1 /****************************************************************************
2 * Driver for Solarflare network controllers and boards
3 * Copyright 2005-2006 Fen Systems Ltd.
4 * Copyright 2006-2013 Solarflare Communications Inc.
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published
8 * by the Free Software Foundation, incorporated herein by reference.
11 #include <linux/bitops.h>
12 #include <linux/delay.h>
13 #include <linux/interrupt.h>
14 #include <linux/pci.h>
15 #include <linux/module.h>
16 #include <linux/seq_file.h>
17 #include <linux/crc32.h>
18 #include "net_driver.h"
22 #include "farch_regs.h"
24 #include "siena_sriov.h"
26 #include "workarounds.h"
28 /* Falcon-architecture (SFC9000-family) support */
30 /**************************************************************************
34 **************************************************************************
37 /* This is set to 16 for a good reason. In summary, if larger than
38 * 16, the descriptor cache holds more than a default socket
39 * buffer's worth of packets (for UDP we can only have at most one
40 * socket buffer's worth outstanding). This combined with the fact
41 * that we only get 1 TX event per descriptor cache means the NIC
44 #define TX_DC_ENTRIES 16
45 #define TX_DC_ENTRIES_ORDER 1
47 #define RX_DC_ENTRIES 64
48 #define RX_DC_ENTRIES_ORDER 3
50 /* If EFX_MAX_INT_ERRORS internal errors occur within
51 * EFX_INT_ERROR_EXPIRE seconds, we consider the NIC broken and
54 #define EFX_INT_ERROR_EXPIRE 3600
55 #define EFX_MAX_INT_ERRORS 5
57 /* Depth of RX flush request fifo */
58 #define EFX_RX_FLUSH_COUNT 4
60 /* Driver generated events */
61 #define _EFX_CHANNEL_MAGIC_TEST 0x000101
62 #define _EFX_CHANNEL_MAGIC_FILL 0x000102
63 #define _EFX_CHANNEL_MAGIC_RX_DRAIN 0x000103
64 #define _EFX_CHANNEL_MAGIC_TX_DRAIN 0x000104
66 #define _EFX_CHANNEL_MAGIC(_code, _data) ((_code) << 8 | (_data))
67 #define _EFX_CHANNEL_MAGIC_CODE(_magic) ((_magic) >> 8)
69 #define EFX_CHANNEL_MAGIC_TEST(_channel) \
70 _EFX_CHANNEL_MAGIC(_EFX_CHANNEL_MAGIC_TEST, (_channel)->channel)
71 #define EFX_CHANNEL_MAGIC_FILL(_rx_queue) \
72 _EFX_CHANNEL_MAGIC(_EFX_CHANNEL_MAGIC_FILL, \
73 efx_rx_queue_index(_rx_queue))
74 #define EFX_CHANNEL_MAGIC_RX_DRAIN(_rx_queue) \
75 _EFX_CHANNEL_MAGIC(_EFX_CHANNEL_MAGIC_RX_DRAIN, \
76 efx_rx_queue_index(_rx_queue))
77 #define EFX_CHANNEL_MAGIC_TX_DRAIN(_tx_queue) \
78 _EFX_CHANNEL_MAGIC(_EFX_CHANNEL_MAGIC_TX_DRAIN, \
81 static void efx_farch_magic_event(struct efx_channel
*channel
, u32 magic
);
83 /**************************************************************************
87 **************************************************************************/
89 static inline void efx_write_buf_tbl(struct efx_nic
*efx
, efx_qword_t
*value
,
92 efx_sram_writeq(efx
, efx
->membase
+ efx
->type
->buf_tbl_base
,
96 static bool efx_masked_compare_oword(const efx_oword_t
*a
, const efx_oword_t
*b
,
97 const efx_oword_t
*mask
)
99 return ((a
->u64
[0] ^ b
->u64
[0]) & mask
->u64
[0]) ||
100 ((a
->u64
[1] ^ b
->u64
[1]) & mask
->u64
[1]);
103 int efx_farch_test_registers(struct efx_nic
*efx
,
104 const struct efx_farch_register_test
*regs
,
107 unsigned address
= 0;
109 efx_oword_t mask
, imask
, original
, reg
, buf
;
111 for (i
= 0; i
< n_regs
; ++i
) {
112 address
= regs
[i
].address
;
113 mask
= imask
= regs
[i
].mask
;
114 EFX_INVERT_OWORD(imask
);
116 efx_reado(efx
, &original
, address
);
118 /* bit sweep on and off */
119 for (j
= 0; j
< 128; j
++) {
120 if (!EFX_EXTRACT_OWORD32(mask
, j
, j
))
123 /* Test this testable bit can be set in isolation */
124 EFX_AND_OWORD(reg
, original
, mask
);
125 EFX_SET_OWORD32(reg
, j
, j
, 1);
127 efx_writeo(efx
, ®
, address
);
128 efx_reado(efx
, &buf
, address
);
130 if (efx_masked_compare_oword(®
, &buf
, &mask
))
133 /* Test this testable bit can be cleared in isolation */
134 EFX_OR_OWORD(reg
, original
, mask
);
135 EFX_SET_OWORD32(reg
, j
, j
, 0);
137 efx_writeo(efx
, ®
, address
);
138 efx_reado(efx
, &buf
, address
);
140 if (efx_masked_compare_oword(®
, &buf
, &mask
))
144 efx_writeo(efx
, &original
, address
);
150 netif_err(efx
, hw
, efx
->net_dev
,
151 "wrote "EFX_OWORD_FMT
" read "EFX_OWORD_FMT
152 " at address 0x%x mask "EFX_OWORD_FMT
"\n", EFX_OWORD_VAL(reg
),
153 EFX_OWORD_VAL(buf
), address
, EFX_OWORD_VAL(mask
));
157 /**************************************************************************
159 * Special buffer handling
160 * Special buffers are used for event queues and the TX and RX
163 *************************************************************************/
166 * Initialise a special buffer
168 * This will define a buffer (previously allocated via
169 * efx_alloc_special_buffer()) in the buffer table, allowing
170 * it to be used for event queues, descriptor rings etc.
173 efx_init_special_buffer(struct efx_nic
*efx
, struct efx_special_buffer
*buffer
)
175 efx_qword_t buf_desc
;
180 EFX_WARN_ON_PARANOID(!buffer
->buf
.addr
);
182 /* Write buffer descriptors to NIC */
183 for (i
= 0; i
< buffer
->entries
; i
++) {
184 index
= buffer
->index
+ i
;
185 dma_addr
= buffer
->buf
.dma_addr
+ (i
* EFX_BUF_SIZE
);
186 netif_dbg(efx
, probe
, efx
->net_dev
,
187 "mapping special buffer %d at %llx\n",
188 index
, (unsigned long long)dma_addr
);
189 EFX_POPULATE_QWORD_3(buf_desc
,
190 FRF_AZ_BUF_ADR_REGION
, 0,
191 FRF_AZ_BUF_ADR_FBUF
, dma_addr
>> 12,
192 FRF_AZ_BUF_OWNER_ID_FBUF
, 0);
193 efx_write_buf_tbl(efx
, &buf_desc
, index
);
197 /* Unmaps a buffer and clears the buffer table entries */
199 efx_fini_special_buffer(struct efx_nic
*efx
, struct efx_special_buffer
*buffer
)
201 efx_oword_t buf_tbl_upd
;
202 unsigned int start
= buffer
->index
;
203 unsigned int end
= (buffer
->index
+ buffer
->entries
- 1);
205 if (!buffer
->entries
)
208 netif_dbg(efx
, hw
, efx
->net_dev
, "unmapping special buffers %d-%d\n",
209 buffer
->index
, buffer
->index
+ buffer
->entries
- 1);
211 EFX_POPULATE_OWORD_4(buf_tbl_upd
,
212 FRF_AZ_BUF_UPD_CMD
, 0,
213 FRF_AZ_BUF_CLR_CMD
, 1,
214 FRF_AZ_BUF_CLR_END_ID
, end
,
215 FRF_AZ_BUF_CLR_START_ID
, start
);
216 efx_writeo(efx
, &buf_tbl_upd
, FR_AZ_BUF_TBL_UPD
);
220 * Allocate a new special buffer
222 * This allocates memory for a new buffer, clears it and allocates a
223 * new buffer ID range. It does not write into the buffer table.
225 * This call will allocate 4KB buffers, since 8KB buffers can't be
226 * used for event queues and descriptor rings.
228 static int efx_alloc_special_buffer(struct efx_nic
*efx
,
229 struct efx_special_buffer
*buffer
,
232 #ifdef CONFIG_SFC_SRIOV
233 struct siena_nic_data
*nic_data
= efx
->nic_data
;
235 len
= ALIGN(len
, EFX_BUF_SIZE
);
237 if (efx_nic_alloc_buffer(efx
, &buffer
->buf
, len
, GFP_KERNEL
))
239 buffer
->entries
= len
/ EFX_BUF_SIZE
;
240 BUG_ON(buffer
->buf
.dma_addr
& (EFX_BUF_SIZE
- 1));
242 /* Select new buffer ID */
243 buffer
->index
= efx
->next_buffer_table
;
244 efx
->next_buffer_table
+= buffer
->entries
;
245 #ifdef CONFIG_SFC_SRIOV
246 BUG_ON(efx_siena_sriov_enabled(efx
) &&
247 nic_data
->vf_buftbl_base
< efx
->next_buffer_table
);
250 netif_dbg(efx
, probe
, efx
->net_dev
,
251 "allocating special buffers %d-%d at %llx+%x "
252 "(virt %p phys %llx)\n", buffer
->index
,
253 buffer
->index
+ buffer
->entries
- 1,
254 (u64
)buffer
->buf
.dma_addr
, len
,
255 buffer
->buf
.addr
, (u64
)virt_to_phys(buffer
->buf
.addr
));
261 efx_free_special_buffer(struct efx_nic
*efx
, struct efx_special_buffer
*buffer
)
263 if (!buffer
->buf
.addr
)
266 netif_dbg(efx
, hw
, efx
->net_dev
,
267 "deallocating special buffers %d-%d at %llx+%x "
268 "(virt %p phys %llx)\n", buffer
->index
,
269 buffer
->index
+ buffer
->entries
- 1,
270 (u64
)buffer
->buf
.dma_addr
, buffer
->buf
.len
,
271 buffer
->buf
.addr
, (u64
)virt_to_phys(buffer
->buf
.addr
));
273 efx_nic_free_buffer(efx
, &buffer
->buf
);
277 /**************************************************************************
281 **************************************************************************/
283 /* This writes to the TX_DESC_WPTR; write pointer for TX descriptor ring */
284 static inline void efx_farch_notify_tx_desc(struct efx_tx_queue
*tx_queue
)
289 write_ptr
= tx_queue
->write_count
& tx_queue
->ptr_mask
;
290 EFX_POPULATE_DWORD_1(reg
, FRF_AZ_TX_DESC_WPTR_DWORD
, write_ptr
);
291 efx_writed_page(tx_queue
->efx
, ®
,
292 FR_AZ_TX_DESC_UPD_DWORD_P0
, tx_queue
->queue
);
