Linux 4.16.11
[linux/fpc-iii.git] / drivers / net / ethernet / intel / ixgbevf / ixgbevf_main.c
blob9b3d43d2810697949ef2f9ea1c6972e562c3a98a
1 /*******************************************************************************
3 Intel 82599 Virtual Function driver
4 Copyright(c) 1999 - 2015 Intel Corporation.
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, see <http://www.gnu.org/licenses/>.
18 The full GNU General Public License is included in this distribution in
19 the file called "COPYING".
21 Contact Information:
22 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
23 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
25 *******************************************************************************/
27 /******************************************************************************
28 Copyright (c)2006 - 2007 Myricom, Inc. for some LRO specific code
29 ******************************************************************************/
31 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
33 #include <linux/types.h>
34 #include <linux/bitops.h>
35 #include <linux/module.h>
36 #include <linux/pci.h>
37 #include <linux/netdevice.h>
38 #include <linux/vmalloc.h>
39 #include <linux/string.h>
40 #include <linux/in.h>
41 #include <linux/ip.h>
42 #include <linux/tcp.h>
43 #include <linux/sctp.h>
44 #include <linux/ipv6.h>
45 #include <linux/slab.h>
46 #include <net/checksum.h>
47 #include <net/ip6_checksum.h>
48 #include <linux/ethtool.h>
49 #include <linux/if.h>
50 #include <linux/if_vlan.h>
51 #include <linux/prefetch.h>
52 #include <net/mpls.h>
54 #include "ixgbevf.h"
56 const char ixgbevf_driver_name[] = "ixgbevf";
57 static const char ixgbevf_driver_string[] =
58 "Intel(R) 10 Gigabit PCI Express Virtual Function Network Driver";
60 #define DRV_VERSION "4.1.0-k"
61 const char ixgbevf_driver_version[] = DRV_VERSION;
62 static char ixgbevf_copyright[] =
63 "Copyright (c) 2009 - 2015 Intel Corporation.";
65 static const struct ixgbevf_info *ixgbevf_info_tbl[] = {
66 [board_82599_vf] = &ixgbevf_82599_vf_info,
67 [board_82599_vf_hv] = &ixgbevf_82599_vf_hv_info,
68 [board_X540_vf] = &ixgbevf_X540_vf_info,
69 [board_X540_vf_hv] = &ixgbevf_X540_vf_hv_info,
70 [board_X550_vf] = &ixgbevf_X550_vf_info,
71 [board_X550_vf_hv] = &ixgbevf_X550_vf_hv_info,
72 [board_X550EM_x_vf] = &ixgbevf_X550EM_x_vf_info,
73 [board_X550EM_x_vf_hv] = &ixgbevf_X550EM_x_vf_hv_info,
74 [board_x550em_a_vf] = &ixgbevf_x550em_a_vf_info,
77 /* ixgbevf_pci_tbl - PCI Device ID Table
79 * Wildcard entries (PCI_ANY_ID) should come last
80 * Last entry must be all 0s
82 * { Vendor ID, Device ID, SubVendor ID, SubDevice ID,
83 * Class, Class Mask, private data (not used) }
85 static const struct pci_device_id ixgbevf_pci_tbl[] = {
86 {PCI_VDEVICE(INTEL, IXGBE_DEV_ID_82599_VF), board_82599_vf },
87 {PCI_VDEVICE(INTEL, IXGBE_DEV_ID_82599_VF_HV), board_82599_vf_hv },
88 {PCI_VDEVICE(INTEL, IXGBE_DEV_ID_X540_VF), board_X540_vf },
89 {PCI_VDEVICE(INTEL, IXGBE_DEV_ID_X540_VF_HV), board_X540_vf_hv },
90 {PCI_VDEVICE(INTEL, IXGBE_DEV_ID_X550_VF), board_X550_vf },
91 {PCI_VDEVICE(INTEL, IXGBE_DEV_ID_X550_VF_HV), board_X550_vf_hv },
92 {PCI_VDEVICE(INTEL, IXGBE_DEV_ID_X550EM_X_VF), board_X550EM_x_vf },
93 {PCI_VDEVICE(INTEL, IXGBE_DEV_ID_X550EM_X_VF_HV), board_X550EM_x_vf_hv},
94 {PCI_VDEVICE(INTEL, IXGBE_DEV_ID_X550EM_A_VF), board_x550em_a_vf },
95 /* required last entry */
96 {0, }
98 MODULE_DEVICE_TABLE(pci, ixgbevf_pci_tbl);
100 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
101 MODULE_DESCRIPTION("Intel(R) 10 Gigabit Virtual Function Network Driver");
102 MODULE_LICENSE("GPL");
103 MODULE_VERSION(DRV_VERSION);
105 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
106 static int debug = -1;
107 module_param(debug, int, 0);
108 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
110 static struct workqueue_struct *ixgbevf_wq;
112 static void ixgbevf_service_event_schedule(struct ixgbevf_adapter *adapter)
114 if (!test_bit(__IXGBEVF_DOWN, &adapter->state) &&
115 !test_bit(__IXGBEVF_REMOVING, &adapter->state) &&
116 !test_and_set_bit(__IXGBEVF_SERVICE_SCHED, &adapter->state))
117 queue_work(ixgbevf_wq, &adapter->service_task);
120 static void ixgbevf_service_event_complete(struct ixgbevf_adapter *adapter)
122 BUG_ON(!test_bit(__IXGBEVF_SERVICE_SCHED, &adapter->state));
124 /* flush memory to make sure state is correct before next watchdog */
125 smp_mb__before_atomic();
126 clear_bit(__IXGBEVF_SERVICE_SCHED, &adapter->state);
129 /* forward decls */
130 static void ixgbevf_queue_reset_subtask(struct ixgbevf_adapter *adapter);
131 static void ixgbevf_set_itr(struct ixgbevf_q_vector *q_vector);
132 static void ixgbevf_free_all_rx_resources(struct ixgbevf_adapter *adapter);
134 static void ixgbevf_remove_adapter(struct ixgbe_hw *hw)
136 struct ixgbevf_adapter *adapter = hw->back;
138 if (!hw->hw_addr)
139 return;
140 hw->hw_addr = NULL;
141 dev_err(&adapter->pdev->dev, "Adapter removed\n");
142 if (test_bit(__IXGBEVF_SERVICE_INITED, &adapter->state))
143 ixgbevf_service_event_schedule(adapter);
146 static void ixgbevf_check_remove(struct ixgbe_hw *hw, u32 reg)
148 u32 value;
150 /* The following check not only optimizes a bit by not
151 * performing a read on the status register when the
152 * register just read was a status register read that
153 * returned IXGBE_FAILED_READ_REG. It also blocks any
154 * potential recursion.
156 if (reg == IXGBE_VFSTATUS) {
157 ixgbevf_remove_adapter(hw);
158 return;
160 value = ixgbevf_read_reg(hw, IXGBE_VFSTATUS);
161 if (value == IXGBE_FAILED_READ_REG)
162 ixgbevf_remove_adapter(hw);
165 u32 ixgbevf_read_reg(struct ixgbe_hw *hw, u32 reg)
167 u8 __iomem *reg_addr = READ_ONCE(hw->hw_addr);
168 u32 value;
170 if (IXGBE_REMOVED(reg_addr))
171 return IXGBE_FAILED_READ_REG;
172 value = readl(reg_addr + reg);
173 if (unlikely(value == IXGBE_FAILED_READ_REG))
174 ixgbevf_check_remove(hw, reg);
175 return value;
179 * ixgbevf_set_ivar - set IVAR registers - maps interrupt causes to vectors
180 * @adapter: pointer to adapter struct
181 * @direction: 0 for Rx, 1 for Tx, -1 for other causes
182 * @queue: queue to map the corresponding interrupt to
183 * @msix_vector: the vector to map to the corresponding queue
185 static void ixgbevf_set_ivar(struct ixgbevf_adapter *adapter, s8 direction,
186 u8 queue, u8 msix_vector)
188 u32 ivar, index;
189 struct ixgbe_hw *hw = &adapter->hw;
191 if (direction == -1) {
192 /* other causes */
193 msix_vector |= IXGBE_IVAR_ALLOC_VAL;
194 ivar = IXGBE_READ_REG(hw, IXGBE_VTIVAR_MISC);
195 ivar &= ~0xFF;
196 ivar |= msix_vector;
197 IXGBE_WRITE_REG(hw, IXGBE_VTIVAR_MISC, ivar);
198 } else {
199 /* Tx or Rx causes */
200 msix_vector |= IXGBE_IVAR_ALLOC_VAL;
201 index = ((16 * (queue & 1)) + (8 * direction));
202 ivar = IXGBE_READ_REG(hw, IXGBE_VTIVAR(queue >> 1));
203 ivar &= ~(0xFF << index);
204 ivar |= (msix_vector << index);
205 IXGBE_WRITE_REG(hw, IXGBE_VTIVAR(queue >> 1), ivar);
209 static u64 ixgbevf_get_tx_completed(struct ixgbevf_ring *ring)
211 return ring->stats.packets;
214 static u32 ixgbevf_get_tx_pending(struct ixgbevf_ring *ring)
216 struct ixgbevf_adapter *adapter = netdev_priv(ring->netdev);
217 struct ixgbe_hw *hw = &adapter->hw;
219 u32 head = IXGBE_READ_REG(hw, IXGBE_VFTDH(ring->reg_idx));
220 u32 tail = IXGBE_READ_REG(hw, IXGBE_VFTDT(ring->reg_idx));
222 if (head != tail)
223 return (head < tail) ?
224 tail - head : (tail + ring->count - head);
226 return 0;
229 static inline bool ixgbevf_check_tx_hang(struct ixgbevf_ring *tx_ring)
231 u32 tx_done = ixgbevf_get_tx_completed(tx_ring);
232 u32 tx_done_old = tx_ring->tx_stats.tx_done_old;
233 u32 tx_pending = ixgbevf_get_tx_pending(tx_ring);
235 clear_check_for_tx_hang(tx_ring);
237 /* Check for a hung queue, but be thorough. This verifies
238 * that a transmit has been completed since the previous
239 * check AND there is at least one packet pending. The
240 * ARMED bit is set to indicate a potential hang.
242 if ((tx_done_old == tx_done) && tx_pending) {
243 /* make sure it is true for two checks in a row */
244 return test_and_set_bit(__IXGBEVF_HANG_CHECK_ARMED,
245 &tx_ring->state);
247 /* reset the countdown */
248 clear_bit(__IXGBEVF_HANG_CHECK_ARMED, &tx_ring->state);
250 /* update completed stats and continue */
251 tx_ring->tx_stats.tx_done_old = tx_done;
253 return false;
256 static void ixgbevf_tx_timeout_reset(struct ixgbevf_adapter *adapter)
258 /* Do the reset outside of interrupt context */
259 if (!test_bit(__IXGBEVF_DOWN, &adapter->state)) {
260 set_bit(__IXGBEVF_RESET_REQUESTED, &adapter->state);
261 ixgbevf_service_event_schedule(adapter);
266 * ixgbevf_tx_timeout - Respond to a Tx Hang
267 * @netdev: network interface device structure
269 static void ixgbevf_tx_timeout(struct net_device *netdev)
271 struct ixgbevf_adapter *adapter = netdev_priv(netdev);
273 ixgbevf_tx_timeout_reset(adapter);
277 * ixgbevf_clean_tx_irq - Reclaim resources after transmit completes
278 * @q_vector: board private structure
279 * @tx_ring: tx ring to clean
280 * @napi_budget: Used to determine if we are in netpoll
282 static bool ixgbevf_clean_tx_irq(struct ixgbevf_q_vector *q_vector,
283 struct ixgbevf_ring *tx_ring, int napi_budget)
285 struct ixgbevf_adapter *adapter = q_vector->adapter;
286 struct ixgbevf_tx_buffer *tx_buffer;
287 union ixgbe_adv_tx_desc *tx_desc;
288 unsigned int total_bytes = 0, total_packets = 0;
289 unsigned int budget = tx_ring->count / 2;
290 unsigned int i = tx_ring->next_to_clean;
292 if (test_bit(__IXGBEVF_DOWN, &adapter->state))
293 return true;
295 tx_buffer = &tx_ring->tx_buffer_info[i];
296 tx_desc = IXGBEVF_TX_DESC(tx_ring, i);
297 i -= tx_ring->count;
299 do {
300 union ixgbe_adv_tx_desc *eop_desc = tx_buffer->next_to_watch;
302 /* if next_to_watch is not set then there is no work pending */
303 if (!eop_desc)
304 break;
306 /* prevent any other reads prior to eop_desc */
307 smp_rmb();
309 /* if DD is not set pending work has not been completed */
310 if (!(eop_desc->wb.status & cpu_to_le32(IXGBE_TXD_STAT_DD)))
311 break;
313 /* clear next_to_watch to prevent false hangs */
314 tx_buffer->next_to_watch = NULL;
316 /* update the statistics for this packet */
317 total_bytes += tx_buffer->bytecount;
318 total_packets += tx_buffer->gso_segs;
320 /* free the skb */
321 napi_consume_skb(tx_buffer->skb, napi_budget);
323 /* unmap skb header data */
324 dma_unmap_single(tx_ring->dev,
325 dma_unmap_addr(tx_buffer, dma),
326 dma_unmap_len(tx_buffer, len),
327 DMA_TO_DEVICE);
329 /* clear tx_buffer data */
330 dma_unmap_len_set(tx_buffer, len, 0);
332 /* unmap remaining buffers */
333 while (tx_desc != eop_desc) {
334 tx_buffer++;
335 tx_desc++;
336 i++;
337 if (unlikely(!i)) {
338 i -= tx_ring->count;
339 tx_buffer = tx_ring->tx_buffer_info;
340 tx_desc = IXGBEVF_TX_DESC(tx_ring, 0);
343 /* unmap any remaining paged data */
344 if (dma_unmap_len(tx_buffer, len)) {
345 dma_unmap_page(tx_ring->dev,
346 dma_unmap_addr(tx_buffer, dma),
347 dma_unmap_len(tx_buffer, len),
348 DMA_TO_DEVICE);
349 dma_unmap_len_set(tx_buffer, len, 0);
353 /* move us one more past the eop_desc for start of next pkt */
354 tx_buffer++;
355 tx_desc++;
356 i++;
357 if (unlikely(!i)) {
358 i -= tx_ring->count;
359 tx_buffer = tx_ring->tx_buffer_info;
360 tx_desc = IXGBEVF_TX_DESC(tx_ring, 0);
363 /* issue prefetch for next Tx descriptor */
364 prefetch(tx_desc);
366 /* update budget accounting */
367 budget--;
368 } while (likely(budget));
370 i += tx_ring->count;
371 tx_ring->next_to_clean = i;
372 u64_stats_update_begin(&tx_ring->syncp);
373 tx_ring->stats.bytes += total_bytes;
374 tx_ring->stats.packets += total_packets;
375 u64_stats_update_end(&tx_ring->syncp);
376 q_vector->tx.total_bytes += total_bytes;
377 q_vector->tx.total_packets += total_packets;
379 if (check_for_tx_hang(tx_ring) && ixgbevf_check_tx_hang(tx_ring)) {
380 struct ixgbe_hw *hw = &adapter->hw;
381 union ixgbe_adv_tx_desc *eop_desc;
383 eop_desc = tx_ring->tx_buffer_info[i].next_to_watch;
385 pr_err("Detected Tx Unit Hang\n"
386 " Tx Queue <%d>\n"
387 " TDH, TDT <%x>, <%x>\n"
388 " next_to_use <%x>\n"
389 " next_to_clean <%x>\n"
390 "tx_buffer_info[next_to_clean]\n"
391 " next_to_watch <%p>\n"
392 " eop_desc->wb.status <%x>\n"
393 " time_stamp <%lx>\n"
394 " jiffies <%lx>\n",
395 tx_ring->queue_index,
396 IXGBE_READ_REG(hw, IXGBE_VFTDH(tx_ring->reg_idx)),
397 IXGBE_READ_REG(hw, IXGBE_VFTDT(tx_ring->reg_idx)),
398 tx_ring->next_to_use, i,
399 eop_desc, (eop_desc ? eop_desc->wb.status : 0),
400 tx_ring->tx_buffer_info[i].time_stamp, jiffies);
402 netif_stop_subqueue(tx_ring->netdev, tx_ring->queue_index);
404 /* schedule immediate reset if we believe we hung */
405 ixgbevf_tx_timeout_reset(adapter);
407 return true;
410 #define TX_WAKE_THRESHOLD (DESC_NEEDED * 2)
411 if (unlikely(total_packets && netif_carrier_ok(tx_ring->netdev) &&
412 (ixgbevf_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD))) {
413 /* Make sure that anybody stopping the queue after this
414 * sees the new next_to_clean.
416 smp_mb();
418 if (__netif_subqueue_stopped(tx_ring->netdev,
419 tx_ring->queue_index) &&
420 !test_bit(__IXGBEVF_DOWN, &adapter->state)) {
421 netif_wake_subqueue(tx_ring->netdev,
422 tx_ring->queue_index);
423 ++tx_ring->tx_stats.restart_queue;
427 return !!budget;
431 * ixgbevf_rx_skb - Helper function to determine proper Rx method
432 * @q_vector: structure containing interrupt and ring information
433 * @skb: packet to send up
435 static void ixgbevf_rx_skb(struct ixgbevf_q_vector *q_vector,
436 struct sk_buff *skb)
438 napi_gro_receive(&q_vector->napi, skb);
441 #define IXGBE_RSS_L4_TYPES_MASK \
442 ((1ul << IXGBE_RXDADV_RSSTYPE_IPV4_TCP) | \
443 (1ul << IXGBE_RXDADV_RSSTYPE_IPV4_UDP) | \
444 (1ul << IXGBE_RXDADV_RSSTYPE_IPV6_TCP) | \
445 (1ul << IXGBE_RXDADV_RSSTYPE_IPV6_UDP))
447 static inline void ixgbevf_rx_hash(struct ixgbevf_ring *ring,
448 union ixgbe_adv_rx_desc *rx_desc,
449 struct sk_buff *skb)
451 u16 rss_type;
453 if (!(ring->netdev->features & NETIF_F_RXHASH))
454 return;
456 rss_type = le16_to_cpu(rx_desc->wb.lower.lo_dword.hs_rss.pkt_info) &
457 IXGBE_RXDADV_RSSTYPE_MASK;
459 if (!rss_type)
460 return;
462 skb_set_hash(skb, le32_to_cpu(rx_desc->wb.lower.hi_dword.rss),
463 (IXGBE_RSS_L4_TYPES_MASK & (1ul << rss_type)) ?
464 PKT_HASH_TYPE_L4 : PKT_HASH_TYPE_L3);
468 * ixgbevf_rx_checksum - indicate in skb if hw indicated a good cksum
469 * @ring: structure containig ring specific data
470 * @rx_desc: current Rx descriptor being processed
471 * @skb: skb currently being received and modified
473 static inline void ixgbevf_rx_checksum(struct ixgbevf_ring *ring,
474 union ixgbe_adv_rx_desc *rx_desc,
475 struct sk_buff *skb)
477 skb_checksum_none_assert(skb);
479 /* Rx csum disabled */
480 if (!(ring->netdev->features & NETIF_F_RXCSUM))
481 return;
483 /* if IP and error */
484 if (ixgbevf_test_staterr(rx_desc, IXGBE_RXD_STAT_IPCS) &&
485 ixgbevf_test_staterr(rx_desc, IXGBE_RXDADV_ERR_IPE)) {
486 ring->rx_stats.csum_err++;
487 return;
490 if (!ixgbevf_test_staterr(rx_desc, IXGBE_RXD_STAT_L4CS))
491 return;
493 if (ixgbevf_test_staterr(rx_desc, IXGBE_RXDADV_ERR_TCPE)) {
494 ring->rx_stats.csum_err++;
495 return;
498 /* It must be a TCP or UDP packet with a valid checksum */
499 skb->ip_summed = CHECKSUM_UNNECESSARY;
503 * ixgbevf_process_skb_fields - Populate skb header fields from Rx descriptor
504 * @rx_ring: rx descriptor ring packet is being transacted on
505 * @rx_desc: pointer to the EOP Rx descriptor
506 * @skb: pointer to current skb being populated
508 * This function checks the ring, descriptor, and packet information in
509 * order to populate the checksum, VLAN, protocol, and other fields within
510 * the skb.
