Linux 4.16.11
[linux/fpc-iii.git] / drivers / net / ethernet / atheros / alx / main.c
blob567ee54504bcd6eba897009259f691b74b77609e
1 /*
2 * Copyright (c) 2013 Johannes Berg <johannes@sipsolutions.net>
4 * This file is free software: you may copy, redistribute and/or modify it
5 * under the terms of the GNU General Public License as published by the
6 * Free Software Foundation, either version 2 of the License, or (at your
7 * option) any later version.
9 * This file is distributed in the hope that it will be useful, but
10 * WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
12 * General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program. If not, see <http://www.gnu.org/licenses/>.
17 * This file incorporates work covered by the following copyright and
18 * permission notice:
20 * Copyright (c) 2012 Qualcomm Atheros, Inc.
22 * Permission to use, copy, modify, and/or distribute this software for any
23 * purpose with or without fee is hereby granted, provided that the above
24 * copyright notice and this permission notice appear in all copies.
26 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
27 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
28 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
29 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
30 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
31 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
32 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
35 #include <linux/module.h>
36 #include <linux/pci.h>
37 #include <linux/interrupt.h>
38 #include <linux/ip.h>
39 #include <linux/ipv6.h>
40 #include <linux/if_vlan.h>
41 #include <linux/mdio.h>
42 #include <linux/aer.h>
43 #include <linux/bitops.h>
44 #include <linux/netdevice.h>
45 #include <linux/etherdevice.h>
46 #include <net/ip6_checksum.h>
47 #include <linux/crc32.h>
48 #include "alx.h"
49 #include "hw.h"
50 #include "reg.h"
52 const char alx_drv_name[] = "alx";
54 static void alx_free_txbuf(struct alx_tx_queue *txq, int entry)
56 struct alx_buffer *txb = &txq->bufs[entry];
58 if (dma_unmap_len(txb, size)) {
59 dma_unmap_single(txq->dev,
60 dma_unmap_addr(txb, dma),
61 dma_unmap_len(txb, size),
62 DMA_TO_DEVICE);
63 dma_unmap_len_set(txb, size, 0);
66 if (txb->skb) {
67 dev_kfree_skb_any(txb->skb);
68 txb->skb = NULL;
72 static int alx_refill_rx_ring(struct alx_priv *alx, gfp_t gfp)
74 struct alx_rx_queue *rxq = alx->qnapi[0]->rxq;
75 struct sk_buff *skb;
76 struct alx_buffer *cur_buf;
77 dma_addr_t dma;
78 u16 cur, next, count = 0;
80 next = cur = rxq->write_idx;
81 if (++next == alx->rx_ringsz)
82 next = 0;
83 cur_buf = &rxq->bufs[cur];
85 while (!cur_buf->skb && next != rxq->read_idx) {
86 struct alx_rfd *rfd = &rxq->rfd[cur];
89 * When DMA RX address is set to something like
90 * 0x....fc0, it will be very likely to cause DMA
91 * RFD overflow issue.
93 * To work around it, we apply rx skb with 64 bytes
94 * longer space, and offset the address whenever
95 * 0x....fc0 is detected.
97 skb = __netdev_alloc_skb(alx->dev, alx->rxbuf_size + 64, gfp);
98 if (!skb)
99 break;
101 if (((unsigned long)skb->data & 0xfff) == 0xfc0)
102 skb_reserve(skb, 64);
104 dma = dma_map_single(&alx->hw.pdev->dev,
105 skb->data, alx->rxbuf_size,
106 DMA_FROM_DEVICE);
107 if (dma_mapping_error(&alx->hw.pdev->dev, dma)) {
108 dev_kfree_skb(skb);
109 break;
112 /* Unfortunately, RX descriptor buffers must be 4-byte
113 * aligned, so we can't use IP alignment.
115 if (WARN_ON(dma & 3)) {
116 dev_kfree_skb(skb);
117 break;
120 cur_buf->skb = skb;
121 dma_unmap_len_set(cur_buf, size, alx->rxbuf_size);
122 dma_unmap_addr_set(cur_buf, dma, dma);
123 rfd->addr = cpu_to_le64(dma);
125 cur = next;
126 if (++next == alx->rx_ringsz)
127 next = 0;
128 cur_buf = &rxq->bufs[cur];
129 count++;
132 if (count) {
133 /* flush all updates before updating hardware */
134 wmb();
135 rxq->write_idx = cur;
136 alx_write_mem16(&alx->hw, ALX_RFD_PIDX, cur);
139 return count;
142 static struct alx_tx_queue *alx_tx_queue_mapping(struct alx_priv *alx,
143 struct sk_buff *skb)
145 unsigned int r_idx = skb->queue_mapping;
147 if (r_idx >= alx->num_txq)
148 r_idx = r_idx % alx->num_txq;
150 return alx->qnapi[r_idx]->txq;
153 static struct netdev_queue *alx_get_tx_queue(const struct alx_tx_queue *txq)
155 return netdev_get_tx_queue(txq->netdev, txq->queue_idx);
158 static inline int alx_tpd_avail(struct alx_tx_queue *txq)
160 if (txq->write_idx >= txq->read_idx)
161 return txq->count + txq->read_idx - txq->write_idx - 1;
162 return txq->read_idx - txq->write_idx - 1;
165 static bool alx_clean_tx_irq(struct alx_tx_queue *txq)
167 struct alx_priv *alx;
168 struct netdev_queue *tx_queue;
169 u16 hw_read_idx, sw_read_idx;
170 unsigned int total_bytes = 0, total_packets = 0;
171 int budget = ALX_DEFAULT_TX_WORK;
173 alx = netdev_priv(txq->netdev);
174 tx_queue = alx_get_tx_queue(txq);
176 sw_read_idx = txq->read_idx;
177 hw_read_idx = alx_read_mem16(&alx->hw, txq->c_reg);
179 if (sw_read_idx != hw_read_idx) {
180 while (sw_read_idx != hw_read_idx && budget > 0) {
181 struct sk_buff *skb;
183 skb = txq->bufs[sw_read_idx].skb;
184 if (skb) {
185 total_bytes += skb->len;
186 total_packets++;
187 budget--;
190 alx_free_txbuf(txq, sw_read_idx);
192 if (++sw_read_idx == txq->count)
193 sw_read_idx = 0;
195 txq->read_idx = sw_read_idx;
197 netdev_tx_completed_queue(tx_queue, total_packets, total_bytes);
200 if (netif_tx_queue_stopped(tx_queue) && netif_carrier_ok(alx->dev) &&
201 alx_tpd_avail(txq) > txq->count / 4)
202 netif_tx_wake_queue(tx_queue);
204 return sw_read_idx == hw_read_idx;
207 static void alx_schedule_link_check(struct alx_priv *alx)
209 schedule_work(&alx->link_check_wk);
212 static void alx_schedule_reset(struct alx_priv *alx)
214 schedule_work(&alx->reset_wk);
217 static int alx_clean_rx_irq(struct alx_rx_queue *rxq, int budget)
219 struct alx_priv *alx;
220 struct alx_rrd *rrd;
221 struct alx_buffer *rxb;
222 struct sk_buff *skb;
223 u16 length, rfd_cleaned = 0;
224 int work = 0;
226 alx = netdev_priv(rxq->netdev);
228 while (work < budget) {
229 rrd = &rxq->rrd[rxq->rrd_read_idx];
230 if (!(rrd->word3 & cpu_to_le32(1 << RRD_UPDATED_SHIFT)))
231 break;
232 rrd->word3 &= ~cpu_to_le32(1 << RRD_UPDATED_SHIFT);
234 if (ALX_GET_FIELD(le32_to_cpu(rrd->word0),
235 RRD_SI) != rxq->read_idx ||
236 ALX_GET_FIELD(le32_to_cpu(rrd->word0),