295 /* Write pointer and first descriptor for TX descriptor ring */
296 static inline void efx_farch_push_tx_desc(struct efx_tx_queue
*tx_queue
,
297 const efx_qword_t
*txd
)
302 BUILD_BUG_ON(FRF_AZ_TX_DESC_LBN
!= 0);
303 BUILD_BUG_ON(FR_AA_TX_DESC_UPD_KER
!= FR_BZ_TX_DESC_UPD_P0
);
305 write_ptr
= tx_queue
->write_count
& tx_queue
->ptr_mask
;
306 EFX_POPULATE_OWORD_2(reg
, FRF_AZ_TX_DESC_PUSH_CMD
, true,
307 FRF_AZ_TX_DESC_WPTR
, write_ptr
);
309 efx_writeo_page(tx_queue
->efx
, ®
,
310 FR_BZ_TX_DESC_UPD_P0
, tx_queue
->queue
);
314 /* For each entry inserted into the software descriptor ring, create a
315 * descriptor in the hardware TX descriptor ring (in host memory), and
318 void efx_farch_tx_write(struct efx_tx_queue
*tx_queue
)
320 struct efx_tx_buffer
*buffer
;
323 unsigned old_write_count
= tx_queue
->write_count
;
325 tx_queue
->xmit_more_available
= false;
326 if (unlikely(tx_queue
->write_count
== tx_queue
->insert_count
))
330 write_ptr
= tx_queue
->write_count
& tx_queue
->ptr_mask
;
331 buffer
= &tx_queue
->buffer
[write_ptr
];
332 txd
= efx_tx_desc(tx_queue
, write_ptr
);
333 ++tx_queue
->write_count
;
335 EFX_WARN_ON_ONCE_PARANOID(buffer
->flags
& EFX_TX_BUF_OPTION
);
337 /* Create TX descriptor ring entry */
338 BUILD_BUG_ON(EFX_TX_BUF_CONT
!= 1);
339 EFX_POPULATE_QWORD_4(*txd
,
341 buffer
->flags
& EFX_TX_BUF_CONT
,
342 FSF_AZ_TX_KER_BYTE_COUNT
, buffer
->len
,
343 FSF_AZ_TX_KER_BUF_REGION
, 0,
344 FSF_AZ_TX_KER_BUF_ADDR
, buffer
->dma_addr
);
345 } while (tx_queue
->write_count
!= tx_queue
->insert_count
);
347 wmb(); /* Ensure descriptors are written before they are fetched */
349 if (efx_nic_may_push_tx_desc(tx_queue
, old_write_count
)) {
350 txd
= efx_tx_desc(tx_queue
,
351 old_write_count
& tx_queue
->ptr_mask
);
352 efx_farch_push_tx_desc(tx_queue
, txd
);
355 efx_farch_notify_tx_desc(tx_queue
);
359 unsigned int efx_farch_tx_limit_len(struct efx_tx_queue
*tx_queue
,
360 dma_addr_t dma_addr
, unsigned int len
)
362 /* Don't cross 4K boundaries with descriptors. */
363 unsigned int limit
= (~dma_addr
& (EFX_PAGE_SIZE
- 1)) + 1;
365 len
= min(limit
, len
);
371 /* Allocate hardware resources for a TX queue */
372 int efx_farch_tx_probe(struct efx_tx_queue
*tx_queue
)
374 struct efx_nic
*efx
= tx_queue
->efx
;
377 entries
= tx_queue
->ptr_mask
+ 1;
378 return efx_alloc_special_buffer(efx
, &tx_queue
->txd
,
379 entries
* sizeof(efx_qword_t
));
382 void efx_farch_tx_init(struct efx_tx_queue
*tx_queue
)
384 int csum
= tx_queue
->queue
& EFX_TXQ_TYPE_OFFLOAD
;
385 struct efx_nic
*efx
= tx_queue
->efx
;
388 /* Pin TX descriptor ring */
389 efx_init_special_buffer(efx
, &tx_queue
->txd
);
391 /* Push TX descriptor ring to card */
392 EFX_POPULATE_OWORD_10(reg
,
393 FRF_AZ_TX_DESCQ_EN
, 1,
394 FRF_AZ_TX_ISCSI_DDIG_EN
, 0,
395 FRF_AZ_TX_ISCSI_HDIG_EN
, 0,
396 FRF_AZ_TX_DESCQ_BUF_BASE_ID
, tx_queue
->txd
.index
,
397 FRF_AZ_TX_DESCQ_EVQ_ID
,
398 tx_queue
->channel
->channel
,
399 FRF_AZ_TX_DESCQ_OWNER_ID
, 0,
400 FRF_AZ_TX_DESCQ_LABEL
, tx_queue
->queue
,
401 FRF_AZ_TX_DESCQ_SIZE
,
402 __ffs(tx_queue
->txd
.entries
),
403 FRF_AZ_TX_DESCQ_TYPE
, 0,
404 FRF_BZ_TX_NON_IP_DROP_DIS
, 1);
406 EFX_SET_OWORD_FIELD(reg
, FRF_BZ_TX_IP_CHKSM_DIS
, !csum
);
407 EFX_SET_OWORD_FIELD(reg
, FRF_BZ_TX_TCP_CHKSM_DIS
, !csum
);
409 efx_writeo_table(efx
, ®
, efx
->type
->txd_ptr_tbl_base
,
412 EFX_POPULATE_OWORD_1(reg
,
414 (tx_queue
->queue
& EFX_TXQ_TYPE_HIGHPRI
) ?
416 FFE_BZ_TX_PACE_RESERVED
);
417 efx_writeo_table(efx
, ®
, FR_BZ_TX_PACE_TBL
, tx_queue
->queue
);
420 static void efx_farch_flush_tx_queue(struct efx_tx_queue
*tx_queue
)
422 struct efx_nic
*efx
= tx_queue
->efx
;
423 efx_oword_t tx_flush_descq
;
425 WARN_ON(atomic_read(&tx_queue
->flush_outstanding
));
426 atomic_set(&tx_queue
->flush_outstanding
, 1);
428 EFX_POPULATE_OWORD_2(tx_flush_descq
,
429 FRF_AZ_TX_FLUSH_DESCQ_CMD
, 1,
430 FRF_AZ_TX_FLUSH_DESCQ
, tx_queue
->queue
);
431 efx_writeo(efx
, &tx_flush_descq
, FR_AZ_TX_FLUSH_DESCQ
);
434 void efx_farch_tx_fini(struct efx_tx_queue
*tx_queue
)
436 struct efx_nic
*efx
= tx_queue
->efx
;
437 efx_oword_t tx_desc_ptr
;
439 /* Remove TX descriptor ring from card */
440 EFX_ZERO_OWORD(tx_desc_ptr
);
441 efx_writeo_table(efx
, &tx_desc_ptr
, efx
->type
->txd_ptr_tbl_base
,
444 /* Unpin TX descriptor ring */
445 efx_fini_special_buffer(efx
, &tx_queue
->txd
);
448 /* Free buffers backing TX queue */
449 void efx_farch_tx_remove(struct efx_tx_queue
*tx_queue
)
451 efx_free_special_buffer(tx_queue
->efx
, &tx_queue
->txd
);
454 /**************************************************************************
458 **************************************************************************/
460 /* This creates an entry in the RX descriptor queue */
462 efx_farch_build_rx_desc(struct efx_rx_queue
*rx_queue
, unsigned index
)
464 struct efx_rx_buffer
*rx_buf
;
467 rxd
= efx_rx_desc(rx_queue
, index
);
468 rx_buf
= efx_rx_buffer(rx_queue
, index
);
469 EFX_POPULATE_QWORD_3(*rxd
,
470 FSF_AZ_RX_KER_BUF_SIZE
,
472 rx_queue
->efx
->type
->rx_buffer_padding
,
473 FSF_AZ_RX_KER_BUF_REGION
, 0,
474 FSF_AZ_RX_KER_BUF_ADDR
, rx_buf
->dma_addr
);
477 /* This writes to the RX_DESC_WPTR register for the specified receive
480 void efx_farch_rx_write(struct efx_rx_queue
*rx_queue
)
482 struct efx_nic
*efx
= rx_queue
->efx
;
486 while (rx_queue
->notified_count
!= rx_queue
->added_count
) {
487 efx_farch_build_rx_desc(
489 rx_queue
->notified_count
& rx_queue
->ptr_mask
);
490 ++rx_queue
->notified_count
;
494 write_ptr
= rx_queue
->added_count
& rx_queue
->ptr_mask
;
495 EFX_POPULATE_DWORD_1(reg
, FRF_AZ_RX_DESC_WPTR_DWORD
, write_ptr
);
496 efx_writed_page(efx
, ®
, FR_AZ_RX_DESC_UPD_DWORD_P0
,
497 efx_rx_queue_index(rx_queue
));
500 int efx_farch_rx_probe(struct efx_rx_queue
*rx_queue
)
502 struct efx_nic
*efx
= rx_queue
->efx
;
505 entries
= rx_queue
->ptr_mask
+ 1;
506 return efx_alloc_special_buffer(efx
, &rx_queue
->rxd
,
507 entries
* sizeof(efx_qword_t
));
510 void efx_farch_rx_init(struct efx_rx_queue
*rx_queue
)
512 efx_oword_t rx_desc_ptr
;
513 struct efx_nic
*efx
= rx_queue
->efx
;
516 /* For kernel-mode queues in Siena, the JUMBO flag enables scatter. */
517 jumbo_en
= efx
->rx_scatter
;
519 netif_dbg(efx
, hw
, efx
->net_dev
,
520 "RX queue %d ring in special buffers %d-%d\n",
521 efx_rx_queue_index(rx_queue
), rx_queue
->rxd
.index
,
522 rx_queue
->rxd
.index
+ rx_queue
->rxd
.entries
- 1);
524 rx_queue
->scatter_n
= 0;
526 /* Pin RX descriptor ring */
527 efx_init_special_buffer(efx
, &rx_queue
->rxd
);
529 /* Push RX descriptor ring to card */
530 EFX_POPULATE_OWORD_10(rx_desc_ptr
,
531 FRF_AZ_RX_ISCSI_DDIG_EN
, true,
532 FRF_AZ_RX_ISCSI_HDIG_EN
, true,
533 FRF_AZ_RX_DESCQ_BUF_BASE_ID
, rx_queue
->rxd
.index
,
534 FRF_AZ_RX_DESCQ_EVQ_ID
,
535 efx_rx_queue_channel(rx_queue
)->channel
,
536 FRF_AZ_RX_DESCQ_OWNER_ID
, 0,
537 FRF_AZ_RX_DESCQ_LABEL
,
538 efx_rx_queue_index(rx_queue
),
539 FRF_AZ_RX_DESCQ_SIZE
,
540 __ffs(rx_queue
->rxd
.entries
),
541 FRF_AZ_RX_DESCQ_TYPE
, 0 /* kernel queue */ ,
542 FRF_AZ_RX_DESCQ_JUMBO
, jumbo_en
,
543 FRF_AZ_RX_DESCQ_EN
, 1);
544 efx_writeo_table(efx
, &rx_desc_ptr
, efx
->type
->rxd_ptr_tbl_base
,
545 efx_rx_queue_index(rx_queue
));
548 static void efx_farch_flush_rx_queue(struct efx_rx_queue
*rx_queue
)
550 struct efx_nic
*efx
= rx_queue
->efx
;
551 efx_oword_t rx_flush_descq
;
553 EFX_POPULATE_OWORD_2(rx_flush_descq
,
554 FRF_AZ_RX_FLUSH_DESCQ_CMD
, 1,
555 FRF_AZ_RX_FLUSH_DESCQ
,
556 efx_rx_queue_index(rx_queue
));
557 efx_writeo(efx
, &rx_flush_descq
, FR_AZ_RX_FLUSH_DESCQ
);
560 void efx_farch_rx_fini(struct efx_rx_queue
*rx_queue
)
562 efx_oword_t rx_desc_ptr
;
563 struct efx_nic
*efx
= rx_queue
->efx
;
565 /* Remove RX descriptor ring from card */
566 EFX_ZERO_OWORD(rx_desc_ptr
);
567 efx_writeo_table(efx
, &rx_desc_ptr
, efx
->type
->rxd_ptr_tbl_base
,
568 efx_rx_queue_index(rx_queue
));
570 /* Unpin RX descriptor ring */
571 efx_fini_special_buffer(efx
, &rx_queue
->rxd
);
574 /* Free buffers backing RX queue */
575 void efx_farch_rx_remove(struct efx_rx_queue
*rx_queue
)
577 efx_free_special_buffer(rx_queue
->efx
, &rx_queue
->rxd
);
580 /**************************************************************************
584 **************************************************************************/
586 /* efx_farch_flush_queues() must be woken up when all flushes are completed,
587 * or more RX flushes can be kicked off.