512 static void ixgbevf_process_skb_fields(struct ixgbevf_ring *rx_ring,
513 union ixgbe_adv_rx_desc *rx_desc,
514 struct sk_buff *skb)
516 ixgbevf_rx_hash(rx_ring, rx_desc, skb);
517 ixgbevf_rx_checksum(rx_ring, rx_desc, skb);
519 if (ixgbevf_test_staterr(rx_desc, IXGBE_RXD_STAT_VP)) {
520 u16 vid = le16_to_cpu(rx_desc->wb.upper.vlan);
521 unsigned long *active_vlans = netdev_priv(rx_ring->netdev);
523 if (test_bit(vid & VLAN_VID_MASK, active_vlans))
524 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
527 skb->protocol = eth_type_trans(skb, rx_ring->netdev);
531 * ixgbevf_is_non_eop - process handling of non-EOP buffers
532 * @rx_ring: Rx ring being processed
533 * @rx_desc: Rx descriptor for current buffer
535 * This function updates next to clean. If the buffer is an EOP buffer
536 * this function exits returning false, otherwise it will place the
537 * sk_buff in the next buffer to be chained and return true indicating
538 * that this is in fact a non-EOP buffer.
540 static bool ixgbevf_is_non_eop(struct ixgbevf_ring *rx_ring,
541 union ixgbe_adv_rx_desc *rx_desc)
543 u32 ntc = rx_ring->next_to_clean + 1;
545 /* fetch, update, and store next to clean */
546 ntc = (ntc < rx_ring->count) ? ntc : 0;
547 rx_ring->next_to_clean = ntc;
549 prefetch(IXGBEVF_RX_DESC(rx_ring, ntc));
551 if (likely(ixgbevf_test_staterr(rx_desc, IXGBE_RXD_STAT_EOP)))
552 return false;
554 return true;
557 static bool ixgbevf_alloc_mapped_page(struct ixgbevf_ring *rx_ring,
558 struct ixgbevf_rx_buffer *bi)
560 struct page *page = bi->page;
561 dma_addr_t dma = bi->dma;
563 /* since we are recycling buffers we should seldom need to alloc */
564 if (likely(page))
565 return true;
567 /* alloc new page for storage */
568 page = dev_alloc_page();
569 if (unlikely(!page)) {
570 rx_ring->rx_stats.alloc_rx_page_failed++;
571 return false;
574 /* map page for use */
575 dma = dma_map_page_attrs(rx_ring->dev, page, 0, PAGE_SIZE,
576 DMA_FROM_DEVICE, IXGBEVF_RX_DMA_ATTR);
578 /* if mapping failed free memory back to system since
579 * there isn't much point in holding memory we can't use
581 if (dma_mapping_error(rx_ring->dev, dma)) {
582 __free_page(page);
584 rx_ring->rx_stats.alloc_rx_page_failed++;
585 return false;
588 bi->dma = dma;
589 bi->page = page;
590 bi->page_offset = 0;
591 bi->pagecnt_bias = 1;
592 rx_ring->rx_stats.alloc_rx_page++;
594 return true;
598 * ixgbevf_alloc_rx_buffers - Replace used receive buffers; packet split
599 * @rx_ring: rx descriptor ring (for a specific queue) to setup buffers on
600 * @cleaned_count: number of buffers to replace
602 static void ixgbevf_alloc_rx_buffers(struct ixgbevf_ring *rx_ring,
603 u16 cleaned_count)
605 union ixgbe_adv_rx_desc *rx_desc;
606 struct ixgbevf_rx_buffer *bi;
607 unsigned int i = rx_ring->next_to_use;
609 /* nothing to do or no valid netdev defined */
610 if (!cleaned_count || !rx_ring->netdev)
611 return;
613 rx_desc = IXGBEVF_RX_DESC(rx_ring, i);
614 bi = &rx_ring->rx_buffer_info[i];
615 i -= rx_ring->count;
617 do {
618 if (!ixgbevf_alloc_mapped_page(rx_ring, bi))
619 break;
621 /* sync the buffer for use by the device */
622 dma_sync_single_range_for_device(rx_ring->dev, bi->dma,
623 bi->page_offset,
624 IXGBEVF_RX_BUFSZ,
625 DMA_FROM_DEVICE);
627 /* Refresh the desc even if pkt_addr didn't change
628 * because each write-back erases this info.
630 rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
632 rx_desc++;
633 bi++;
634 i++;
635 if (unlikely(!i)) {
636 rx_desc = IXGBEVF_RX_DESC(rx_ring, 0);
637 bi = rx_ring->rx_buffer_info;
638 i -= rx_ring->count;
641 /* clear the length for the next_to_use descriptor */
642 rx_desc->wb.upper.length = 0;
644 cleaned_count--;
645 } while (cleaned_count);
647 i += rx_ring->count;
649 if (rx_ring->next_to_use != i) {
650 /* record the next descriptor to use */
651 rx_ring->next_to_use = i;
653 /* update next to alloc since we have filled the ring */
654 rx_ring->next_to_alloc = i;
656 /* Force memory writes to complete before letting h/w
657 * know there are new descriptors to fetch. (Only
658 * applicable for weak-ordered memory model archs,
659 * such as IA-64).
661 wmb();
662 ixgbevf_write_tail(rx_ring, i);
667 * ixgbevf_cleanup_headers - Correct corrupted or empty headers
668 * @rx_ring: rx descriptor ring packet is being transacted on
669 * @rx_desc: pointer to the EOP Rx descriptor
670 * @skb: pointer to current skb being fixed
672 * Check for corrupted packet headers caused by senders on the local L2
673 * embedded NIC switch not setting up their Tx Descriptors right. These
674 * should be very rare.
676 * Also address the case where we are pulling data in on pages only
677 * and as such no data is present in the skb header.
679 * In addition if skb is not at least 60 bytes we need to pad it so that
680 * it is large enough to qualify as a valid Ethernet frame.
682 * Returns true if an error was encountered and skb was freed.
684 static bool ixgbevf_cleanup_headers(struct ixgbevf_ring *rx_ring,
685 union ixgbe_adv_rx_desc *rx_desc,
686 struct sk_buff *skb)
688 /* verify that the packet does not have any known errors */
689 if (unlikely(ixgbevf_test_staterr(rx_desc,
690 IXGBE_RXDADV_ERR_FRAME_ERR_MASK))) {
691 struct net_device *netdev = rx_ring->netdev;
693 if (!(netdev->features & NETIF_F_RXALL)) {
694 dev_kfree_skb_any(skb);
695 return true;
699 /* if eth_skb_pad returns an error the skb was freed */
700 if (eth_skb_pad(skb))
701 return true;
703 return false;
707 * ixgbevf_reuse_rx_page - page flip buffer and store it back on the ring
708 * @rx_ring: rx descriptor ring to store buffers on
709 * @old_buff: donor buffer to have page reused
711 * Synchronizes page for reuse by the adapter
713 static void ixgbevf_reuse_rx_page(struct ixgbevf_ring *rx_ring,
714 struct ixgbevf_rx_buffer *old_buff)
716 struct ixgbevf_rx_buffer *new_buff;
717 u16 nta = rx_ring->next_to_alloc;
719 new_buff = &rx_ring->rx_buffer_info[nta];
721 /* update, and store next to alloc */
722 nta++;
723 rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
725 /* transfer page from old buffer to new buffer */
726 new_buff->page = old_buff->page;
727 new_buff->dma = old_buff->dma;
728 new_buff->page_offset = old_buff->page_offset;
729 new_buff->pagecnt_bias = old_buff->pagecnt_bias;
732 static inline bool ixgbevf_page_is_reserved(struct page *page)
734 return (page_to_nid(page) != numa_mem_id()) || page_is_pfmemalloc(page);
737 static bool ixgbevf_can_reuse_rx_page(struct ixgbevf_rx_buffer *rx_buffer,
738 struct page *page,
739 const unsigned int truesize)
741 unsigned int pagecnt_bias = rx_buffer->pagecnt_bias--;
743 /* avoid re-using remote pages */
744 if (unlikely(ixgbevf_page_is_reserved(page)))
745 return false;
747 #if (PAGE_SIZE < 8192)
748 /* if we are only owner of page we can reuse it */
749 if (unlikely(page_ref_count(page) != pagecnt_bias))
750 return false;
752 /* flip page offset to other buffer */
753 rx_buffer->page_offset ^= IXGBEVF_RX_BUFSZ;
755 #else
756 /* move offset up to the next cache line */
757 rx_buffer->page_offset += truesize;
759 if (rx_buffer->page_offset > (PAGE_SIZE - IXGBEVF_RX_BUFSZ))
760 return false;
762 #endif
764 /* If we have drained the page fragment pool we need to update
765 * the pagecnt_bias and page count so that we fully restock the
766 * number of references the driver holds.
768 if (unlikely(pagecnt_bias == 1)) {
769 page_ref_add(page, USHRT_MAX);
770 rx_buffer->pagecnt_bias = USHRT_MAX;
773 return true;
777 * ixgbevf_add_rx_frag - Add contents of Rx buffer to sk_buff
778 * @rx_ring: rx descriptor ring to transact packets on
779 * @rx_buffer: buffer containing page to add
780 * @rx_desc: descriptor containing length of buffer written by hardware
781 * @skb: sk_buff to place the data into
783 * This function will add the data contained in rx_buffer->page to the skb.
784 * This is done either through a direct copy if the data in the buffer is
785 * less than the skb header size, otherwise it will just attach the page as
786 * a frag to the skb.
788 * The function will then update the page offset if necessary and return
789 * true if the buffer can be reused by the adapter.
791 static bool ixgbevf_add_rx_frag(struct ixgbevf_ring *rx_ring,
792 struct ixgbevf_rx_buffer *rx_buffer,
793 u16 size,
794 union ixgbe_adv_rx_desc *rx_desc,
795 struct sk_buff *skb)
797 struct page *page = rx_buffer->page;
798 unsigned char *va = page_address(page) + rx_buffer->page_offset;
799 #if (PAGE_SIZE < 8192)
800 unsigned int truesize = IXGBEVF_RX_BUFSZ;
801 #else
802 unsigned int truesize = ALIGN(size, L1_CACHE_BYTES);
803 #endif
804 unsigned int pull_len;
806 if (unlikely(skb_is_nonlinear(skb)))
807 goto add_tail_frag;
809 if (likely(size <= IXGBEVF_RX_HDR_SIZE)) {
810 memcpy(__skb_put(skb, size), va, ALIGN(size, sizeof(long)));
812 /* page is not reserved, we can reuse buffer as is */
813 if (likely(!ixgbevf_page_is_reserved(page)))
814 return true;
816 /* this page cannot be reused so discard it */
817 return false;
820 /* we need the header to contain the greater of either ETH_HLEN or
821 * 60 bytes if the skb->len is less than 60 for skb_pad.
823 pull_len = eth_get_headlen(va, IXGBEVF_RX_HDR_SIZE);
825 /* align pull length to size of long to optimize memcpy performance */
826 memcpy(__skb_put(skb, pull_len), va, ALIGN(pull_len, sizeof(long)));
828 /* update all of the pointers */
829 va += pull_len;
830 size -= pull_len;
832 add_tail_frag:
833 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, page,
834 (unsigned long)va & ~PAGE_MASK, size, truesize);
836 return ixgbevf_can_reuse_rx_page(rx_buffer, page, truesize);
839 static struct sk_buff *ixgbevf_fetch_rx_buffer(struct ixgbevf_ring *rx_ring,
840 union ixgbe_adv_rx_desc *rx_desc,
841 struct sk_buff *skb)
843 struct ixgbevf_rx_buffer *rx_buffer;
844 struct page *page;
845 u16 size = le16_to_cpu(rx_desc->wb.upper.length);
847 rx_buffer = &rx_ring->rx_buffer_info[rx_ring->next_to_clean];
848 page = rx_buffer->page;
849 prefetchw(page);
851 /* we are reusing so sync this buffer for CPU use */
852 dma_sync_single_range_for_cpu(rx_ring->dev,
853 rx_buffer->dma,
854 rx_buffer->page_offset,
855 size,
856 DMA_FROM_DEVICE);
858 if (likely(!skb)) {
859 void *page_addr = page_address(page) +
860 rx_buffer->page_offset;
862 /* prefetch first cache line of first page */
863 prefetch(page_addr);
864 #if L1_CACHE_BYTES < 128
865 prefetch(page_addr + L1_CACHE_BYTES);
866 #endif
868 /* allocate a skb to store the frags */
869 skb = netdev_alloc_skb_ip_align(rx_ring->netdev,
870 IXGBEVF_RX_HDR_SIZE);
871 if (unlikely(!skb)) {
872 rx_ring->rx_stats.alloc_rx_buff_failed++;
873 return NULL;
876 /* we will be copying header into skb->data in
877 * pskb_may_pull so it is in our interest to prefetch
878 * it now to avoid a possible cache miss
880 prefetchw(skb->data);
883 /* pull page into skb */
884 if (ixgbevf_add_rx_frag(rx_ring, rx_buffer, size, rx_desc, skb)) {
885 /* hand second half of page back to the ring */
886 ixgbevf_reuse_rx_page(rx_ring, rx_buffer);
887 } else {
888 /* We are not reusing the buffer so unmap it and free
889 * any references we are holding to it
891 dma_unmap_page_attrs(rx_ring->dev, rx_buffer->dma,
892 PAGE_SIZE, DMA_FROM_DEVICE,
893 IXGBEVF_RX_DMA_ATTR);
894 __page_frag_cache_drain(page, rx_buffer->pagecnt_bias);
897 /* clear contents of buffer_info */
898 rx_buffer->dma = 0;
899 rx_buffer->page = NULL;
901 return skb;
904 static inline void ixgbevf_irq_enable_queues(struct ixgbevf_adapter *adapter,
905 u32 qmask)
907 struct ixgbe_hw *hw = &adapter->hw;
909 IXGBE_WRITE_REG(hw, IXGBE_VTEIMS, qmask);
912 static int ixgbevf_clean_rx_irq(struct ixgbevf_q_vector *q_vector,
913 struct ixgbevf_ring *rx_ring,
914 int budget)
916 unsigned int total_rx_bytes = 0, total_rx_packets = 0;
917 u16 cleaned_count = ixgbevf_desc_unused(rx_ring);
918 struct sk_buff *skb = rx_ring->skb;
920 while (likely(total_rx_packets < budget)) {
921 union ixgbe_adv_rx_desc *rx_desc;
923 /* return some buffers to hardware, one at a time is too slow */
924 if (cleaned_count >= IXGBEVF_RX_BUFFER_WRITE) {
925 ixgbevf_alloc_rx_buffers(rx_ring, cleaned_count);
926 cleaned_count = 0;
929 rx_desc = IXGBEVF_RX_DESC(rx_ring, rx_ring->next_to_clean);
931 if (!rx_desc->wb.upper.length)
932 break;
934 /* This memory barrier is needed to keep us from reading
935 * any other fields out of the rx_desc until we know the
936 * RXD_STAT_DD bit is set
938 rmb();
940 /* retrieve a buffer from the ring */
941 skb = ixgbevf_fetch_rx_buffer(rx_ring, rx_desc, skb);
943 /* exit if we failed to retrieve a buffer */
944 if (!skb) {
945 rx_ring->rx_stats.alloc_rx_buff_failed++;
946 break;
949 cleaned_count++;
951 /* fetch next buffer in frame if non-eop */
952 if (ixgbevf_is_non_eop(rx_ring, rx_desc))
953 continue;
955 /* verify the packet layout is correct */
956 if (ixgbevf_cleanup_headers(rx_ring, rx_desc, skb)) {
957 skb = NULL;
958 continue;
961 /* probably a little skewed due to removing CRC */
962 total_rx_bytes += skb->len;
964 /* Workaround hardware that can't do proper VEPA multicast
965 * source pruning.
967 if ((skb->pkt_type == PACKET_BROADCAST ||
968 skb->pkt_type == PACKET_MULTICAST) &&
969 ether_addr_equal(rx_ring->netdev->dev_addr,
970 eth_hdr(skb)->h_source)) {
971 dev_kfree_skb_irq(skb);
972 continue;
975 /* populate checksum, VLAN, and protocol */
976 ixgbevf_process_skb_fields(rx_ring, rx_desc, skb);
978 ixgbevf_rx_skb(q_vector, skb);
980 /* reset skb pointer */
981 skb = NULL;
983 /* update budget accounting */
984 total_rx_packets++;
987 /* place incomplete frames back on ring for completion */
988 rx_ring->skb = skb;
990 u64_stats_update_begin(&rx_ring->syncp);
991 rx_ring->stats.packets += total_rx_packets;
992 rx_ring->stats.bytes += total_rx_bytes;
993 u64_stats_update_end(&rx_ring->syncp);
994 q_vector->rx.total_packets += total_rx_packets;
995 q_vector->rx.total_bytes += total_rx_bytes;
997 return total_rx_packets;
1001 * ixgbevf_poll - NAPI polling calback
1002 * @napi: napi struct with our devices info in it
1003 * @budget: amount of work driver is allowed to do this pass, in packets
1005 * This function will clean more than one or more rings associated with a
1006 * q_vector.
1008 static int ixgbevf_poll(struct napi_struct *napi, int budget)
1010 struct ixgbevf_q_vector *q_vector =
1011 container_of(napi, struct ixgbevf_q_vector, napi);
1012 struct ixgbevf_adapter *adapter = q_vector->adapter;
1013 struct ixgbevf_ring *ring;
1014 int per_ring_budget, work_done = 0;
1015 bool clean_complete = true;
1017 ixgbevf_for_each_ring(ring, q_vector->tx) {
1018 if (!ixgbevf_clean_tx_irq(q_vector, ring, budget))
1019 clean_complete = false;
1022 if (budget <= 0)
1023 return budget;
1025 /* attempt to distribute budget to each queue fairly, but don't allow
1026 * the budget to go below 1 because we'll exit polling
1028 if (q_vector->rx.count > 1)
1029 per_ring_budget = max(budget/q_vector->rx.count, 1);
1030 else
1031 per_ring_budget = budget;
1033 ixgbevf_for_each_ring(ring, q_vector->rx) {
1034 int cleaned = ixgbevf_clean_rx_irq(q_vector, ring,
1035 per_ring_budget);
1036 work_done += cleaned;
1037 if (cleaned >= per_ring_budget)
1038 clean_complete = false;
1041 /* If all work not completed, return budget and keep polling */
1042 if (!clean_complete)
1043 return budget;
1044 /* all work done, exit the polling mode */
1045 napi_complete_done(napi, work_done);
1046 if (adapter->rx_itr_setting == 1)
1047 ixgbevf_set_itr(q_vector);
1048 if (!test_bit(__IXGBEVF_DOWN, &adapter->state) &&
1049 !test_bit(__IXGBEVF_REMOVING, &adapter->state))
1050 ixgbevf_irq_enable_queues(adapter,
1051 BIT(q_vector->v_idx));
1053 return 0;
1057 * ixgbevf_write_eitr - write VTEITR register in hardware specific way
1058 * @q_vector: structure containing interrupt and ring information
1060 void ixgbevf_write_eitr(struct ixgbevf_q_vector *q_vector)
1062 struct ixgbevf_adapter *adapter = q_vector->adapter;
1063 struct ixgbe_hw *hw = &adapter->hw;
1064 int v_idx = q_vector->v_idx;
1065 u32 itr_reg = q_vector->itr & IXGBE_MAX_EITR;
1067 /* set the WDIS bit to not clear the timer bits and cause an
1068 * immediate assertion of the interrupt
1070 itr_reg |= IXGBE_EITR_CNT_WDIS;
1072 IXGBE_WRITE_REG(hw, IXGBE_VTEITR(v_idx), itr_reg);
1076 * ixgbevf_configure_msix - Configure MSI-X hardware
1077 * @adapter: board private structure
1079 * ixgbevf_configure_msix sets up the hardware to properly generate MSI-X
1080 * interrupts.
1082 static void ixgbevf_configure_msix(struct ixgbevf_adapter *adapter)
1084 struct ixgbevf_q_vector *q_vector;
1085 int q_vectors, v_idx;
1087 q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS;
1088 adapter->eims_enable_mask = 0;
1090 /* Populate the IVAR table and set the ITR values to the
1091 * corresponding register.
