR_OP_PP
, SNOR_PROTO_1_1_1
);
2467 /* Select the procedure to set the Quad Enable bit. */
2468 if (params
->hwcaps
.mask
& (SNOR_HWCAPS_READ_QUAD
|
2469 SNOR_HWCAPS_PP_QUAD
)) {
2470 switch (JEDEC_MFR(info
)) {
2471 case SNOR_MFR_MACRONIX
:
2472 params
->quad_enable
= macronix_quad_enable
;
2475 case SNOR_MFR_MICRON
:
2479 /* Kept only for backward compatibility purpose. */
2480 params
->quad_enable
= spansion_quad_enable
;
2485 * Some manufacturer like GigaDevice may use different
2486 * bit to set QE on different memories, so the MFR can't
2487 * indicate the quad_enable method for this case, we need
2488 * set it in flash info list.
2490 if (info
->quad_enable
)
2491 params
->quad_enable
= info
->quad_enable
;
2494 /* Override the parameters with data read from SFDP tables. */
2495 nor
->addr_width
= 0;
2496 nor
->mtd
.erasesize
= 0;
2497 if ((info
->flags
& (SPI_NOR_DUAL_READ
| SPI_NOR_QUAD_READ
)) &&
2498 !(info
->flags
& SPI_NOR_SKIP_SFDP
)) {
2499 struct spi_nor_flash_parameter sfdp_params
;
2501 memcpy(&sfdp_params
, params
, sizeof(sfdp_params
));
2502 if (spi_nor_parse_sfdp(nor
, &sfdp_params
)) {
2503 nor
->addr_width
= 0;
2504 nor
->mtd
.erasesize
= 0;
2506 memcpy(params
, &sfdp_params
, sizeof(*params
));
2513 static int spi_nor_hwcaps2cmd(u32 hwcaps
, const int table
[][2], size_t size
)
2517 for (i
= 0; i
< size
; i
++)
2518 if (table
[i
][0] == (int)hwcaps
)
2524 static int spi_nor_hwcaps_read2cmd(u32 hwcaps
)
2526 static const int hwcaps_read2cmd
[][2] = {
2527 { SNOR_HWCAPS_READ
, SNOR_CMD_READ
},
2528 { SNOR_HWCAPS_READ_FAST
, SNOR_CMD_READ_FAST
},
2529 { SNOR_HWCAPS_READ_1_1_1_DTR
, SNOR_CMD_READ_1_1_1_DTR
},
2530 { SNOR_HWCAPS_READ_1_1_2
, SNOR_CMD_READ_1_1_2
},
2531 { SNOR_HWCAPS_READ_1_2_2
, SNOR_CMD_READ_1_2_2
},
2532 { SNOR_HWCAPS_READ_2_2_2
, SNOR_CMD_READ_2_2_2
},
2533 { SNOR_HWCAPS_READ_1_2_2_DTR
, SNOR_CMD_READ_1_2_2_DTR
},
2534 { SNOR_HWCAPS_READ_1_1_4
, SNOR_CMD_READ_1_1_4
},
2535 { SNOR_HWCAPS_READ_1_4_4
, SNOR_CMD_READ_1_4_4
},
2536 { SNOR_HWCAPS_READ_4_4_4
, SNOR_CMD_READ_4_4_4
},
2537 { SNOR_HWCAPS_READ_1_4_4_DTR
, SNOR_CMD_READ_1_4_4_DTR
},
2538 { SNOR_HWCAPS_READ_1_1_8
, SNOR_CMD_READ_1_1_8
},
2539 { SNOR_HWCAPS_READ_1_8_8
, SNOR_CMD_READ_1_8_8
},
2540 { SNOR_HWCAPS_READ_8_8_8
, SNOR_CMD_READ_8_8_8
},
2541 { SNOR_HWCAPS_READ_1_8_8_DTR
, SNOR_CMD_READ_1_8_8_DTR
},
2544 return spi_nor_hwcaps2cmd(hwcaps
, hwcaps_read2cmd
,
2545 ARRAY_SIZE(hwcaps_read2cmd
));
2548 static int spi_nor_hwcaps_pp2cmd(u32 hwcaps
)
2550 static const int hwcaps_pp2cmd
[][2] = {
2551 { SNOR_HWCAPS_PP
, SNOR_CMD_PP
},
2552 { SNOR_HWCAPS_PP_1_1_4
, SNOR_CMD_PP_1_1_4
},
2553 { SNOR_HWCAPS_PP_1_4_4