589 static bool efx_farch_flush_wake(struct efx_nic
*efx
)
591 /* Ensure that all updates are visible to efx_farch_flush_queues() */
594 return (atomic_read(&efx
->active_queues
) == 0 ||
595 (atomic_read(&efx
->rxq_flush_outstanding
) < EFX_RX_FLUSH_COUNT
596 && atomic_read(&efx
->rxq_flush_pending
) > 0));
599 static bool efx_check_tx_flush_complete(struct efx_nic
*efx
)
602 efx_oword_t txd_ptr_tbl
;
603 struct efx_channel
*channel
;
604 struct efx_tx_queue
*tx_queue
;
606 efx_for_each_channel(channel
, efx
) {
607 efx_for_each_channel_tx_queue(tx_queue
, channel
) {
608 efx_reado_table(efx
, &txd_ptr_tbl
,
609 FR_BZ_TX_DESC_PTR_TBL
, tx_queue
->queue
);
610 if (EFX_OWORD_FIELD(txd_ptr_tbl
,
611 FRF_AZ_TX_DESCQ_FLUSH
) ||
612 EFX_OWORD_FIELD(txd_ptr_tbl
,
613 FRF_AZ_TX_DESCQ_EN
)) {
614 netif_dbg(efx
, hw
, efx
->net_dev
,
615 "flush did not complete on TXQ %d\n",
618 } else if (atomic_cmpxchg(&tx_queue
->flush_outstanding
,
620 /* The flush is complete, but we didn't
621 * receive a flush completion event
623 netif_dbg(efx
, hw
, efx
->net_dev
,
624 "flush complete on TXQ %d, so drain "
625 "the queue\n", tx_queue
->queue
);
626 /* Don't need to increment active_queues as it
627 * has already been incremented for the queues
628 * which did not drain
630 efx_farch_magic_event(channel
,
631 EFX_CHANNEL_MAGIC_TX_DRAIN(
640 /* Flush all the transmit queues, and continue flushing receive queues until
641 * they're all flushed. Wait for the DRAIN events to be received so that there
642 * are no more RX and TX events left on any channel. */
643 static int efx_farch_do_flush(struct efx_nic
*efx
)
645 unsigned timeout
= msecs_to_jiffies(5000); /* 5s for all flushes and drains */
646 struct efx_channel
*channel
;
647 struct efx_rx_queue
*rx_queue
;
648 struct efx_tx_queue
*tx_queue
;
651 efx_for_each_channel(channel
, efx
) {
652 efx_for_each_channel_tx_queue(tx_queue
, channel
) {
653 efx_farch_flush_tx_queue(tx_queue
);
655 efx_for_each_channel_rx_queue(rx_queue
, channel
) {
656 rx_queue
->flush_pending
= true;
657 atomic_inc(&efx
->rxq_flush_pending
);
661 while (timeout
&& atomic_read(&efx
->active_queues
) > 0) {
662 /* If SRIOV is enabled, then offload receive queue flushing to
663 * the firmware (though we will still have to poll for
664 * completion). If that fails, fall back to the old scheme.
666 if (efx_siena_sriov_enabled(efx
)) {
667 rc
= efx_mcdi_flush_rxqs(efx
);
672 /* The hardware supports four concurrent rx flushes, each of
673 * which may need to be retried if there is an outstanding
676 efx_for_each_channel(channel
, efx
) {
677 efx_for_each_channel_rx_queue(rx_queue
, channel
) {
678 if (atomic_read(&efx
->rxq_flush_outstanding
) >=
682 if (rx_queue
->flush_pending
) {
683 rx_queue
->flush_pending
= false;
684 atomic_dec(&efx
->rxq_flush_pending
);
685 atomic_inc(&efx
->rxq_flush_outstanding
);
686 efx_farch_flush_rx_queue(rx_queue
);
692 timeout
= wait_event_timeout(efx
->flush_wq
,
693 efx_farch_flush_wake(efx
),
697 if (atomic_read(&efx
->active_queues
) &&
698 !efx_check_tx_flush_complete(efx
)) {
699 netif_err(efx
, hw
, efx
->net_dev
, "failed to flush %d queues "
700 "(rx %d+%d)\n", atomic_read(&efx
->active_queues
),
701 atomic_read(&efx
->rxq_flush_outstanding
),
702 atomic_read(&efx
->rxq_flush_pending
));
705 atomic_set(&efx
->active_queues
, 0);
706 atomic_set(&efx
->rxq_flush_pending
, 0);
707 atomic_set(&efx
->rxq_flush_outstanding
, 0);
713 int efx_farch_fini_dmaq(struct efx_nic
*efx
)
715 struct efx_channel
*channel
;
716 struct efx_tx_queue
*tx_queue
;
717 struct efx_rx_queue
*rx_queue
;
720 /* Do not attempt to write to the NIC during EEH recovery */
721 if (efx
->state
!= STATE_RECOVERY
) {
722 /* Only perform flush if DMA is enabled */
723 if (efx
->pci_dev
->is_busmaster
) {
724 efx
->type
->prepare_flush(efx
);
725 rc
= efx_farch_do_flush(efx
);
726 efx
->type
->finish_flush(efx
);
729 efx_for_each_channel(channel
, efx
) {
730 efx_for_each_channel_rx_queue(rx_queue
, channel
)
731 efx_farch_rx_fini(rx_queue
);
732 efx_for_each_channel_tx_queue(tx_queue
, channel
)
733 efx_farch_tx_fini(tx_queue
);
740 /* Reset queue and flush accounting after FLR
742 * One possible cause of FLR recovery is that DMA may be failing (eg. if bus
743 * mastering was disabled), in which case we don't receive (RXQ) flush
744 * completion events. This means that efx->rxq_flush_outstanding remained at 4
745 * after the FLR; also, efx->active_queues was non-zero (as no flush completion
746 * events were received, and we didn't go through efx_check_tx_flush_complete())
747 * If we don't fix this up, on the next call to efx_realloc_channels() we won't
748 * flush any RX queues because efx->rxq_flush_outstanding is at the limit of 4
749 * for batched flush requests; and the efx->active_queues gets messed up because
750 * we keep incrementing for the newly initialised queues, but it never went to
751 * zero previously. Then we get a timeout every time we try to restart the
752 * queues, as it doesn't go back to zero when we should be flushing the queues.
754 void efx_farch_finish_flr(struct efx_nic
*efx
)
756 atomic_set(&efx
->rxq_flush_pending
, 0);
757 atomic_set(&efx
->rxq_flush_outstanding
, 0);
758 atomic_set(&efx
->active_queues
, 0);
762 /**************************************************************************
764 * Event queue processing
765 * Event queues are processed by per-channel tasklets.
767 **************************************************************************/
769 /* Update a channel's event queue's read pointer (RPTR) register
771 * This writes the EVQ_RPTR_REG register for the specified channel's
774 void efx_farch_ev_read_ack(struct efx_channel
*channel
)
777 struct efx_nic
*efx
= channel
->efx
;
779 EFX_POPULATE_DWORD_1(reg
, FRF_AZ_EVQ_RPTR
,
780 channel
->eventq_read_ptr
& channel
->eventq_mask
);
782 /* For Falcon A1, EVQ_RPTR_KER is documented as having a step size
783 * of 4 bytes, but it is really 16 bytes just like later revisions.
785 efx_writed(efx
, ®
,
786 efx
->type
->evq_rptr_tbl_base
+
787 FR_BZ_EVQ_RPTR_STEP
* channel
->channel
);
790 /* Use HW to insert a SW defined event */
791 void efx_farch_generate_event(struct efx_nic
*efx
, unsigned int evq
,
794 efx_oword_t drv_ev_reg
;
796 BUILD_BUG_ON(FRF_AZ_DRV_EV_DATA_LBN
!= 0 ||
797 FRF_AZ_DRV_EV_DATA_WIDTH
!= 64);
798 drv_ev_reg
.u32
[0] = event
->u32
[0];
799 drv_ev_reg
.u32
[1] = event
->u32
[1];
800 drv_ev_reg
.u32
[2] = 0;
801 drv_ev_reg
.u32
[3] = 0;
802 EFX_SET_OWORD_FIELD(drv_ev_reg
, FRF_AZ_DRV_EV_QID
, evq
);
803 efx_writeo(efx
, &drv_ev_reg
, FR_AZ_DRV_EV
);
806 static void efx_farch_magic_event(struct efx_channel
*channel
, u32 magic
)
810 EFX_POPULATE_QWORD_2(event
, FSF_AZ_EV_CODE
,
811 FSE_AZ_EV_CODE_DRV_GEN_EV
,
812 FSF_AZ_DRV_GEN_EV_MAGIC
, magic
);
813 efx_farch_generate_event(channel
->efx
, channel
->channel
, &event
);
816 /* Handle a transmit completion event
818 * The NIC batches TX completion events; the message we receive is of
819 * the form "complete all TX events up to this index".
822 efx_farch_handle_tx_event(struct efx_channel
*channel
, efx_qword_t
*event
)
824 unsigned int tx_ev_desc_ptr
;
825 unsigned int tx_ev_q_label
;
826 struct efx_tx_queue
*tx_queue
;
827 struct efx_nic
*efx
= channel
->efx
;
829 if (unlikely(READ_ONCE(efx
->reset_pending
)))
832 if (likely(EFX_QWORD_FIELD(*event
, FSF_AZ_TX_EV_COMP
))) {
833 /* Transmit completion */
834 tx_ev_desc_ptr
= EFX_QWORD_FIELD(*event
, FSF_AZ_TX_EV_DESC_PTR
);
835 tx_ev_q_label
= EFX_QWORD_FIELD(*event
, FSF_AZ_TX_EV_Q_LABEL
);
836 tx_queue
= efx_channel_get_tx_queue(
837 channel
, tx_ev_q_label
% EFX_TXQ_TYPES
);
838 efx_xmit_done(tx_queue
, tx_ev_desc_ptr
);
839 } else if (EFX_QWORD_FIELD(*event
, FSF_AZ_TX_EV_WQ_FF_FULL
)) {
840 /* Rewrite the FIFO write pointer */
841 tx_ev_q_label
= EFX_QWORD_FIELD(*event
, FSF_AZ_TX_EV_Q_LABEL
);
842 tx_queue
= efx_channel_get_tx_queue(
843 channel
, tx_ev_q_label
% EFX_TXQ_TYPES
);
845 netif_tx_lock(efx
->net_dev
);
846 efx_farch_notify_tx_desc(tx_queue
);
847 netif_tx_unlock(efx
->net_dev
);
848 } else if (EFX_QWORD_FIELD(*event
, FSF_AZ_TX_EV_PKT_ERR
)) {
849 efx_schedule_reset(efx
, RESET_TYPE_DMA_ERROR
);
851 netif_err(efx
, tx_err
, efx
->net_dev
,
852 "channel %d unexpected TX event "
853 EFX_QWORD_FMT
"\n", channel
->channel
,
854 EFX_QWORD_VAL(*event
));
858 /* Detect errors included in the rx_evt_pkt_ok bit. */
859 static u16
efx_farch_handle_rx_not_ok(struct efx_rx_queue
*rx_queue
,
860 const efx_qword_t
*event
)
862 struct efx_channel
*channel
= efx_rx_queue_channel(rx_queue
);
863 struct efx_nic
*efx
= rx_queue
->efx
;
864 bool rx_ev_buf_owner_id_err
, rx_ev_ip_hdr_chksum_err
;
865 bool rx_ev_tcp_udp_chksum_err
, rx_ev_eth_crc_err
;
866 bool rx_ev_frm_trunc
, rx_ev_tobe_disc
;
867 bool rx_ev_other_err
, rx_ev_pause_frm
;
868 bool rx_ev_hdr_type
, rx_ev_mcast_pkt
;
869 unsigned rx_ev_pkt_type
;
871 rx_ev_hdr_type
= EFX_QWORD_FIELD(*event
, FSF_AZ_RX_EV_HDR_TYPE
);
872 rx_ev_mcast_pkt
= EFX_QWORD_FIELD(*event
, FSF_AZ_RX_EV_MCAST_PKT
);
873 rx_ev_tobe_disc
= EFX_QWORD_FIELD(*event
, FSF_AZ_RX_EV_TOBE_DISC
);
874 rx_ev_pkt_type
= EFX_QWORD_FIELD(*event
, FSF_AZ_RX_EV_PKT_TYPE
);
875 rx_ev_buf_owner_id_err
= EFX_QWORD_FIELD(*event
,
876 FSF_AZ_RX_EV_BUF_OWNER_ID_ERR
);
877 rx_ev_ip_hdr_chksum_err
= EFX_QWORD_FIELD(*event
,
878 FSF_AZ_RX_EV_IP_HDR_CHKSUM_ERR
);
879 rx_ev_tcp_udp_chksum_err
= EFX_QWORD_FIELD(*event
,
880 FSF_AZ_RX_EV_TCP_UDP_CHKSUM_ERR
);
881 rx_ev_eth_crc_err
= EFX_QWORD_FIELD(*event
, FSF_AZ_RX_EV_ETH_CRC_ERR
);
882 rx_ev_frm_trunc
= EFX_QWORD_FIELD(*event
, FSF_AZ_RX_EV_FRM_TRUNC
);
883 rx_ev_pause_frm
= EFX_QWORD_FIELD(*event
, FSF_AZ_RX_EV_PAUSE_FRM_ERR
);
885 /* Every error apart from tobe_disc and pause_frm */
886 rx_ev_other_err
= (rx_ev_tcp_udp_chksum_err
|
887 rx_ev_buf_owner_id_err
| rx_ev_eth_crc_err
|
888 rx_ev_frm_trunc
| rx_ev_ip_hdr_chksum_err
);
890 /* Count errors that are not in MAC stats. Ignore expected
891 * checksum errors during self-test. */
893 ++channel
->n_rx_frm_trunc
;
894 else if (rx_ev_tobe_disc
)
895 ++channel
->n_rx_tobe_disc
;
896 else if (!efx
->loopback_selftest
) {
897 if (rx_ev_ip_hdr_chksum_err
)
898 ++channel
->n_rx_ip_hdr_chksum_err
;
899 else if (rx_ev_tcp_udp_chksum_err
)
900 ++channel
->n_rx_tcp_udp_chksum_err
;
903 /* TOBE_DISC is expected on unicast mismatches; don't print out an
904 * error message. FRM_TRUNC indicates RXDP dropped the packet due
905 * to a FIFO overflow.