1093 for (v_idx = 0; v_idx < q_vectors; v_idx++) {
1094 struct ixgbevf_ring *ring;
1096 q_vector = adapter->q_vector[v_idx];
1098 ixgbevf_for_each_ring(ring, q_vector->rx)
1099 ixgbevf_set_ivar(adapter, 0, ring->reg_idx, v_idx);
1101 ixgbevf_for_each_ring(ring, q_vector->tx)
1102 ixgbevf_set_ivar(adapter, 1, ring->reg_idx, v_idx);
1104 if (q_vector->tx.ring && !q_vector->rx.ring) {
1105 /* Tx only vector */
1106 if (adapter->tx_itr_setting == 1)
1107 q_vector->itr = IXGBE_12K_ITR;
1108 else
1109 q_vector->itr = adapter->tx_itr_setting;
1110 } else {
1111 /* Rx or Rx/Tx vector */
1112 if (adapter->rx_itr_setting == 1)
1113 q_vector->itr = IXGBE_20K_ITR;
1114 else
1115 q_vector->itr = adapter->rx_itr_setting;
1118 /* add q_vector eims value to global eims_enable_mask */
1119 adapter->eims_enable_mask |= BIT(v_idx);
1121 ixgbevf_write_eitr(q_vector);
1124 ixgbevf_set_ivar(adapter, -1, 1, v_idx);
1125 /* setup eims_other and add value to global eims_enable_mask */
1126 adapter->eims_other = BIT(v_idx);
1127 adapter->eims_enable_mask |= adapter->eims_other;
1130 enum latency_range {
1131 lowest_latency = 0,
1132 low_latency = 1,
1133 bulk_latency = 2,
1134 latency_invalid = 255
1138 * ixgbevf_update_itr - update the dynamic ITR value based on statistics
1139 * @q_vector: structure containing interrupt and ring information
1140 * @ring_container: structure containing ring performance data
1142 * Stores a new ITR value based on packets and byte
1143 * counts during the last interrupt. The advantage of per interrupt
1144 * computation is faster updates and more accurate ITR for the current
1145 * traffic pattern. Constants in this function were computed
1146 * based on theoretical maximum wire speed and thresholds were set based
1147 * on testing data as well as attempting to minimize response time
1148 * while increasing bulk throughput.
1150 static void ixgbevf_update_itr(struct ixgbevf_q_vector *q_vector,
1151 struct ixgbevf_ring_container *ring_container)
1153 int bytes = ring_container->total_bytes;
1154 int packets = ring_container->total_packets;
1155 u32 timepassed_us;
1156 u64 bytes_perint;
1157 u8 itr_setting = ring_container->itr;
1159 if (packets == 0)
1160 return;
1162 /* simple throttle rate management
1163 * 0-20MB/s lowest (100000 ints/s)
1164 * 20-100MB/s low (20000 ints/s)
1165 * 100-1249MB/s bulk (12000 ints/s)
1167 /* what was last interrupt timeslice? */
1168 timepassed_us = q_vector->itr >> 2;
1169 bytes_perint = bytes / timepassed_us; /* bytes/usec */
1171 switch (itr_setting) {
1172 case lowest_latency:
1173 if (bytes_perint > 10)
1174 itr_setting = low_latency;
1175 break;
1176 case low_latency:
1177 if (bytes_perint > 20)
1178 itr_setting = bulk_latency;
1179 else if (bytes_perint <= 10)
1180 itr_setting = lowest_latency;
1181 break;
1182 case bulk_latency:
1183 if (bytes_perint <= 20)
1184 itr_setting = low_latency;
1185 break;
1188 /* clear work counters since we have the values we need */
1189 ring_container->total_bytes = 0;
1190 ring_container->total_packets = 0;
1192 /* write updated itr to ring container */
1193 ring_container->itr = itr_setting;
1196 static void ixgbevf_set_itr(struct ixgbevf_q_vector *q_vector)
1198 u32 new_itr = q_vector->itr;
1199 u8 current_itr;
1201 ixgbevf_update_itr(q_vector, &q_vector->tx);
1202 ixgbevf_update_itr(q_vector, &q_vector->rx);
1204 current_itr = max(q_vector->rx.itr, q_vector->tx.itr);
1206 switch (current_itr) {
1207 /* counts and packets in update_itr are dependent on these numbers */
1208 case lowest_latency:
1209 new_itr = IXGBE_100K_ITR;
1210 break;
1211 case low_latency:
1212 new_itr = IXGBE_20K_ITR;
1213 break;
1214 case bulk_latency:
1215 new_itr = IXGBE_12K_ITR;
1216 break;
1217 default:
1218 break;
1221 if (new_itr != q_vector->itr) {
1222 /* do an exponential smoothing */
1223 new_itr = (10 * new_itr * q_vector->itr) /
1224 ((9 * new_itr) + q_vector->itr);
1226 /* save the algorithm value here */
1227 q_vector->itr = new_itr;
1229 ixgbevf_write_eitr(q_vector);
1233 static irqreturn_t ixgbevf_msix_other(int irq, void *data)
1235 struct ixgbevf_adapter *adapter = data;
1236 struct ixgbe_hw *hw = &adapter->hw;
1238 hw->mac.get_link_status = 1;
1240 ixgbevf_service_event_schedule(adapter);
1242 IXGBE_WRITE_REG(hw, IXGBE_VTEIMS, adapter->eims_other);
1244 return IRQ_HANDLED;
1248 * ixgbevf_msix_clean_rings - single unshared vector rx clean (all queues)
1249 * @irq: unused
1250 * @data: pointer to our q_vector struct for this interrupt vector
1252 static irqreturn_t ixgbevf_msix_clean_rings(int irq, void *data)
1254 struct ixgbevf_q_vector *q_vector = data;
1256 /* EIAM disabled interrupts (on this vector) for us */
1257 if (q_vector->rx.ring || q_vector->tx.ring)
1258 napi_schedule_irqoff(&q_vector->napi);
1260 return IRQ_HANDLED;
1263 static inline void map_vector_to_rxq(struct ixgbevf_adapter *a, int v_idx,
1264 int r_idx)
1266 struct ixgbevf_q_vector *q_vector = a->q_vector[v_idx];
1268 a->rx_ring[r_idx]->next = q_vector->rx.ring;
1269 q_vector->rx.ring = a->rx_ring[r_idx];
1270 q_vector->rx.count++;
1273 static inline void map_vector_to_txq(struct ixgbevf_adapter *a, int v_idx,
1274 int t_idx)
1276 struct ixgbevf_q_vector *q_vector = a->q_vector[v_idx];
1278 a->tx_ring[t_idx]->next = q_vector->tx.ring;
1279 q_vector->tx.ring = a->tx_ring[t_idx];
1280 q_vector->tx.count++;
1284 * ixgbevf_map_rings_to_vectors - Maps descriptor rings to vectors
1285 * @adapter: board private structure to initialize
1287 * This function maps descriptor rings to the queue-specific vectors
1288 * we were allotted through the MSI-X enabling code. Ideally, we'd have
1289 * one vector per ring/queue, but on a constrained vector budget, we
1290 * group the rings as "efficiently" as possible. You would add new
1291 * mapping configurations in here.
1293 static int ixgbevf_map_rings_to_vectors(struct ixgbevf_adapter *adapter)
1295 int q_vectors;
1296 int v_start = 0;
1297 int rxr_idx = 0, txr_idx = 0;
1298 int rxr_remaining = adapter->num_rx_queues;
1299 int txr_remaining = adapter->num_tx_queues;
1300 int i, j;
1301 int rqpv, tqpv;
1303 q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS;
1305 /* The ideal configuration...
1306 * We have enough vectors to map one per queue.
1308 if (q_vectors == adapter->num_rx_queues + adapter->num_tx_queues) {
1309 for (; rxr_idx < rxr_remaining; v_start++, rxr_idx++)
1310 map_vector_to_rxq(adapter, v_start, rxr_idx);
1312 for (; txr_idx < txr_remaining; v_start++, txr_idx++)
1313 map_vector_to_txq(adapter, v_start, txr_idx);
1314 return 0;
1317 /* If we don't have enough vectors for a 1-to-1
1318 * mapping, we'll have to group them so there are
1319 * multiple queues per vector.
1321 /* Re-adjusting *qpv takes care of the remainder. */
1322 for (i = v_start; i < q_vectors; i++) {
1323 rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors - i);
1324 for (j = 0; j < rqpv; j++) {
1325 map_vector_to_rxq(adapter, i, rxr_idx);
1326 rxr_idx++;
1327 rxr_remaining--;
1330 for (i = v_start; i < q_vectors; i++) {
1331 tqpv = DIV_ROUND_UP(txr_remaining, q_vectors - i);
1332 for (j = 0; j < tqpv; j++) {
1333 map_vector_to_txq(adapter, i, txr_idx);
1334 txr_idx++;
1335 txr_remaining--;
1339 return 0;
1343 * ixgbevf_request_msix_irqs - Initialize MSI-X interrupts
1344 * @adapter: board private structure
1346 * ixgbevf_request_msix_irqs allocates MSI-X vectors and requests
1347 * interrupts from the kernel.
1349 static int ixgbevf_request_msix_irqs(struct ixgbevf_adapter *adapter)
1351 struct net_device *netdev = adapter->netdev;
1352 int q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS;
1353 unsigned int ri = 0, ti = 0;
1354 int vector, err;
1356 for (vector = 0; vector < q_vectors; vector++) {
1357 struct ixgbevf_q_vector *q_vector = adapter->q_vector[vector];
1358 struct msix_entry *entry = &adapter->msix_entries[vector];
1360 if (q_vector->tx.ring && q_vector->rx.ring) {
1361 snprintf(q_vector->name, sizeof(q_vector->name),
1362 "%s-TxRx-%u", netdev->name, ri++);
1363 ti++;
1364 } else if (q_vector->rx.ring) {
1365 snprintf(q_vector->name, sizeof(q_vector->name),
1366 "%s-rx-%u", netdev->name, ri++);
1367 } else if (q_vector->tx.ring) {
1368 snprintf(q_vector->name, sizeof(q_vector->name),
1369 "%s-tx-%u", netdev->name, ti++);
1370 } else {
1371 /* skip this unused q_vector */
1372 continue;
1374 err = request_irq(entry->vector, &ixgbevf_msix_clean_rings, 0,
1375 q_vector->name, q_vector);
1376 if (err) {
1377 hw_dbg(&adapter->hw,
1378 "request_irq failed for MSIX interrupt Error: %d\n",
1379 err);
1380 goto free_queue_irqs;
1384 err = request_irq(adapter->msix_entries[vector].vector,
1385 &ixgbevf_msix_other, 0, netdev->name, adapter);
1386 if (err) {
1387 hw_dbg(&adapter->hw, "request_irq for msix_other failed: %d\n",
1388 err);
1389 goto free_queue_irqs;
1392 return 0;
1394 free_queue_irqs:
1395 while (vector) {
1396 vector--;
1397 free_irq(adapter->msix_entries[vector].vector,
1398 adapter->q_vector[vector]);
1400 /* This failure is non-recoverable - it indicates the system is
1401 * out of MSIX vector resources and the VF driver cannot run
1402 * without them. Set the number of msix vectors to zero
1403 * indicating that not enough can be allocated. The error
1404 * will be returned to the user indicating device open failed.
1405 * Any further attempts to force the driver to open will also
1406 * fail. The only way to recover is to unload the driver and
1407 * reload it again. If the system has recovered some MSIX
1408 * vectors then it may succeed.
1410 adapter->num_msix_vectors = 0;
1411 return err;
1414 static inline void ixgbevf_reset_q_vectors(struct ixgbevf_adapter *adapter)
1416 int i, q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS;
1418 for (i = 0; i < q_vectors; i++) {
1419 struct ixgbevf_q_vector *q_vector = adapter->q_vector[i];
1421 q_vector->rx.ring = NULL;
1422 q_vector->tx.ring = NULL;
1423 q_vector->rx.count = 0;
1424 q_vector->tx.count = 0;
1429 * ixgbevf_request_irq - initialize interrupts
1430 * @adapter: board private structure
1432 * Attempts to configure interrupts using the best available
1433 * capabilities of the hardware and kernel.
1435 static int ixgbevf_request_irq(struct ixgbevf_adapter *adapter)
1437 int err = ixgbevf_request_msix_irqs(adapter);
1439 if (err)
1440 hw_dbg(&adapter->hw, "request_irq failed, Error %d\n", err);
1442 return err;
1445 static void ixgbevf_free_irq(struct ixgbevf_adapter *adapter)
1447 int i, q_vectors;
1449 if (!adapter->msix_entries)
1450 return;
1452 q_vectors = adapter->num_msix_vectors;
1453 i = q_vectors - 1;
1455 free_irq(adapter->msix_entries[i].vector, adapter);
1456 i--;
1458 for (; i >= 0; i--) {
1459 /* free only the irqs that were actually requested */
1460 if (!adapter->q_vector[i]->rx.ring &&
1461 !adapter->q_vector[i]->tx.ring)
1462 continue;
1464 free_irq(adapter->msix_entries[i].vector,
1465 adapter->q_vector[i]);
1468 ixgbevf_reset_q_vectors(adapter);
1472 * ixgbevf_irq_disable - Mask off interrupt generation on the NIC
1473 * @adapter: board private structure
1475 static inline void ixgbevf_irq_disable(struct ixgbevf_adapter *adapter)
1477 struct ixgbe_hw *hw = &adapter->hw;
1478 int i;
1480 IXGBE_WRITE_REG(hw, IXGBE_VTEIAM, 0);
1481 IXGBE_WRITE_REG(hw, IXGBE_VTEIMC, ~0);
1482 IXGBE_WRITE_REG(hw, IXGBE_VTEIAC, 0);
1484 IXGBE_WRITE_FLUSH(hw);
1486 for (i = 0; i < adapter->num_msix_vectors; i++)
1487 synchronize_irq(adapter->msix_entries[i].vector);
1491 * ixgbevf_irq_enable - Enable default interrupt generation settings
1492 * @adapter: board private structure
1494 static inline void ixgbevf_irq_enable(struct ixgbevf_adapter *adapter)
1496 struct ixgbe_hw *hw = &adapter->hw;
1498 IXGBE_WRITE_REG(hw, IXGBE_VTEIAM, adapter->eims_enable_mask);
1499 IXGBE_WRITE_REG(hw, IXGBE_VTEIAC, adapter->eims_enable_mask);
1500 IXGBE_WRITE_REG(hw, IXGBE_VTEIMS, adapter->eims_enable_mask);
1504 * ixgbevf_configure_tx_ring - Configure 82599 VF Tx ring after Reset
1505 * @adapter: board private structure
1506 * @ring: structure containing ring specific data
1508 * Configure the Tx descriptor ring after a reset.
1510 static void ixgbevf_configure_tx_ring(struct ixgbevf_adapter *adapter,
1511 struct ixgbevf_ring *ring)
1513 struct ixgbe_hw *hw = &adapter->hw;
1514 u64 tdba = ring->dma;
1515 int wait_loop = 10;
1516 u32 txdctl = IXGBE_TXDCTL_ENABLE;
1517 u8 reg_idx = ring->reg_idx;
1519 /* disable queue to avoid issues while updating state */
1520 IXGBE_WRITE_REG(hw, IXGBE_VFTXDCTL(reg_idx), IXGBE_TXDCTL_SWFLSH);
1521 IXGBE_WRITE_FLUSH(hw);
1523 IXGBE_WRITE_REG(hw, IXGBE_VFTDBAL(reg_idx), tdba & DMA_BIT_MASK(32));
1524 IXGBE_WRITE_REG(hw, IXGBE_VFTDBAH(reg_idx), tdba >> 32);
1525 IXGBE_WRITE_REG(hw, IXGBE_VFTDLEN(reg_idx),
1526 ring->count * sizeof(union ixgbe_adv_tx_desc));
1528 /* disable head writeback */
1529 IXGBE_WRITE_REG(hw, IXGBE_VFTDWBAH(reg_idx), 0);
1530 IXGBE_WRITE_REG(hw, IXGBE_VFTDWBAL(reg_idx), 0);
1532 /* enable relaxed ordering */
1533 IXGBE_WRITE_REG(hw, IXGBE_VFDCA_TXCTRL(reg_idx),
1534 (IXGBE_DCA_TXCTRL_DESC_RRO_EN |
1535 IXGBE_DCA_TXCTRL_DATA_RRO_EN));
1537 /* reset head and tail pointers */
1538 IXGBE_WRITE_REG(hw, IXGBE_VFTDH(reg_idx), 0);
1539 IXGBE_WRITE_REG(hw, IXGBE_VFTDT(reg_idx), 0);
1540 ring->tail = adapter->io_addr + IXGBE_VFTDT(reg_idx);
1542 /* reset ntu and ntc to place SW in sync with hardwdare */
1543 ring->next_to_clean = 0;
1544 ring->next_to_use = 0;
1546 /* In order to avoid issues WTHRESH + PTHRESH should always be equal
1547 * to or less than the number of on chip descriptors, which is
1548 * currently 40.
1550 txdctl |= (8 << 16); /* WTHRESH = 8 */
1552 /* Setting PTHRESH to 32 both improves performance */
1553 txdctl |= (1u << 8) | /* HTHRESH = 1 */
1554 32; /* PTHRESH = 32 */
1556 /* reinitialize tx_buffer_info */
1557 memset(ring->tx_buffer_info, 0,
1558 sizeof(struct ixgbevf_tx_buffer) * ring->count);
1560 clear_bit(__IXGBEVF_HANG_CHECK_ARMED, &ring->state);
1562 IXGBE_WRITE_REG(hw, IXGBE_VFTXDCTL(reg_idx), txdctl);
1564 /* poll to verify queue is enabled */
1565 do {
1566 usleep_range(1000, 2000);
1567 txdctl = IXGBE_READ_REG(hw, IXGBE_VFTXDCTL(reg_idx));
1568 } while (--wait_loop && !(txdctl & IXGBE_TXDCTL_ENABLE));
1569 if (!wait_loop)
1570 hw_dbg(hw, "Could not enable Tx Queue %d\n", reg_idx);
1574 * ixgbevf_configure_tx - Configure 82599 VF Transmit Unit after Reset
1575 * @adapter: board private structure
1577 * Configure the Tx unit of the MAC after a reset.
1579 static void ixgbevf_configure_tx(struct ixgbevf_adapter *adapter)
1581 u32 i;
1583 /* Setup the HW Tx Head and Tail descriptor pointers */
1584 for (i = 0; i < adapter->num_tx_queues; i++)
1585 ixgbevf_configure_tx_ring(adapter, adapter->tx_ring[i]);
1588 #define IXGBE_SRRCTL_BSIZEHDRSIZE_SHIFT 2
1590 static void ixgbevf_configure_srrctl(struct ixgbevf_adapter *adapter, int index)
1592 struct ixgbe_hw *hw = &adapter->hw;
1593 u32 srrctl;
1595 srrctl = IXGBE_SRRCTL_DROP_EN;
1597 srrctl |= IXGBEVF_RX_HDR_SIZE << IXGBE_SRRCTL_BSIZEHDRSIZE_SHIFT;
1598 srrctl |= IXGBEVF_RX_BUFSZ >> IXGBE_SRRCTL_BSIZEPKT_SHIFT;
1599 srrctl |= IXGBE_SRRCTL_DESCTYPE_ADV_ONEBUF;
1601 IXGBE_WRITE_REG(hw, IXGBE_VFSRRCTL(index), srrctl);
1604 static void ixgbevf_setup_psrtype(struct ixgbevf_adapter *adapter)
1606 struct ixgbe_hw *hw = &adapter->hw;
1608 /* PSRTYPE must be initialized in 82599 */
1609 u32 psrtype = IXGBE_PSRTYPE_TCPHDR | IXGBE_PSRTYPE_UDPHDR |
1610 IXGBE_PSRTYPE_IPV4HDR | IXGBE_PSRTYPE_IPV6HDR |
1611 IXGBE_PSRTYPE_L2HDR;
1613 if (adapter->num_rx_queues > 1)
1614 psrtype |= BIT(29);
1616 IXGBE_WRITE_REG(hw, IXGBE_VFPSRTYPE, psrtype);
1619 #define IXGBEVF_MAX_RX_DESC_POLL 10
1620 static void ixgbevf_disable_rx_queue(struct ixgbevf_adapter *adapter,
1621 struct ixgbevf_ring *ring)
1623 struct ixgbe_hw *hw = &adapter->hw;
1624 int wait_loop = IXGBEVF_MAX_RX_DESC_POLL;
1625 u32 rxdctl;
1626 u8 reg_idx = ring->reg_idx;
1628 if (IXGBE_REMOVED(hw->hw_addr))
1629 return;
1630 rxdctl = IXGBE_READ_REG(hw, IXGBE_VFRXDCTL(reg_idx));
1631 rxdctl &= ~IXGBE_RXDCTL_ENABLE;
1633 /* write value back with RXDCTL.ENABLE bit cleared */
1634 IXGBE_WRITE_REG(hw, IXGBE_VFRXDCTL(reg_idx), rxdctl);
1636 /* the hardware may take up to 100us to really disable the Rx queue */
1637 do {
1638 udelay(10);
1639 rxdctl = IXGBE_READ_REG(hw, IXGBE_VFRXDCTL(reg_idx));
1640 } while (--wait_loop && (rxdctl & IXGBE_RXDCTL_ENABLE));
1642 if (!wait_loop)
1643 pr_err("RXDCTL.ENABLE queue %d not cleared while polling\n",
1644 reg_idx);
1647 static void ixgbevf_rx_desc_queue_enable(struct ixgbevf_adapter *adapter,
1648 struct ixgbevf_ring *ring)
1650 struct ixgbe_hw *hw = &adapter->hw;
1651 int wait_loop = IXGBEVF_MAX_RX_DESC_POLL;
1652 u32 rxdctl;
1653 u8 reg_idx = ring->reg_idx;
1655 if (IXGBE_REMOVED(hw->hw_addr))
1656 return;
1657 do {
1658 usleep_range(1000, 2000);
1659 rxdctl = IXGBE_READ_REG(hw, IXGBE_VFRXDCTL(reg_idx));
1660 } while (--wait_loop && !(rxdctl & IXGBE_RXDCTL_ENABLE));
1662 if (!wait_loop)
1663 pr_err("RXDCTL.ENABLE queue %d not set while polling\n",
1664 reg_idx);
1668 * ixgbevf_init_rss_key - Initialize adapter RSS key
1669 * @adapter: device handle
1671 * Allocates and initializes the RSS key if it is not allocated.