, SNOR_CMD_PP_1_4_4
},
2554 { SNOR_HWCAPS_PP_4_4_4
, SNOR_CMD_PP_4_4_4
},
2555 { SNOR_HWCAPS_PP_1_1_8
, SNOR_CMD_PP_1_1_8
},
2556 { SNOR_HWCAPS_PP_1_8_8
, SNOR_CMD_PP_1_8_8
},
2557 { SNOR_HWCAPS_PP_8_8_8
, SNOR_CMD_PP_8_8_8
},
2560 return spi_nor_hwcaps2cmd(hwcaps
, hwcaps_pp2cmd
,
2561 ARRAY_SIZE(hwcaps_pp2cmd
));
2564 static int spi_nor_select_read(struct spi_nor
*nor
,
2565 const struct spi_nor_flash_parameter
*params
,
2568 int cmd
, best_match
= fls(shared_hwcaps
& SNOR_HWCAPS_READ_MASK
) - 1;
2569 const struct spi_nor_read_command
*read
;
2574 cmd
= spi_nor_hwcaps_read2cmd(BIT(best_match
));
2578 read
= ¶ms
->reads
[cmd
];
2579 nor
->read_opcode
= read
->opcode
;
2580 nor
->read_proto
= read
->proto
;
2583 * In the spi-nor framework, we don't need to make the difference
2584 * between mode clock cycles and wait state clock cycles.
2585 * Indeed, the value of the mode clock cycles is used by a QSPI
2586 * flash memory to know whether it should enter or leave its 0-4-4
2587 * (Continuous Read / XIP) mode.
2588 * eXecution In Place is out of the scope of the mtd sub-system.
2589 * Hence we choose to merge both mode and wait state clock cycles
2590 * into the so called dummy clock cycles.
2592 nor
->read_dummy
= read
->num_mode_clocks
+ read
->num_wait_states
;
2596 static int spi_nor_select_pp(struct spi_nor
*nor
,
2597 const struct spi_nor_flash_parameter
*params
,
2600 int cmd
, best_match
= fls(shared_hwcaps
& SNOR_HWCAPS_PP_MASK
) - 1;
2601 const struct spi_nor_pp_command
*pp
;
2606 cmd
= spi_nor_hwcaps_pp2cmd(BIT(best_match
));
2610 pp
= ¶ms
->page_programs
[cmd
];
2611 nor
->program_opcode
= pp
->opcode
;
2612 nor
->write_proto
= pp
->proto
;
2616 static int spi_nor_select_erase(struct spi_nor
*nor
,
2617 const struct flash_info
*info
)
2619 struct mtd_info
*mtd
= &nor
->mtd
;
2621 /* Do nothing if already configured from SFDP. */
2625 #ifdef CONFIG_MTD_SPI_NOR_USE_4K_SECTORS
2626 /* prefer "small sector" erase if possible */
2627 if (info
->flags
& SECT_4K
) {
2628 nor
->erase_opcode
= SPINOR_OP_BE_4K
;
2629 mtd
->erasesize
= 4096;
2630 } else if (info
->flags
& SECT_4K_PMC
) {
2631 nor
->erase_opcode
= SPINOR_OP_BE_4K_PMC
;
2632 mtd
->erasesize
= 4096;
2636 nor
->erase_opcode
= SPINOR_OP_SE
;
2637 mtd
->erasesize
= info
->sector_size
;
2642 static int spi_nor_setup(struct spi_nor
*nor
, const struct flash_info
*info
,
2643 const struct spi_nor_flash_parameter
*params
,
2644 const struct spi_nor_hwcaps
*hwcaps
)
2646 u32 ignored_mask
, shared_mask
;
2647 bool enable_quad_io
;
2651 * Keep only the hardware capabilities supported by both the SPI
2652 * controller and the SPI flash memory.