908 if (rx_ev_other_err
&& net_ratelimit()) {
909 netif_dbg(efx
, rx_err
, efx
->net_dev
,
910 " RX queue %d unexpected RX event "
911 EFX_QWORD_FMT
"%s%s%s%s%s%s%s\n",
912 efx_rx_queue_index(rx_queue
), EFX_QWORD_VAL(*event
),
913 rx_ev_buf_owner_id_err
? " [OWNER_ID_ERR]" : "",
914 rx_ev_ip_hdr_chksum_err
?
915 " [IP_HDR_CHKSUM_ERR]" : "",
916 rx_ev_tcp_udp_chksum_err
?
917 " [TCP_UDP_CHKSUM_ERR]" : "",
918 rx_ev_eth_crc_err
? " [ETH_CRC_ERR]" : "",
919 rx_ev_frm_trunc
? " [FRM_TRUNC]" : "",
920 rx_ev_tobe_disc
? " [TOBE_DISC]" : "",
921 rx_ev_pause_frm
? " [PAUSE]" : "");
925 if (efx
->net_dev
->features
& NETIF_F_RXALL
)
926 /* don't discard frame for CRC error */
927 rx_ev_eth_crc_err
= false;
929 /* The frame must be discarded if any of these are true. */
930 return (rx_ev_eth_crc_err
| rx_ev_frm_trunc
|
931 rx_ev_tobe_disc
| rx_ev_pause_frm
) ?
932 EFX_RX_PKT_DISCARD
: 0;
935 /* Handle receive events that are not in-order. Return true if this
936 * can be handled as a partial packet discard, false if it's more
940 efx_farch_handle_rx_bad_index(struct efx_rx_queue
*rx_queue
, unsigned index
)
942 struct efx_channel
*channel
= efx_rx_queue_channel(rx_queue
);
943 struct efx_nic
*efx
= rx_queue
->efx
;
944 unsigned expected
, dropped
;
946 if (rx_queue
->scatter_n
&&
947 index
== ((rx_queue
->removed_count
+ rx_queue
->scatter_n
- 1) &
948 rx_queue
->ptr_mask
)) {
949 ++channel
->n_rx_nodesc_trunc
;
953 expected
= rx_queue
->removed_count
& rx_queue
->ptr_mask
;
954 dropped
= (index
- expected
) & rx_queue
->ptr_mask
;
955 netif_info(efx
, rx_err
, efx
->net_dev
,
956 "dropped %d events (index=%d expected=%d)\n",
957 dropped
, index
, expected
);
959 efx_schedule_reset(efx
, RESET_TYPE_DISABLE
);
963 /* Handle a packet received event
965 * The NIC gives a "discard" flag if it's a unicast packet with the
966 * wrong destination address
967 * Also "is multicast" and "matches multicast filter" flags can be used to
968 * discard non-matching multicast packets.
971 efx_farch_handle_rx_event(struct efx_channel
*channel
, const efx_qword_t
*event
)
973 unsigned int rx_ev_desc_ptr
, rx_ev_byte_cnt
;
974 unsigned int rx_ev_hdr_type
, rx_ev_mcast_pkt
;
975 unsigned expected_ptr
;
976 bool rx_ev_pkt_ok
, rx_ev_sop
, rx_ev_cont
;
978 struct efx_rx_queue
*rx_queue
;
979 struct efx_nic
*efx
= channel
->efx
;
981 if (unlikely(READ_ONCE(efx
->reset_pending
)))
984 rx_ev_cont
= EFX_QWORD_FIELD(*event
, FSF_AZ_RX_EV_JUMBO_CONT
);
985 rx_ev_sop
= EFX_QWORD_FIELD(*event
, FSF_AZ_RX_EV_SOP
);
986 WARN_ON(EFX_QWORD_FIELD(*event
, FSF_AZ_RX_EV_Q_LABEL
) !=
989 rx_queue
= efx_channel_get_rx_queue(channel
);
991 rx_ev_desc_ptr
= EFX_QWORD_FIELD(*event
, FSF_AZ_RX_EV_DESC_PTR
);
992 expected_ptr
= ((rx_queue
->removed_count
+ rx_queue
->scatter_n
) &
995 /* Check for partial drops and other errors */
996 if (unlikely(rx_ev_desc_ptr
!= expected_ptr
) ||
997 unlikely(rx_ev_sop
!= (rx_queue
->scatter_n
== 0))) {
998 if (rx_ev_desc_ptr
!= expected_ptr
&&
999 !efx_farch_handle_rx_bad_index(rx_queue
, rx_ev_desc_ptr
))
1002 /* Discard all pending fragments */
1003 if (rx_queue
->scatter_n
) {
1006 rx_queue
->removed_count
& rx_queue
->ptr_mask
,
1007 rx_queue
->scatter_n
, 0, EFX_RX_PKT_DISCARD
);
1008 rx_queue
->removed_count
+= rx_queue
->scatter_n
;
1009 rx_queue
->scatter_n
= 0;
1012 /* Return if there is no new fragment */
1013 if (rx_ev_desc_ptr
!= expected_ptr
)
1016 /* Discard new fragment if not SOP */
1020 rx_queue
->removed_count
& rx_queue
->ptr_mask
,
1021 1, 0, EFX_RX_PKT_DISCARD
);
1022 ++rx_queue
->removed_count
;
1027 ++rx_queue
->scatter_n
;
1031 rx_ev_byte_cnt
= EFX_QWORD_FIELD(*event
, FSF_AZ_RX_EV_BYTE_CNT
);
1032 rx_ev_pkt_ok
= EFX_QWORD_FIELD(*event
, FSF_AZ_RX_EV_PKT_OK
);
1033 rx_ev_hdr_type
= EFX_QWORD_FIELD(*event
, FSF_AZ_RX_EV_HDR_TYPE
);
1035 if (likely(rx_ev_pkt_ok
)) {
1036 /* If packet is marked as OK then we can rely on the
1037 * hardware checksum and classification.
1040 switch (rx_ev_hdr_type
) {
1041 case FSE_CZ_RX_EV_HDR_TYPE_IPV4V6_TCP
:
1042 flags
|= EFX_RX_PKT_TCP
;
1044 case FSE_CZ_RX_EV_HDR_TYPE_IPV4V6_UDP
:
1045 flags
|= EFX_RX_PKT_CSUMMED
;
1047 case FSE_CZ_RX_EV_HDR_TYPE_IPV4V6_OTHER
:
1048 case FSE_AZ_RX_EV_HDR_TYPE_OTHER
:
1052 flags
= efx_farch_handle_rx_not_ok(rx_queue
, event
);
1055 /* Detect multicast packets that didn't match the filter */
1056 rx_ev_mcast_pkt
= EFX_QWORD_FIELD(*event
, FSF_AZ_RX_EV_MCAST_PKT
);
1057 if (rx_ev_mcast_pkt
) {
1058 unsigned int rx_ev_mcast_hash_match
=
1059 EFX_QWORD_FIELD(*event
, FSF_AZ_RX_EV_MCAST_HASH_MATCH
);
1061 if (unlikely(!rx_ev_mcast_hash_match
)) {
1062 ++channel
->n_rx_mcast_mismatch
;
1063 flags
|= EFX_RX_PKT_DISCARD
;
1067 channel
->irq_mod_score
+= 2;
1069 /* Handle received packet */
1070 efx_rx_packet(rx_queue
,
1071 rx_queue
->removed_count
& rx_queue
->ptr_mask
,
1072 rx_queue
->scatter_n
, rx_ev_byte_cnt
, flags
);
1073 rx_queue
->removed_count
+= rx_queue
->scatter_n
;
1074 rx_queue
->scatter_n
= 0;
1077 /* If this flush done event corresponds to a &struct efx_tx_queue, then
1078 * send an %EFX_CHANNEL_MAGIC_TX_DRAIN event to drain the event queue
1079 * of all transmit completions.
1082 efx_farch_handle_tx_flush_done(struct efx_nic
*efx
, efx_qword_t
*event
)
1084 struct efx_tx_queue
*tx_queue
;
1087 qid
= EFX_QWORD_FIELD(*event
, FSF_AZ_DRIVER_EV_SUBDATA
);
1088 if (qid
< EFX_TXQ_TYPES
* (efx
->n_tx_channels
+ efx
->n_extra_tx_channels
)) {
1089 tx_queue
= efx_get_tx_queue(efx
, qid
/ EFX_TXQ_TYPES
,
1090 qid
% EFX_TXQ_TYPES
);
1091 if (atomic_cmpxchg(&tx_queue
->flush_outstanding
, 1, 0)) {
1092 efx_farch_magic_event(tx_queue
->channel
,
1093 EFX_CHANNEL_MAGIC_TX_DRAIN(tx_queue
));
1098 /* If this flush done event corresponds to a &struct efx_rx_queue: If the flush
1099 * was successful then send an %EFX_CHANNEL_MAGIC_RX_DRAIN, otherwise add
1100 * the RX queue back to the mask of RX queues in need of flushing.
1103 efx_farch_handle_rx_flush_done(struct efx_nic
*efx
, efx_qword_t
*event
)
1105 struct efx_channel
*channel
;
1106 struct efx_rx_queue
*rx_queue
;
1110 qid
= EFX_QWORD_FIELD(*event
, FSF_AZ_DRIVER_EV_RX_DESCQ_ID
);
1111 failed
= EFX_QWORD_FIELD(*event
, FSF_AZ_DRIVER_EV_RX_FLUSH_FAIL
);
1112 if (qid
>= efx
->n_channels
)
1114 channel
= efx_get_channel(efx
, qid
);
1115 if (!efx_channel_has_rx_queue(channel
))
1117 rx_queue
= efx_channel_get_rx_queue(channel
);
1120 netif_info(efx
, hw
, efx
->net_dev
,
1121 "RXQ %d flush retry\n", qid
);
1122 rx_queue
->flush_pending
= true;
1123 atomic_inc(&efx
->rxq_flush_pending
);
1125 efx_farch_magic_event(efx_rx_queue_channel(rx_queue
),
1126 EFX_CHANNEL_MAGIC_RX_DRAIN(rx_queue
));
1128 atomic_dec(&efx
->rxq_flush_outstanding
);
1129 if (efx_farch_flush_wake(efx
))
1130 wake_up(&efx
->flush_wq
);
1134 efx_farch_handle_drain_event(struct efx_channel
*channel
)
1136 struct efx_nic
*efx
= channel
->efx
;
1138 WARN_ON(atomic_read(&efx
->active_queues
) == 0);
1139 atomic_dec(&efx
->active_queues
);
1140 if (efx_farch_flush_wake(efx
))
1141 wake_up(&efx
->flush_wq
);
1144 static void efx_farch_handle_generated_event(struct efx_channel
*channel
,
1147 struct efx_nic
*efx
= channel
->efx
;
1148 struct efx_rx_queue
*rx_queue
=
1149 efx_channel_has_rx_queue(channel
) ?