1673 static inline int ixgbevf_init_rss_key(struct ixgbevf_adapter *adapter)
1675 u32 *rss_key;
1677 if (!adapter->rss_key) {
1678 rss_key = kzalloc(IXGBEVF_RSS_HASH_KEY_SIZE, GFP_KERNEL);
1679 if (unlikely(!rss_key))
1680 return -ENOMEM;
1682 netdev_rss_key_fill(rss_key, IXGBEVF_RSS_HASH_KEY_SIZE);
1683 adapter->rss_key = rss_key;
1686 return 0;
1689 static void ixgbevf_setup_vfmrqc(struct ixgbevf_adapter *adapter)
1691 struct ixgbe_hw *hw = &adapter->hw;
1692 u32 vfmrqc = 0, vfreta = 0;
1693 u16 rss_i = adapter->num_rx_queues;
1694 u8 i, j;
1696 /* Fill out hash function seeds */
1697 for (i = 0; i < IXGBEVF_VFRSSRK_REGS; i++)
1698 IXGBE_WRITE_REG(hw, IXGBE_VFRSSRK(i), *(adapter->rss_key + i));
1700 for (i = 0, j = 0; i < IXGBEVF_X550_VFRETA_SIZE; i++, j++) {
1701 if (j == rss_i)
1702 j = 0;
1704 adapter->rss_indir_tbl[i] = j;
1706 vfreta |= j << (i & 0x3) * 8;
1707 if ((i & 3) == 3) {
1708 IXGBE_WRITE_REG(hw, IXGBE_VFRETA(i >> 2), vfreta);
1709 vfreta = 0;
1713 /* Perform hash on these packet types */
1714 vfmrqc |= IXGBE_VFMRQC_RSS_FIELD_IPV4 |
1715 IXGBE_VFMRQC_RSS_FIELD_IPV4_TCP |
1716 IXGBE_VFMRQC_RSS_FIELD_IPV6 |
1717 IXGBE_VFMRQC_RSS_FIELD_IPV6_TCP;
1719 vfmrqc |= IXGBE_VFMRQC_RSSEN;
1721 IXGBE_WRITE_REG(hw, IXGBE_VFMRQC, vfmrqc);
1724 static void ixgbevf_configure_rx_ring(struct ixgbevf_adapter *adapter,
1725 struct ixgbevf_ring *ring)
1727 struct ixgbe_hw *hw = &adapter->hw;
1728 union ixgbe_adv_rx_desc *rx_desc;
1729 u64 rdba = ring->dma;
1730 u32 rxdctl;
1731 u8 reg_idx = ring->reg_idx;
1733 /* disable queue to avoid issues while updating state */
1734 rxdctl = IXGBE_READ_REG(hw, IXGBE_VFRXDCTL(reg_idx));
1735 ixgbevf_disable_rx_queue(adapter, ring);
1737 IXGBE_WRITE_REG(hw, IXGBE_VFRDBAL(reg_idx), rdba & DMA_BIT_MASK(32));
1738 IXGBE_WRITE_REG(hw, IXGBE_VFRDBAH(reg_idx), rdba >> 32);
1739 IXGBE_WRITE_REG(hw, IXGBE_VFRDLEN(reg_idx),
1740 ring->count * sizeof(union ixgbe_adv_rx_desc));
1742 #ifndef CONFIG_SPARC
1743 /* enable relaxed ordering */
1744 IXGBE_WRITE_REG(hw, IXGBE_VFDCA_RXCTRL(reg_idx),
1745 IXGBE_DCA_RXCTRL_DESC_RRO_EN);
1746 #else
1747 IXGBE_WRITE_REG(hw, IXGBE_VFDCA_RXCTRL(reg_idx),
1748 IXGBE_DCA_RXCTRL_DESC_RRO_EN |
1749 IXGBE_DCA_RXCTRL_DATA_WRO_EN);
1750 #endif
1752 /* reset head and tail pointers */
1753 IXGBE_WRITE_REG(hw, IXGBE_VFRDH(reg_idx), 0);
1754 IXGBE_WRITE_REG(hw, IXGBE_VFRDT(reg_idx), 0);
1755 ring->tail = adapter->io_addr + IXGBE_VFRDT(reg_idx);
1757 /* initialize rx_buffer_info */
1758 memset(ring->rx_buffer_info, 0,
1759 sizeof(struct ixgbevf_rx_buffer) * ring->count);
1761 /* initialize Rx descriptor 0 */
1762 rx_desc = IXGBEVF_RX_DESC(ring, 0);
1763 rx_desc->wb.upper.length = 0;
1765 /* reset ntu and ntc to place SW in sync with hardwdare */
1766 ring->next_to_clean = 0;
1767 ring->next_to_use = 0;
1768 ring->next_to_alloc = 0;
1770 ixgbevf_configure_srrctl(adapter, reg_idx);
1772 /* allow any size packet since we can handle overflow */
1773 rxdctl &= ~IXGBE_RXDCTL_RLPML_EN;
1775 rxdctl |= IXGBE_RXDCTL_ENABLE | IXGBE_RXDCTL_VME;
1776 IXGBE_WRITE_REG(hw, IXGBE_VFRXDCTL(reg_idx), rxdctl);
1778 ixgbevf_rx_desc_queue_enable(adapter, ring);
1779 ixgbevf_alloc_rx_buffers(ring, ixgbevf_desc_unused(ring));
1783 * ixgbevf_configure_rx - Configure 82599 VF Receive Unit after Reset
1784 * @adapter: board private structure
1786 * Configure the Rx unit of the MAC after a reset.
1788 static void ixgbevf_configure_rx(struct ixgbevf_adapter *adapter)
1790 struct ixgbe_hw *hw = &adapter->hw;
1791 struct net_device *netdev = adapter->netdev;
1792 int i, ret;
1794 ixgbevf_setup_psrtype(adapter);
1795 if (hw->mac.type >= ixgbe_mac_X550_vf)
1796 ixgbevf_setup_vfmrqc(adapter);
1798 spin_lock_bh(&adapter->mbx_lock);
1799 /* notify the PF of our intent to use this size of frame */
1800 ret = hw->mac.ops.set_rlpml(hw, netdev->mtu + ETH_HLEN + ETH_FCS_LEN);
1801 spin_unlock_bh(&adapter->mbx_lock);
1802 if (ret)
1803 dev_err(&adapter->pdev->dev,
1804 "Failed to set MTU at %d\n", netdev->mtu);
1806 /* Setup the HW Rx Head and Tail Descriptor Pointers and
1807 * the Base and Length of the Rx Descriptor Ring
1809 for (i = 0; i < adapter->num_rx_queues; i++)
1810 ixgbevf_configure_rx_ring(adapter, adapter->rx_ring[i]);
1813 static int ixgbevf_vlan_rx_add_vid(struct net_device *netdev,
1814 __be16 proto, u16 vid)
1816 struct ixgbevf_adapter *adapter = netdev_priv(netdev);
1817 struct ixgbe_hw *hw = &adapter->hw;
1818 int err;
1820 spin_lock_bh(&adapter->mbx_lock);
1822 /* add VID to filter table */
1823 err = hw->mac.ops.set_vfta(hw, vid, 0, true);
1825 spin_unlock_bh(&adapter->mbx_lock);
1827 /* translate error return types so error makes sense */
1828 if (err == IXGBE_ERR_MBX)
1829 return -EIO;
1831 if (err == IXGBE_ERR_INVALID_ARGUMENT)
1832 return -EACCES;
1834 set_bit(vid, adapter->active_vlans);
1836 return err;
1839 static int ixgbevf_vlan_rx_kill_vid(struct net_device *netdev,
1840 __be16 proto, u16 vid)
1842 struct ixgbevf_adapter *adapter = netdev_priv(netdev);
1843 struct ixgbe_hw *hw = &adapter->hw;
1844 int err;
1846 spin_lock_bh(&adapter->mbx_lock);
1848 /* remove VID from filter table */
1849 err = hw->mac.ops.set_vfta(hw, vid, 0, false);
1851 spin_unlock_bh(&adapter->mbx_lock);
1853 clear_bit(vid, adapter->active_vlans);
1855 return err;
1858 static void ixgbevf_restore_vlan(struct ixgbevf_adapter *adapter)
1860 u16 vid;
1862 for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
1863 ixgbevf_vlan_rx_add_vid(adapter->netdev,
1864 htons(ETH_P_8021Q), vid);
1867 static int ixgbevf_write_uc_addr_list(struct net_device *netdev)
1869 struct ixgbevf_adapter *adapter = netdev_priv(netdev);
1870 struct ixgbe_hw *hw = &adapter->hw;
1871 int count = 0;
1873 if ((netdev_uc_count(netdev)) > 10) {
1874 pr_err("Too many unicast filters - No Space\n");
1875 return -ENOSPC;
1878 if (!netdev_uc_empty(netdev)) {
1879 struct netdev_hw_addr *ha;
1881 netdev_for_each_uc_addr(ha, netdev) {
1882 hw->mac.ops.set_uc_addr(hw, ++count, ha->addr);
1883 udelay(200);
1885 } else {
1886 /* If the list is empty then send message to PF driver to
1887 * clear all MAC VLANs on this VF.
1889 hw->mac.ops.set_uc_addr(hw, 0, NULL);
1892 return count;
1896 * ixgbevf_set_rx_mode - Multicast and unicast set
1897 * @netdev: network interface device structure
1899 * The set_rx_method entry point is called whenever the multicast address
1900 * list, unicast address list or the network interface flags are updated.
1901 * This routine is responsible for configuring the hardware for proper
1902 * multicast mode and configuring requested unicast filters.
1904 static void ixgbevf_set_rx_mode(struct net_device *netdev)
1906 struct ixgbevf_adapter *adapter = netdev_priv(netdev);
1907 struct ixgbe_hw *hw = &adapter->hw;
1908 unsigned int flags = netdev->flags;
1909 int xcast_mode;
1911 /* request the most inclusive mode we need */
1912 if (flags & IFF_PROMISC)
1913 xcast_mode = IXGBEVF_XCAST_MODE_PROMISC;
1914 else if (flags & IFF_ALLMULTI)
1915 xcast_mode = IXGBEVF_XCAST_MODE_ALLMULTI;
1916 else if (flags & (IFF_BROADCAST | IFF_MULTICAST))
1917 xcast_mode = IXGBEVF_XCAST_MODE_MULTI;
1918 else
1919 xcast_mode = IXGBEVF_XCAST_MODE_NONE;
1921 spin_lock_bh(&adapter->mbx_lock);
1923 hw->mac.ops.update_xcast_mode(hw, xcast_mode);
1925 /* reprogram multicast list */
1926 hw->mac.ops.update_mc_addr_list(hw, netdev);
1928 ixgbevf_write_uc_addr_list(netdev);
1930 spin_unlock_bh(&adapter->mbx_lock);
1933 static void ixgbevf_napi_enable_all(struct ixgbevf_adapter *adapter)
1935 int q_idx;
1936 struct ixgbevf_q_vector *q_vector;
1937 int q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS;
1939 for (q_idx = 0; q_idx < q_vectors; q_idx++) {
1940 q_vector = adapter->q_vector[q_idx];
1941 napi_enable(&q_vector->napi);
1945 static void ixgbevf_napi_disable_all(struct ixgbevf_adapter *adapter)
1947 int q_idx;
1948 struct ixgbevf_q_vector *q_vector;
1949 int q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS;
1951 for (q_idx = 0; q_idx < q_vectors; q_idx++) {
1952 q_vector = adapter->q_vector[q_idx];
1953 napi_disable(&q_vector->napi);
1957 static int ixgbevf_configure_dcb(struct ixgbevf_adapter *adapter)
1959 struct ixgbe_hw *hw = &adapter->hw;
1960 unsigned int def_q = 0;
1961 unsigned int num_tcs = 0;
1962 unsigned int num_rx_queues = adapter->num_rx_queues;
1963 unsigned int num_tx_queues = adapter->num_tx_queues;
1964 int err;
1966 spin_lock_bh(&adapter->mbx_lock);
1968 /* fetch queue configuration from the PF */
1969 err = ixgbevf_get_queues(hw, &num_tcs, &def_q);
1971 spin_unlock_bh(&adapter->mbx_lock);
1973 if (err)
1974 return err;
1976 if (num_tcs > 1) {
1977 /* we need only one Tx queue */
1978 num_tx_queues = 1;
1980 /* update default Tx ring register index */
1981 adapter->tx_ring[0]->reg_idx = def_q;
1983 /* we need as many queues as traffic classes */
1984 num_rx_queues = num_tcs;
1987 /* if we have a bad config abort request queue reset */
1988 if ((adapter->num_rx_queues != num_rx_queues) ||
1989 (adapter->num_tx_queues != num_tx_queues)) {
1990 /* force mailbox timeout to prevent further messages */
1991 hw->mbx.timeout = 0;
1993 /* wait for watchdog to come around and bail us out */
1994 set_bit(__IXGBEVF_QUEUE_RESET_REQUESTED, &adapter->state);
1997 return 0;
2000 static void ixgbevf_configure(struct ixgbevf_adapter *adapter)
2002 ixgbevf_configure_dcb(adapter);
2004 ixgbevf_set_rx_mode(adapter->netdev);
2006 ixgbevf_restore_vlan(adapter);
2008 ixgbevf_configure_tx(adapter);
2009 ixgbevf_configure_rx(adapter);
2012 static void ixgbevf_save_reset_stats(struct ixgbevf_adapter *adapter)
2014 /* Only save pre-reset stats if there are some */
2015 if (adapter->stats.vfgprc || adapter->stats.vfgptc) {
2016 adapter->stats.saved_reset_vfgprc += adapter->stats.vfgprc -
2017 adapter->stats.base_vfgprc;
2018 adapter->stats.saved_reset_vfgptc += adapter->stats.vfgptc -
2019 adapter->stats.base_vfgptc;
2020 adapter->stats.saved_reset_vfgorc += adapter->stats.vfgorc -
2021 adapter->stats.base_vfgorc;
2022 adapter->stats.saved_reset_vfgotc += adapter->stats.vfgotc -
2023 adapter->stats.base_vfgotc;
2024 adapter->stats.saved_reset_vfmprc += adapter->stats.vfmprc -
2025 adapter->stats.base_vfmprc;
2029 static void ixgbevf_init_last_counter_stats(struct ixgbevf_adapter *adapter)
2031 struct ixgbe_hw *hw = &adapter->hw;
2033 adapter->stats.last_vfgprc = IXGBE_READ_REG(hw, IXGBE_VFGPRC);
2034 adapter->stats.last_vfgorc = IXGBE_READ_REG(hw, IXGBE_VFGORC_LSB);
2035 adapter->stats.last_vfgorc |=
2036 (((u64)(IXGBE_READ_REG(hw, IXGBE_VFGORC_MSB))) << 32);
2037 adapter->stats.last_vfgptc = IXGBE_READ_REG(hw, IXGBE_VFGPTC);
2038 adapter->stats.last_vfgotc = IXGBE_READ_REG(hw, IXGBE_VFGOTC_LSB);
2039 adapter->stats.last_vfgotc |=
2040 (((u64)(IXGBE_READ_REG(hw, IXGBE_VFGOTC_MSB))) << 32);
2041 adapter->stats.last_vfmprc = IXGBE_READ_REG(hw, IXGBE_VFMPRC);
2043 adapter->stats.base_vfgprc = adapter->stats.last_vfgprc;
2044 adapter->stats.base_vfgorc = adapter->stats.last_vfgorc;
2045 adapter->stats.base_vfgptc = adapter->stats.last_vfgptc;
2046 adapter->stats.base_vfgotc = adapter->stats.last_vfgotc;
2047 adapter->stats.base_vfmprc = adapter->stats.last_vfmprc;
2050 static void ixgbevf_negotiate_api(struct ixgbevf_adapter *adapter)
2052 struct ixgbe_hw *hw = &adapter->hw;
2053 int api[] = { ixgbe_mbox_api_13,
2054 ixgbe_mbox_api_12,
2055 ixgbe_mbox_api_11,
2056 ixgbe_mbox_api_10,
2057 ixgbe_mbox_api_unknown };
2058 int err, idx = 0;
2060 spin_lock_bh(&adapter->mbx_lock);
2062 while (api[idx] != ixgbe_mbox_api_unknown) {
2063 err = hw->mac.ops.negotiate_api_version(hw, api[idx]);
2064 if (!err)
2065 break;
2066 idx++;
2069 spin_unlock_bh(&adapter->mbx_lock);
2072 static void ixgbevf_up_complete(struct ixgbevf_adapter *adapter)
2074 struct net_device *netdev = adapter->netdev;
2075 struct ixgbe_hw *hw = &adapter->hw;
2077 ixgbevf_configure_msix(adapter);
2079 spin_lock_bh(&adapter->mbx_lock);
2081 if (is_valid_ether_addr(hw->mac.addr))
2082 hw->mac.ops.set_rar(hw, 0, hw->mac.addr, 0);
2083 else
2084 hw->mac.ops.set_rar(hw, 0, hw->mac.perm_addr, 0);
2086 spin_unlock_bh(&adapter->mbx_lock);
2088 smp_mb__before_atomic();
2089 clear_bit(__IXGBEVF_DOWN, &adapter->state);
2090 ixgbevf_napi_enable_all(adapter);
2092 /* clear any pending interrupts, may auto mask */
2093 IXGBE_READ_REG(hw, IXGBE_VTEICR);
2094 ixgbevf_irq_enable(adapter);
2096 /* enable transmits */
2097 netif_tx_start_all_queues(netdev);
2099 ixgbevf_save_reset_stats(adapter);
2100 ixgbevf_init_last_counter_stats(adapter);
2102 hw->mac.get_link_status = 1;
2103 mod_timer(&adapter->service_timer, jiffies);
2106 void ixgbevf_up(struct ixgbevf_adapter *adapter)
2108 ixgbevf_configure(adapter);
2110 ixgbevf_up_complete(adapter);
2114 * ixgbevf_clean_rx_ring - Free Rx Buffers per Queue
2115 * @rx_ring: ring to free buffers from
2117 static void ixgbevf_clean_rx_ring(struct ixgbevf_ring *rx_ring)
2119 u16 i = rx_ring->next_to_clean;
2121 /* Free Rx ring sk_buff */
2122 if (rx_ring->skb) {
2123 dev_kfree_skb(rx_ring->skb);
2124 rx_ring->skb = NULL;
2127 /* Free all the Rx ring pages */
2128 while (i != rx_ring->next_to_alloc) {
2129 struct ixgbevf_rx_buffer *rx_buffer;
2131 rx_buffer = &rx_ring->rx_buffer_info[i];
2133 /* Invalidate cache lines that may have been written to by
2134 * device so that we avoid corrupting memory.