2654 shared_mask
= hwcaps
->mask
& params
->hwcaps
.mask
;
2656 /* SPI n-n-n protocols are not supported yet. */
2657 ignored_mask
= (SNOR_HWCAPS_READ_2_2_2
|
2658 SNOR_HWCAPS_READ_4_4_4
|
2659 SNOR_HWCAPS_READ_8_8_8
|
2660 SNOR_HWCAPS_PP_4_4_4
|
2661 SNOR_HWCAPS_PP_8_8_8
);
2662 if (shared_mask
& ignored_mask
) {
2664 "SPI n-n-n protocols are not supported yet.\n");
2665 shared_mask
&= ~ignored_mask
;
2668 /* Select the (Fast) Read command. */
2669 err
= spi_nor_select_read(nor
, params
, shared_mask
);
2672 "can't select read settings supported by both the SPI controller and memory.\n");
2676 /* Select the Page Program command. */
2677 err
= spi_nor_select_pp(nor
, params
, shared_mask
);
2680 "can't select write settings supported by both the SPI controller and memory.\n");
2684 /* Select the Sector Erase command. */
2685 err
= spi_nor_select_erase(nor
, info
);
2688 "can't select erase settings supported by both the SPI controller and memory.\n");
2692 /* Enable Quad I/O if needed. */
2693 enable_quad_io
= (spi_nor_get_protocol_width(nor
->read_proto
) == 4 ||
2694 spi_nor_get_protocol_width(nor
->write_proto
) == 4);
2695 if (enable_quad_io
&& params
->quad_enable
)
2696 nor
->quad_enable
= params
->quad_enable
;
2698 nor
->quad_enable
= NULL
;
2703 static int spi_nor_init(struct spi_nor
*nor
)
2708 * Atmel, SST, Intel/Numonyx, and others serial NOR tend to power up
2709 * with the software protection bits set
2711 if (JEDEC_MFR(nor
->info
) == SNOR_MFR_ATMEL
||
2712 JEDEC_MFR(nor
->info
) == SNOR_MFR_INTEL
||
2713 JEDEC_MFR(nor
->info
) == SNOR_MFR_SST
||
2714 nor
->info
->flags
& SPI_NOR_HAS_LOCK
) {
2717 spi_nor_wait_till_ready(nor
);
2720 if (nor
->quad_enable
) {
2721 err
= nor
->quad_enable(nor
);
2723 dev_err(nor
->dev
, "quad mode not supported\n");
2728 if ((nor
->addr_width
== 4) &&
2729 (JEDEC_MFR(nor
->info
) != SNOR_MFR_SPANSION
) &&
2730 !(nor
->info
->flags
& SPI_NOR_4B_OPCODES
))
2731 set_4byte(nor
, nor
->info
, 1);
2736 /* mtd resume handler */
2737 static void spi_nor_resume(struct mtd_info
*mtd
)
2739 struct spi_nor
*nor
= mtd_to_spi_nor(mtd
);
2740 struct device
*dev
= nor
->dev
;
2743 /* re-initialize the nor chip */
2744 ret
= spi_nor_init(nor
);
2746 dev_err(dev
, "resume() failed\n");
2749 void spi_nor_restore(struct spi_nor
*nor
)
2751 /* restore the addressing mode */
2752 if ((nor
->addr_width
== 4) &&
2753 (JEDEC_MFR(nor
->info
) != SNOR_MFR_SPANSION
) &&
2754 !(nor
->info
->flags
& SPI_NOR_4B_OPCODES
))
2755 set_4byte(nor
, nor
->info
, 0);
2757 EXPORT_SYMBOL_GPL(spi_nor_restore
);
2759 int spi_nor_scan(struct spi_nor
*nor
, const char *name
,
2760 const struct spi_nor_hwcaps
*hwcaps
)
2762 struct spi_nor_flash_parameter params
;
2763 const struct flash_info
*info
= NULL
;
2764 struct device
*dev
= nor
->dev
;
2765 struct mtd_info
*mtd
= &nor
->mtd
;
2766 struct device_node
*np
= spi_nor_get_flash_node(nor
);
2770 ret
= spi_nor_check(nor
);
2774 /* Reset SPI protocol for all commands. */
2775 nor
->reg_proto
= SNOR_PROTO_1_1_1
;
2776 nor
->read_proto
= SNOR_PROTO_1_1_1
;
2777 nor
->write_proto
= SNOR_PROTO_1_1_1
;
2780 info
= spi_nor_match_id(name
);
2781 /* Try to auto-detect if chip name wasn't specified or not found */
2783 info
= spi_nor_read_id(nor
);
2784 if (IS_ERR_OR_NULL(info
))
2788 * If caller has specified name of flash model that can normally be
2789 * detected using JEDEC, let's verify it.