1150 efx_channel_get_rx_queue(channel
) : NULL
;
1151 unsigned magic
, code
;
1153 magic
= EFX_QWORD_FIELD(*event
, FSF_AZ_DRV_GEN_EV_MAGIC
);
1154 code
= _EFX_CHANNEL_MAGIC_CODE(magic
);
1156 if (magic
== EFX_CHANNEL_MAGIC_TEST(channel
)) {
1157 channel
->event_test_cpu
= raw_smp_processor_id();
1158 } else if (rx_queue
&& magic
== EFX_CHANNEL_MAGIC_FILL(rx_queue
)) {
1159 /* The queue must be empty, so we won't receive any rx
1160 * events, so efx_process_channel() won't refill the
1161 * queue. Refill it here */
1162 efx_fast_push_rx_descriptors(rx_queue
, true);
1163 } else if (rx_queue
&& magic
== EFX_CHANNEL_MAGIC_RX_DRAIN(rx_queue
)) {
1164 efx_farch_handle_drain_event(channel
);
1165 } else if (code
== _EFX_CHANNEL_MAGIC_TX_DRAIN
) {
1166 efx_farch_handle_drain_event(channel
);
1168 netif_dbg(efx
, hw
, efx
->net_dev
, "channel %d received "
1169 "generated event "EFX_QWORD_FMT
"\n",
1170 channel
->channel
, EFX_QWORD_VAL(*event
));
1175 efx_farch_handle_driver_event(struct efx_channel
*channel
, efx_qword_t
*event
)
1177 struct efx_nic
*efx
= channel
->efx
;
1178 unsigned int ev_sub_code
;
1179 unsigned int ev_sub_data
;
1181 ev_sub_code
= EFX_QWORD_FIELD(*event
, FSF_AZ_DRIVER_EV_SUBCODE
);
1182 ev_sub_data
= EFX_QWORD_FIELD(*event
, FSF_AZ_DRIVER_EV_SUBDATA
);
1184 switch (ev_sub_code
) {
1185 case FSE_AZ_TX_DESCQ_FLS_DONE_EV
:
1186 netif_vdbg(efx
, hw
, efx
->net_dev
, "channel %d TXQ %d flushed\n",
1187 channel
->channel
, ev_sub_data
);
1188 efx_farch_handle_tx_flush_done(efx
, event
);
1189 #ifdef CONFIG_SFC_SRIOV
1190 efx_siena_sriov_tx_flush_done(efx
, event
);
1193 case FSE_AZ_RX_DESCQ_FLS_DONE_EV
:
1194 netif_vdbg(efx
, hw
, efx
->net_dev
, "channel %d RXQ %d flushed\n",
1195 channel
->channel
, ev_sub_data
);
1196 efx_farch_handle_rx_flush_done(efx
, event
);
1197 #ifdef CONFIG_SFC_SRIOV
1198 efx_siena_sriov_rx_flush_done(efx
, event
);
1201 case FSE_AZ_EVQ_INIT_DONE_EV
:
1202 netif_dbg(efx
, hw
, efx
->net_dev
,
1203 "channel %d EVQ %d initialised\n",
1204 channel
->channel
, ev_sub_data
);
1206 case FSE_AZ_SRM_UPD_DONE_EV
:
1207 netif_vdbg(efx
, hw
, efx
->net_dev
,
1208 "channel %d SRAM update done\n", channel
->channel
);
1210 case FSE_AZ_WAKE_UP_EV
:
1211 netif_vdbg(efx
, hw
, efx
->net_dev
,
1212 "channel %d RXQ %d wakeup event\n",
1213 channel
->channel
, ev_sub_data
);
1215 case FSE_AZ_TIMER_EV
:
1216 netif_vdbg(efx
, hw
, efx
->net_dev
,
1217 "channel %d RX queue %d timer expired\n",
1218 channel
->channel
, ev_sub_data
);
1220 case FSE_AA_RX_RECOVER_EV
:
1221 netif_err(efx
, rx_err
, efx
->net_dev
,
1222 "channel %d seen DRIVER RX_RESET event. "
1223 "Resetting.\n", channel
->channel
);
1224 atomic_inc(&efx
->rx_reset
);
1225 efx_schedule_reset(efx
, RESET_TYPE_DISABLE
);
1227 case FSE_BZ_RX_DSC_ERROR_EV
:
1228 if (ev_sub_data
< EFX_VI_BASE
) {
1229 netif_err(efx
, rx_err
, efx
->net_dev
,
1230 "RX DMA Q %d reports descriptor fetch error."
1231 " RX Q %d is disabled.\n", ev_sub_data
,
1233 efx_schedule_reset(efx
, RESET_TYPE_DMA_ERROR
);
1235 #ifdef CONFIG_SFC_SRIOV
1237 efx_siena_sriov_desc_fetch_err(efx
, ev_sub_data
);
1240 case FSE_BZ_TX_DSC_ERROR_EV
:
1241 if (ev_sub_data
< EFX_VI_BASE
) {
1242 netif_err(efx
, tx_err
, efx
->net_dev
,
1243 "TX DMA Q %d reports descriptor fetch error."
1244 " TX Q %d is disabled.\n", ev_sub_data
,
1246 efx_schedule_reset(efx
, RESET_TYPE_DMA_ERROR
);
1248 #ifdef CONFIG_SFC_SRIOV
1250 efx_siena_sriov_desc_fetch_err(efx
, ev_sub_data
);
1254 netif_vdbg(efx
, hw
, efx
->net_dev
,
1255 "channel %d unknown driver event code %d "
1256 "data %04x\n", channel
->channel
, ev_sub_code
,
1262 int efx_farch_ev_process(struct efx_channel
*channel
, int budget
)
1264 struct efx_nic
*efx
= channel
->efx
;
1265 unsigned int read_ptr
;
1266 efx_qword_t event
, *p_event
;
1273 read_ptr
= channel
->eventq_read_ptr
;
1276 p_event
= efx_event(channel
, read_ptr
);
1279 if (!efx_event_present(&event
))
1283 netif_vdbg(channel
->efx
, intr
, channel
->efx
->net_dev
,
1284 "channel %d event is "EFX_QWORD_FMT
"\n",
1285 channel
->channel
, EFX_QWORD_VAL(event
));
1287 /* Clear this event by marking it all ones */
1288 EFX_SET_QWORD(*p_event
);
1292 ev_code
= EFX_QWORD_FIELD(event
, FSF_AZ_EV_CODE
);
1295 case FSE_AZ_EV_CODE_RX_EV
:
1296 efx_farch_handle_rx_event(channel
, &event
);
1297 if (++spent
== budget
)
1300 case FSE_AZ_EV_CODE_TX_EV
:
1301 efx_farch_handle_tx_event(channel
, &event
);
1303 case FSE_AZ_EV_CODE_DRV_GEN_EV
:
1304 efx_farch_handle_generated_event(channel
, &event
);
1306 case FSE_AZ_EV_CODE_DRIVER_EV
:
1307 efx_farch_handle_driver_event(channel
, &event
);
1309 #ifdef CONFIG_SFC_SRIOV
1310 case FSE_CZ_EV_CODE_USER_EV
:
1311 efx_siena_sriov_event(channel
, &event
);
1314 case FSE_CZ_EV_CODE_MCDI_EV
:
1315 efx_mcdi_process_event(channel
, &event
);
1317 case FSE_AZ_EV_CODE_GLOBAL_EV
:
1318 if (efx
->type
->handle_global_event
&&
1319 efx
->type
->handle_global_event(channel
, &event
))
1321 /* else fall through */
1323 netif_err(channel
->efx
, hw
, channel
->efx
->net_dev
,
1324 "channel %d unknown event type %d (data "
1325 EFX_QWORD_FMT
")\n", channel
->channel
,
1326 ev_code
, EFX_QWORD_VAL(event
));
1331 channel
->eventq_read_ptr
= read_ptr
;
1335 /* Allocate buffer table entries for event queue */
1336 int efx_farch_ev_probe(struct efx_channel
*channel
)
1338 struct efx_nic
*efx
= channel
->efx
;
1341 entries
= channel
->eventq_mask
+ 1;
1342 return efx_alloc_special_buffer(efx
, &channel
->eventq
,
1343 entries
* sizeof(efx_qword_t
));
1346 int efx_farch_ev_init(struct efx_channel
*channel
)
1349 struct efx_nic
*efx
= channel
->efx
;
1351 netif_dbg(efx
, hw
, efx
->net_dev
,
1352 "channel %d event queue in special buffers %d-%d\n",
1353 channel
->channel
, channel
->eventq
.index
,
1354 channel
->eventq
.index
+ channel
->eventq
.entries
- 1);
1356 EFX_POPULATE_OWORD_3(reg
,
1357 FRF_CZ_TIMER_Q_EN
, 1,
1358 FRF_CZ_HOST_NOTIFY_MODE
, 0,
1359 FRF_CZ_TIMER_MODE
, FFE_CZ_TIMER_MODE_DIS
);
1360 efx_writeo_table(efx
, ®
, FR_BZ_TIMER_TBL
, channel
->channel
);
1362 /* Pin event queue buffer */
1363 efx_init_special_buffer(efx
, &channel
->eventq
);
1365 /* Fill event queue with all ones (i.e. empty events) */
1366 memset(channel
->eventq
.buf
.addr
, 0xff, channel
->eventq
.buf
.len
);
1368 /* Push event queue to card */
1369 EFX_POPULATE_OWORD_3(reg
,
1371 FRF_AZ_EVQ_SIZE
, __ffs(channel
->eventq
.entries
),
1372 FRF_AZ_EVQ_BUF_BASE_ID
, channel
->eventq
.index
);
1373 efx_writeo_table(efx
, ®
, efx
->type
->evq_ptr_tbl_base
,
1379 void efx_farch_ev_fini(struct efx_channel
*channel
)
1382 struct efx_nic
*efx
= channel
->efx
;
1384 /* Remove event queue from card */
1385 EFX_ZERO_OWORD(reg
);
1386 efx_writeo_table(efx
, ®
, efx
->type
->evq_ptr_tbl_base
,
1388 efx_writeo_table(efx
, ®
, FR_BZ_TIMER_TBL
, channel
->channel
);
1390 /* Unpin event queue */
1391 efx_fini_special_buffer(efx
, &channel
->eventq
);
1394 /* Free buffers backing event queue */
1395 void efx_farch_ev_remove(struct efx_channel
*channel
)
1397 efx_free_special_buffer(channel
->efx
, &channel
->eventq
);
1401 void efx_farch_ev_test_generate(struct efx_channel
*channel
)
1403 efx_farch_magic_event(channel
, EFX_CHANNEL_MAGIC_TEST(channel
));
1406 void efx_farch_rx_defer_refill(struct efx_rx_queue
*rx_queue
)
1408 efx_farch_magic_event(efx_rx_queue_channel(rx_queue
),
1409 EFX_CHANNEL_MAGIC_FILL(rx_queue
));
1412 /**************************************************************************
1414 * Hardware interrupts
1415 * The hardware interrupt handler does very little work; all the event
1416 * queue processing is carried out by per-channel tasklets.
1418 **************************************************************************/
1420 /* Enable/disable/generate interrupts */
1421 static inline void efx_farch_interrupts(struct efx_nic
*efx
,
1422 bool enabled
, bool force
)
1424 efx_oword_t int_en_reg_ker
;
1426 EFX_POPULATE_OWORD_3(int_en_reg_ker
,
1427 FRF_AZ_KER_INT_LEVE_SEL
, efx
->irq_level
,
1428 FRF_AZ_KER_INT_KER
, force
,
1429 FRF_AZ_DRV_INT_EN_KER
, enabled
);
1430 efx_writeo(efx
, &int_en_reg_ker
, FR_AZ_INT_EN_KER
);
1433 void efx_farch_irq_enable_master(struct efx_nic
*efx
)
1435 EFX_ZERO_OWORD(*((efx_oword_t
*) efx
->irq_status
.addr
));
1436 wmb(); /* Ensure interrupt vector is clear before interrupts enabled */
1438 efx_farch_interrupts(efx
, true, false);
1441 void efx_farch_irq_disable_master(struct efx_nic
*efx
)
1443 /* Disable interrupts */
1444 efx_farch_interrupts(efx
, false, false);
1447 /* Generate a test interrupt
1448 * Interrupt must already have been enabled, otherwise nasty things
1451 int efx_farch_irq_test_generate(struct efx_nic
*efx
)
1453 efx_farch_interrupts(efx
, true, true);
1457 /* Process a fatal interrupt
1458 * Disable bus mastering ASAP and schedule a reset
1460 irqreturn_t
efx_farch_fatal_interrupt(struct efx_nic
*efx
)
1462 efx_oword_t
*int_ker
= efx
->irq_status
.addr
;
1463 efx_oword_t fatal_intr
;
1464 int error
, mem_perr
;
1466 efx_reado(efx
, &fatal_intr
, FR_AZ_FATAL_INTR_KER
);
1467 error
= EFX_OWORD_FIELD(fatal_intr
, FRF_AZ_FATAL_INTR
);
1469 netif_err(efx
, hw
, efx
->net_dev
, "SYSTEM ERROR "EFX_OWORD_FMT
" status "
1470 EFX_OWORD_FMT
": %s\n", EFX_OWORD_VAL(*int_ker
),
1471 EFX_OWORD_VAL(fatal_intr
),
1472 error
? "disabling bus mastering" : "no recognised error");
1474 /* If this is a memory parity error dump which blocks are offending */
1475 mem_perr
= (EFX_OWORD_FIELD(fatal_intr
, FRF_AZ_MEM_PERR_INT_KER
) ||
1476 EFX_OWORD_FIELD(fatal_intr
, FRF_AZ_SRM_PERR_INT_KER
));
1479 efx_reado(efx
, ®
, FR_AZ_MEM_STAT
);
1480 netif_err(efx
, hw
, efx
->net_dev
,
1481 "SYSTEM ERROR: memory parity error "EFX_OWORD_FMT
"\n",
1482 EFX_OWORD_VAL(reg
));
1485 /* Disable both devices */
1486 pci_clear_master(efx
->pci_dev
);
1487 efx_farch_irq_disable_master(efx
);
1489 /* Count errors and reset or disable the NIC accordingly */
1490 if (efx
->int_error_count
== 0 ||
1491 time_after(jiffies
, efx
->int_error_expire
)) {
1492 efx
->int_error_count
= 0;
1493 efx
->int_error_expire
=
1494 jiffies
+ EFX_INT_ERROR_EXPIRE
* HZ
;
1496 if (++efx
->int_error_count
< EFX_MAX_INT_ERRORS
) {
1497 netif_err(efx
, hw
, efx
->net_dev
,
1498 "SYSTEM ERROR - reset scheduled\n");
1499 efx_schedule_reset(efx
, RESET_TYPE_INT_ERROR
);
1501 netif_err(efx
, hw
, efx
->net_dev
,
1502 "SYSTEM ERROR - max number of errors seen."