237 RRD_NOR) != 1) {
238 alx_schedule_reset(alx);
239 return work;
242 rxb = &rxq->bufs[rxq->read_idx];
243 dma_unmap_single(rxq->dev,
244 dma_unmap_addr(rxb, dma),
245 dma_unmap_len(rxb, size),
246 DMA_FROM_DEVICE);
247 dma_unmap_len_set(rxb, size, 0);
248 skb = rxb->skb;
249 rxb->skb = NULL;
251 if (rrd->word3 & cpu_to_le32(1 << RRD_ERR_RES_SHIFT) ||
252 rrd->word3 & cpu_to_le32(1 << RRD_ERR_LEN_SHIFT)) {
253 rrd->word3 = 0;
254 dev_kfree_skb_any(skb);
255 goto next_pkt;
258 length = ALX_GET_FIELD(le32_to_cpu(rrd->word3),
259 RRD_PKTLEN) - ETH_FCS_LEN;
260 skb_put(skb, length);
261 skb->protocol = eth_type_trans(skb, rxq->netdev);
263 skb_checksum_none_assert(skb);
264 if (alx->dev->features & NETIF_F_RXCSUM &&
265 !(rrd->word3 & (cpu_to_le32(1 << RRD_ERR_L4_SHIFT) |
266 cpu_to_le32(1 << RRD_ERR_IPV4_SHIFT)))) {
267 switch (ALX_GET_FIELD(le32_to_cpu(rrd->word2),
268 RRD_PID)) {
269 case RRD_PID_IPV6UDP:
270 case RRD_PID_IPV4UDP:
271 case RRD_PID_IPV4TCP:
272 case RRD_PID_IPV6TCP:
273 skb->ip_summed = CHECKSUM_UNNECESSARY;
274 break;
278 napi_gro_receive(&rxq->np->napi, skb);
279 work++;
281 next_pkt:
282 if (++rxq->read_idx == rxq->count)
283 rxq->read_idx = 0;
284 if (++rxq->rrd_read_idx == rxq->count)
285 rxq->rrd_read_idx = 0;
287 if (++rfd_cleaned > ALX_RX_ALLOC_THRESH)
288 rfd_cleaned -= alx_refill_rx_ring(alx, GFP_ATOMIC);
291 if (rfd_cleaned)
292 alx_refill_rx_ring(alx, GFP_ATOMIC);
294 return work;
297 static int alx_poll(struct napi_struct *napi, int budget)
299 struct alx_napi *np = container_of(napi, struct alx_napi, napi);
300 struct alx_priv *alx = np->alx;
301 struct alx_hw *hw = &alx->hw;
302 unsigned long flags;
303 bool tx_complete = true;
304 int work = 0;
306 if (np->txq)
307 tx_complete = alx_clean_tx_irq(np->txq);
308 if (np->rxq)
309 work = alx_clean_rx_irq(np->rxq, budget);
311 if (!tx_complete || work == budget)
312 return budget;
314 napi_complete_done(&np->napi, work);
316 /* enable interrupt */
317 if (alx->hw.pdev->msix_enabled) {
318 alx_mask_msix(hw, np->vec_idx, false);
319 } else {
320 spin_lock_irqsave(&alx->irq_lock, flags);
321 alx->int_mask |= ALX_ISR_TX_Q0 | ALX_ISR_RX_Q0;
322 alx_write_mem32(hw, ALX_IMR, alx->int_mask);
323 spin_unlock_irqrestore(&alx->irq_lock, flags);
326 alx_post_write(hw);
328 return work;
331 static bool alx_intr_handle_misc(struct alx_priv *alx, u32 intr)
333 struct alx_hw *hw = &alx->hw;
335 if (intr & ALX_ISR_FATAL) {
336 netif_warn(alx, hw, alx->dev,
337 "fatal interrupt 0x%x, resetting\n", intr);
338 alx_schedule_reset(alx);
339 return true;
342 if (intr & ALX_ISR_ALERT)
343 netdev_warn(alx->dev, "alert interrupt: 0x%x\n", intr);
345 if (intr & ALX_ISR_PHY) {
346 /* suppress PHY interrupt, because the source
347 * is from PHY internal. only the internal status
348 * is cleared, the interrupt status could be cleared.
350 alx->int_mask &= ~ALX_ISR_PHY;
351 alx_write_mem32(hw, ALX_IMR, alx->int_mask);
352 alx_schedule_link_check(alx);
355 return false;
358 static irqreturn_t alx_intr_handle(struct alx_priv *alx, u32 intr)
360 struct alx_hw *hw = &alx->hw;
362 spin_lock(&alx->irq_lock);
364 /* ACK interrupt */
365 alx_write_mem32(hw, ALX_ISR, intr | ALX_ISR_DIS);
366 intr &= alx->int_mask;
368 if (alx_intr_handle_misc(alx, intr))
369 goto out;
371 if (intr & (ALX_ISR_TX_Q0 | ALX_ISR_RX_Q0)) {
372 napi_schedule(&alx->qnapi[0]->napi);
373 /* mask rx/tx interrupt, enable them when napi complete */
374 alx->int_mask &= ~ALX_ISR_ALL_QUEUES;
375 alx_write_mem32(hw, ALX_IMR, alx->int_mask);
378 alx_write_mem32(hw, ALX_ISR, 0);
380 out:
381 spin_unlock(&alx->irq_lock);
382 return IRQ_HANDLED;
385 static irqreturn_t alx_intr_msix_ring(int irq, void *data)
387 struct alx_napi *np = data;
388 struct alx_hw *hw = &np->alx->hw;
390 /* mask interrupt to ACK chip */
391 alx_mask_msix(hw, np->vec_idx, true);
392 /* clear interrupt status */
393 alx_write_mem32(hw, ALX_ISR, np->vec_mask);
395 napi_schedule(&np->napi);
397 return IRQ_HANDLED;
400 static irqreturn_t alx_intr_msix_misc(int irq, void *data)
402 struct alx_priv *alx = data;
403 struct alx_hw *hw = &alx->hw;
404 u32 intr;
406 /* mask interrupt to ACK chip */
407 alx_mask_msix(hw, 0, true);
409 /* read interrupt status */
410 intr = alx_read_mem32(hw, ALX_ISR);
411 intr &= (alx->int_mask & ~ALX_ISR_ALL_QUEUES);
413 if (alx_intr_handle_misc(alx, intr))
414 return IRQ_HANDLED;
416 /* clear interrupt status */
417 alx_write_mem32(hw, ALX_ISR, intr);
419 /* enable interrupt again */
420 alx_mask_msix(hw, 0, false);
422 return IRQ_HANDLED;
425 static irqreturn_t alx_intr_msi(int irq, void *data)
427 struct alx_priv *alx = data;
429 return alx_intr_handle(alx, alx_read_mem32(&alx->hw, ALX_ISR));
432 static irqreturn_t alx_intr_legacy(int irq, void *data)
434 struct alx_priv *alx = data;
435 struct alx_hw *hw = &alx->hw;
436 u32 intr;
438 intr = alx_read_mem32(hw, ALX_ISR);
440 if (intr & ALX_ISR_DIS || !(intr & alx->int_mask))
441 return IRQ_NONE;
443 return alx_intr_handle(alx, intr);
446 static const u16 txring_header_reg[] = {ALX_TPD_PRI0_ADDR_LO,
447 ALX_TPD_PRI1_ADDR_LO,
448 ALX_TPD_PRI2_ADDR_LO,
449 ALX_TPD_PRI3_ADDR_LO};
451 static void alx_init_ring_ptrs(struct alx_priv *alx)
453 struct alx_hw *hw = &alx->hw;
454 u32 addr_hi = ((u64)alx->descmem.dma) >> 32;
455 struct alx_napi *np;
456 int i;
458 for (i = 0; i < alx->num_napi; i++) {
459 np = alx->qnapi[i];
460 if (np->txq) {
461 np->txq->read_idx = 0;
462 np->txq->write_idx = 0;
463 alx_write_mem32(hw,
464 txring_header_reg[np->txq->queue_idx],
465 np->txq->tpd_dma);
468 if (np->rxq) {
469 np->rxq->read_idx = 0;
470 np->rxq->write_idx = 0;
471 np->rxq->rrd_read_idx = 0;
472 alx_write_mem32(hw, ALX_RRD_ADDR_LO, np->rxq->rrd_dma);
473 alx_write_mem32(hw, ALX_RFD_ADDR_LO, np->rxq->rfd_dma);
477 alx_write_mem32(hw, ALX_TX_BASE_ADDR_HI, addr_hi);
478 alx_write_mem32(hw, ALX_TPD_RING_SZ, alx->tx_ringsz);
480 alx_write_mem32(hw, ALX_RX_BASE_ADDR_HI, addr_hi);
481 alx_write_mem32(hw, ALX_RRD_RING_SZ, alx->rx_ringsz);
482 alx_write_mem32(hw, ALX_RFD_RING_SZ, alx->rx_ringsz);
483 alx_write_mem32(hw, ALX_RFD_BUF_SZ, alx->rxbuf_size);
485 /* load these pointers into the chip */
486 alx_write_mem32(hw, ALX_SRAM9, ALX_SRAM_LOAD_PTR);
489 static void alx_free_txring_buf(struct alx_tx_queue *txq)
491 int i;
493 if (!txq->bufs)
494 return;