2136 dma_sync_single_range_for_cpu(rx_ring->dev,
2137 rx_buffer->dma,
2138 rx_buffer->page_offset,
2139 IXGBEVF_RX_BUFSZ,
2140 DMA_FROM_DEVICE);
2142 /* free resources associated with mapping */
2143 dma_unmap_page_attrs(rx_ring->dev,
2144 rx_buffer->dma,
2145 PAGE_SIZE,
2146 DMA_FROM_DEVICE,
2147 IXGBEVF_RX_DMA_ATTR);
2149 __page_frag_cache_drain(rx_buffer->page,
2150 rx_buffer->pagecnt_bias);
2152 i++;
2153 if (i == rx_ring->count)
2154 i = 0;
2157 rx_ring->next_to_alloc = 0;
2158 rx_ring->next_to_clean = 0;
2159 rx_ring->next_to_use = 0;
2163 * ixgbevf_clean_tx_ring - Free Tx Buffers
2164 * @tx_ring: ring to be cleaned
2166 static void ixgbevf_clean_tx_ring(struct ixgbevf_ring *tx_ring)
2168 u16 i = tx_ring->next_to_clean;
2169 struct ixgbevf_tx_buffer *tx_buffer = &tx_ring->tx_buffer_info[i];
2171 while (i != tx_ring->next_to_use) {
2172 union ixgbe_adv_tx_desc *eop_desc, *tx_desc;
2174 /* Free all the Tx ring sk_buffs */
2175 dev_kfree_skb_any(tx_buffer->skb);
2177 /* unmap skb header data */
2178 dma_unmap_single(tx_ring->dev,
2179 dma_unmap_addr(tx_buffer, dma),
2180 dma_unmap_len(tx_buffer, len),
2181 DMA_TO_DEVICE);
2183 /* check for eop_desc to determine the end of the packet */
2184 eop_desc = tx_buffer->next_to_watch;
2185 tx_desc = IXGBEVF_TX_DESC(tx_ring, i);
2187 /* unmap remaining buffers */
2188 while (tx_desc != eop_desc) {
2189 tx_buffer++;
2190 tx_desc++;
2191 i++;
2192 if (unlikely(i == tx_ring->count)) {
2193 i = 0;
2194 tx_buffer = tx_ring->tx_buffer_info;
2195 tx_desc = IXGBEVF_TX_DESC(tx_ring, 0);
2198 /* unmap any remaining paged data */
2199 if (dma_unmap_len(tx_buffer, len))
2200 dma_unmap_page(tx_ring->dev,
2201 dma_unmap_addr(tx_buffer, dma),
2202 dma_unmap_len(tx_buffer, len),
2203 DMA_TO_DEVICE);
2206 /* move us one more past the eop_desc for start of next pkt */
2207 tx_buffer++;
2208 i++;
2209 if (unlikely(i == tx_ring->count)) {
2210 i = 0;
2211 tx_buffer = tx_ring->tx_buffer_info;
2215 /* reset next_to_use and next_to_clean */
2216 tx_ring->next_to_use = 0;
2217 tx_ring->next_to_clean = 0;
2222 * ixgbevf_clean_all_rx_rings - Free Rx Buffers for all queues
2223 * @adapter: board private structure
2225 static void ixgbevf_clean_all_rx_rings(struct ixgbevf_adapter *adapter)
2227 int i;
2229 for (i = 0; i < adapter->num_rx_queues; i++)
2230 ixgbevf_clean_rx_ring(adapter->rx_ring[i]);
2234 * ixgbevf_clean_all_tx_rings - Free Tx Buffers for all queues
2235 * @adapter: board private structure
2237 static void ixgbevf_clean_all_tx_rings(struct ixgbevf_adapter *adapter)
2239 int i;
2241 for (i = 0; i < adapter->num_tx_queues; i++)
2242 ixgbevf_clean_tx_ring(adapter->tx_ring[i]);
2245 void ixgbevf_down(struct ixgbevf_adapter *adapter)
2247 struct net_device *netdev = adapter->netdev;
2248 struct ixgbe_hw *hw = &adapter->hw;
2249 int i;
2251 /* signal that we are down to the interrupt handler */
2252 if (test_and_set_bit(__IXGBEVF_DOWN, &adapter->state))
2253 return; /* do nothing if already down */
2255 /* disable all enabled Rx queues */
2256 for (i = 0; i < adapter->num_rx_queues; i++)
2257 ixgbevf_disable_rx_queue(adapter, adapter->rx_ring[i]);
2259 usleep_range(10000, 20000);
2261 netif_tx_stop_all_queues(netdev);
2263 /* call carrier off first to avoid false dev_watchdog timeouts */
2264 netif_carrier_off(netdev);
2265 netif_tx_disable(netdev);
2267 ixgbevf_irq_disable(adapter);
2269 ixgbevf_napi_disable_all(adapter);
2271 del_timer_sync(&adapter->service_timer);
2273 /* disable transmits in the hardware now that interrupts are off */
2274 for (i = 0; i < adapter->num_tx_queues; i++) {
2275 u8 reg_idx = adapter->tx_ring[i]->reg_idx;
2277 IXGBE_WRITE_REG(hw, IXGBE_VFTXDCTL(reg_idx),
2278 IXGBE_TXDCTL_SWFLSH);
2281 if (!pci_channel_offline(adapter->pdev))
2282 ixgbevf_reset(adapter);
2284 ixgbevf_clean_all_tx_rings(adapter);
2285 ixgbevf_clean_all_rx_rings(adapter);
2288 void ixgbevf_reinit_locked(struct ixgbevf_adapter *adapter)
2290 WARN_ON(in_interrupt());
2292 while (test_and_set_bit(__IXGBEVF_RESETTING, &adapter->state))
2293 msleep(1);
2295 ixgbevf_down(adapter);
2296 ixgbevf_up(adapter);
2298 clear_bit(__IXGBEVF_RESETTING, &adapter->state);
2301 void ixgbevf_reset(struct ixgbevf_adapter *adapter)
2303 struct ixgbe_hw *hw = &adapter->hw;
2304 struct net_device *netdev = adapter->netdev;
2306 if (hw->mac.ops.reset_hw(hw)) {
2307 hw_dbg(hw, "PF still resetting\n");
2308 } else {
2309 hw->mac.ops.init_hw(hw);
2310 ixgbevf_negotiate_api(adapter);
2313 if (is_valid_ether_addr(adapter->hw.mac.addr)) {
2314 ether_addr_copy(netdev->dev_addr, adapter->hw.mac.addr);
2315 ether_addr_copy(netdev->perm_addr, adapter->hw.mac.addr);
2318 adapter->last_reset = jiffies;
2321 static int ixgbevf_acquire_msix_vectors(struct ixgbevf_adapter *adapter,
2322 int vectors)
2324 int vector_threshold;
2326 /* We'll want at least 2 (vector_threshold):
2327 * 1) TxQ[0] + RxQ[0] handler
2328 * 2) Other (Link Status Change, etc.)
2330 vector_threshold = MIN_MSIX_COUNT;
2332 /* The more we get, the more we will assign to Tx/Rx Cleanup
2333 * for the separate queues...where Rx Cleanup >= Tx Cleanup.
2334 * Right now, we simply care about how many we'll get; we'll
2335 * set them up later while requesting irq's.
2337 vectors = pci_enable_msix_range(adapter->pdev, adapter->msix_entries,
2338 vector_threshold, vectors);
2340 if (vectors < 0) {
2341 dev_err(&adapter->pdev->dev,
2342 "Unable to allocate MSI-X interrupts\n");
2343 kfree(adapter->msix_entries);
2344 adapter->msix_entries = NULL;
2345 return vectors;
2348 /* Adjust for only the vectors we'll use, which is minimum
2349 * of max_msix_q_vectors + NON_Q_VECTORS, or the number of
2350 * vectors we were allocated.
2352 adapter->num_msix_vectors = vectors;
2354 return 0;
2358 * ixgbevf_set_num_queues - Allocate queues for device, feature dependent
2359 * @adapter: board private structure to initialize
2361 * This is the top level queue allocation routine. The order here is very
2362 * important, starting with the "most" number of features turned on at once,
2363 * and ending with the smallest set of features. This way large combinations
2364 * can be allocated if they're turned on, and smaller combinations are the
2365 * fallthrough conditions.
2368 static void ixgbevf_set_num_queues(struct ixgbevf_adapter *adapter)
2370 struct ixgbe_hw *hw = &adapter->hw;
2371 unsigned int def_q = 0;
2372 unsigned int num_tcs = 0;
2373 int err;
2375 /* Start with base case */
2376 adapter->num_rx_queues = 1;
2377 adapter->num_tx_queues = 1;
2379 spin_lock_bh(&adapter->mbx_lock);
2381 /* fetch queue configuration from the PF */
2382 err = ixgbevf_get_queues(hw, &num_tcs, &def_q);
2384 spin_unlock_bh(&adapter->mbx_lock);
2386 if (err)
2387 return;
2389 /* we need as many queues as traffic classes */
2390 if (num_tcs > 1) {
2391 adapter->num_rx_queues = num_tcs;
2392 } else {
2393 u16 rss = min_t(u16, num_online_cpus(), IXGBEVF_MAX_RSS_QUEUES);
2395 switch (hw->api_version) {
2396 case ixgbe_mbox_api_11:
2397 case ixgbe_mbox_api_12:
2398 case ixgbe_mbox_api_13:
2399 adapter->num_rx_queues = rss;
2400 adapter->num_tx_queues = rss;
2401 default:
2402 break;
2408 * ixgbevf_alloc_queues - Allocate memory for all rings
2409 * @adapter: board private structure to initialize
2411 * We allocate one ring per queue at run-time since we don't know the
2412 * number of queues at compile-time. The polling_netdev array is
2413 * intended for Multiqueue, but should work fine with a single queue.
2415 static int ixgbevf_alloc_queues(struct ixgbevf_adapter *adapter)
2417 struct ixgbevf_ring *ring;
2418 int rx = 0, tx = 0;
2420 for (; tx < adapter->num_tx_queues; tx++) {
2421 ring = kzalloc(sizeof(*ring), GFP_KERNEL);
2422 if (!ring)
2423 goto err_allocation;
2425 ring->dev = &adapter->pdev->dev;
2426 ring->netdev = adapter->netdev;
2427 ring->count = adapter->tx_ring_count;
2428 ring->queue_index = tx;
2429 ring->reg_idx = tx;
2431 adapter->tx_ring[tx] = ring;
2434 for (; rx < adapter->num_rx_queues; rx++) {
2435 ring = kzalloc(sizeof(*ring), GFP_KERNEL);
2436 if (!ring)
2437 goto err_allocation;
2439 ring->dev = &adapter->pdev->dev;
2440 ring->netdev = adapter->netdev;
2442 ring->count = adapter->rx_ring_count;
2443 ring->queue_index = rx;
2444 ring->reg_idx = rx;
2446 adapter->rx_ring[rx] = ring;
2449 return 0;
2451 err_allocation:
2452 while (tx) {
2453 kfree(adapter->tx_ring[--tx]);
2454 adapter->tx_ring[tx] = NULL;
2457 while (rx) {
2458 kfree(adapter->rx_ring[--rx]);
2459 adapter->rx_ring[rx] = NULL;
2461 return -ENOMEM;
2465 * ixgbevf_set_interrupt_capability - set MSI-X or FAIL if not supported
2466 * @adapter: board private structure to initialize
2468 * Attempt to configure the interrupts using the best available
2469 * capabilities of the hardware and the kernel.
2471 static int ixgbevf_set_interrupt_capability(struct ixgbevf_adapter *adapter)
2473 struct net_device *netdev = adapter->netdev;
2474 int err;
2475 int vector, v_budget;
2477 /* It's easy to be greedy for MSI-X vectors, but it really
2478 * doesn't do us much good if we have a lot more vectors
2479 * than CPU's. So let's be conservative and only ask for
2480 * (roughly) the same number of vectors as there are CPU's.
2481 * The default is to use pairs of vectors.
2483 v_budget = max(adapter->num_rx_queues, adapter->num_tx_queues);
2484 v_budget = min_t(int, v_budget, num_online_cpus());
2485 v_budget += NON_Q_VECTORS;
2487 /* A failure in MSI-X entry allocation isn't fatal, but it does
2488 * mean we disable MSI-X capabilities of the adapter.
2490 adapter->msix_entries = kcalloc(v_budget,
2491 sizeof(struct msix_entry), GFP_KERNEL);
2492 if (!adapter->msix_entries)
2493 return -ENOMEM;
2495 for (vector = 0; vector < v_budget; vector++)
2496 adapter->msix_entries[vector].entry = vector;
2498 err = ixgbevf_acquire_msix_vectors(adapter, v_budget);
2499 if (err)
2500 return err;
2502 err = netif_set_real_num_tx_queues(netdev, adapter->num_tx_queues);
2503 if (err)
2504 return err;
2506 return netif_set_real_num_rx_queues(netdev, adapter->num_rx_queues);
2510 * ixgbevf_alloc_q_vectors - Allocate memory for interrupt vectors
2511 * @adapter: board private structure to initialize
2513 * We allocate one q_vector per queue interrupt. If allocation fails we
2514 * return -ENOMEM.
2516 static int ixgbevf_alloc_q_vectors(struct ixgbevf_adapter *adapter)
2518 int q_idx, num_q_vectors;
2519 struct ixgbevf_q_vector *q_vector;
2521 num_q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS;
2523 for (q_idx = 0; q_idx < num_q_vectors; q_idx++) {
2524 q_vector = kzalloc(sizeof(struct ixgbevf_q_vector), GFP_KERNEL);
2525 if (!q_vector)
2526 goto err_out;
2527 q_vector->adapter = adapter;
2528 q_vector->v_idx = q_idx;
2529 netif_napi_add(adapter->netdev, &q_vector->napi,
2530 ixgbevf_poll, 64);
2531 adapter->q_vector[q_idx] = q_vector;
2534 return 0;
2536 err_out:
2537 while (q_idx) {
2538 q_idx--;
2539 q_vector = adapter->q_vector[q_idx];
2540 #ifdef CONFIG_NET_RX_BUSY_POLL
2541 napi_hash_del(&q_vector->napi);
2542 #endif
2543 netif_napi_del(&q_vector->napi);
2544 kfree(q_vector);
2545 adapter->q_vector[q_idx] = NULL;
2547 return -ENOMEM;
2551 * ixgbevf_free_q_vectors - Free memory allocated for interrupt vectors
2552 * @adapter: board private structure to initialize
2554 * This function frees the memory allocated to the q_vectors. In addition if
2555 * NAPI is enabled it will delete any references to the NAPI struct prior
2556 * to freeing the q_vector.
2558 static void ixgbevf_free_q_vectors(struct ixgbevf_adapter *adapter)
2560 int q_idx, num_q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS;
2562 for (q_idx = 0; q_idx < num_q_vectors; q_idx++) {
2563 struct ixgbevf_q_vector *q_vector = adapter->q_vector[q_idx];
2565 adapter->q_vector[q_idx] = NULL;
2566 #ifdef CONFIG_NET_RX_BUSY_POLL
2567 napi_hash_del(&q_vector->napi);
2568 #endif
2569 netif_napi_del(&q_vector->napi);
2570 kfree(q_vector);
2575 * ixgbevf_reset_interrupt_capability - Reset MSIX setup
2576 * @adapter: board private structure
2579 static void ixgbevf_reset_interrupt_capability(struct ixgbevf_adapter *adapter)
2581 if (!adapter->msix_entries)
2582 return;
2584 pci_disable_msix(adapter->pdev);
2585 kfree(adapter->msix_entries);
2586 adapter->msix_entries = NULL;
2590 * ixgbevf_init_interrupt_scheme - Determine if MSIX is supported and init
2591 * @adapter: board private structure to initialize
2594 static int ixgbevf_init_interrupt_scheme(struct ixgbevf_adapter *adapter)
2596 int err;
2598 /* Number of supported queues */
2599 ixgbevf_set_num_queues(adapter);
2601 err = ixgbevf_set_interrupt_capability(adapter);
2602 if (err) {
2603 hw_dbg(&adapter->hw,
2604 "Unable to setup interrupt capabilities\n");
2605 goto err_set_interrupt;
2608 err = ixgbevf_alloc_q_vectors(adapter);
2609 if (err) {
2610 hw_dbg(&adapter->hw, "Unable to allocate memory for queue vectors\n");
2611 goto err_alloc_q_vectors;
2614 err = ixgbevf_alloc_queues(adapter);
2615 if (err) {
2616 pr_err("Unable to allocate memory for queues\n");
2617 goto err_alloc_queues;
2620 hw_dbg(&adapter->hw, "Multiqueue %s: Rx Queue count = %u, Tx Queue count = %u\n",
2621 (adapter->num_rx_queues > 1) ? "Enabled" :
2622 "Disabled", adapter->num_rx_queues, adapter->num_tx_queues);
2624 set_bit(__IXGBEVF_DOWN, &adapter->state);
2626 return 0;
2627 err_alloc_queues:
2628 ixgbevf_free_q_vectors(adapter);
2629 err_alloc_q_vectors:
2630 ixgbevf_reset_interrupt_capability(adapter);
2631 err_set_interrupt:
2632 return err;
2636 * ixgbevf_clear_interrupt_scheme - Clear the current interrupt scheme settings
2637 * @adapter: board private structure to clear interrupt scheme on
2639 * We go through and clear interrupt specific resources and reset the structure
2640 * to pre-load conditions
2642 static void ixgbevf_clear_interrupt_scheme(struct ixgbevf_adapter *adapter)
2644 int i;
2646 for (i = 0; i < adapter->num_tx_queues; i++) {
2647 kfree(adapter->tx_ring[i]);
2648 adapter->tx_ring[i] = NULL;
2650 for (i = 0; i < adapter->num_rx_queues; i++) {
2651 kfree(adapter->rx_ring[i]);
2652 adapter->rx_ring[i] = NULL;
2655 adapter->num_tx_queues = 0;
2656 adapter->num_rx_queues = 0;
2658 ixgbevf_free_q_vectors(adapter);
2659 ixgbevf_reset_interrupt_capability(adapter);
2663 * ixgbevf_sw_init - Initialize general software structures
2664 * @adapter: board private structure to initialize
2666 * ixgbevf_sw_init initializes the Adapter private data structure.
2667 * Fields are initialized based on PCI device information and
2668 * OS network device settings (MTU size).
2670 static int ixgbevf_sw_init(struct ixgbevf_adapter *adapter)
2672 struct ixgbe_hw *hw = &adapter->hw;
2673 struct pci_dev *pdev = adapter->pdev;
2674 struct net_device *netdev = adapter->netdev;
2675 int err;
2677 /* PCI config space info */
2678 hw->vendor_id = pdev->vendor;
2679 hw->device_id = pdev->device;
2680 hw->revision_id = pdev->revision;
2681 hw->subsystem_vendor_id = pdev->subsystem_vendor;
2682 hw->subsystem_device_id = pdev->subsystem_device;
2684 hw->mbx.ops.init_params(hw);
2686 if (hw->mac.type >= ixgbe_mac_X550_vf) {
2687 err = ixgbevf_init_rss_key(adapter);
2688 if (err)
2689 goto out;
2692 /* assume legacy case in which PF would only give VF 2 queues */
2693 hw->mac.max_tx_queues = 2;
2694 hw->mac.max_rx_queues = 2;
2696 /* lock to protect mailbox accesses */
2697 spin_lock_init(&adapter->mbx_lock);
2699 err = hw->mac.ops.reset_hw(hw);
2700 if (err) {
2701 dev_info(&pdev->dev,
2702 "PF still in reset state. Is the PF interface up?\n");
2703 } else {
2704 err = hw->mac.ops.init_hw(hw);
2705 if (err) {
2706 pr_err("init_shared_code failed: %d\n", err);
2707 goto out;
2709 ixgbevf_negotiate_api(adapter);
2710 err = hw->mac.ops.get_mac_addr(hw, hw->mac.addr);
2711 if (err)
2712 dev_info(&pdev->dev, "Error reading MAC address\n");
2713 else if (is_zero_ether_addr(adapter->hw.mac.addr))
2714 dev_info(&pdev->dev,
2715 "MAC address not assigned by administrator.\n");
2716 ether_addr_copy(netdev->dev_addr, hw->mac.addr);
2719 if (!is_valid_ether_addr(netdev->dev_addr)) {
2720 dev_info(&pdev->dev, "Assigning random MAC address\n");
2721 eth_hw_addr_random(netdev);
2722 ether_addr_copy(hw->mac.addr, netdev->dev_addr);
2723 ether_addr_copy(hw->mac.perm_addr, netdev->dev_addr);
2726 /* Enable dynamic interrupt throttling rates */
2727 adapter->rx_itr_setting = 1;
2728 adapter->tx_itr_setting = 1;
2730 /* set default ring sizes */
2731 adapter->tx_ring_count = IXGBEVF_DEFAULT_TXD;
2732 adapter->rx_ring_count = IXGBEVF_DEFAULT_RXD;
2734 set_bit(__IXGBEVF_DOWN, &adapter->state);
2735 return 0;
2737 out:
2738 return err;
2741 #define UPDATE_VF_COUNTER_32bit(reg, last_counter, counter) \
2743 u32 current_counter = IXGBE_READ_REG(hw, reg); \
2744 if (current_counter < last_counter) \
2745 counter += 0x100000000LL; \
2746 last_counter = current_counter; \
2747 counter &= 0xFFFFFFFF00000000LL; \
2748 counter |= current_counter; \
2751 #define UPDATE_VF_COUNTER_36bit(reg_lsb, reg_msb, last_counter, counter) \
2753 u64 current_counter_lsb = IXGBE_READ_REG(hw, reg_lsb); \
2754 u64 current_counter_msb = IXGBE_READ_REG(hw, reg_msb); \
2755 u64 current_counter = (current_counter_msb << 32) | \
2756 current_counter_lsb; \
2757 if (current_counter < last_counter) \
2758 counter += 0x1000000000LL; \
2759 last_counter = current_counter; \
2760 counter &= 0xFFFFFFF000000000LL; \
2761 counter |= current_counter; \
2764 * ixgbevf_update_stats - Update the board statistics counters.