1503 "NIC will be disabled\n");
1504 efx_schedule_reset(efx
, RESET_TYPE_DISABLE
);
1510 /* Handle a legacy interrupt
1511 * Acknowledges the interrupt and schedule event queue processing.
1513 irqreturn_t
efx_farch_legacy_interrupt(int irq
, void *dev_id
)
1515 struct efx_nic
*efx
= dev_id
;
1516 bool soft_enabled
= READ_ONCE(efx
->irq_soft_enabled
);
1517 efx_oword_t
*int_ker
= efx
->irq_status
.addr
;
1518 irqreturn_t result
= IRQ_NONE
;
1519 struct efx_channel
*channel
;
1524 /* Read the ISR which also ACKs the interrupts */
1525 efx_readd(efx
, ®
, FR_BZ_INT_ISR0
);
1526 queues
= EFX_EXTRACT_DWORD(reg
, 0, 31);
1528 /* Legacy interrupts are disabled too late by the EEH kernel
1529 * code. Disable them earlier.
1530 * If an EEH error occurred, the read will have returned all ones.
1532 if (EFX_DWORD_IS_ALL_ONES(reg
) && efx_try_recovery(efx
) &&
1533 !efx
->eeh_disabled_legacy_irq
) {
1534 disable_irq_nosync(efx
->legacy_irq
);
1535 efx
->eeh_disabled_legacy_irq
= true;
1538 /* Handle non-event-queue sources */
1539 if (queues
& (1U << efx
->irq_level
) && soft_enabled
) {
1540 syserr
= EFX_OWORD_FIELD(*int_ker
, FSF_AZ_NET_IVEC_FATAL_INT
);
1541 if (unlikely(syserr
))
1542 return efx_farch_fatal_interrupt(efx
);
1543 efx
->last_irq_cpu
= raw_smp_processor_id();
1547 efx
->irq_zero_count
= 0;
1549 /* Schedule processing of any interrupting queues */
1550 if (likely(soft_enabled
)) {
1551 efx_for_each_channel(channel
, efx
) {
1553 efx_schedule_channel_irq(channel
);
1557 result
= IRQ_HANDLED
;
1562 /* Legacy ISR read can return zero once (SF bug 15783) */
1564 /* We can't return IRQ_HANDLED more than once on seeing ISR=0
1565 * because this might be a shared interrupt. */
1566 if (efx
->irq_zero_count
++ == 0)
1567 result
= IRQ_HANDLED
;
1569 /* Ensure we schedule or rearm all event queues */
1570 if (likely(soft_enabled
)) {
1571 efx_for_each_channel(channel
, efx
) {
1572 event
= efx_event(channel
,
1573 channel
->eventq_read_ptr
);
1574 if (efx_event_present(event
))
1575 efx_schedule_channel_irq(channel
);
1577 efx_farch_ev_read_ack(channel
);
1582 if (result
== IRQ_HANDLED
)
1583 netif_vdbg(efx
, intr
, efx
->net_dev
,
1584 "IRQ %d on CPU %d status " EFX_DWORD_FMT
"\n",
1585 irq
, raw_smp_processor_id(), EFX_DWORD_VAL(reg
));
1590 /* Handle an MSI interrupt
1592 * Handle an MSI hardware interrupt. This routine schedules event
1593 * queue processing. No interrupt acknowledgement cycle is necessary.
1594 * Also, we never need to check that the interrupt is for us, since
1595 * MSI interrupts cannot be shared.
1597 irqreturn_t
efx_farch_msi_interrupt(int irq
, void *dev_id
)
1599 struct efx_msi_context
*context
= dev_id
;
1600 struct efx_nic
*efx
= context
->efx
;
1601 efx_oword_t
*int_ker
= efx
->irq_status
.addr
;
1604 netif_vdbg(efx
, intr
, efx
->net_dev
,
1605 "IRQ %d on CPU %d status " EFX_OWORD_FMT
"\n",
1606 irq
, raw_smp_processor_id(), EFX_OWORD_VAL(*int_ker
));
1608 if (!likely(READ_ONCE(efx
->irq_soft_enabled
)))
1611 /* Handle non-event-queue sources */
1612 if (context
->index
== efx
->irq_level
) {
1613 syserr
= EFX_OWORD_FIELD(*int_ker
, FSF_AZ_NET_IVEC_FATAL_INT
);
1614 if (unlikely(syserr
))
1615 return efx_farch_fatal_interrupt(efx
);
1616 efx
->last_irq_cpu
= raw_smp_processor_id();
1619 /* Schedule processing of the channel */
1620 efx_schedule_channel_irq(efx
->channel
[context
->index
]);
1625 /* Setup RSS indirection table.
1626 * This maps from the hash value of the packet to RXQ
1628 void efx_farch_rx_push_indir_table(struct efx_nic
*efx
)
1633 BUILD_BUG_ON(ARRAY_SIZE(efx
->rx_indir_table
) !=
1634 FR_BZ_RX_INDIRECTION_TBL_ROWS
);
1636 for (i
= 0; i
< FR_BZ_RX_INDIRECTION_TBL_ROWS
; i
++) {
1637 EFX_POPULATE_DWORD_1(dword
, FRF_BZ_IT_QUEUE
,
1638 efx
->rx_indir_table
[i
]);
1639 efx_writed(efx
, &dword
,
1640 FR_BZ_RX_INDIRECTION_TBL
+
1641 FR_BZ_RX_INDIRECTION_TBL_STEP
* i
);
1645 void efx_farch_rx_pull_indir_table(struct efx_nic
*efx
)
1650 BUILD_BUG_ON(ARRAY_SIZE(efx
->rx_indir_table
) !=
1651 FR_BZ_RX_INDIRECTION_TBL_ROWS
);
1653 for (i
= 0; i
< FR_BZ_RX_INDIRECTION_TBL_ROWS
; i
++) {
1654 efx_readd(efx
, &dword
,
1655 FR_BZ_RX_INDIRECTION_TBL
+
1656 FR_BZ_RX_INDIRECTION_TBL_STEP
* i
);
1657 efx
->rx_indir_table
[i
] = EFX_DWORD_FIELD(dword
, FRF_BZ_IT_QUEUE
);
1661 /* Looks at available SRAM resources and works out how many queues we
1662 * can support, and where things like descriptor caches should live.
1664 * SRAM is split up as follows:
1665 * 0 buftbl entries for channels
1666 * efx->vf_buftbl_base buftbl entries for SR-IOV
1667 * efx->rx_dc_base RX descriptor caches
1668 * efx->tx_dc_base TX descriptor caches
1670 void efx_farch_dimension_resources(struct efx_nic
*efx
, unsigned sram_lim_qw
)
1672 unsigned vi_count
, buftbl_min
, total_tx_channels
;
1674 #ifdef CONFIG_SFC_SRIOV
1675 struct siena_nic_data
*nic_data
= efx
->nic_data
;
1678 total_tx_channels
= efx
->n_tx_channels
+ efx
->n_extra_tx_channels
;
1679 /* Account for the buffer table entries backing the datapath channels
1680 * and the descriptor caches for those channels.
1682 buftbl_min
= ((efx
->n_rx_channels
* EFX_MAX_DMAQ_SIZE
+
1683 total_tx_channels
* EFX_TXQ_TYPES
* EFX_MAX_DMAQ_SIZE
+
1684 efx
->n_channels
* EFX_MAX_EVQ_SIZE
)
1685 * sizeof(efx_qword_t
) / EFX_BUF_SIZE
);
1686 vi_count
= max(efx
->n_channels
, total_tx_channels
* EFX_TXQ_TYPES
);
1688 #ifdef CONFIG_SFC_SRIOV
1689 if (efx
->type
->sriov_wanted
) {
1690 if (efx
->type
->sriov_wanted(efx
)) {
1691 unsigned vi_dc_entries
, buftbl_free
;
1692 unsigned entries_per_vf
, vf_limit
;
1694 nic_data
->vf_buftbl_base
= buftbl_min
;
1696 vi_dc_entries
= RX_DC_ENTRIES
+ TX_DC_ENTRIES
;
1697 vi_count
= max(vi_count
, EFX_VI_BASE
);
1698 buftbl_free
= (sram_lim_qw
- buftbl_min
-
1699 vi_count
* vi_dc_entries
);
1701 entries_per_vf
= ((vi_dc_entries
+
1702 EFX_VF_BUFTBL_PER_VI
) *
1704 vf_limit
= min(buftbl_free
/ entries_per_vf
,
1705 (1024U - EFX_VI_BASE
) >> efx
->vi_scale
);
1707 if (efx
->vf_count
> vf_limit
) {
1708 netif_err(efx
, probe
, efx
->net_dev
,
1709 "Reducing VF count from from %d to %d\n",
1710 efx
->vf_count
, vf_limit
);
1711 efx
->vf_count
= vf_limit
;
1713 vi_count
+= efx
->vf_count
* efx_vf_size(efx
);
1718 efx
->tx_dc_base
= sram_lim_qw
- vi_count
* TX_DC_ENTRIES
;
1719 efx
->rx_dc_base
= efx
->tx_dc_base
- vi_count
* RX_DC_ENTRIES
;
1722 u32
efx_farch_fpga_ver(struct efx_nic
*efx
)
1724 efx_oword_t altera_build
;
1725 efx_reado(efx
, &altera_build
, FR_AZ_ALTERA_BUILD
);
1726 return EFX_OWORD_FIELD(altera_build
, FRF_AZ_ALTERA_BUILD_VER
);
1729 void efx_farch_init_common(struct efx_nic
*efx
)
1733 /* Set positions of descriptor caches in SRAM. */
1734 EFX_POPULATE_OWORD_1(temp
, FRF_AZ_SRM_TX_DC_BASE_ADR
, efx
->tx_dc_base
);
1735 efx_writeo(efx
, &temp
, FR_AZ_SRM_TX_DC_CFG
);
1736 EFX_POPULATE_OWORD_1(temp
, FRF_AZ_SRM_RX_DC_BASE_ADR
, efx
->rx_dc_base
);
1737 efx_writeo(efx
, &temp
, FR_AZ_SRM_RX_DC_CFG
);
1739 /* Set TX descriptor cache size. */
1740 BUILD_BUG_ON(TX_DC_ENTRIES
!= (8 << TX_DC_ENTRIES_ORDER
));
1741 EFX_POPULATE_OWORD_1(temp
, FRF_AZ_TX_DC_SIZE
, TX_DC_ENTRIES_ORDER
);
1742 efx_writeo(efx
, &temp
, FR_AZ_TX_DC_CFG
);
1744 /* Set RX descriptor cache size. Set low watermark to size-8, as
1745 * this allows most efficient prefetching.
1747 BUILD_BUG_ON(RX_DC_ENTRIES
!= (8 << RX_DC_ENTRIES_ORDER
));
1748 EFX_POPULATE_OWORD_1(temp
, FRF_AZ_RX_DC_SIZE
, RX_DC_ENTRIES_ORDER
);
1749 efx_writeo(efx
, &temp
, FR_AZ_RX_DC_CFG
);
1750 EFX_POPULATE_OWORD_1(temp
, FRF_AZ_RX_DC_PF_LWM
, RX_DC_ENTRIES
- 8);
1751 efx_writeo(efx
, &temp
, FR_AZ_RX_DC_PF_WM
);
1753 /* Program INT_KER address */
1754 EFX_POPULATE_OWORD_2(temp
,
1755 FRF_AZ_NORM_INT_VEC_DIS_KER
,
1756 EFX_INT_MODE_USE_MSI(efx
),
1757 FRF_AZ_INT_ADR_KER
, efx
->irq_status
.dma_addr
);
1758 efx_writeo(efx
, &temp
, FR_AZ_INT_ADR_KER
);
1760 if (EFX_WORKAROUND_17213(efx
) && !EFX_INT_MODE_USE_MSI(efx
))
1761 /* Use an interrupt level unused by event queues */
1762 efx
->irq_level
= 0x1f;
1764 /* Use a valid MSI-X vector */
1767 /* Enable all the genuinely fatal interrupts. (They are still
1768 * masked by the overall interrupt mask, controlled by
1769 * falcon_interrupts()).