496 for (i = 0; i < txq->count; i++)
497 alx_free_txbuf(txq, i);
499 memset(txq->bufs, 0, txq->count * sizeof(struct alx_buffer));
500 memset(txq->tpd, 0, txq->count * sizeof(struct alx_txd));
501 txq->write_idx = 0;
502 txq->read_idx = 0;
504 netdev_tx_reset_queue(alx_get_tx_queue(txq));
507 static void alx_free_rxring_buf(struct alx_rx_queue *rxq)
509 struct alx_buffer *cur_buf;
510 u16 i;
512 if (!rxq->bufs)
513 return;
515 for (i = 0; i < rxq->count; i++) {
516 cur_buf = rxq->bufs + i;
517 if (cur_buf->skb) {
518 dma_unmap_single(rxq->dev,
519 dma_unmap_addr(cur_buf, dma),
520 dma_unmap_len(cur_buf, size),
521 DMA_FROM_DEVICE);
522 dev_kfree_skb(cur_buf->skb);
523 cur_buf->skb = NULL;
524 dma_unmap_len_set(cur_buf, size, 0);
525 dma_unmap_addr_set(cur_buf, dma, 0);
529 rxq->write_idx = 0;
530 rxq->read_idx = 0;
531 rxq->rrd_read_idx = 0;
534 static void alx_free_buffers(struct alx_priv *alx)
536 int i;
538 for (i = 0; i < alx->num_txq; i++)
539 if (alx->qnapi[i] && alx->qnapi[i]->txq)
540 alx_free_txring_buf(alx->qnapi[i]->txq);
542 if (alx->qnapi[0] && alx->qnapi[0]->rxq)
543 alx_free_rxring_buf(alx->qnapi[0]->rxq);
546 static int alx_reinit_rings(struct alx_priv *alx)
548 alx_free_buffers(alx);
550 alx_init_ring_ptrs(alx);
552 if (!alx_refill_rx_ring(alx, GFP_KERNEL))
553 return -ENOMEM;
555 return 0;
558 static void alx_add_mc_addr(struct alx_hw *hw, const u8 *addr, u32 *mc_hash)
560 u32 crc32, bit, reg;
562 crc32 = ether_crc(ETH_ALEN, addr);
563 reg = (crc32 >> 31) & 0x1;
564 bit = (crc32 >> 26) & 0x1F;
566 mc_hash[reg] |= BIT(bit);
569 static void __alx_set_rx_mode(struct net_device *netdev)
571 struct alx_priv *alx = netdev_priv(netdev);
572 struct alx_hw *hw = &alx->hw;
573 struct netdev_hw_addr *ha;
574 u32 mc_hash[2] = {};
576 if (!(netdev->flags & IFF_ALLMULTI)) {
577 netdev_for_each_mc_addr(ha, netdev)
578 alx_add_mc_addr(hw, ha->addr, mc_hash);
580 alx_write_mem32(hw, ALX_HASH_TBL0, mc_hash[0]);
581 alx_write_mem32(hw, ALX_HASH_TBL1, mc_hash[1]);
584 hw->rx_ctrl &= ~(ALX_MAC_CTRL_MULTIALL_EN | ALX_MAC_CTRL_PROMISC_EN);
585 if (netdev->flags & IFF_PROMISC)
586 hw->rx_ctrl |= ALX_MAC_CTRL_PROMISC_EN;
587 if (netdev->flags & IFF_ALLMULTI)
588 hw->rx_ctrl |= ALX_MAC_CTRL_MULTIALL_EN;
590 alx_write_mem32(hw, ALX_MAC_CTRL, hw->rx_ctrl);
593 static void alx_set_rx_mode(struct net_device *netdev)
595 __alx_set_rx_mode(netdev);
598 static int alx_set_mac_address(struct net_device *netdev, void *data)
600 struct alx_priv *alx = netdev_priv(netdev);
601 struct alx_hw *hw = &alx->hw;
602 struct sockaddr *addr = data;
604 if (!is_valid_ether_addr(addr->sa_data))
605 return -EADDRNOTAVAIL;
607 if (netdev->addr_assign_type & NET_ADDR_RANDOM)
608 netdev->addr_assign_type ^= NET_ADDR_RANDOM;
610 memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
611 memcpy(hw->mac_addr, addr->sa_data, netdev->addr_len);
612 alx_set_macaddr(hw, hw->mac_addr);
614 return 0;
617 static int alx_alloc_tx_ring(struct alx_priv *alx, struct alx_tx_queue *txq,
618 int offset)
620 txq->bufs = kcalloc(txq->count, sizeof(struct alx_buffer), GFP_KERNEL);
621 if (!txq->bufs)
622 return -ENOMEM;
624 txq->tpd = alx->descmem.virt + offset;
625 txq->tpd_dma = alx->descmem.dma + offset;
626 offset += sizeof(struct alx_txd) * txq->count;
628 return offset;
631 static int alx_alloc_rx_ring(struct alx_priv *alx, struct alx_rx_queue *rxq,
632 int offset)
634 rxq->bufs = kcalloc(rxq->count, sizeof(struct alx_buffer), GFP_KERNEL);
635 if (!rxq->bufs)
636 return -ENOMEM;
638 rxq->rrd = alx->descmem.virt + offset;
639 rxq->rrd_dma = alx->descmem.dma + offset;
640 offset += sizeof(struct alx_rrd) * rxq->count;
642 rxq->rfd = alx->descmem.virt + offset;
643 rxq->rfd_dma = alx->descmem.dma + offset;
644 offset += sizeof(struct alx_rfd) * rxq->count;
646 return offset;
649 static int alx_alloc_rings(struct alx_priv *alx)
651 int i, offset = 0;
653 /* physical tx/rx ring descriptors
655 * Allocate them as a single chunk because they must not cross a
656 * 4G boundary (hardware has a single register for high 32 bits
657 * of addresses only)
659 alx->descmem.size = sizeof(struct alx_txd) * alx->tx_ringsz *
660 alx->num_txq +
661 sizeof(struct alx_rrd) * alx->rx_ringsz +
662 sizeof(struct alx_rfd) * alx->rx_ringsz;
663 alx->descmem.virt = dma_zalloc_coherent(&alx->hw.pdev->dev,
664 alx->descmem.size,
665 &alx->descmem.dma,
666 GFP_KERNEL);
667 if (!alx->descmem.virt)
668 return -ENOMEM;
670 /* alignment requirements */
671 BUILD_BUG_ON(sizeof(struct alx_txd) % 8);
672 BUILD_BUG_ON(sizeof(struct alx_rrd) % 8);
674 for (i = 0; i < alx->num_txq; i++) {
675 offset = alx_alloc_tx_ring(alx, alx->qnapi[i]->txq, offset);
676 if (offset < 0) {
677 netdev_err(alx->dev, "Allocation of tx buffer failed!\n");
678 return -ENOMEM;
682 offset = alx_alloc_rx_ring(alx, alx->qnapi[0]->rxq, offset);
683 if (offset < 0) {
684 netdev_err(alx->dev, "Allocation of rx buffer failed!\n");
685 return -ENOMEM;
688 return 0;
691 static void alx_free_rings(struct alx_priv *alx)
693 int i;
695 alx_free_buffers(alx);
697 for (i = 0; i < alx->num_txq; i++)
698 if (alx->qnapi[i] && alx->qnapi[i]->txq)
699 kfree(alx->qnapi[i]->txq->bufs);
701 if (alx->qnapi[0] && alx->qnapi[0]->rxq)
702 kfree(alx->qnapi[0]->rxq->bufs);
704 if (alx->descmem.virt)
705 dma_free_coherent(&alx->hw.pdev->dev,
706 alx->descmem.size,
707 alx->descmem.virt,
708 alx->descmem.dma);
711 static void alx_free_napis(struct alx_priv *alx)
713 struct alx_napi *np;
714 int i;
716 for (i = 0; i < alx->num_napi; i++) {
717 np = alx->qnapi[i];
718 if (!np)
719 continue;
721 netif_napi_del(&np->napi);
722 kfree(np->txq);
723 kfree(np->rxq);
724 kfree(np);
725 alx->qnapi[i] = NULL;
729 static const u16 tx_pidx_reg[] = {ALX_TPD_PRI0_PIDX, ALX_TPD_PRI1_PIDX,
730 ALX_TPD_PRI2_PIDX, ALX_TPD_PRI3_PIDX};
731 static const u16 tx_cidx_reg[] = {ALX_TPD_PRI0_CIDX, ALX_TPD_PRI1_CIDX,
732 ALX_TPD_PRI2_CIDX, ALX_TPD_PRI3_CIDX};
733 static const u32 tx_vect_mask[] = {ALX_ISR_TX_Q0, ALX_ISR_TX_Q1,
734 ALX_ISR_TX_Q2, ALX_ISR_TX_Q3};
735 static const u32 rx_vect_mask[] = {ALX_ISR_RX_Q0, ALX_ISR_RX_Q1,
736 ALX_ISR_RX_Q2, ALX_ISR_RX_Q3,
737 ALX_ISR_RX_Q4, ALX_ISR_RX_Q5,
738 ALX_ISR_RX_Q6, ALX_ISR_RX_Q7};
740 static int alx_alloc_napis(struct alx_priv *alx)
742 struct alx_napi *np;
743 struct alx_rx_queue *rxq;
744 struct alx_tx_queue *txq;
745 int i;