2791 if (name
&& info
->id_len
) {
2792 const struct flash_info
*jinfo
;
2794 jinfo
= spi_nor_read_id(nor
);
2795 if (IS_ERR(jinfo
)) {
2796 return PTR_ERR(jinfo
);
2797 } else if (jinfo
!= info
) {
2799 * JEDEC knows better, so overwrite platform ID. We
2800 * can't trust partitions any longer, but we'll let
2801 * mtd apply them anyway, since some partitions may be
2802 * marked read-only, and we don't want to lose that
2803 * information, even if it's not 100% accurate.
2805 dev_warn(dev
, "found %s, expected %s\n",
2806 jinfo
->name
, info
->name
);
2811 mutex_init(&nor
->lock
);
2814 * Make sure the XSR_RDY flag is set before calling
2815 * spi_nor_wait_till_ready(). Xilinx S3AN share MFR
2816 * with Atmel spi-nor
2818 if (info
->flags
& SPI_S3AN
)
2819 nor
->flags
|= SNOR_F_READY_XSR_RDY
;
2821 /* Parse the Serial Flash Discoverable Parameters table. */
2822 ret
= spi_nor_init_params(nor
, info
, ¶ms
);
2827 mtd
->name
= dev_name(dev
);
2829 mtd
->type
= MTD_NORFLASH
;
2831 mtd
->flags
= MTD_CAP_NORFLASH
;
2832 mtd
->size
= params
.size
;
2833 mtd
->_erase
= spi_nor_erase
;
2834 mtd
->_read
= spi_nor_read
;
2835 mtd
->_resume
= spi_nor_resume
;
2837 /* NOR protection support for STmicro/Micron chips and similar */
2838 if (JEDEC_MFR(info
) == SNOR_MFR_MICRON
||
2839 info
->flags
& SPI_NOR_HAS_LOCK
) {
2840 nor
->flash_lock
= stm_lock
;
2841 nor
->flash_unlock
= stm_unlock
;
2842 nor
->flash_is_locked
= stm_is_locked
;
2845 if (nor
->flash_lock
&& nor
->flash_unlock
&& nor
->flash_is_locked
) {
2846 mtd
->_lock
= spi_nor_lock
;
2847 mtd
->_unlock
= spi_nor_unlock
;
2848 mtd
->_is_locked
= spi_nor_is_locked
;
2851 /* sst nor chips use AAI word program */
2852 if (info
->flags
& SST_WRITE
)
2853 mtd
->_write
= sst_write
;
2855 mtd
->_write
= spi_nor_write
;
2857 if (info
->flags
& USE_FSR
)
2858 nor
->flags
|= SNOR_F_USE_FSR
;
2859 if (info
->flags
& SPI_NOR_HAS_TB
)
2860 nor
->flags
|= SNOR_F_HAS_SR_TB
;
2861 if (info
->flags
& NO_CHIP_ERASE
)
2862 nor
->flags
|= SNOR_F_NO_OP_CHIP_ERASE
;
2863 if (info
->flags
& USE_CLSR
)
2864 nor
->flags
|= SNOR_F_USE_CLSR
;
2866 if (info
->flags
& SPI_NOR_NO_ERASE
)
2867 mtd
->flags
|= MTD_NO_ERASE
;
2869 mtd
->dev
.parent
= dev
;
2870 nor
->page_size
= params
.page_size
;
2871 mtd
->writebufsize
= nor
->page_size
;
2874 /* If we were instantiated by DT, use it */
2875 if (of_property_read_bool(np
, "m25p,fast-read"))
2876 params
.hwcaps
.mask
|= SNOR_HWCAPS_READ_FAST
;
2878 params
.hwcaps
.mask
&= ~SNOR_HWCAPS_READ_FAST
;
2880 /* If we weren't instantiated by DT, default to fast-read */
2881 params
.hwcaps
.mask
|= SNOR_HWCAPS_READ_FAST
;
2884 /* Some devices cannot do fast-read, no matter what DT tells us */
2885 if (info
->flags
& SPI_NOR_NO_FR
)
2886 params
.hwcaps
.mask
&= ~SNOR_HWCAPS_READ_FAST
;
2889 * Configure the SPI memory:
2890 * - select op codes for (Fast) Read, Page Program and Sector Erase.