1771 * Note: All other fatal interrupts are enabled
1773 EFX_POPULATE_OWORD_3(temp
,
1774 FRF_AZ_ILL_ADR_INT_KER_EN
, 1,
1775 FRF_AZ_RBUF_OWN_INT_KER_EN
, 1,
1776 FRF_AZ_TBUF_OWN_INT_KER_EN
, 1);
1777 EFX_SET_OWORD_FIELD(temp
, FRF_CZ_SRAM_PERR_INT_P_KER_EN
, 1);
1778 EFX_INVERT_OWORD(temp
);
1779 efx_writeo(efx
, &temp
, FR_AZ_FATAL_INTR_KER
);
1781 /* Disable the ugly timer-based TX DMA backoff and allow TX DMA to be
1782 * controlled by the RX FIFO fill level. Set arbitration to one pkt/Q.
1784 efx_reado(efx
, &temp
, FR_AZ_TX_RESERVED
);
1785 EFX_SET_OWORD_FIELD(temp
, FRF_AZ_TX_RX_SPACER
, 0xfe);
1786 EFX_SET_OWORD_FIELD(temp
, FRF_AZ_TX_RX_SPACER_EN
, 1);
1787 EFX_SET_OWORD_FIELD(temp
, FRF_AZ_TX_ONE_PKT_PER_Q
, 1);
1788 EFX_SET_OWORD_FIELD(temp
, FRF_AZ_TX_PUSH_EN
, 1);
1789 EFX_SET_OWORD_FIELD(temp
, FRF_AZ_TX_DIS_NON_IP_EV
, 1);
1790 /* Enable SW_EV to inherit in char driver - assume harmless here */
1791 EFX_SET_OWORD_FIELD(temp
, FRF_AZ_TX_SOFT_EVT_EN
, 1);
1792 /* Prefetch threshold 2 => fetch when descriptor cache half empty */
1793 EFX_SET_OWORD_FIELD(temp
, FRF_AZ_TX_PREF_THRESHOLD
, 2);
1794 /* Disable hardware watchdog which can misfire */
1795 EFX_SET_OWORD_FIELD(temp
, FRF_AZ_TX_PREF_WD_TMR
, 0x3fffff);
1796 /* Squash TX of packets of 16 bytes or less */
1797 EFX_SET_OWORD_FIELD(temp
, FRF_BZ_TX_FLUSH_MIN_LEN_EN
, 1);
1798 efx_writeo(efx
, &temp
, FR_AZ_TX_RESERVED
);
1800 EFX_POPULATE_OWORD_4(temp
,
1801 /* Default values */
1802 FRF_BZ_TX_PACE_SB_NOT_AF
, 0x15,
1803 FRF_BZ_TX_PACE_SB_AF
, 0xb,
1804 FRF_BZ_TX_PACE_FB_BASE
, 0,
1805 /* Allow large pace values in the fast bin. */
1806 FRF_BZ_TX_PACE_BIN_TH
,
1807 FFE_BZ_TX_PACE_RESERVED
);
1808 efx_writeo(efx
, &temp
, FR_BZ_TX_PACE
);
1811 /**************************************************************************
1815 **************************************************************************
1818 /* "Fudge factors" - difference between programmed value and actual depth.
1819 * Due to pipelined implementation we need to program H/W with a value that
1820 * is larger than the hop limit we want.
1822 #define EFX_FARCH_FILTER_CTL_SRCH_FUDGE_WILD 3
1823 #define EFX_FARCH_FILTER_CTL_SRCH_FUDGE_FULL 1
1825 /* Hard maximum search limit. Hardware will time-out beyond 200-something.
1826 * We also need to avoid infinite loops in efx_farch_filter_search() when the
1829 #define EFX_FARCH_FILTER_CTL_SRCH_MAX 200
1831 /* Don't try very hard to find space for performance hints, as this is
1832 * counter-productive. */
1833 #define EFX_FARCH_FILTER_CTL_SRCH_HINT_MAX 5
1835 enum efx_farch_filter_type
{
1836 EFX_FARCH_FILTER_TCP_FULL
= 0,
1837 EFX_FARCH_FILTER_TCP_WILD
,
1838 EFX_FARCH_FILTER_UDP_FULL
,
1839 EFX_FARCH_FILTER_UDP_WILD
,
1840 EFX_FARCH_FILTER_MAC_FULL
= 4,
1841 EFX_FARCH_FILTER_MAC_WILD
,
1842 EFX_FARCH_FILTER_UC_DEF
= 8,
1843 EFX_FARCH_FILTER_MC_DEF
,
1844 EFX_FARCH_FILTER_TYPE_COUNT
, /* number of specific types */
1847 enum efx_farch_filter_table_id
{
1848 EFX_FARCH_FILTER_TABLE_RX_IP
= 0,
1849 EFX_FARCH_FILTER_TABLE_RX_MAC
,
1850 EFX_FARCH_FILTER_TABLE_RX_DEF
,
1851 EFX_FARCH_FILTER_TABLE_TX_MAC
,
1852 EFX_FARCH_FILTER_TABLE_COUNT
,
1855 enum efx_farch_filter_index
{
1856 EFX_FARCH_FILTER_INDEX_UC_DEF
,
1857 EFX_FARCH_FILTER_INDEX_MC_DEF
,
1858 EFX_FARCH_FILTER_SIZE_RX_DEF
,
1861 struct efx_farch_filter_spec
{
1869 struct efx_farch_filter_table
{
1870 enum efx_farch_filter_table_id id
;
1871 u32 offset
; /* address of table relative to BAR */
1872 unsigned size
; /* number of entries */
1873 unsigned step
; /* step between entries */
1874 unsigned used
; /* number currently used */
1875 unsigned long *used_bitmap
;
1876 struct efx_farch_filter_spec
*spec
;
1877 unsigned search_limit
[EFX_FARCH_FILTER_TYPE_COUNT
];
1880 struct efx_farch_filter_state
{
1881 struct efx_farch_filter_table table
[EFX_FARCH_FILTER_TABLE_COUNT
];
1885 efx_farch_filter_table_clear_entry(struct efx_nic
*efx
,
1886 struct efx_farch_filter_table
*table
,
1887 unsigned int filter_idx
);
1889 /* The filter hash function is LFSR polynomial x^16 + x^3 + 1 of a 32-bit
1890 * key derived from the n-tuple. The initial LFSR state is 0xffff. */
1891 static u16
efx_farch_filter_hash(u32 key
)
1895 /* First 16 rounds */
1896 tmp
= 0x1fff ^ key
>> 16;
1897 tmp
= tmp
^ tmp
>> 3 ^ tmp
>> 6;
1898 tmp
= tmp
^ tmp
>> 9;
1899 /* Last 16 rounds */
1900 tmp
= tmp
^ tmp
<< 13 ^ key
;
1901 tmp
= tmp
^ tmp
>> 3 ^ tmp
>> 6;
1902 return tmp
^ tmp
>> 9;
1905 /* To allow for hash collisions, filter search continues at these
1906 * increments from the first possible entry selected by the hash. */
1907 static u16
efx_farch_filter_increment(u32 key
)
1912 static enum efx_farch_filter_table_id
1913 efx_farch_filter_spec_table_id(const struct efx_farch_filter_spec
*spec
)
1915 BUILD_BUG_ON(EFX_FARCH_FILTER_TABLE_RX_IP
!=
1916 (EFX_FARCH_FILTER_TCP_FULL
>> 2));
1917 BUILD_BUG_ON(EFX_FARCH_FILTER_TABLE_RX_IP
!=
1918 (EFX_FARCH_FILTER_TCP_WILD
>> 2));
1919 BUILD_BUG_ON(EFX_FARCH_FILTER_TABLE_RX_IP
!=
1920 (EFX_FARCH_FILTER_UDP_FULL
>> 2));
1921 BUILD_BUG_ON(EFX_FARCH_FILTER_TABLE_RX_IP
!=
1922 (EFX_FARCH_FILTER_UDP_WILD
>> 2));
1923 BUILD_BUG_ON(EFX_FARCH_FILTER_TABLE_RX_MAC
!=
1924 (EFX_FARCH_FILTER_MAC_FULL
>> 2));
1925 BUILD_BUG_ON(EFX_FARCH_FILTER_TABLE_RX_MAC
!=
1926 (EFX_FARCH_FILTER_MAC_WILD
>> 2));
1927 BUILD_BUG_ON(EFX_FARCH_FILTER_TABLE_TX_MAC
!=
1928 EFX_FARCH_FILTER_TABLE_RX_MAC
+ 2);
1929 return (spec
->type
>> 2) + ((spec
->flags
& EFX_FILTER_FLAG_TX
) ? 2 : 0);
1932 static void efx_farch_filter_push_rx_config(struct efx_nic
*efx
)
1934 struct efx_farch_filter_state
*state
= efx
->filter_state
;
1935 struct efx_farch_filter_table
*table
;
1936 efx_oword_t filter_ctl
;
1938 efx_reado(efx
, &filter_ctl
, FR_BZ_RX_FILTER_CTL
);
1940 table
= &state
->table
[EFX_FARCH_FILTER_TABLE_RX_IP
];
1941 EFX_SET_OWORD_FIELD(filter_ctl
, FRF_BZ_TCP_FULL_SRCH_LIMIT
,
1942 table
->search_limit
[EFX_FARCH_FILTER_TCP_FULL
] +
1943 EFX_FARCH_FILTER_CTL_SRCH_FUDGE_FULL
);
1944 EFX_SET_OWORD_FIELD(filter_ctl
, FRF_BZ_TCP_WILD_SRCH_LIMIT
,
1945 table
->search_limit
[EFX_FARCH_FILTER_TCP_WILD
] +
1946 EFX_FARCH_FILTER_CTL_SRCH_FUDGE_WILD
);
1947 EFX_SET_OWORD_FIELD(filter_ctl
, FRF_BZ_UDP_FULL_SRCH_LIMIT
,
1948 table
->search_limit
[EFX_FARCH_FILTER_UDP_FULL
] +
1949 EFX_FARCH_FILTER_CTL_SRCH_FUDGE_FULL
);
1950 EFX_SET_OWORD_FIELD(filter_ctl
, FRF_BZ_UDP_WILD_SRCH_LIMIT
,
1951 table
->search_limit
[EFX_FARCH_FILTER_UDP_WILD
] +
1952 EFX_FARCH_FILTER_CTL_SRCH_FUDGE_WILD
);
1954 table
= &state
->table
[EFX_FARCH_FILTER_TABLE_RX_MAC
];
1956 EFX_SET_OWORD_FIELD(
1957 filter_ctl
, FRF_CZ_ETHERNET_FULL_SEARCH_LIMIT
,
1958 table
->search_limit
[EFX_FARCH_FILTER_MAC_FULL
] +
1959 EFX_FARCH_FILTER_CTL_SRCH_FUDGE_FULL
);
1960 EFX_SET_OWORD_FIELD(
1961 filter_ctl
, FRF_CZ_ETHERNET_WILDCARD_SEARCH_LIMIT
,
1962 table
->search_limit
[EFX_FARCH_FILTER_MAC_WILD
] +
1963 EFX_FARCH_FILTER_CTL_SRCH_FUDGE_WILD
);
1966 table
= &state
->table
[EFX_FARCH_FILTER_TABLE_RX_DEF
];
1968 EFX_SET_OWORD_FIELD(
1969 filter_ctl
, FRF_CZ_UNICAST_NOMATCH_Q_ID
,
1970 table
->spec
[EFX_FARCH_FILTER_INDEX_UC_DEF
].dmaq_id
);
1971 EFX_SET_OWORD_FIELD(
1972 filter_ctl
, FRF_CZ_UNICAST_NOMATCH_RSS_ENABLED
,
1973 !!(table
->spec
[EFX_FARCH_FILTER_INDEX_UC_DEF
].flags
&
1974 EFX_FILTER_FLAG_RX_RSS
));
1975 EFX_SET_OWORD_FIELD(
1976 filter_ctl
, FRF_CZ_MULTICAST_NOMATCH_Q_ID
,
1977 table
->spec
[EFX_FARCH_FILTER_INDEX_MC_DEF
].dmaq_id
);
1978 EFX_SET_OWORD_FIELD(
1979 filter_ctl
, FRF_CZ_MULTICAST_NOMATCH_RSS_ENABLED
,
1980 !!(table
->spec
[EFX_FARCH_FILTER_INDEX_MC_DEF
].flags
&
1981 EFX_FILTER_FLAG_RX_RSS
));
1983 /* There is a single bit to enable RX scatter for all
1984 * unmatched packets. Only set it if scatter is
1985 * enabled in both filter specs.