747 alx->int_mask &= ~ALX_ISR_ALL_QUEUES;
749 /* allocate alx_napi structures */
750 for (i = 0; i < alx->num_napi; i++) {
751 np = kzalloc(sizeof(struct alx_napi), GFP_KERNEL);
752 if (!np)
753 goto err_out;
755 np->alx = alx;
756 netif_napi_add(alx->dev, &np->napi, alx_poll, 64);
757 alx->qnapi[i] = np;
760 /* allocate tx queues */
761 for (i = 0; i < alx->num_txq; i++) {
762 np = alx->qnapi[i];
763 txq = kzalloc(sizeof(*txq), GFP_KERNEL);
764 if (!txq)
765 goto err_out;
767 np->txq = txq;
768 txq->p_reg = tx_pidx_reg[i];
769 txq->c_reg = tx_cidx_reg[i];
770 txq->queue_idx = i;
771 txq->count = alx->tx_ringsz;
772 txq->netdev = alx->dev;
773 txq->dev = &alx->hw.pdev->dev;
774 np->vec_mask |= tx_vect_mask[i];
775 alx->int_mask |= tx_vect_mask[i];
778 /* allocate rx queues */
779 np = alx->qnapi[0];
780 rxq = kzalloc(sizeof(*rxq), GFP_KERNEL);
781 if (!rxq)
782 goto err_out;
784 np->rxq = rxq;
785 rxq->np = alx->qnapi[0];
786 rxq->queue_idx = 0;
787 rxq->count = alx->rx_ringsz;
788 rxq->netdev = alx->dev;
789 rxq->dev = &alx->hw.pdev->dev;
790 np->vec_mask |= rx_vect_mask[0];
791 alx->int_mask |= rx_vect_mask[0];
793 return 0;
795 err_out:
796 netdev_err(alx->dev, "error allocating internal structures\n");
797 alx_free_napis(alx);
798 return -ENOMEM;
801 static const int txq_vec_mapping_shift[] = {
802 0, ALX_MSI_MAP_TBL1_TXQ0_SHIFT,
803 0, ALX_MSI_MAP_TBL1_TXQ1_SHIFT,
804 1, ALX_MSI_MAP_TBL2_TXQ2_SHIFT,
805 1, ALX_MSI_MAP_TBL2_TXQ3_SHIFT,
808 static void alx_config_vector_mapping(struct alx_priv *alx)
810 struct alx_hw *hw = &alx->hw;
811 u32 tbl[2] = {0, 0};
812 int i, vector, idx, shift;
814 if (alx->hw.pdev->msix_enabled) {
815 /* tx mappings */
816 for (i = 0, vector = 1; i < alx->num_txq; i++, vector++) {
817 idx = txq_vec_mapping_shift[i * 2];
818 shift = txq_vec_mapping_shift[i * 2 + 1];
819 tbl[idx] |= vector << shift;
822 /* rx mapping */
823 tbl[0] |= 1 << ALX_MSI_MAP_TBL1_RXQ0_SHIFT;
826 alx_write_mem32(hw, ALX_MSI_MAP_TBL1, tbl[0]);
827 alx_write_mem32(hw, ALX_MSI_MAP_TBL2, tbl[1]);
828 alx_write_mem32(hw, ALX_MSI_ID_MAP, 0);
831 static int alx_enable_msix(struct alx_priv *alx)
833 int err, num_vec, num_txq, num_rxq;
835 num_txq = min_t(int, num_online_cpus(), ALX_MAX_TX_QUEUES);
836 num_rxq = 1;
837 num_vec = max_t(int, num_txq, num_rxq) + 1;
839 err = pci_alloc_irq_vectors(alx->hw.pdev, num_vec, num_vec,
840 PCI_IRQ_MSIX);
841 if (err < 0) {
842 netdev_warn(alx->dev, "Enabling MSI-X interrupts failed!\n");
843 return err;
846 alx->num_vec = num_vec;
847 alx->num_napi = num_vec - 1;
848 alx->num_txq = num_txq;
849 alx->num_rxq = num_rxq;
851 return err;
854 static int alx_request_msix(struct alx_priv *alx)
856 struct net_device *netdev = alx->dev;
857 int i, err, vector = 0, free_vector = 0;
859 err = request_irq(pci_irq_vector(alx->hw.pdev, 0), alx_intr_msix_misc,
860 0, netdev->name, alx);
861 if (err)
862 goto out_err;
864 for (i = 0; i < alx->num_napi; i++) {
865 struct alx_napi *np = alx->qnapi[i];
867 vector++;
869 if (np->txq && np->rxq)
870 sprintf(np->irq_lbl, "%s-TxRx-%u", netdev->name,
871 np->txq->queue_idx);
872 else if (np->txq)
873 sprintf(np->irq_lbl, "%s-tx-%u", netdev->name,
874 np->txq->queue_idx);
875 else if (np->rxq)
876 sprintf(np->irq_lbl, "%s-rx-%u", netdev->name,
877 np->rxq->queue_idx);
878 else
879 sprintf(np->irq_lbl, "%s-unused", netdev->name);
881 np->vec_idx = vector;
882 err = request_irq(pci_irq_vector(alx->hw.pdev, vector),
883 alx_intr_msix_ring, 0, np->irq_lbl, np);
884 if (err)
885 goto out_free;
887 return 0;
889 out_free:
890 free_irq(pci_irq_vector(alx->hw.pdev, free_vector++), alx);
892 vector--;
893 for (i = 0; i < vector; i++)
894 free_irq(pci_irq_vector(alx->hw.pdev,free_vector++),
895 alx->qnapi[i]);
897 out_err:
898 return err;
901 static int alx_init_intr(struct alx_priv *alx)
903 int ret;
905 ret = pci_alloc_irq_vectors(alx->hw.pdev, 1, 1,
906 PCI_IRQ_MSI | PCI_IRQ_LEGACY);
907 if (ret < 0)
908 return ret;
910 alx->num_vec = 1;
911 alx->num_napi = 1;
912 alx->num_txq = 1;
913 alx->num_rxq = 1;
914 return 0;
917 static void alx_irq_enable(struct alx_priv *alx)
919 struct alx_hw *hw = &alx->hw;
920 int i;
922 /* level-1 interrupt switch */
923 alx_write_mem32(hw, ALX_ISR, 0);
924 alx_write_mem32(hw, ALX_IMR, alx->int_mask);
925 alx_post_write(hw);
927 if (alx->hw.pdev->msix_enabled) {
928 /* enable all msix irqs */
929 for (i = 0; i < alx->num_vec; i++)
930 alx_mask_msix(hw, i, false);
934 static void alx_irq_disable(struct alx_priv *alx)
936 struct alx_hw *hw = &alx->hw;
937 int i;
939 alx_write_mem32(hw, ALX_ISR, ALX_ISR_DIS);
940 alx_write_mem32(hw, ALX_IMR, 0);
941 alx_post_write(hw);
943 if (alx->hw.pdev->msix_enabled) {
944 for (i = 0; i < alx->num_vec; i++) {
945 alx_mask_msix(hw, i, true);
946 synchronize_irq(pci_irq_vector(alx->hw.pdev, i));
948 } else {
949 synchronize_irq(pci_irq_vector(alx->hw.pdev, 0));
953 static int alx_realloc_resources(struct alx_priv *alx)
955 int err;
957 alx_free_rings(alx);
958 alx_free_napis(alx);
959 pci_free_irq_vectors(alx->hw.pdev);
961 err = alx_init_intr(alx);
962 if (err)
963 return err;
965 err = alx_alloc_napis(alx);
966 if (err)
967 return err;
969 err = alx_alloc_rings(alx);
970 if (err)
971 return err;
973 return 0;
976 static int alx_request_irq(struct alx_priv *alx)
978 struct pci_dev *pdev = alx->hw.pdev;
979 struct alx_hw *hw = &alx->hw;
980 int err;
981 u32 msi_ctrl;
983 msi_ctrl = (hw->imt >> 1) << ALX_MSI_RETRANS_TM_SHIFT;
985 if (alx->hw.pdev->msix_enabled) {
986 alx_write_mem32(hw, ALX_MSI_RETRANS_TIMER, msi_ctrl);
987 err = alx_request_msix(alx);
988 if (!err)
989 goto out;
991 /* msix request failed, realloc resources */
992 err = alx_realloc_resources(alx);
993 if (err)
994 goto out;
997 if (alx->hw.pdev->msi_enabled) {
998 alx_write_mem32(hw, ALX_MSI_RETRANS_TIMER,
999 msi_ctrl | ALX_MSI_MASK_SEL_LINE);
1000 err = request_irq(pci_irq_vector(pdev, 0), alx_intr_msi, 0,
1001 alx->dev->name, alx);
1002 if (!err)
1003 goto out;
1005 /* fall back to legacy interrupt */
1006 pci_free_irq_vectors(alx->hw.pdev);
1009 alx_write_mem32(hw, ALX_MSI_RETRANS_TIMER, 0);
1010 err = request_irq(pci_irq_vector(pdev, 0), alx_intr_legacy, IRQF_SHARED,
1011 alx->dev->name, alx);
1012 out:
1013 if (!err)
1014 alx_config_vector_mapping(alx);
1015 else
1016 netdev_err(alx->dev, "IRQ registration failed!\n");
1017 return err;