2891 * - set the number of dummy cycles (mode cycles + wait states).
2892 * - set the SPI protocols for register and memory accesses.
2893 * - set the Quad Enable bit if needed (required by SPI x-y-4 protos).
2895 ret
= spi_nor_setup(nor
, info
, ¶ms
, hwcaps
);
2899 if (nor
->addr_width
) {
2900 /* already configured from SFDP */
2901 } else if (info
->addr_width
) {
2902 nor
->addr_width
= info
->addr_width
;
2903 } else if (mtd
->size
> 0x1000000) {
2904 /* enable 4-byte addressing if the device exceeds 16MiB */
2905 nor
->addr_width
= 4;
2906 if (JEDEC_MFR(info
) == SNOR_MFR_SPANSION
||
2907 info
->flags
& SPI_NOR_4B_OPCODES
)
2908 spi_nor_set_4byte_opcodes(nor
, info
);
2910 nor
->addr_width
= 3;
2913 if (nor
->addr_width
> SPI_NOR_MAX_ADDR_WIDTH
) {
2914 dev_err(dev
, "address width is too large: %u\n",
2919 if (info
->flags
& SPI_S3AN
) {
2920 ret
= s3an_nor_scan(info
, nor
);
2925 /* Send all the required SPI flash commands to initialize device */
2927 ret
= spi_nor_init(nor
);
2931 dev_info(dev
, "%s (%lld Kbytes)\n", info
->name
,
2932 (long long)mtd
->size
>> 10);
2935 "mtd .name = %s, .size = 0x%llx (%lldMiB), "
2936 ".erasesize = 0x%.8x (%uKiB) .numeraseregions = %d\n",
2937 mtd
->name
, (long long)mtd
->size
, (long long)(mtd
->size
>> 20),
2938 mtd
->erasesize
, mtd
->erasesize
/ 1024, mtd
->numeraseregions
);
2940 if (mtd
->numeraseregions
)
2941 for (i
= 0; i
< mtd
->numeraseregions
; i
++)
2943 "mtd.eraseregions[%d] = { .offset = 0x%llx, "
2944 ".erasesize = 0x%.8x (%uKiB), "
2945 ".numblocks = %d }\n",
2946 i
, (long long)mtd
->eraseregions
[i
].offset
,
2947 mtd
->eraseregions
[i
].erasesize
,
2948 mtd
->eraseregions
[i
].erasesize
/ 1024,
2949 mtd
->eraseregions
[i
].numblocks
);
2952 EXPORT_SYMBOL_GPL(spi_nor_scan
);
2954 static const struct flash_info
*spi_nor_match_id(const char *name
)
2956 const struct flash_info
*id
= spi_nor_ids
;
2959 if (!strcmp(name
, id
->name
))
2966 MODULE_LICENSE("GPL");
2967 MODULE_AUTHOR("Huang Shijie <shijie8@gmail.com>");
2968 MODULE_AUTHOR("Mike Lavender");
2969 MODULE_DESCRIPTION("framework for SPI NOR");