2765 * @adapter: board private structure
2767 void ixgbevf_update_stats(struct ixgbevf_adapter *adapter)
2769 struct ixgbe_hw *hw = &adapter->hw;
2770 u64 alloc_rx_page_failed = 0, alloc_rx_buff_failed = 0;
2771 u64 alloc_rx_page = 0, hw_csum_rx_error = 0;
2772 int i;
2774 if (test_bit(__IXGBEVF_DOWN, &adapter->state) ||
2775 test_bit(__IXGBEVF_RESETTING, &adapter->state))
2776 return;
2778 UPDATE_VF_COUNTER_32bit(IXGBE_VFGPRC, adapter->stats.last_vfgprc,
2779 adapter->stats.vfgprc);
2780 UPDATE_VF_COUNTER_32bit(IXGBE_VFGPTC, adapter->stats.last_vfgptc,
2781 adapter->stats.vfgptc);
2782 UPDATE_VF_COUNTER_36bit(IXGBE_VFGORC_LSB, IXGBE_VFGORC_MSB,
2783 adapter->stats.last_vfgorc,
2784 adapter->stats.vfgorc);
2785 UPDATE_VF_COUNTER_36bit(IXGBE_VFGOTC_LSB, IXGBE_VFGOTC_MSB,
2786 adapter->stats.last_vfgotc,
2787 adapter->stats.vfgotc);
2788 UPDATE_VF_COUNTER_32bit(IXGBE_VFMPRC, adapter->stats.last_vfmprc,
2789 adapter->stats.vfmprc);
2791 for (i = 0; i < adapter->num_rx_queues; i++) {
2792 struct ixgbevf_ring *rx_ring = adapter->rx_ring[i];
2794 hw_csum_rx_error += rx_ring->rx_stats.csum_err;
2795 alloc_rx_page_failed += rx_ring->rx_stats.alloc_rx_page_failed;
2796 alloc_rx_buff_failed += rx_ring->rx_stats.alloc_rx_buff_failed;
2797 alloc_rx_page += rx_ring->rx_stats.alloc_rx_page;
2800 adapter->hw_csum_rx_error = hw_csum_rx_error;
2801 adapter->alloc_rx_page_failed = alloc_rx_page_failed;
2802 adapter->alloc_rx_buff_failed = alloc_rx_buff_failed;
2803 adapter->alloc_rx_page = alloc_rx_page;
2807 * ixgbevf_service_timer - Timer Call-back
2808 * @t: pointer to timer_list struct
2810 static void ixgbevf_service_timer(struct timer_list *t)
2812 struct ixgbevf_adapter *adapter = from_timer(adapter, t,
2813 service_timer);
2815 /* Reset the timer */
2816 mod_timer(&adapter->service_timer, (HZ * 2) + jiffies);
2818 ixgbevf_service_event_schedule(adapter);
2821 static void ixgbevf_reset_subtask(struct ixgbevf_adapter *adapter)
2823 if (!test_and_clear_bit(__IXGBEVF_RESET_REQUESTED, &adapter->state))
2824 return;
2826 /* If we're already down or resetting, just bail */
2827 if (test_bit(__IXGBEVF_DOWN, &adapter->state) ||
2828 test_bit(__IXGBEVF_REMOVING, &adapter->state) ||
2829 test_bit(__IXGBEVF_RESETTING, &adapter->state))
2830 return;
2832 adapter->tx_timeout_count++;
2834 rtnl_lock();
2835 ixgbevf_reinit_locked(adapter);
2836 rtnl_unlock();
2840 * ixgbevf_check_hang_subtask - check for hung queues and dropped interrupts
2841 * @adapter: pointer to the device adapter structure
2843 * This function serves two purposes. First it strobes the interrupt lines
2844 * in order to make certain interrupts are occurring. Secondly it sets the
2845 * bits needed to check for TX hangs. As a result we should immediately
2846 * determine if a hang has occurred.
2848 static void ixgbevf_check_hang_subtask(struct ixgbevf_adapter *adapter)
2850 struct ixgbe_hw *hw = &adapter->hw;
2851 u32 eics = 0;
2852 int i;
2854 /* If we're down or resetting, just bail */
2855 if (test_bit(__IXGBEVF_DOWN, &adapter->state) ||
2856 test_bit(__IXGBEVF_RESETTING, &adapter->state))
2857 return;
2859 /* Force detection of hung controller */
2860 if (netif_carrier_ok(adapter->netdev)) {
2861 for (i = 0; i < adapter->num_tx_queues; i++)
2862 set_check_for_tx_hang(adapter->tx_ring[i]);
2865 /* get one bit for every active Tx/Rx interrupt vector */
2866 for (i = 0; i < adapter->num_msix_vectors - NON_Q_VECTORS; i++) {
2867 struct ixgbevf_q_vector *qv = adapter->q_vector[i];
2869 if (qv->rx.ring || qv->tx.ring)
2870 eics |= BIT(i);
2873 /* Cause software interrupt to ensure rings are cleaned */
2874 IXGBE_WRITE_REG(hw, IXGBE_VTEICS, eics);
2878 * ixgbevf_watchdog_update_link - update the link status
2879 * @adapter: pointer to the device adapter structure
2881 static void ixgbevf_watchdog_update_link(struct ixgbevf_adapter *adapter)
2883 struct ixgbe_hw *hw = &adapter->hw;
2884 u32 link_speed = adapter->link_speed;
2885 bool link_up = adapter->link_up;
2886 s32 err;
2888 spin_lock_bh(&adapter->mbx_lock);
2890 err = hw->mac.ops.check_link(hw, &link_speed, &link_up, false);
2892 spin_unlock_bh(&adapter->mbx_lock);
2894 /* if check for link returns error we will need to reset */
2895 if (err && time_after(jiffies, adapter->last_reset + (10 * HZ))) {
2896 set_bit(__IXGBEVF_RESET_REQUESTED, &adapter->state);
2897 link_up = false;
2900 adapter->link_up = link_up;
2901 adapter->link_speed = link_speed;
2905 * ixgbevf_watchdog_link_is_up - update netif_carrier status and
2906 * print link up message
2907 * @adapter: pointer to the device adapter structure
2909 static void ixgbevf_watchdog_link_is_up(struct ixgbevf_adapter *adapter)
2911 struct net_device *netdev = adapter->netdev;
2913 /* only continue if link was previously down */
2914 if (netif_carrier_ok(netdev))
2915 return;
2917 dev_info(&adapter->pdev->dev, "NIC Link is Up %s\n",
2918 (adapter->link_speed == IXGBE_LINK_SPEED_10GB_FULL) ?
2919 "10 Gbps" :
2920 (adapter->link_speed == IXGBE_LINK_SPEED_1GB_FULL) ?
2921 "1 Gbps" :
2922 (adapter->link_speed == IXGBE_LINK_SPEED_100_FULL) ?
2923 "100 Mbps" :
2924 "unknown speed");
2926 netif_carrier_on(netdev);
2930 * ixgbevf_watchdog_link_is_down - update netif_carrier status and
2931 * print link down message
2932 * @adapter: pointer to the adapter structure
2934 static void ixgbevf_watchdog_link_is_down(struct ixgbevf_adapter *adapter)
2936 struct net_device *netdev = adapter->netdev;
2938 adapter->link_speed = 0;
2940 /* only continue if link was up previously */
2941 if (!netif_carrier_ok(netdev))
2942 return;
2944 dev_info(&adapter->pdev->dev, "NIC Link is Down\n");
2946 netif_carrier_off(netdev);
2950 * ixgbevf_watchdog_subtask - worker thread to bring link up
2951 * @adapter: board private structure
2953 static void ixgbevf_watchdog_subtask(struct ixgbevf_adapter *adapter)
2955 /* if interface is down do nothing */
2956 if (test_bit(__IXGBEVF_DOWN, &adapter->state) ||
2957 test_bit(__IXGBEVF_RESETTING, &adapter->state))
2958 return;
2960 ixgbevf_watchdog_update_link(adapter);
2962 if (adapter->link_up)
2963 ixgbevf_watchdog_link_is_up(adapter);
2964 else
2965 ixgbevf_watchdog_link_is_down(adapter);
2967 ixgbevf_update_stats(adapter);
2971 * ixgbevf_service_task - manages and runs subtasks
2972 * @work: pointer to work_struct containing our data
2974 static void ixgbevf_service_task(struct work_struct *work)
2976 struct ixgbevf_adapter *adapter = container_of(work,
2977 struct ixgbevf_adapter,
2978 service_task);
2979 struct ixgbe_hw *hw = &adapter->hw;
2981 if (IXGBE_REMOVED(hw->hw_addr)) {
2982 if (!test_bit(__IXGBEVF_DOWN, &adapter->state)) {
2983 rtnl_lock();
2984 ixgbevf_down(adapter);
2985 rtnl_unlock();
2987 return;
2990 ixgbevf_queue_reset_subtask(adapter);
2991 ixgbevf_reset_subtask(adapter);
2992 ixgbevf_watchdog_subtask(adapter);
2993 ixgbevf_check_hang_subtask(adapter);
2995 ixgbevf_service_event_complete(adapter);
2999 * ixgbevf_free_tx_resources - Free Tx Resources per Queue
3000 * @tx_ring: Tx descriptor ring for a specific queue
3002 * Free all transmit software resources
3004 void ixgbevf_free_tx_resources(struct ixgbevf_ring *tx_ring)
3006 ixgbevf_clean_tx_ring(tx_ring);
3008 vfree(tx_ring->tx_buffer_info);
3009 tx_ring->tx_buffer_info = NULL;
3011 /* if not set, then don't free */
3012 if (!tx_ring->desc)
3013 return;
3015 dma_free_coherent(tx_ring->dev, tx_ring->size, tx_ring->desc,
3016 tx_ring->dma);
3018 tx_ring->desc = NULL;
3022 * ixgbevf_free_all_tx_resources - Free Tx Resources for All Queues
3023 * @adapter: board private structure
3025 * Free all transmit software resources
3027 static void ixgbevf_free_all_tx_resources(struct ixgbevf_adapter *adapter)
3029 int i;
3031 for (i = 0; i < adapter->num_tx_queues; i++)
3032 if (adapter->tx_ring[i]->desc)
3033 ixgbevf_free_tx_resources(adapter->tx_ring[i]);
3037 * ixgbevf_setup_tx_resources - allocate Tx resources (Descriptors)
3038 * @tx_ring: Tx descriptor ring (for a specific queue) to setup
3040 * Return 0 on success, negative on failure
3042 int ixgbevf_setup_tx_resources(struct ixgbevf_ring *tx_ring)
3044 struct ixgbevf_adapter *adapter = netdev_priv(tx_ring->netdev);
3045 int size;
3047 size = sizeof(struct ixgbevf_tx_buffer) * tx_ring->count;
3048 tx_ring->tx_buffer_info = vmalloc(size);
3049 if (!tx_ring->tx_buffer_info)
3050 goto err;
3052 u64_stats_init(&tx_ring->syncp);
3054 /* round up to nearest 4K */
3055 tx_ring->size = tx_ring->count * sizeof(union ixgbe_adv_tx_desc);
3056 tx_ring->size = ALIGN(tx_ring->size, 4096);
3058 tx_ring->desc = dma_alloc_coherent(tx_ring->dev, tx_ring->size,
3059 &tx_ring->dma, GFP_KERNEL);
3060 if (!tx_ring->desc)
3061 goto err;
3063 return 0;
3065 err:
3066 vfree(tx_ring->tx_buffer_info);
3067 tx_ring->tx_buffer_info = NULL;
3068 hw_dbg(&adapter->hw, "Unable to allocate memory for the transmit descriptor ring\n");
3069 return -ENOMEM;
3073 * ixgbevf_setup_all_tx_resources - allocate all queues Tx resources
3074 * @adapter: board private structure
3076 * If this function returns with an error, then it's possible one or
3077 * more of the rings is populated (while the rest are not). It is the
3078 * callers duty to clean those orphaned rings.
3080 * Return 0 on success, negative on failure
3082 static int ixgbevf_setup_all_tx_resources(struct ixgbevf_adapter *adapter)
3084 int i, err = 0;
3086 for (i = 0; i < adapter->num_tx_queues; i++) {
3087 err = ixgbevf_setup_tx_resources(adapter->tx_ring[i]);
3088 if (!err)
3089 continue;
3090 hw_dbg(&adapter->hw, "Allocation for Tx Queue %u failed\n", i);
3091 break;
3094 return err;
3098 * ixgbevf_setup_rx_resources - allocate Rx resources (Descriptors)
3099 * @rx_ring: Rx descriptor ring (for a specific queue) to setup
3101 * Returns 0 on success, negative on failure
3103 int ixgbevf_setup_rx_resources(struct ixgbevf_ring *rx_ring)
3105 int size;
3107 size = sizeof(struct ixgbevf_rx_buffer) * rx_ring->count;
3108 rx_ring->rx_buffer_info = vmalloc(size);
3109 if (!rx_ring->rx_buffer_info)
3110 goto err;
3112 u64_stats_init(&rx_ring->syncp);
3114 /* Round up to nearest 4K */
3115 rx_ring->size = rx_ring->count * sizeof(union ixgbe_adv_rx_desc);
3116 rx_ring->size = ALIGN(rx_ring->size, 4096);
3118 rx_ring->desc = dma_alloc_coherent(rx_ring->dev, rx_ring->size,
3119 &rx_ring->dma, GFP_KERNEL);
3121 if (!rx_ring->desc)
3122 goto err;
3124 return 0;
3125 err:
3126 vfree(rx_ring->rx_buffer_info);
3127 rx_ring->rx_buffer_info = NULL;
3128 dev_err(rx_ring->dev, "Unable to allocate memory for the Rx descriptor ring\n");
3129 return -ENOMEM;
3133 * ixgbevf_setup_all_rx_resources - allocate all queues Rx resources
3134 * @adapter: board private structure
3136 * If this function returns with an error, then it's possible one or
3137 * more of the rings is populated (while the rest are not). It is the
3138 * callers duty to clean those orphaned rings.
3140 * Return 0 on success, negative on failure
3142 static int ixgbevf_setup_all_rx_resources(struct ixgbevf_adapter *adapter)
3144 int i, err = 0;
3146 for (i = 0; i < adapter->num_rx_queues; i++) {
3147 err = ixgbevf_setup_rx_resources(adapter->rx_ring[i]);
3148 if (!err)
3149 continue;
3150 hw_dbg(&adapter->hw, "Allocation for Rx Queue %u failed\n", i);
3151 break;
3153 return err;
3157 * ixgbevf_free_rx_resources - Free Rx Resources
3158 * @rx_ring: ring to clean the resources from
3160 * Free all receive software resources
3162 void ixgbevf_free_rx_resources(struct ixgbevf_ring *rx_ring)
3164 ixgbevf_clean_rx_ring(rx_ring);
3166 vfree(rx_ring->rx_buffer_info);
3167 rx_ring->rx_buffer_info = NULL;
3169 dma_free_coherent(rx_ring->dev, rx_ring->size, rx_ring->desc,
3170 rx_ring->dma);
3172 rx_ring->desc = NULL;
3176 * ixgbevf_free_all_rx_resources - Free Rx Resources for All Queues
3177 * @adapter: board private structure
3179 * Free all receive software resources
3181 static void ixgbevf_free_all_rx_resources(struct ixgbevf_adapter *adapter)
3183 int i;
3185 for (i = 0; i < adapter->num_rx_queues; i++)
3186 if (adapter->rx_ring[i]->desc)
3187 ixgbevf_free_rx_resources(adapter->rx_ring[i]);
3191 * ixgbevf_open - Called when a network interface is made active
3192 * @netdev: network interface device structure
3194 * Returns 0 on success, negative value on failure
3196 * The open entry point is called when a network interface is made
3197 * active by the system (IFF_UP). At this point all resources needed
3198 * for transmit and receive operations are allocated, the interrupt
3199 * handler is registered with the OS, the watchdog timer is started,
3200 * and the stack is notified that the interface is ready.
3202 int ixgbevf_open(struct net_device *netdev)
3204 struct ixgbevf_adapter *adapter = netdev_priv(netdev);
3205 struct ixgbe_hw *hw = &adapter->hw;
3206 int err;
3208 /* A previous failure to open the device because of a lack of
3209 * available MSIX vector resources may have reset the number
3210 * of msix vectors variable to zero. The only way to recover
3211 * is to unload/reload the driver and hope that the system has
3212 * been able to recover some MSIX vector resources.
3214 if (!adapter->num_msix_vectors)
3215 return -ENOMEM;
3217 if (hw->adapter_stopped) {
3218 ixgbevf_reset(adapter);
3219 /* if adapter is still stopped then PF isn't up and
3220 * the VF can't start.
3222 if (hw->adapter_stopped) {
3223 err = IXGBE_ERR_MBX;
3224 pr_err("Unable to start - perhaps the PF Driver isn't up yet\n");
3225 goto err_setup_reset;
3229 /* disallow open during test */
3230 if (test_bit(__IXGBEVF_TESTING, &adapter->state))
3231 return -EBUSY;
3233 netif_carrier_off(netdev);
3235 /* allocate transmit descriptors */
3236 err = ixgbevf_setup_all_tx_resources(adapter);
3237 if (err)
3238 goto err_setup_tx;
3240 /* allocate receive descriptors */
3241 err = ixgbevf_setup_all_rx_resources(adapter);
3242 if (err)
3243 goto err_setup_rx;
3245 ixgbevf_configure(adapter);
3247 /* Map the Tx/Rx rings to the vectors we were allotted.
3248 * if request_irq will be called in this function map_rings
3249 * must be called *before* up_complete
3251 ixgbevf_map_rings_to_vectors(adapter);
3253 err = ixgbevf_request_irq(adapter);
3254 if (err)
3255 goto err_req_irq;
3257 ixgbevf_up_complete(adapter);
3259 return 0;
3261 err_req_irq:
3262 ixgbevf_down(adapter);
3263 err_setup_rx:
3264 ixgbevf_free_all_rx_resources(adapter);
3265 err_setup_tx:
3266 ixgbevf_free_all_tx_resources(adapter);
3267 ixgbevf_reset(adapter);
3269 err_setup_reset:
3271 return err;
3275 * ixgbevf_close_suspend - actions necessary to both suspend and close flows
3276 * @adapter: the private adapter struct
3278 * This function should contain the necessary work common to both suspending
3279 * and closing of the device.
3281 static void ixgbevf_close_suspend(struct ixgbevf_adapter *adapter)
3283 ixgbevf_down(adapter);
3284 ixgbevf_free_irq(adapter);
3285 ixgbevf_free_all_tx_resources(adapter);
3286 ixgbevf_free_all_rx_resources(adapter);
3290 * ixgbevf_close - Disables a network interface
3291 * @netdev: network interface device structure
3293 * Returns 0, this is not allowed to fail
3295 * The close entry point is called when an interface is de-activated
3296 * by the OS. The hardware is still under the drivers control, but
3297 * needs to be disabled. A global MAC reset is issued to stop the
3298 * hardware, and all transmit and receive resources are freed.
3300 int ixgbevf_close(struct net_device *netdev)
3302 struct ixgbevf_adapter *adapter = netdev_priv(netdev);
3304 if (netif_device_present(netdev))
3305 ixgbevf_close_suspend(adapter);
3307 return 0;
3310 static void ixgbevf_queue_reset_subtask(struct ixgbevf_adapter *adapter)
3312 struct net_device *dev = adapter->netdev;
3314 if (!test_and_clear_bit(__IXGBEVF_QUEUE_RESET_REQUESTED,
3315 &adapter->state))
3316 return;
3318 /* if interface is down do nothing */
3319 if (test_bit(__IXGBEVF_DOWN, &adapter->state) ||
3320 test_bit(__IXGBEVF_RESETTING, &adapter->state))
3321 return;
3323 /* Hardware has to reinitialize queues and interrupts to
3324 * match packet buffer alignment. Unfortunately, the
3325 * hardware is not flexible enough to do this dynamically.