1020 static void alx_free_irq(struct alx_priv *alx)
1022 struct pci_dev *pdev = alx->hw.pdev;
1023 int i;
1025 free_irq(pci_irq_vector(pdev, 0), alx);
1026 if (alx->hw.pdev->msix_enabled) {
1027 for (i = 0; i < alx->num_napi; i++)
1028 free_irq(pci_irq_vector(pdev, i + 1), alx->qnapi[i]);
1031 pci_free_irq_vectors(pdev);
1034 static int alx_identify_hw(struct alx_priv *alx)
1036 struct alx_hw *hw = &alx->hw;
1037 int rev = alx_hw_revision(hw);
1039 if (rev > ALX_REV_C0)
1040 return -EINVAL;
1042 hw->max_dma_chnl = rev >= ALX_REV_B0 ? 4 : 2;
1044 return 0;
1047 static int alx_init_sw(struct alx_priv *alx)
1049 struct pci_dev *pdev = alx->hw.pdev;
1050 struct alx_hw *hw = &alx->hw;
1051 int err;
1053 err = alx_identify_hw(alx);
1054 if (err) {
1055 dev_err(&pdev->dev, "unrecognized chip, aborting\n");
1056 return err;
1059 alx->hw.lnk_patch =
1060 pdev->device == ALX_DEV_ID_AR8161 &&
1061 pdev->subsystem_vendor == PCI_VENDOR_ID_ATTANSIC &&
1062 pdev->subsystem_device == 0x0091 &&
1063 pdev->revision == 0;
1065 hw->smb_timer = 400;
1066 hw->mtu = alx->dev->mtu;
1067 alx->rxbuf_size = ALX_MAX_FRAME_LEN(hw->mtu);
1068 /* MTU range: 34 - 9256 */
1069 alx->dev->min_mtu = 34;
1070 alx->dev->max_mtu = ALX_MAX_FRAME_LEN(ALX_MAX_FRAME_SIZE);
1071 alx->tx_ringsz = 256;
1072 alx->rx_ringsz = 512;
1073 hw->imt = 200;
1074 alx->int_mask = ALX_ISR_MISC;
1075 hw->dma_chnl = hw->max_dma_chnl;
1076 hw->ith_tpd = alx->tx_ringsz / 3;
1077 hw->link_speed = SPEED_UNKNOWN;
1078 hw->duplex = DUPLEX_UNKNOWN;
1079 hw->adv_cfg = ADVERTISED_Autoneg |
1080 ADVERTISED_10baseT_Half |
1081 ADVERTISED_10baseT_Full |
1082 ADVERTISED_100baseT_Full |
1083 ADVERTISED_100baseT_Half |
1084 ADVERTISED_1000baseT_Full;
1085 hw->flowctrl = ALX_FC_ANEG | ALX_FC_RX | ALX_FC_TX;
1087 hw->rx_ctrl = ALX_MAC_CTRL_WOLSPED_SWEN |
1088 ALX_MAC_CTRL_MHASH_ALG_HI5B |
1089 ALX_MAC_CTRL_BRD_EN |
1090 ALX_MAC_CTRL_PCRCE |
1091 ALX_MAC_CTRL_CRCE |
1092 ALX_MAC_CTRL_RXFC_EN |
1093 ALX_MAC_CTRL_TXFC_EN |
1094 7 << ALX_MAC_CTRL_PRMBLEN_SHIFT;
1096 return err;
1100 static netdev_features_t alx_fix_features(struct net_device *netdev,
1101 netdev_features_t features)
1103 if (netdev->mtu > ALX_MAX_TSO_PKT_SIZE)
1104 features &= ~(NETIF_F_TSO | NETIF_F_TSO6);
1106 return features;
1109 static void alx_netif_stop(struct alx_priv *alx)
1111 int i;
1113 netif_trans_update(alx->dev);
1114 if (netif_carrier_ok(alx->dev)) {
1115 netif_carrier_off(alx->dev);
1116 netif_tx_disable(alx->dev);
1117 for (i = 0; i < alx->num_napi; i++)
1118 napi_disable(&alx->qnapi[i]->napi);
1122 static void alx_halt(struct alx_priv *alx)
1124 struct alx_hw *hw = &alx->hw;
1126 alx_netif_stop(alx);
1127 hw->link_speed = SPEED_UNKNOWN;
1128 hw->duplex = DUPLEX_UNKNOWN;
1130 alx_reset_mac(hw);
1132 /* disable l0s/l1 */
1133 alx_enable_aspm(hw, false, false);
1134 alx_irq_disable(alx);
1135 alx_free_buffers(alx);
1138 static void alx_configure(struct alx_priv *alx)
1140 struct alx_hw *hw = &alx->hw;
1142 alx_configure_basic(hw);
1143 alx_disable_rss(hw);
1144 __alx_set_rx_mode(alx->dev);
1146 alx_write_mem32(hw, ALX_MAC_CTRL, hw->rx_ctrl);
1149 static void alx_activate(struct alx_priv *alx)
1151 /* hardware setting lost, restore it */
1152 alx_reinit_rings(alx);
1153 alx_configure(alx);
1155 /* clear old interrupts */
1156 alx_write_mem32(&alx->hw, ALX_ISR, ~(u32)ALX_ISR_DIS);
1158 alx_irq_enable(alx);
1160 alx_schedule_link_check(alx);
1163 static void alx_reinit(struct alx_priv *alx)
1165 ASSERT_RTNL();
1167 alx_halt(alx);
1168 alx_activate(alx);
1171 static int alx_change_mtu(struct net_device *netdev, int mtu)
1173 struct alx_priv *alx = netdev_priv(netdev);
1174 int max_frame = ALX_MAX_FRAME_LEN(mtu);
1176 netdev->mtu = mtu;
1177 alx->hw.mtu = mtu;
1178 alx->rxbuf_size = max(max_frame, ALX_DEF_RXBUF_SIZE);
1179 netdev_update_features(netdev);
1180 if (netif_running(netdev))
1181 alx_reinit(alx);
1182 return 0;
1185 static void alx_netif_start(struct alx_priv *alx)
1187 int i;
1189 netif_tx_wake_all_queues(alx->dev);
1190 for (i = 0; i < alx->num_napi; i++)
1191 napi_enable(&alx->qnapi[i]->napi);
1192 netif_carrier_on(alx->dev);
1195 static int __alx_open(struct alx_priv *alx, bool resume)
1197 int err;
1199 err = alx_enable_msix(alx);
1200 if (err < 0) {
1201 err = alx_init_intr(alx);
1202 if (err)
1203 return err;
1206 if (!resume)
1207 netif_carrier_off(alx->dev);
1209 err = alx_alloc_napis(alx);
1210 if (err)
1211 goto out_disable_adv_intr;
1213 err = alx_alloc_rings(alx);
1214 if (err)
1215 goto out_free_rings;
1217 alx_configure(alx);
1219 err = alx_request_irq(alx);
1220 if (err)
1221 goto out_free_rings;
1223 /* must be called after alx_request_irq because the chip stops working
1224 * if we copy the dma addresses in alx_init_ring_ptrs twice when
1225 * requesting msi-x interrupts failed
1227 alx_reinit_rings(alx);
1229 netif_set_real_num_tx_queues(alx->dev, alx->num_txq);
1230 netif_set_real_num_rx_queues(alx->dev, alx->num_rxq);
1232 /* clear old interrupts */
1233 alx_write_mem32(&alx->hw, ALX_ISR, ~(u32)ALX_ISR_DIS);
1235 alx_irq_enable(alx);
1237 if (!resume)
1238 netif_tx_start_all_queues(alx->dev);
1240 alx_schedule_link_check(alx);
1241 return 0;
1243 out_free_rings:
1244 alx_free_rings(alx);
1245 alx_free_napis(alx);
1246 out_disable_adv_intr:
1247 pci_free_irq_vectors(alx->hw.pdev);
1248 return err;
1251 static void __alx_stop(struct alx_priv *alx)
1253 alx_halt(alx);
1254 alx_free_irq(alx);
1255 alx_free_rings(alx);
1256 alx_free_napis(alx);
1259 static const char *alx_speed_desc(struct alx_hw *hw)
1261 switch (alx_speed_to_ethadv(hw->link_speed, hw->duplex)) {
1262 case ADVERTISED_1000baseT_Full:
1263 return "1 Gbps Full";
1264 case ADVERTISED_100baseT_Full:
1265 return "100 Mbps Full";
1266 case ADVERTISED_100baseT_Half:
1267 return "100 Mbps Half";
1268 case ADVERTISED_10baseT_Full:
1269 return "10 Mbps Full";
1270 case ADVERTISED_10baseT_Half:
1271 return "10 Mbps Half";
1272 default:
1273 return "Unknown speed";
1277 static void alx_check_link(struct alx_priv *alx)
1279 struct alx_hw *hw = &alx->hw;
1280 unsigned long flags;
1281 int old_speed;
1282 u8 old_duplex;
1283 int err;
1285 /* clear PHY internal interrupt status, otherwise the main
1286 * interrupt status will be asserted forever
1288 alx_clear_phy_intr(hw);
1290 old_speed = hw->link_speed;
1291 old_duplex = hw->duplex;
1292 err = alx_read_phy_link(hw);
1293 if (err < 0)
1294 goto reset;
1296 spin_lock_irqsave(&alx->irq_lock, flags);
1297 alx->int_mask |= ALX_ISR_PHY;
1298 alx_write_mem32(hw, ALX_IMR, alx->int_mask);
1299 spin_unlock_irqrestore(&alx->irq_lock, flags);
1301 if (old_speed == hw->link_speed)
1302 return;
1304 if (hw->link_speed != SPEED_UNKNOWN) {
1305 netif_info(alx, link, alx->dev,
1306 "NIC Up: %s\n", alx_speed_desc(hw));
1307 alx_post_phy_link(hw);
1308 alx_enable_aspm(hw, true, true);
1309 alx_start_mac(hw);
1311 if (old_speed == SPEED_UNKNOWN)
1312 alx_netif_start(alx);
1313 } else {
1314 /* link is now down */
1315 alx_netif_stop(alx);
1316 netif_info(alx, link, alx->dev, "Link Down\n");
1317 err = alx_reset_mac(hw);
1318 if (err)
1319 goto reset;
1320 alx_irq_disable(alx);
1322 /* MAC reset causes all HW settings to be lost, restore all */
1323 err = alx_reinit_rings(alx);
1324 if (err)
1325 goto reset;
1326 alx_configure(alx);
1327 alx_enable_aspm(hw, false, true);
1328 alx_post_phy_link(hw);
1329 alx_irq_enable(alx);
1332 return;
1334 reset:
1335 alx_schedule_reset(alx);
1338 static int alx_open(struct net_device *netdev)
1340 return __alx_open(netdev_priv(netdev), false);
1343 static int alx_stop(struct net_device *netdev)
1345 __alx_stop(netdev_priv(netdev));
1346 return 0;
1349 static void alx_link_check(struct work_struct *work)
1351 struct alx_priv *alx;
1353 alx = container_of(work, struct alx_priv, link_check_wk);
1355 rtnl_lock();
1356 alx_check_link(alx);
1357 rtnl_unlock();
1360 static void alx_reset(struct work_struct *work)
1362 struct alx_priv *alx = container_of(work, struct alx_priv, reset_wk);
1364 rtnl_lock();
1365 alx_reinit(alx);
1366 rtnl_unlock();
1369 static int alx_tpd_req(struct sk_buff *skb)
1371 int num;
1373 num = skb_shinfo(skb)->nr_frags + 1;
1374 /* we need one extra descriptor for LSOv2 */
1375 if (skb_is_gso(skb) && skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6)
1376 num++;
1378 return num;
1381 static int alx_tx_csum(struct sk_buff *skb, struct alx_txd *first)
1383 u8 cso, css;
1385 if (skb->ip_summed != CHECKSUM_PARTIAL)
1386 return 0;
1388 cso = skb_checksum_start_offset(skb);
1389 if (cso & 1)
1390 return -EINVAL;
1392 css = cso + skb->csum_offset;
1393 first->word1 |= cpu_to_le32((cso >> 1) << TPD_CXSUMSTART_SHIFT);
1394 first->word1 |= cpu_to_le32((css >> 1) << TPD_CXSUMOFFSET_SHIFT);
1395 first->word1 |= cpu_to_le32(1 << TPD_CXSUM_EN_SHIFT);
1397 return 0;
1400 static int alx_tso(struct sk_buff *skb, struct alx_txd *first)
1402 int err;
1404 if (skb->ip_summed != CHECKSUM_PARTIAL)
1405 return 0;
1407 if (!skb_is_gso(skb))
1408 return 0;
1410 err = skb_cow_head(skb, 0);
1411 if (err < 0)
1412 return err;
1414 if (skb->protocol == htons(ETH_P_IP)) {
1415 struct iphdr *iph = ip_hdr(skb);
1417 iph->check = 0;
1418 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr, iph->daddr,
1419 0, IPPROTO_TCP, 0);
1420 first->word1 |= 1 << TPD_IPV4_SHIFT;
1421 } else if (skb_is_gso_v6(skb)) {
1422 ipv6_hdr(skb)->payload_len = 0;
1423 tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
1424 &ipv6_hdr(skb)->daddr,
1425 0, IPPROTO_TCP, 0);
1426 /* LSOv2: the first TPD only provides the packet length */
1427 first->adrl.l.pkt_len = skb->len;
1428 first->word1 |= 1 << TPD_LSO_V2_SHIFT;
1431 first->word1 |= 1 << TPD_LSO_EN_SHIFT;
1432 first->word1 |= (skb_transport_offset(skb) &
1433 TPD_L4HDROFFSET_MASK) << TPD_L4HDROFFSET_SHIFT;
1434 first->word1 |= (skb_shinfo(skb)->gso_size &
1435 TPD_MSS_MASK) << TPD_MSS_SHIFT;
1436 return 1;
1439 static int alx_map_tx_skb(struct alx_tx_queue *txq, struct sk_buff *skb)
1441 struct alx_txd *tpd, *first_tpd;
1442 dma_addr_t dma;
1443 int maplen, f, first_idx = txq->write_idx;
1445 first_tpd = &txq->tpd[txq->write_idx];
1446 tpd = first_tpd;
1448 if (tpd->word1 & (1 << TPD_LSO_V2_SHIFT)) {
1449 if (++txq->write_idx == txq->count)
1450 txq->write_idx = 0;
1452 tpd = &txq->tpd[txq->write_idx];
1453 tpd->len = first_tpd->len;
1454 tpd->vlan_tag = first_tpd->vlan_tag;
1455 tpd->word1 = first_tpd->word1;
1458 maplen = skb_headlen(skb);
1459 dma = dma_map_single(txq->dev, skb->data, maplen,
1460 DMA_TO_DEVICE);
1461 if (dma_mapping_error(txq->dev, dma))
1462 goto err_dma;
1464 dma_unmap_len_set(&txq->bufs[txq->write_idx], size, maplen);
1465 dma_unmap_addr_set(&txq->bufs[txq->write_idx], dma, dma);
1467 tpd->adrl.addr = cpu_to_le64(dma);
1468 tpd->len = cpu_to_le16(maplen);
1470 for (f = 0; f < skb_shinfo(skb)->nr_frags; f++) {
1471 struct skb_frag_struct *frag;
1473 frag = &skb_shinfo(skb)->frags[f];
1475 if (++txq->write_idx == txq->count)
1476 txq->write_idx = 0;
1477 tpd = &txq->tpd[txq->write_idx];
1479 tpd->word1 = first_tpd->word1;
1481 maplen = skb_frag_size(frag);
1482 dma = skb_frag_dma_map(txq->dev, frag, 0,
1483 maplen, DMA_TO_DEVICE);
1484 if (dma_mapping_error(txq->dev, dma))
1485 goto err_dma;
1486 dma_unmap_len_set(&txq->bufs[txq->write_idx], size, maplen);
1487 dma_unmap_addr_set(&txq->bufs[txq->write_idx], dma, dma);
1489 tpd->adrl.addr = cpu_to_le64(dma);
1490 tpd->len = cpu_to_le16(maplen);
1493 /* last TPD, set EOP flag and store skb */
1494 tpd->word1 |= cpu_to_le32(1 << TPD_EOP_SHIFT);
1495 txq->bufs[txq->write_idx].skb = skb;
1497 if (++txq->write_idx == txq->count)
1498 txq->write_idx = 0;
1500 return 0;
1502 err_dma:
1503 f = first_idx;
1504 while (f != txq->write_idx) {
1505 alx_free_txbuf(txq, f);
1506 if (++f == txq->count)
1507 f = 0;
1509 return -ENOMEM;
1512 static netdev_tx_t alx_start_xmit_ring(struct sk_buff *skb,
1513 struct alx_tx_queue *txq)
1515 struct alx_priv *alx;
1516 struct alx_txd *first;
1517 int tso;
1519 alx = netdev_priv(txq->netdev);
1521 if (alx_tpd_avail(txq) < alx_tpd_req(skb)) {
1522 netif_tx_stop_queue(alx_get_tx_queue(txq));
1523 goto drop;
1526 first = &txq->tpd[txq->write_idx];
1527 memset(first, 0, sizeof(*first));
1529 tso = alx_tso(skb, first);
1530 if (tso < 0)
1531 goto drop;
1532 else if (!tso && alx_tx_csum(skb, first))
1533 goto drop;
1535 if (alx_map_tx_skb(txq, skb) < 0)
1536 goto drop;
1538 netdev_tx_sent_queue(alx_get_tx_queue(txq), skb->len);
1540 /* flush updates before updating hardware */
1541 wmb();
1542 alx_write_mem16(&alx->hw, txq->p_reg, txq->write_idx);
1544 if (alx_tpd_avail(txq) < txq->count / 8)
1545 netif_tx_stop_queue(alx_get_tx_queue(txq));
1547 return NETDEV_TX_OK;
1549 drop:
1550 dev_kfree_skb_any(skb);
1551 return NETDEV_TX_OK;
1554 static netdev_tx_t alx_start_xmit(struct sk_buff *skb,
1555 struct net_device *netdev)
1557 struct alx_priv *alx = netdev_priv(netdev);
1558 return alx_start_xmit_ring(skb, alx_tx_queue_mapping(alx, skb));
1561 static void alx_tx_timeout(struct net_device *dev)
1563 struct alx_priv *alx = netdev_priv(dev);
1565 alx_schedule_reset(alx);
1568 static int alx_mdio_read(struct net_device *netdev,
1569 int prtad, int devad, u16 addr)
1571 struct alx_priv *alx = netdev_priv(netdev);
1572 struct alx_hw *hw = &alx->hw;
1573 u16 val;
1574 int err;
1576 if (prtad != hw->mdio.prtad)
1577 return -EINVAL;
1579 if (devad == MDIO_DEVAD_NONE)
1580 err = alx_read_phy_reg(hw, addr, &val);
1581 else
1582 err = alx_read_phy_ext(hw, devad, addr, &val);
1584 if (err)
1585 return err;
1586 return val;
1589 static int alx_mdio_write(struct net_device *netdev,
1590 int prtad, int devad, u16 addr, u16 val)
1592 struct alx_priv *alx = netdev_priv(netdev);
1593 struct alx_hw *hw = &alx->hw;
1595 if (prtad != hw->mdio.prtad)
1596 return -EINVAL;
1598 if (devad == MDIO_DEVAD_NONE)
1599 return alx_write_phy_reg(hw, addr, val);
1601 return alx_write_phy_ext(hw, devad, addr, val);
1604 static int alx_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
1606 struct alx_priv *alx = netdev_priv(netdev);
1608 if (!netif_running(netdev))
1609 return -EAGAIN;
1611 return mdio_mii_ioctl(&alx->hw.mdio, if_mii(ifr), cmd);
1614 #ifdef CONFIG_NET_POLL_CONTROLLER
1615 static void alx_poll_controller(struct net_device *netdev)
1617 struct alx_priv *alx = netdev_priv(netdev);
1618 int i;
1620 if (alx->hw.pdev->msix_enabled) {
1621 alx_intr_msix_misc(0, alx);
1622 for (i = 0; i < alx->num_txq; i++)
1623 alx_intr_msix_ring(0, alx->qnapi[i]);
1624 } else if (alx->hw.pdev->msi_enabled)
1625 alx_intr_msi(0, alx);
1626 else
1627 alx_intr_legacy(0, alx);
1629 #endif
1631 static void alx_get_stats64(struct net_device *dev,
1632 struct rtnl_link_stats64 *net_stats)
1634 struct alx_priv *alx = netdev_priv(dev);
1635 struct alx_hw_stats *hw_stats = &alx->hw.stats;
1637 spin_lock(&alx->stats_lock);
1639 alx_update_hw_stats(&alx->hw);
1641 net_stats->tx_bytes = hw_stats->tx_byte_cnt;
1642 net_stats->rx_bytes = hw_stats->rx_byte_cnt;
1643 net_stats->multicast = hw_stats->rx_mcast;
1644 net_stats->collisions = hw_stats->tx_single_col +
1645 hw_stats->tx_multi_col +
1646 hw_stats->tx_late_col +
1647 hw_stats->tx_abort_col;
1649 net_stats->rx_errors = hw_stats->rx_frag +
1650 hw_stats->rx_fcs_err +
1651 hw_stats->rx_len_err +
1652 hw_stats->rx_ov_sz +
1653 hw_stats->rx_ov_rrd +
1654 hw_stats->rx_align_err +
1655 hw_stats->rx_ov_rxf;
1657 net_stats->rx_fifo_errors = hw_stats->rx_ov_rxf;
1658 net_stats->rx_length_errors = hw_stats->rx_len_err;
1659 net_stats->rx_crc_errors = hw_stats->rx_fcs_err;
1660 net_stats->rx_frame_errors = hw_stats->rx_align_err;
1661 net_stats->rx_dropped = hw_stats->rx_ov_rrd;
1663 net_stats->tx_errors = hw_stats->tx_late_col +
1664 hw_stats->tx_abort_col +
1665 hw_stats->tx_underrun +
1666 hw_stats->tx_trunc;
1668 net_stats->tx_aborted_errors = hw_stats->tx_abort_col;
1669 net_stats->tx_fifo_errors = hw_stats->tx_underrun;
1670 net_stats->tx_window_errors = hw_stats->tx_late_col;
1672 net_stats->tx_packets = hw_stats->tx_ok + net_stats->tx_errors;
1673 net_stats->rx_packets = hw_stats->rx_ok + net_stats->rx_errors;
1675 spin_unlock(&alx->stats_lock);
1678 static const struct net_device_ops alx_netdev_ops = {
1679 .ndo_open = alx_open,
1680 .ndo_stop = alx_stop,
1681 .ndo_start_xmit = alx_start_xmit,
1682 .ndo_get_stats64 = alx_get_stats64,
1683 .ndo_set_rx_mode = alx_set_rx_mode,
1684 .ndo_validate_addr = eth_validate_addr,
1685 .ndo_set_mac_address = alx_set_mac_address,
1686 .ndo_change_mtu = alx_change_mtu,
1687 .ndo_do_ioctl = alx_ioctl,
1688 .ndo_tx_timeout = alx_tx_timeout,
1689 .ndo_fix_features = alx_fix_features,
1690 #ifdef CONFIG_NET_POLL_CONTROLLER
1691 .ndo_poll_controller = alx_poll_controller,
1692 #endif
1695 static int alx_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
1697 struct net_device *netdev;
1698 struct alx_priv *alx;
1699 struct alx_hw *hw;
1700 bool phy_configured;
1701 int err;
1703 err = pci_enable_device_mem(pdev);
1704 if (err)
1705 return err;
1707 /* The alx chip can DMA to 64-bit addresses, but it uses a single
1708 * shared register for the high 32 bits, so only a single, aligned,
1709 * 4 GB physical address range can be used for descriptors.
1711 if (!dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64))) {
1712 dev_dbg(&pdev->dev, "DMA to 64-BIT addresses\n");
1713 } else {
1714 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
1715 if (err) {
1716 dev_err(&pdev->dev, "No usable DMA config, aborting\n");
1717 goto out_pci_disable;
1721 err = pci_request_mem_regions(pdev, alx_drv_name);
1722 if (err) {
1723 dev_err(&pdev->dev,
1724 "pci_request_mem_regions failed\n");
1725 goto out_pci_disable;
1728 pci_enable_pcie_error_reporting(pdev);
1729 pci_set_master(pdev);
1731 if (!pdev->pm_cap) {
1732 dev_err(&pdev->dev,
1733 "Can't find power management capability, aborting\n");
1734 err = -EIO;
1735 goto out_pci_release;
1738 netdev = alloc_etherdev_mqs(sizeof(*alx),
1739 ALX_MAX_TX_QUEUES, 1);
1740 if (!netdev) {
1741 err = -ENOMEM;
1742 goto out_pci_release;
1745 SET_NETDEV_DEV(netdev, &pdev->dev);
1746 alx = netdev_priv(netdev);
1747 spin_lock_init(&alx->hw.mdio_lock);
1748 spin_lock_init(&alx->irq_lock);
1749 spin_lock_init(&alx->stats_lock);
1750 alx->dev = netdev;
1751 alx->hw.pdev = pdev;
1752 alx->msg_enable = NETIF_MSG_LINK | NETIF_MSG_HW | NETIF_MSG_IFUP |
1753 NETIF_MSG_TX_ERR | NETIF_MSG_RX_ERR | NETIF_MSG_WOL;
1754 hw = &alx->hw;
1755 pci_set_drvdata(pdev, alx);
1757 hw->hw_addr = pci_ioremap_bar(pdev, 0);
1758 if (!hw->hw_addr) {
1759 dev_err(&pdev->dev, "cannot map device registers\n");
1760 err = -EIO;
1761 goto out_free_netdev;
1764 netdev->netdev_ops = &alx_netdev_ops;
1765 netdev->ethtool_ops = &alx_ethtool_ops;
1766 netdev->irq = pci_irq_vector(pdev, 0);
1767 netdev->watchdog_timeo = ALX_WATCHDOG_TIME;
1769 if (ent->driver_data & ALX_DEV_QUIRK_MSI_INTX_DISABLE_BUG)
1770 pdev->dev_flags |= PCI_DEV_FLAGS_MSI_INTX_DISABLE_BUG;
1772 err = alx_init_sw(alx);
1773 if (err) {
1774 dev_err(&pdev->dev, "net device private data init failed\n");