3327 rtnl_lock();
3329 if (netif_running(dev))
3330 ixgbevf_close(dev);
3332 ixgbevf_clear_interrupt_scheme(adapter);
3333 ixgbevf_init_interrupt_scheme(adapter);
3335 if (netif_running(dev))
3336 ixgbevf_open(dev);
3338 rtnl_unlock();
3341 static void ixgbevf_tx_ctxtdesc(struct ixgbevf_ring *tx_ring,
3342 u32 vlan_macip_lens, u32 type_tucmd,
3343 u32 mss_l4len_idx)
3345 struct ixgbe_adv_tx_context_desc *context_desc;
3346 u16 i = tx_ring->next_to_use;
3348 context_desc = IXGBEVF_TX_CTXTDESC(tx_ring, i);
3350 i++;
3351 tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
3353 /* set bits to identify this as an advanced context descriptor */
3354 type_tucmd |= IXGBE_TXD_CMD_DEXT | IXGBE_ADVTXD_DTYP_CTXT;
3356 context_desc->vlan_macip_lens = cpu_to_le32(vlan_macip_lens);
3357 context_desc->seqnum_seed = 0;
3358 context_desc->type_tucmd_mlhl = cpu_to_le32(type_tucmd);
3359 context_desc->mss_l4len_idx = cpu_to_le32(mss_l4len_idx);
3362 static int ixgbevf_tso(struct ixgbevf_ring *tx_ring,
3363 struct ixgbevf_tx_buffer *first,
3364 u8 *hdr_len)
3366 u32 vlan_macip_lens, type_tucmd, mss_l4len_idx;
3367 struct sk_buff *skb = first->skb;
3368 union {
3369 struct iphdr *v4;
3370 struct ipv6hdr *v6;
3371 unsigned char *hdr;
3372 } ip;
3373 union {
3374 struct tcphdr *tcp;
3375 unsigned char *hdr;
3376 } l4;
3377 u32 paylen, l4_offset;
3378 int err;
3380 if (skb->ip_summed != CHECKSUM_PARTIAL)
3381 return 0;
3383 if (!skb_is_gso(skb))
3384 return 0;
3386 err = skb_cow_head(skb, 0);
3387 if (err < 0)
3388 return err;
3390 if (eth_p_mpls(first->protocol))
3391 ip.hdr = skb_inner_network_header(skb);
3392 else
3393 ip.hdr = skb_network_header(skb);
3394 l4.hdr = skb_checksum_start(skb);
3396 /* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
3397 type_tucmd = IXGBE_ADVTXD_TUCMD_L4T_TCP;
3399 /* initialize outer IP header fields */
3400 if (ip.v4->version == 4) {
3401 unsigned char *csum_start = skb_checksum_start(skb);
3402 unsigned char *trans_start = ip.hdr + (ip.v4->ihl * 4);
3404 /* IP header will have to cancel out any data that
3405 * is not a part of the outer IP header
3407 ip.v4->check = csum_fold(csum_partial(trans_start,
3408 csum_start - trans_start,
3409 0));
3410 type_tucmd |= IXGBE_ADVTXD_TUCMD_IPV4;
3412 ip.v4->tot_len = 0;
3413 first->tx_flags |= IXGBE_TX_FLAGS_TSO |
3414 IXGBE_TX_FLAGS_CSUM |
3415 IXGBE_TX_FLAGS_IPV4;
3416 } else {
3417 ip.v6->payload_len = 0;
3418 first->tx_flags |= IXGBE_TX_FLAGS_TSO |
3419 IXGBE_TX_FLAGS_CSUM;
3422 /* determine offset of inner transport header */
3423 l4_offset = l4.hdr - skb->data;
3425 /* compute length of segmentation header */
3426 *hdr_len = (l4.tcp->doff * 4) + l4_offset;
3428 /* remove payload length from inner checksum */
3429 paylen = skb->len - l4_offset;
3430 csum_replace_by_diff(&l4.tcp->check, htonl(paylen));
3432 /* update gso size and bytecount with header size */
3433 first->gso_segs = skb_shinfo(skb)->gso_segs;
3434 first->bytecount += (first->gso_segs - 1) * *hdr_len;
3436 /* mss_l4len_id: use 1 as index for TSO */
3437 mss_l4len_idx = (*hdr_len - l4_offset) << IXGBE_ADVTXD_L4LEN_SHIFT;
3438 mss_l4len_idx |= skb_shinfo(skb)->gso_size << IXGBE_ADVTXD_MSS_SHIFT;
3439 mss_l4len_idx |= (1u << IXGBE_ADVTXD_IDX_SHIFT);
3441 /* vlan_macip_lens: HEADLEN, MACLEN, VLAN tag */
3442 vlan_macip_lens = l4.hdr - ip.hdr;
3443 vlan_macip_lens |= (ip.hdr - skb->data) << IXGBE_ADVTXD_MACLEN_SHIFT;
3444 vlan_macip_lens |= first->tx_flags & IXGBE_TX_FLAGS_VLAN_MASK;
3446 ixgbevf_tx_ctxtdesc(tx_ring, vlan_macip_lens,
3447 type_tucmd, mss_l4len_idx);
3449 return 1;
3452 static inline bool ixgbevf_ipv6_csum_is_sctp(struct sk_buff *skb)
3454 unsigned int offset = 0;
3456 ipv6_find_hdr(skb, &offset, IPPROTO_SCTP, NULL, NULL);
3458 return offset == skb_checksum_start_offset(skb);
3461 static void ixgbevf_tx_csum(struct ixgbevf_ring *tx_ring,
3462 struct ixgbevf_tx_buffer *first)
3464 struct sk_buff *skb = first->skb;
3465 u32 vlan_macip_lens = 0;
3466 u32 type_tucmd = 0;
3468 if (skb->ip_summed != CHECKSUM_PARTIAL)
3469 goto no_csum;
3471 switch (skb->csum_offset) {
3472 case offsetof(struct tcphdr, check):
3473 type_tucmd = IXGBE_ADVTXD_TUCMD_L4T_TCP;
3474 /* fall through */
3475 case offsetof(struct udphdr, check):
3476 break;
3477 case offsetof(struct sctphdr, checksum):
3478 /* validate that this is actually an SCTP request */
3479 if (((first->protocol == htons(ETH_P_IP)) &&
3480 (ip_hdr(skb)->protocol == IPPROTO_SCTP)) ||
3481 ((first->protocol == htons(ETH_P_IPV6)) &&
3482 ixgbevf_ipv6_csum_is_sctp(skb))) {
3483 type_tucmd = IXGBE_ADVTXD_TUCMD_L4T_SCTP;
3484 break;
3486 /* fall through */
3487 default:
3488 skb_checksum_help(skb);
3489 goto no_csum;
3491 /* update TX checksum flag */
3492 first->tx_flags |= IXGBE_TX_FLAGS_CSUM;
3493 vlan_macip_lens = skb_checksum_start_offset(skb) -
3494 skb_network_offset(skb);
3495 no_csum:
3496 /* vlan_macip_lens: MACLEN, VLAN tag */
3497 vlan_macip_lens |= skb_network_offset(skb) << IXGBE_ADVTXD_MACLEN_SHIFT;
3498 vlan_macip_lens |= first->tx_flags & IXGBE_TX_FLAGS_VLAN_MASK;
3500 ixgbevf_tx_ctxtdesc(tx_ring, vlan_macip_lens, type_tucmd, 0);
3503 static __le32 ixgbevf_tx_cmd_type(u32 tx_flags)
3505 /* set type for advanced descriptor with frame checksum insertion */
3506 __le32 cmd_type = cpu_to_le32(IXGBE_ADVTXD_DTYP_DATA |
3507 IXGBE_ADVTXD_DCMD_IFCS |
3508 IXGBE_ADVTXD_DCMD_DEXT);
3510 /* set HW VLAN bit if VLAN is present */
3511 if (tx_flags & IXGBE_TX_FLAGS_VLAN)
3512 cmd_type |= cpu_to_le32(IXGBE_ADVTXD_DCMD_VLE);
3514 /* set segmentation enable bits for TSO/FSO */
3515 if (tx_flags & IXGBE_TX_FLAGS_TSO)
3516 cmd_type |= cpu_to_le32(IXGBE_ADVTXD_DCMD_TSE);
3518 return cmd_type;
3521 static void ixgbevf_tx_olinfo_status(union ixgbe_adv_tx_desc *tx_desc,
3522 u32 tx_flags, unsigned int paylen)
3524 __le32 olinfo_status = cpu_to_le32(paylen << IXGBE_ADVTXD_PAYLEN_SHIFT);
3526 /* enable L4 checksum for TSO and TX checksum offload */
3527 if (tx_flags & IXGBE_TX_FLAGS_CSUM)
3528 olinfo_status |= cpu_to_le32(IXGBE_ADVTXD_POPTS_TXSM);
3530 /* enble IPv4 checksum for TSO */
3531 if (tx_flags & IXGBE_TX_FLAGS_IPV4)
3532 olinfo_status |= cpu_to_le32(IXGBE_ADVTXD_POPTS_IXSM);
3534 /* use index 1 context for TSO/FSO/FCOE */
3535 if (tx_flags & IXGBE_TX_FLAGS_TSO)
3536 olinfo_status |= cpu_to_le32(1u << IXGBE_ADVTXD_IDX_SHIFT);
3538 /* Check Context must be set if Tx switch is enabled, which it
3539 * always is for case where virtual functions are running
3541 olinfo_status |= cpu_to_le32(IXGBE_ADVTXD_CC);
3543 tx_desc->read.olinfo_status = olinfo_status;
3546 static void ixgbevf_tx_map(struct ixgbevf_ring *tx_ring,
3547 struct ixgbevf_tx_buffer *first,
3548 const u8 hdr_len)
3550 struct sk_buff *skb = first->skb;
3551 struct ixgbevf_tx_buffer *tx_buffer;
3552 union ixgbe_adv_tx_desc *tx_desc;
3553 struct skb_frag_struct *frag;
3554 dma_addr_t dma;
3555 unsigned int data_len, size;
3556 u32 tx_flags = first->tx_flags;
3557 __le32 cmd_type = ixgbevf_tx_cmd_type(tx_flags);
3558 u16 i = tx_ring->next_to_use;
3560 tx_desc = IXGBEVF_TX_DESC(tx_ring, i);
3562 ixgbevf_tx_olinfo_status(tx_desc, tx_flags, skb->len - hdr_len);
3564 size = skb_headlen(skb);
3565 data_len = skb->data_len;
3567 dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
3569 tx_buffer = first;
3571 for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
3572 if (dma_mapping_error(tx_ring->dev, dma))
3573 goto dma_error;
3575 /* record length, and DMA address */
3576 dma_unmap_len_set(tx_buffer, len, size);
3577 dma_unmap_addr_set(tx_buffer, dma, dma);
3579 tx_desc->read.buffer_addr = cpu_to_le64(dma);
3581 while (unlikely(size > IXGBE_MAX_DATA_PER_TXD)) {
3582 tx_desc->read.cmd_type_len =
3583 cmd_type | cpu_to_le32(IXGBE_MAX_DATA_PER_TXD);
3585 i++;
3586 tx_desc++;
3587 if (i == tx_ring->count) {
3588 tx_desc = IXGBEVF_TX_DESC(tx_ring, 0);
3589 i = 0;
3591 tx_desc->read.olinfo_status = 0;
3593 dma += IXGBE_MAX_DATA_PER_TXD;
3594 size -= IXGBE_MAX_DATA_PER_TXD;
3596 tx_desc->read.buffer_addr = cpu_to_le64(dma);
3599 if (likely(!data_len))
3600 break;
3602 tx_desc->read.cmd_type_len = cmd_type | cpu_to_le32(size);
3604 i++;
3605 tx_desc++;
3606 if (i == tx_ring->count) {
3607 tx_desc = IXGBEVF_TX_DESC(tx_ring, 0);
3608 i = 0;
3610 tx_desc->read.olinfo_status = 0;
3612 size = skb_frag_size(frag);
3613 data_len -= size;
3615 dma = skb_frag_dma_map(tx_ring->dev, frag, 0, size,
3616 DMA_TO_DEVICE);
3618 tx_buffer = &tx_ring->tx_buffer_info[i];
3621 /* write last descriptor with RS and EOP bits */
3622 cmd_type |= cpu_to_le32(size) | cpu_to_le32(IXGBE_TXD_CMD);
3623 tx_desc->read.cmd_type_len = cmd_type;
3625 /* set the timestamp */
3626 first->time_stamp = jiffies;
3628 /* Force memory writes to complete before letting h/w know there
3629 * are new descriptors to fetch. (Only applicable for weak-ordered
3630 * memory model archs, such as IA-64).
3632 * We also need this memory barrier (wmb) to make certain all of the
3633 * status bits have been updated before next_to_watch is written.
3635 wmb();
3637 /* set next_to_watch value indicating a packet is present */
3638 first->next_to_watch = tx_desc;
3640 i++;
3641 if (i == tx_ring->count)
3642 i = 0;
3644 tx_ring->next_to_use = i;
3646 /* notify HW of packet */
3647 ixgbevf_write_tail(tx_ring, i);
3649 return;
3650 dma_error:
3651 dev_err(tx_ring->dev, "TX DMA map failed\n");
3652 tx_buffer = &tx_ring->tx_buffer_info[i];
3654 /* clear dma mappings for failed tx_buffer_info map */
3655 while (tx_buffer != first) {
3656 if (dma_unmap_len(tx_buffer, len))
3657 dma_unmap_page(tx_ring->dev,
3658 dma_unmap_addr(tx_buffer, dma),
3659 dma_unmap_len(tx_buffer, len),
3660 DMA_TO_DEVICE);
3661 dma_unmap_len_set(tx_buffer, len, 0);
3663 if (i-- == 0)
3664 i += tx_ring->count;
3665 tx_buffer = &tx_ring->tx_buffer_info[i];
3668 if (dma_unmap_len(tx_buffer, len))
3669 dma_unmap_single(tx_ring->dev,
3670 dma_unmap_addr(tx_buffer, dma),
3671 dma_unmap_len(tx_buffer, len),
3672 DMA_TO_DEVICE);
3673 dma_unmap_len_set(tx_buffer, len, 0);
3675 dev_kfree_skb_any(tx_buffer->skb);
3676 tx_buffer->skb = NULL;
3678 tx_ring->next_to_use = i;
3681 static int __ixgbevf_maybe_stop_tx(struct ixgbevf_ring *tx_ring, int size)
3683 netif_stop_subqueue(tx_ring->netdev, tx_ring->queue_index);
3684 /* Herbert's original patch had:
3685 * smp_mb__after_netif_stop_queue();
3686 * but since that doesn't exist yet, just open code it.
3688 smp_mb();
3690 /* We need to check again in a case another CPU has just
3691 * made room available.
3693 if (likely(ixgbevf_desc_unused(tx_ring) < size))
3694 return -EBUSY;
3696 /* A reprieve! - use start_queue because it doesn't call schedule */
3697 netif_start_subqueue(tx_ring->netdev, tx_ring->queue_index);
3698 ++tx_ring->tx_stats.restart_queue;
3700 return 0;
3703 static int ixgbevf_maybe_stop_tx(struct ixgbevf_ring *tx_ring, int size)
3705 if (likely(ixgbevf_desc_unused(tx_ring) >= size))
3706 return 0;
3707 return __ixgbevf_maybe_stop_tx(tx_ring, size);
3710 static int ixgbevf_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
3712 struct ixgbevf_adapter *adapter = netdev_priv(netdev);
3713 struct ixgbevf_tx_buffer *first;
3714 struct ixgbevf_ring *tx_ring;
3715 int tso;
3716 u32 tx_flags = 0;
3717 u16 count = TXD_USE_COUNT(skb_headlen(skb));
3718 #if PAGE_SIZE > IXGBE_MAX_DATA_PER_TXD
3719 unsigned short f;
3720 #endif
3721 u8 hdr_len = 0;
3722 u8 *dst_mac = skb_header_pointer(skb, 0, 0, NULL);
3724 if (!dst_mac || is_link_local_ether_addr(dst_mac)) {
3725 dev_kfree_skb_any(skb);
3726 return NETDEV_TX_OK;
3729 tx_ring = adapter->tx_ring[skb->queue_mapping];
3731 /* need: 1 descriptor per page * PAGE_SIZE/IXGBE_MAX_DATA_PER_TXD,
3732 * + 1 desc for skb_headlen/IXGBE_MAX_DATA_PER_TXD,
3733 * + 2 desc gap to keep tail from touching head,
3734 * + 1 desc for context descriptor,
3735 * otherwise try next time
3737 #if PAGE_SIZE > IXGBE_MAX_DATA_PER_TXD
3738 for (f = 0; f < skb_shinfo(skb)->nr_frags; f++)
3739 count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size);
3740 #else
3741 count += skb_shinfo(skb)->nr_frags;
3742 #endif
3743 if (ixgbevf_maybe_stop_tx(tx_ring, count + 3)) {
3744 tx_ring->tx_stats.tx_busy++;
3745 return NETDEV_TX_BUSY;
3748 /* record the location of the first descriptor for this packet */
3749 first = &tx_ring->tx_buffer_info[tx_ring->next_to_use];
3750 first->skb = skb;
3751 first->bytecount = skb->len;
3752 first->gso_segs = 1;
3754 if (skb_vlan_tag_present(skb)) {
3755 tx_flags |= skb_vlan_tag_get(skb);
3756 tx_flags <<= IXGBE_TX_FLAGS_VLAN_SHIFT;
3757 tx_flags |= IXGBE_TX_FLAGS_VLAN;
3760 /* record initial flags and protocol */
3761 first->tx_flags = tx_flags;
3762 first->protocol = vlan_get_protocol(skb);
3764 tso = ixgbevf_tso(tx_ring, first, &hdr_len);
3765 if (tso < 0)
3766 goto out_drop;
3767 else if (!tso)
3768 ixgbevf_tx_csum(tx_ring, first);
3770 ixgbevf_tx_map(tx_ring, first, hdr_len);
3772 ixgbevf_maybe_stop_tx(tx_ring, DESC_NEEDED);
3774 return NETDEV_TX_OK;
3776 out_drop:
3777 dev_kfree_skb_any(first->skb);
3778 first->skb = NULL;
3780 return NETDEV_TX_OK;
3784 * ixgbevf_set_mac - Change the Ethernet Address of the NIC
3785 * @netdev: network interface device structure
3786 * @p: pointer to an address structure
3788 * Returns 0 on success, negative on failure
3790 static int ixgbevf_set_mac(struct net_device *netdev, void *p)
3792 struct ixgbevf_adapter *adapter = netdev_priv(netdev);
3793 struct ixgbe_hw *hw = &adapter->hw;
3794 struct sockaddr *addr = p;
3795 int err;
3797 if (!is_valid_ether_addr(addr->sa_data))
3798 return -EADDRNOTAVAIL;
3800 spin_lock_bh(&adapter->mbx_lock);
3802 err = hw->mac.ops.set_rar(hw, 0, addr->sa_data, 0);
3804 spin_unlock_bh(&adapter->mbx_lock);
3806 if (err)
3807 return -EPERM;
3809 ether_addr_copy(hw->mac.addr, addr->sa_data);
3810 ether_addr_copy(netdev->dev_addr, addr->sa_data);
3812 return 0;
3816 * ixgbevf_change_mtu - Change the Maximum Transfer Unit
3817 * @netdev: network interface device structure
3818 * @new_mtu: new value for maximum frame size
3820 * Returns 0 on success, negative on failure
3822 static int ixgbevf_change_mtu(struct net_device *netdev, int new_mtu)
3824 struct ixgbevf_adapter *adapter = netdev_priv(netdev);
3825 struct ixgbe_hw *hw = &adapter->hw;
3826 int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN;
3827 int ret;
3829 spin_lock_bh(&adapter->mbx_lock);
3830 /* notify the PF of our intent to use this size of frame */
3831 ret = hw->mac.ops.set_rlpml(hw, max_frame);
3832 spin_unlock_bh(&adapter->mbx_lock);
3833 if (ret)
3834 return -EINVAL;
3836 hw_dbg(hw, "changing MTU from %d to %d\n",
3837 netdev->mtu, new_mtu);
3839 /* must set new MTU before calling down or up */
3840 netdev->mtu = new_mtu;
3842 return 0;
3845 #ifdef CONFIG_NET_POLL_CONTROLLER
3846 /* Polling 'interrupt' - used by things like netconsole to send skbs
3847 * without having to re-enable interrupts. It's not called while
3848 * the interrupt routine is executing.
3850 static void ixgbevf_netpoll(struct net_device *netdev)
3852 struct ixgbevf_adapter *adapter = netdev_priv(netdev);
3853 int i;
3855 /* if interface is down do nothing */
3856 if (test_bit(__IXGBEVF_DOWN, &adapter->state))
3857 return;
3858 for (i = 0; i < adapter->num_rx_queues; i++)
3859 ixgbevf_msix_clean_rings(0, adapter->q_vector[i]);
3861 #endif /* CONFIG_NET_POLL_CONTROLLER */
3863 static int ixgbevf_suspend(struct pci_dev *pdev, pm_message_t state)
3865 struct net_device *netdev = pci_get_drvdata(pdev);
3866 struct ixgbevf_adapter *adapter = netdev_priv(netdev);
3867 #ifdef CONFIG_PM
3868 int retval = 0;
3869 #endif
3871 rtnl_lock();
3872 netif_device_detach(netdev);
3874 if (netif_running(netdev))
3875 ixgbevf_close_suspend(adapter);
3877 ixgbevf_clear_interrupt_scheme(adapter);
3878 rtnl_unlock();
3880 #ifdef CONFIG_PM
3881 retval = pci_save_state(pdev);
3882 if (retval)
3883 return retval;
3885 #endif
3886 if (!test_and_set_bit(__IXGBEVF_DISABLED, &adapter->state))
3887 pci_disable_device(pdev);
3889 return 0;
3892 #ifdef CONFIG_PM
3893 static int ixgbevf_resume(struct pci_dev *pdev)
3895 struct net_device *netdev = pci_get_drvdata(pdev);
3896 struct ixgbevf_adapter *adapter = netdev_priv(netdev);
3897 u32 err;
3899 pci_restore_state(pdev);
3900 /* pci_restore_state clears dev->state_saved so call
3901 * pci_save_state to restore it.