1775 goto out_unmap;
1778 alx_reset_pcie(hw);
1780 phy_configured = alx_phy_configured(hw);
1782 if (!phy_configured)
1783 alx_reset_phy(hw);
1785 err = alx_reset_mac(hw);
1786 if (err) {
1787 dev_err(&pdev->dev, "MAC Reset failed, error = %d\n", err);
1788 goto out_unmap;
1791 /* setup link to put it in a known good starting state */
1792 if (!phy_configured) {
1793 err = alx_setup_speed_duplex(hw, hw->adv_cfg, hw->flowctrl);
1794 if (err) {
1795 dev_err(&pdev->dev,
1796 "failed to configure PHY speed/duplex (err=%d)\n",
1797 err);
1798 goto out_unmap;
1802 netdev->hw_features = NETIF_F_SG |
1803 NETIF_F_HW_CSUM |
1804 NETIF_F_RXCSUM |
1805 NETIF_F_TSO |
1806 NETIF_F_TSO6;
1808 if (alx_get_perm_macaddr(hw, hw->perm_addr)) {
1809 dev_warn(&pdev->dev,
1810 "Invalid permanent address programmed, using random one\n");
1811 eth_hw_addr_random(netdev);
1812 memcpy(hw->perm_addr, netdev->dev_addr, netdev->addr_len);
1815 memcpy(hw->mac_addr, hw->perm_addr, ETH_ALEN);
1816 memcpy(netdev->dev_addr, hw->mac_addr, ETH_ALEN);
1817 memcpy(netdev->perm_addr, hw->perm_addr, ETH_ALEN);
1819 hw->mdio.prtad = 0;
1820 hw->mdio.mmds = 0;
1821 hw->mdio.dev = netdev;
1822 hw->mdio.mode_support = MDIO_SUPPORTS_C45 |
1823 MDIO_SUPPORTS_C22 |
1824 MDIO_EMULATE_C22;
1825 hw->mdio.mdio_read = alx_mdio_read;
1826 hw->mdio.mdio_write = alx_mdio_write;
1828 if (!alx_get_phy_info(hw)) {
1829 dev_err(&pdev->dev, "failed to identify PHY\n");
1830 err = -EIO;
1831 goto out_unmap;
1834 INIT_WORK(&alx->link_check_wk, alx_link_check);
1835 INIT_WORK(&alx->reset_wk, alx_reset);
1836 netif_carrier_off(netdev);
1838 err = register_netdev(netdev);
1839 if (err) {
1840 dev_err(&pdev->dev, "register netdevice failed\n");
1841 goto out_unmap;
1844 netdev_info(netdev,
1845 "Qualcomm Atheros AR816x/AR817x Ethernet [%pM]\n",
1846 netdev->dev_addr);
1848 return 0;
1850 out_unmap:
1851 iounmap(hw->hw_addr);
1852 out_free_netdev:
1853 free_netdev(netdev);
1854 out_pci_release:
1855 pci_release_mem_regions(pdev);
1856 out_pci_disable:
1857 pci_disable_device(pdev);
1858 return err;
1861 static void alx_remove(struct pci_dev *pdev)
1863 struct alx_priv *alx = pci_get_drvdata(pdev);
1864 struct alx_hw *hw = &alx->hw;
1866 cancel_work_sync(&alx->link_check_wk);
1867 cancel_work_sync(&alx->reset_wk);
1869 /* restore permanent mac address */
1870 alx_set_macaddr(hw, hw->perm_addr);
1872 unregister_netdev(alx->dev);
1873 iounmap(hw->hw_addr);
1874 pci_release_mem_regions(pdev);
1876 pci_disable_pcie_error_reporting(pdev);
1877 pci_disable_device(pdev);
1879 free_netdev(alx->dev);
1882 #ifdef CONFIG_PM_SLEEP
1883 static int alx_suspend(struct device *dev)
1885 struct pci_dev *pdev = to_pci_dev(dev);
1886 struct alx_priv *alx = pci_get_drvdata(pdev);
1888 if (!netif_running(alx->dev))
1889 return 0;
1890 netif_device_detach(alx->dev);
1891 __alx_stop(alx);
1892 return 0;
1895 static int alx_resume(struct device *dev)
1897 struct pci_dev *pdev = to_pci_dev(dev);
1898 struct alx_priv *alx = pci_get_drvdata(pdev);
1899 struct alx_hw *hw = &alx->hw;
1901 alx_reset_phy(hw);
1903 if (!netif_running(alx->dev))
1904 return 0;
1905 netif_device_attach(alx->dev);
1906 return __alx_open(alx, true);
1909 static SIMPLE_DEV_PM_OPS(alx_pm_ops, alx_suspend, alx_resume);
1910 #define ALX_PM_OPS (&alx_pm_ops)
1911 #else
1912 #define ALX_PM_OPS NULL
1913 #endif
1916 static pci_ers_result_t alx_pci_error_detected(struct pci_dev *pdev,
1917 pci_channel_state_t state)
1919 struct alx_priv *alx = pci_get_drvdata(pdev);
1920 struct net_device *netdev = alx->dev;
1921 pci_ers_result_t rc = PCI_ERS_RESULT_NEED_RESET;
1923 dev_info(&pdev->dev, "pci error detected\n");
1925 rtnl_lock();
1927 if (netif_running(netdev)) {
1928 netif_device_detach(netdev);
1929 alx_halt(alx);
1932 if (state == pci_channel_io_perm_failure)
1933 rc = PCI_ERS_RESULT_DISCONNECT;
1934 else
1935 pci_disable_device(pdev);
1937 rtnl_unlock();
1939 return rc;
1942 static pci_ers_result_t alx_pci_error_slot_reset(struct pci_dev *pdev)
1944 struct alx_priv *alx = pci_get_drvdata(pdev);
1945 struct alx_hw *hw = &alx->hw;
1946 pci_ers_result_t rc = PCI_ERS_RESULT_DISCONNECT;
1948 dev_info(&pdev->dev, "pci error slot reset\n");
1950 rtnl_lock();
1952 if (pci_enable_device(pdev)) {
1953 dev_err(&pdev->dev, "Failed to re-enable PCI device after reset\n");
1954 goto out;
1957 pci_set_master(pdev);
1959 alx_reset_pcie(hw);
1960 if (!alx_reset_mac(hw))
1961 rc = PCI_ERS_RESULT_RECOVERED;
1962 out:
1963 pci_cleanup_aer_uncorrect_error_status(pdev);
1965 rtnl_unlock();
1967 return rc;
1970 static void alx_pci_error_resume(struct pci_dev *pdev)
1972 struct alx_priv *alx = pci_get_drvdata(pdev);
1973 struct net_device *netdev = alx->dev;
1975 dev_info(&pdev->dev, "pci error resume\n");
1977 rtnl_lock();
1979 if (netif_running(netdev)) {
1980 alx_activate(alx);
1981 netif_device_attach(netdev);
1984 rtnl_unlock();
1987 static const struct pci_error_handlers alx_err_handlers = {
1988 .error_detected = alx_pci_error_detected,
1989 .slot_reset = alx_pci_error_slot_reset,
1990 .resume = alx_pci_error_resume,
1993 static const struct pci_device_id alx_pci_tbl[] = {
1994 { PCI_VDEVICE(ATTANSIC, ALX_DEV_ID_AR8161),
1995 .driver_data = ALX_DEV_QUIRK_MSI_INTX_DISABLE_BUG },
1996 { PCI_VDEVICE(ATTANSIC, ALX_DEV_ID_E2200),
1997 .driver_data = ALX_DEV_QUIRK_MSI_INTX_DISABLE_BUG },
1998 { PCI_VDEVICE(ATTANSIC, ALX_DEV_ID_E2400),
1999 .driver_data = ALX_DEV_QUIRK_MSI_INTX_DISABLE_BUG },
2000 { PCI_VDEVICE(ATTANSIC, ALX_DEV_ID_E2500),
2001 .driver_data = ALX_DEV_QUIRK_MSI_INTX_DISABLE_BUG },
2002 { PCI_VDEVICE(ATTANSIC, ALX_DEV_ID_AR8162),
2003 .driver_data = ALX_DEV_QUIRK_MSI_INTX_DISABLE_BUG },
2004 { PCI_VDEVICE(ATTANSIC, ALX_DEV_ID_AR8171) },
2005 { PCI_VDEVICE(ATTANSIC, ALX_DEV_ID_AR8172) },
2009 static struct pci_driver alx_driver = {
2010 .name = alx_drv_name,
2011 .id_table = alx_pci_tbl,
2012 .probe = alx_probe,
2013 .remove = alx_remove,
2014 .err_handler = &alx_err_handlers,
2015 .driver.pm = ALX_PM_OPS,
2018 module_pci_driver(alx_driver);
2019 MODULE_DEVICE_TABLE(pci, alx_pci_tbl);
2020 MODULE_AUTHOR("Johannes Berg <johannes@sipsolutions.net>");
2021 MODULE_AUTHOR("Qualcomm Corporation, <nic-devel@qualcomm.com>");
2022 MODULE_DESCRIPTION(
2023 "Qualcomm Atheros(R) AR816x/AR817x PCI-E Ethernet Network Driver");
2024 MODULE_LICENSE("GPL");