3903 pci_save_state(pdev);
3905 err = pci_enable_device_mem(pdev);
3906 if (err) {
3907 dev_err(&pdev->dev, "Cannot enable PCI device from suspend\n");
3908 return err;
3911 adapter->hw.hw_addr = adapter->io_addr;
3912 smp_mb__before_atomic();
3913 clear_bit(__IXGBEVF_DISABLED, &adapter->state);
3914 pci_set_master(pdev);
3916 ixgbevf_reset(adapter);
3918 rtnl_lock();
3919 err = ixgbevf_init_interrupt_scheme(adapter);
3920 rtnl_unlock();
3921 if (err) {
3922 dev_err(&pdev->dev, "Cannot initialize interrupts\n");
3923 return err;
3926 if (netif_running(netdev)) {
3927 err = ixgbevf_open(netdev);
3928 if (err)
3929 return err;
3932 netif_device_attach(netdev);
3934 return err;
3937 #endif /* CONFIG_PM */
3938 static void ixgbevf_shutdown(struct pci_dev *pdev)
3940 ixgbevf_suspend(pdev, PMSG_SUSPEND);
3943 static void ixgbevf_get_stats(struct net_device *netdev,
3944 struct rtnl_link_stats64 *stats)
3946 struct ixgbevf_adapter *adapter = netdev_priv(netdev);
3947 unsigned int start;
3948 u64 bytes, packets;
3949 const struct ixgbevf_ring *ring;
3950 int i;
3952 ixgbevf_update_stats(adapter);
3954 stats->multicast = adapter->stats.vfmprc - adapter->stats.base_vfmprc;
3956 for (i = 0; i < adapter->num_rx_queues; i++) {
3957 ring = adapter->rx_ring[i];
3958 do {
3959 start = u64_stats_fetch_begin_irq(&ring->syncp);
3960 bytes = ring->stats.bytes;
3961 packets = ring->stats.packets;
3962 } while (u64_stats_fetch_retry_irq(&ring->syncp, start));
3963 stats->rx_bytes += bytes;
3964 stats->rx_packets += packets;
3967 for (i = 0; i < adapter->num_tx_queues; i++) {
3968 ring = adapter->tx_ring[i];
3969 do {
3970 start = u64_stats_fetch_begin_irq(&ring->syncp);
3971 bytes = ring->stats.bytes;
3972 packets = ring->stats.packets;
3973 } while (u64_stats_fetch_retry_irq(&ring->syncp, start));
3974 stats->tx_bytes += bytes;
3975 stats->tx_packets += packets;
3979 #define IXGBEVF_MAX_MAC_HDR_LEN 127
3980 #define IXGBEVF_MAX_NETWORK_HDR_LEN 511
3982 static netdev_features_t
3983 ixgbevf_features_check(struct sk_buff *skb, struct net_device *dev,
3984 netdev_features_t features)
3986 unsigned int network_hdr_len, mac_hdr_len;
3988 /* Make certain the headers can be described by a context descriptor */
3989 mac_hdr_len = skb_network_header(skb) - skb->data;
3990 if (unlikely(mac_hdr_len > IXGBEVF_MAX_MAC_HDR_LEN))
3991 return features & ~(NETIF_F_HW_CSUM |
3992 NETIF_F_SCTP_CRC |
3993 NETIF_F_HW_VLAN_CTAG_TX |
3994 NETIF_F_TSO |
3995 NETIF_F_TSO6);
3997 network_hdr_len = skb_checksum_start(skb) - skb_network_header(skb);
3998 if (unlikely(network_hdr_len > IXGBEVF_MAX_NETWORK_HDR_LEN))
3999 return features & ~(NETIF_F_HW_CSUM |
4000 NETIF_F_SCTP_CRC |
4001 NETIF_F_TSO |
4002 NETIF_F_TSO6);
4004 /* We can only support IPV4 TSO in tunnels if we can mangle the
4005 * inner IP ID field, so strip TSO if MANGLEID is not supported.
4007 if (skb->encapsulation && !(features & NETIF_F_TSO_MANGLEID))
4008 features &= ~NETIF_F_TSO;
4010 return features;
4013 static const struct net_device_ops ixgbevf_netdev_ops = {
4014 .ndo_open = ixgbevf_open,
4015 .ndo_stop = ixgbevf_close,
4016 .ndo_start_xmit = ixgbevf_xmit_frame,
4017 .ndo_set_rx_mode = ixgbevf_set_rx_mode,
4018 .ndo_get_stats64 = ixgbevf_get_stats,
4019 .ndo_validate_addr = eth_validate_addr,
4020 .ndo_set_mac_address = ixgbevf_set_mac,
4021 .ndo_change_mtu = ixgbevf_change_mtu,
4022 .ndo_tx_timeout = ixgbevf_tx_timeout,
4023 .ndo_vlan_rx_add_vid = ixgbevf_vlan_rx_add_vid,
4024 .ndo_vlan_rx_kill_vid = ixgbevf_vlan_rx_kill_vid,
4025 #ifdef CONFIG_NET_POLL_CONTROLLER
4026 .ndo_poll_controller = ixgbevf_netpoll,
4027 #endif
4028 .ndo_features_check = ixgbevf_features_check,
4031 static void ixgbevf_assign_netdev_ops(struct net_device *dev)
4033 dev->netdev_ops = &ixgbevf_netdev_ops;
4034 ixgbevf_set_ethtool_ops(dev);
4035 dev->watchdog_timeo = 5 * HZ;
4039 * ixgbevf_probe - Device Initialization Routine
4040 * @pdev: PCI device information struct
4041 * @ent: entry in ixgbevf_pci_tbl
4043 * Returns 0 on success, negative on failure
4045 * ixgbevf_probe initializes an adapter identified by a pci_dev structure.
4046 * The OS initialization, configuring of the adapter private structure,
4047 * and a hardware reset occur.
4049 static int ixgbevf_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
4051 struct net_device *netdev;
4052 struct ixgbevf_adapter *adapter = NULL;
4053 struct ixgbe_hw *hw = NULL;
4054 const struct ixgbevf_info *ii = ixgbevf_info_tbl[ent->driver_data];
4055 int err, pci_using_dac;
4056 bool disable_dev = false;
4058 err = pci_enable_device(pdev);
4059 if (err)
4060 return err;
4062 if (!dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64))) {
4063 pci_using_dac = 1;
4064 } else {
4065 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
4066 if (err) {
4067 dev_err(&pdev->dev, "No usable DMA configuration, aborting\n");
4068 goto err_dma;
4070 pci_using_dac = 0;
4073 err = pci_request_regions(pdev, ixgbevf_driver_name);
4074 if (err) {
4075 dev_err(&pdev->dev, "pci_request_regions failed 0x%x\n", err);
4076 goto err_pci_reg;
4079 pci_set_master(pdev);
4081 netdev = alloc_etherdev_mq(sizeof(struct ixgbevf_adapter),
4082 MAX_TX_QUEUES);
4083 if (!netdev) {
4084 err = -ENOMEM;
4085 goto err_alloc_etherdev;
4088 SET_NETDEV_DEV(netdev, &pdev->dev);
4090 adapter = netdev_priv(netdev);
4092 adapter->netdev = netdev;
4093 adapter->pdev = pdev;
4094 hw = &adapter->hw;
4095 hw->back = adapter;
4096 adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
4098 /* call save state here in standalone driver because it relies on
4099 * adapter struct to exist, and needs to call netdev_priv
4101 pci_save_state(pdev);
4103 hw->hw_addr = ioremap(pci_resource_start(pdev, 0),
4104 pci_resource_len(pdev, 0));
4105 adapter->io_addr = hw->hw_addr;
4106 if (!hw->hw_addr) {
4107 err = -EIO;
4108 goto err_ioremap;
4111 ixgbevf_assign_netdev_ops(netdev);
4113 /* Setup HW API */
4114 memcpy(&hw->mac.ops, ii->mac_ops, sizeof(hw->mac.ops));
4115 hw->mac.type = ii->mac;
4117 memcpy(&hw->mbx.ops, &ixgbevf_mbx_ops,
4118 sizeof(struct ixgbe_mbx_operations));
4120 /* setup the private structure */
4121 err = ixgbevf_sw_init(adapter);
4122 if (err)
4123 goto err_sw_init;
4125 /* The HW MAC address was set and/or determined in sw_init */
4126 if (!is_valid_ether_addr(netdev->dev_addr)) {
4127 pr_err("invalid MAC address\n");
4128 err = -EIO;
4129 goto err_sw_init;
4132 netdev->hw_features = NETIF_F_SG |
4133 NETIF_F_TSO |
4134 NETIF_F_TSO6 |
4135 NETIF_F_RXCSUM |
4136 NETIF_F_HW_CSUM |
4137 NETIF_F_SCTP_CRC;
4139 #define IXGBEVF_GSO_PARTIAL_FEATURES (NETIF_F_GSO_GRE | \
4140 NETIF_F_GSO_GRE_CSUM | \
4141 NETIF_F_GSO_IPXIP4 | \
4142 NETIF_F_GSO_IPXIP6 | \
4143 NETIF_F_GSO_UDP_TUNNEL | \
4144 NETIF_F_GSO_UDP_TUNNEL_CSUM)
4146 netdev->gso_partial_features = IXGBEVF_GSO_PARTIAL_FEATURES;
4147 netdev->hw_features |= NETIF_F_GSO_PARTIAL |
4148 IXGBEVF_GSO_PARTIAL_FEATURES;
4150 netdev->features = netdev->hw_features;
4152 if (pci_using_dac)
4153 netdev->features |= NETIF_F_HIGHDMA;
4155 netdev->vlan_features |= netdev->features | NETIF_F_TSO_MANGLEID;
4156 netdev->mpls_features |= NETIF_F_SG |
4157 NETIF_F_TSO |
4158 NETIF_F_TSO6 |
4159 NETIF_F_HW_CSUM;
4160 netdev->mpls_features |= IXGBEVF_GSO_PARTIAL_FEATURES;
4161 netdev->hw_enc_features |= netdev->vlan_features;
4163 /* set this bit last since it cannot be part of vlan_features */
4164 netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER |
4165 NETIF_F_HW_VLAN_CTAG_RX |
4166 NETIF_F_HW_VLAN_CTAG_TX;
4168 netdev->priv_flags |= IFF_UNICAST_FLT;
4170 /* MTU range: 68 - 1504 or 9710 */
4171 netdev->min_mtu = ETH_MIN_MTU;
4172 switch (adapter->hw.api_version) {
4173 case ixgbe_mbox_api_11:
4174 case ixgbe_mbox_api_12:
4175 case ixgbe_mbox_api_13:
4176 netdev->max_mtu = IXGBE_MAX_JUMBO_FRAME_SIZE -
4177 (ETH_HLEN + ETH_FCS_LEN);
4178 break;
4179 default:
4180 if (adapter->hw.mac.type != ixgbe_mac_82599_vf)
4181 netdev->max_mtu = IXGBE_MAX_JUMBO_FRAME_SIZE -
4182 (ETH_HLEN + ETH_FCS_LEN);
4183 else
4184 netdev->max_mtu = ETH_DATA_LEN + ETH_FCS_LEN;
4185 break;
4188 if (IXGBE_REMOVED(hw->hw_addr)) {
4189 err = -EIO;
4190 goto err_sw_init;
4193 timer_setup(&adapter->service_timer, ixgbevf_service_timer, 0);
4195 INIT_WORK(&adapter->service_task, ixgbevf_service_task);
4196 set_bit(__IXGBEVF_SERVICE_INITED, &adapter->state);
4197 clear_bit(__IXGBEVF_SERVICE_SCHED, &adapter->state);
4199 err = ixgbevf_init_interrupt_scheme(adapter);
4200 if (err)
4201 goto err_sw_init;
4203 strcpy(netdev->name, "eth%d");
4205 err = register_netdev(netdev);
4206 if (err)
4207 goto err_register;
4209 pci_set_drvdata(pdev, netdev);
4210 netif_carrier_off(netdev);
4212 ixgbevf_init_last_counter_stats(adapter);
4214 /* print the VF info */
4215 dev_info(&pdev->dev, "%pM\n", netdev->dev_addr);
4216 dev_info(&pdev->dev, "MAC: %d\n", hw->mac.type);
4218 switch (hw->mac.type) {
4219 case ixgbe_mac_X550_vf:
4220 dev_info(&pdev->dev, "Intel(R) X550 Virtual Function\n");
4221 break;
4222 case ixgbe_mac_X540_vf:
4223 dev_info(&pdev->dev, "Intel(R) X540 Virtual Function\n");
4224 break;
4225 case ixgbe_mac_82599_vf:
4226 default:
4227 dev_info(&pdev->dev, "Intel(R) 82599 Virtual Function\n");
4228 break;
4231 return 0;
4233 err_register:
4234 ixgbevf_clear_interrupt_scheme(adapter);
4235 err_sw_init:
4236 ixgbevf_reset_interrupt_capability(adapter);
4237 iounmap(adapter->io_addr);
4238 kfree(adapter->rss_key);
4239 err_ioremap:
4240 disable_dev = !test_and_set_bit(__IXGBEVF_DISABLED, &adapter->state);
4241 free_netdev(netdev);
4242 err_alloc_etherdev:
4243 pci_release_regions(pdev);
4244 err_pci_reg:
4245 err_dma:
4246 if (!adapter || disable_dev)
4247 pci_disable_device(pdev);
4248 return err;
4252 * ixgbevf_remove - Device Removal Routine
4253 * @pdev: PCI device information struct
4255 * ixgbevf_remove is called by the PCI subsystem to alert the driver
4256 * that it should release a PCI device. The could be caused by a
4257 * Hot-Plug event, or because the driver is going to be removed from
4258 * memory.
4260 static void ixgbevf_remove(struct pci_dev *pdev)
4262 struct net_device *netdev = pci_get_drvdata(pdev);
4263 struct ixgbevf_adapter *adapter;
4264 bool disable_dev;
4266 if (!netdev)
4267 return;
4269 adapter = netdev_priv(netdev);
4271 set_bit(__IXGBEVF_REMOVING, &adapter->state);
4272 cancel_work_sync(&adapter->service_task);
4274 if (netdev->reg_state == NETREG_REGISTERED)
4275 unregister_netdev(netdev);
4277 ixgbevf_clear_interrupt_scheme(adapter);
4278 ixgbevf_reset_interrupt_capability(adapter);
4280 iounmap(adapter->io_addr);
4281 pci_release_regions(pdev);
4283 hw_dbg(&adapter->hw, "Remove complete\n");
4285 kfree(adapter->rss_key);
4286 disable_dev = !test_and_set_bit(__IXGBEVF_DISABLED, &adapter->state);
4287 free_netdev(netdev);
4289 if (disable_dev)
4290 pci_disable_device(pdev);
4294 * ixgbevf_io_error_detected - called when PCI error is detected
4295 * @pdev: Pointer to PCI device
4296 * @state: The current pci connection state
4298 * This function is called after a PCI bus error affecting
4299 * this device has been detected.
4301 static pci_ers_result_t ixgbevf_io_error_detected(struct pci_dev *pdev,
4302 pci_channel_state_t state)
4304 struct net_device *netdev = pci_get_drvdata(pdev);
4305 struct ixgbevf_adapter *adapter = netdev_priv(netdev);
4307 if (!test_bit(__IXGBEVF_SERVICE_INITED, &adapter->state))
4308 return PCI_ERS_RESULT_DISCONNECT;
4310 rtnl_lock();
4311 netif_device_detach(netdev);
4313 if (state == pci_channel_io_perm_failure) {
4314 rtnl_unlock();
4315 return PCI_ERS_RESULT_DISCONNECT;
4318 if (netif_running(netdev))
4319 ixgbevf_close_suspend(adapter);
4321 if (!test_and_set_bit(__IXGBEVF_DISABLED, &adapter->state))
4322 pci_disable_device(pdev);
4323 rtnl_unlock();
4325 /* Request a slot slot reset. */
4326 return PCI_ERS_RESULT_NEED_RESET;
4330 * ixgbevf_io_slot_reset - called after the pci bus has been reset.
4331 * @pdev: Pointer to PCI device
4333 * Restart the card from scratch, as if from a cold-boot. Implementation
4334 * resembles the first-half of the ixgbevf_resume routine.
4336 static pci_ers_result_t ixgbevf_io_slot_reset(struct pci_dev *pdev)
4338 struct net_device *netdev = pci_get_drvdata(pdev);
4339 struct ixgbevf_adapter *adapter = netdev_priv(netdev);
4341 if (pci_enable_device_mem(pdev)) {
4342 dev_err(&pdev->dev,
4343 "Cannot re-enable PCI device after reset.\n");
4344 return PCI_ERS_RESULT_DISCONNECT;
4347 adapter->hw.hw_addr = adapter->io_addr;
4348 smp_mb__before_atomic();
4349 clear_bit(__IXGBEVF_DISABLED, &adapter->state);
4350 pci_set_master(pdev);
4352 ixgbevf_reset(adapter);
4354 return PCI_ERS_RESULT_RECOVERED;
4358 * ixgbevf_io_resume - called when traffic can start flowing again.
4359 * @pdev: Pointer to PCI device
4361 * This callback is called when the error recovery driver tells us that
4362 * its OK to resume normal operation. Implementation resembles the
4363 * second-half of the ixgbevf_resume routine.
4365 static void ixgbevf_io_resume(struct pci_dev *pdev)
4367 struct net_device *netdev = pci_get_drvdata(pdev);
4369 rtnl_lock();
4370 if (netif_running(netdev))
4371 ixgbevf_open(netdev);
4373 netif_device_attach(netdev);
4374 rtnl_unlock();
4377 /* PCI Error Recovery (ERS) */
4378 static const struct pci_error_handlers ixgbevf_err_handler = {
4379 .error_detected = ixgbevf_io_error_detected,
4380 .slot_reset = ixgbevf_io_slot_reset,
4381 .resume = ixgbevf_io_resume,
4384 static struct pci_driver ixgbevf_driver = {
4385 .name = ixgbevf_driver_name,
4386 .id_table = ixgbevf_pci_tbl,
4387 .probe = ixgbevf_probe,
4388 .remove = ixgbevf_remove,
4389 #ifdef CONFIG_PM
4390 /* Power Management Hooks */
4391 .suspend = ixgbevf_suspend,
4392 .resume = ixgbevf_resume,
4393 #endif
4394 .shutdown = ixgbevf_shutdown,
4395 .err_handler = &ixgbevf_err_handler
4399 * ixgbevf_init_module - Driver Registration Routine
4401 * ixgbevf_init_module is the first routine called when the driver is
4402 * loaded. All it does is register with the PCI subsystem.
4404 static int __init ixgbevf_init_module(void)
4406 pr_info("%s - version %s\n", ixgbevf_driver_string,
4407 ixgbevf_driver_version);
4409 pr_info("%s\n", ixgbevf_copyright);
4410 ixgbevf_wq = create_singlethread_workqueue(ixgbevf_driver_name);
4411 if (!ixgbevf_wq) {
4412 pr_err("%s: Failed to create workqueue\n", ixgbevf_driver_name);
4413 return -ENOMEM;
4416 return pci_register_driver(&ixgbevf_driver);
4419 module_init(ixgbevf_init_module);
4422 * ixgbevf_exit_module - Driver Exit Cleanup Routine
4424 * ixgbevf_exit_module is called just before the driver is removed
4425 * from memory.
4427 static void __exit ixgbevf_exit_module(void)
4429 pci_unregister_driver(&ixgbevf_driver);
4430 if (ixgbevf_wq) {
4431 destroy_workqueue(ixgbevf_wq);
4432 ixgbevf_wq = NULL;
4436 #ifdef DEBUG
4438 * ixgbevf_get_hw_dev_name - return device name string
4439 * used by hardware layer to print debugging information
4440 * @hw: pointer to private hardware struct
4442 char *ixgbevf_get_hw_dev_name(struct ixgbe_hw *hw)
4444 struct ixgbevf_adapter *adapter = hw->back;
4446 return adapter->netdev->name;
4449 #endif
4450 module_exit(ixgbevf_exit_module);
4452 /* ixgbevf_main.c */