1987 EFX_SET_OWORD_FIELD(
1988 filter_ctl
, FRF_BZ_SCATTER_ENBL_NO_MATCH_Q
,
1989 !!(table
->spec
[EFX_FARCH_FILTER_INDEX_UC_DEF
].flags
&
1990 table
->spec
[EFX_FARCH_FILTER_INDEX_MC_DEF
].flags
&
1991 EFX_FILTER_FLAG_RX_SCATTER
));
1993 /* We don't expose 'default' filters because unmatched
1994 * packets always go to the queue number found in the
1995 * RSS table. But we still need to set the RX scatter
1998 EFX_SET_OWORD_FIELD(
1999 filter_ctl
, FRF_BZ_SCATTER_ENBL_NO_MATCH_Q
,
2003 efx_writeo(efx
, &filter_ctl
, FR_BZ_RX_FILTER_CTL
);
2006 static void efx_farch_filter_push_tx_limits(struct efx_nic
*efx
)
2008 struct efx_farch_filter_state
*state
= efx
->filter_state
;
2009 struct efx_farch_filter_table
*table
;
2012 efx_reado(efx
, &tx_cfg
, FR_AZ_TX_CFG
);
2014 table
= &state
->table
[EFX_FARCH_FILTER_TABLE_TX_MAC
];
2016 EFX_SET_OWORD_FIELD(
2017 tx_cfg
, FRF_CZ_TX_ETH_FILTER_FULL_SEARCH_RANGE
,
2018 table
->search_limit
[EFX_FARCH_FILTER_MAC_FULL
] +
2019 EFX_FARCH_FILTER_CTL_SRCH_FUDGE_FULL
);
2020 EFX_SET_OWORD_FIELD(
2021 tx_cfg
, FRF_CZ_TX_ETH_FILTER_WILD_SEARCH_RANGE
,
2022 table
->search_limit
[EFX_FARCH_FILTER_MAC_WILD
] +
2023 EFX_FARCH_FILTER_CTL_SRCH_FUDGE_WILD
);
2026 efx_writeo(efx
, &tx_cfg
, FR_AZ_TX_CFG
);
2030 efx_farch_filter_from_gen_spec(struct efx_farch_filter_spec
*spec
,
2031 const struct efx_filter_spec
*gen_spec
)
2033 bool is_full
= false;
2035 if ((gen_spec
->flags
& EFX_FILTER_FLAG_RX_RSS
) &&
2036 gen_spec
->rss_context
!= EFX_FILTER_RSS_CONTEXT_DEFAULT
)
2039 spec
->priority
= gen_spec
->priority
;
2040 spec
->flags
= gen_spec
->flags
;
2041 spec
->dmaq_id
= gen_spec
->dmaq_id
;
2043 switch (gen_spec
->match_flags
) {
2044 case (EFX_FILTER_MATCH_ETHER_TYPE
| EFX_FILTER_MATCH_IP_PROTO
|
2045 EFX_FILTER_MATCH_LOC_HOST
| EFX_FILTER_MATCH_LOC_PORT
|
2046 EFX_FILTER_MATCH_REM_HOST
| EFX_FILTER_MATCH_REM_PORT
):
2049 case (EFX_FILTER_MATCH_ETHER_TYPE
| EFX_FILTER_MATCH_IP_PROTO
|
2050 EFX_FILTER_MATCH_LOC_HOST
| EFX_FILTER_MATCH_LOC_PORT
): {
2051 __be32 rhost
, host1
, host2
;
2052 __be16 rport
, port1
, port2
;
2054 EFX_WARN_ON_PARANOID(!(gen_spec
->flags
& EFX_FILTER_FLAG_RX
));
2056 if (gen_spec
->ether_type
!= htons(ETH_P_IP
))
2057 return -EPROTONOSUPPORT
;
2058 if (gen_spec
->loc_port
== 0 ||
2059 (is_full
&& gen_spec
->rem_port
== 0))
2060 return -EADDRNOTAVAIL
;
2061 switch (gen_spec
->ip_proto
) {
2063 spec
->type
= (is_full
? EFX_FARCH_FILTER_TCP_FULL
:
2064 EFX_FARCH_FILTER_TCP_WILD
);
2067 spec
->type
= (is_full
? EFX_FARCH_FILTER_UDP_FULL
:
2068 EFX_FARCH_FILTER_UDP_WILD
);
2071 return -EPROTONOSUPPORT
;
2074 /* Filter is constructed in terms of source and destination,
2075 * with the odd wrinkle that the ports are swapped in a UDP
2076 * wildcard filter. We need to convert from local and remote
2077 * (= zero for wildcard) addresses.
2079 rhost
= is_full
? gen_spec
->rem_host
[0] : 0;
2080 rport
= is_full
? gen_spec
->rem_port
: 0;
2082 host2
= gen_spec
->loc_host
[0];
2083 if (!is_full
&& gen_spec
->ip_proto
== IPPROTO_UDP
) {
2084 port1
= gen_spec
->loc_port
;
2088 port2
= gen_spec
->loc_port
;
2090 spec
->data
[0] = ntohl(host1
) << 16 | ntohs(port1
);
2091 spec
->data
[1] = ntohs(port2
) << 16 | ntohl(host1
) >> 16;
2092 spec
->data
[2] = ntohl(host2
);
2097 case EFX_FILTER_MATCH_LOC_MAC
| EFX_FILTER_MATCH_OUTER_VID
:
2100 case EFX_FILTER_MATCH_LOC_MAC
:
2101 spec
->type
= (is_full
? EFX_FARCH_FILTER_MAC_FULL
:
2102 EFX_FARCH_FILTER_MAC_WILD
);
2103 spec
->data
[0] = is_full
? ntohs(gen_spec
->outer_vid
) : 0;
2104 spec
->data
[1] = (gen_spec
->loc_mac
[2] << 24 |
2105 gen_spec
->loc_mac
[3] << 16 |
2106 gen_spec
->loc_mac
[4] << 8 |
2107 gen_spec
->loc_mac
[5]);
2108 spec
->data
[2] = (gen_spec
->loc_mac
[0] << 8 |
2109 gen_spec
->loc_mac
[1]);
2112 case EFX_FILTER_MATCH_LOC_MAC_IG
:
2113 spec
->type
= (is_multicast_ether_addr(gen_spec
->loc_mac
) ?
2114 EFX_FARCH_FILTER_MC_DEF
:
2115 EFX_FARCH_FILTER_UC_DEF
);
2116 memset(spec
->data
, 0, sizeof(spec
->data
)); /* ensure equality */
2120 return -EPROTONOSUPPORT
;
2127 efx_farch_filter_to_gen_spec(struct efx_filter_spec
*gen_spec
,
2128 const struct efx_farch_filter_spec
*spec
)
2130 bool is_full
= false;
2132 /* *gen_spec should be completely initialised, to be consistent
2133 * with efx_filter_init_{rx,tx}() and in case we want to copy
2134 * it back to userland.
2136 memset(gen_spec
, 0, sizeof(*gen_spec
));
2138 gen_spec
->priority
= spec
->priority
;
2139 gen_spec
->flags
= spec
->flags
;
2140 gen_spec
->dmaq_id
= spec
->dmaq_id
;
2142 switch (spec
->type
) {
2143 case EFX_FARCH_FILTER_TCP_FULL
:
2144 case EFX_FARCH_FILTER_UDP_FULL
:
2147 case EFX_FARCH_FILTER_TCP_WILD
:
2148 case EFX_FARCH_FILTER_UDP_WILD
: {
2149 __be32 host1
, host2
;
2150 __be16 port1
, port2
;
2152 gen_spec
->match_flags
=
2153 EFX_FILTER_MATCH_ETHER_TYPE
|
2154 EFX_FILTER_MATCH_IP_PROTO
|
2155 EFX_FILTER_MATCH_LOC_HOST
| EFX_FILTER_MATCH_LOC_PORT
;
2157 gen_spec
->match_flags
|= (EFX_FILTER_MATCH_REM_HOST
|
2158 EFX_FILTER_MATCH_REM_PORT
);
2159 gen_spec
->ether_type
= htons(ETH_P_IP
);
2160 gen_spec
->ip_proto
=
2161 (spec
->type
== EFX_FARCH_FILTER_TCP_FULL
||
2162 spec
->type
== EFX_FARCH_FILTER_TCP_WILD
) ?
2163 IPPROTO_TCP
: IPPROTO_UDP
;
2165 host1
= htonl(spec
->data
[0] >> 16 | spec
->data
[1] << 16);
2166 port1
= htons(spec
->data
[0]);
2167 host2
= htonl(spec
->data
[2]);
2168 port2
= htons(spec
->data
[1] >> 16);
2169 if (spec
->flags
& EFX_FILTER_FLAG_TX
) {
2170 gen_spec
->loc_host
[0] = host1
;
2171 gen_spec
->rem_host
[0] = host2
;
2173 gen_spec
->loc_host
[0] = host2
;
2174 gen_spec
->rem_host
[0] = host1
;
2176 if (!!(gen_spec
->flags
& EFX_FILTER_FLAG_TX
) ^
2177 (!is_full
&& gen_spec
->ip_proto
== IPPROTO_UDP
)) {
2178 gen_spec
->loc_port
= port1
;
2179 gen_spec
->rem_port
= port2
;
2181 gen_spec
->loc_port
= port2
;
2182 gen_spec
->rem_port
= port1
;
2188 case EFX_FARCH_FILTER_MAC_FULL
:
2191 case EFX_FARCH_FILTER_MAC_WILD
:
2192 gen_spec
->match_flags
= EFX_FILTER_MATCH_LOC_MAC
;
2194 gen_spec
->match_flags
|= EFX_FILTER_MATCH_OUTER_VID
;
2195 gen_spec
->loc_mac
[0] = spec
->data
[2] >> 8;
2196 gen_spec
->loc_mac
[1] = spec
->data
[2];
2197 gen_spec
->loc_mac
[2] = spec
->data
[1] >> 24;
2198 gen_spec
->loc_mac
[3] = spec
->data
[1] >> 16;
2199 gen_spec
->loc_mac
[4] = spec
->data
[1] >> 8;
2200 gen_spec
->loc_mac
[5] = spec
->data
[1];
2201 gen_spec
->outer_vid
= htons(spec
->data
[0]);
2204 case EFX_FARCH_FILTER_UC_DEF
:
2205 case EFX_FARCH_FILTER_MC_DEF
:
2206 gen_spec
->match_flags
= EFX_FILTER_MATCH_LOC_MAC_IG
;
2207 gen_spec
->loc_mac
[0] = spec
->type
== EFX_FARCH_FILTER_MC_DEF
;
2217 efx_farch_filter_init_rx_auto(struct efx_nic
*efx
,
2218 struct efx_farch_filter_spec
*spec
)
2220 /* If there's only one channel then disable RSS for non VF
2221 * traffic, thereby allowing VFs to use RSS when the PF can't.
2223 spec
->priority
= EFX_FILTER_PRI_AUTO
;
2224 spec
->flags
= (EFX_FILTER_FLAG_RX
|
2225 (efx_rss_enabled(efx
) ? EFX_FILTER_FLAG_RX_RSS
: 0) |
2226 (efx
->rx_scatter
? EFX_FILTER_FLAG_RX_SCATTER
: 0));
2230 /* Build a filter entry and return its n-tuple key. */
2231 static u32
efx_farch_filter_build(efx_oword_t
*filter
,
2232 struct efx_farch_filter_spec
*spec
)
2236 switch (efx_farch_filter_spec_table_id(spec
)) {
2237 case EFX_FARCH_FILTER_TABLE_RX_IP
: {
2238 bool is_udp
= (spec
->type
== EFX_FARCH_FILTER_UDP_FULL
||
2239 spec
->type
== EFX_FARCH_FILTER_UDP_WILD
);
2240 EFX_POPULATE_OWORD_7(
2243 !!(spec
->flags
& EFX_FILTER_FLAG_RX_RSS
),
2245 !!(spec
->flags
& EFX_FILTER_FLAG_RX_SCATTER
),
2246 FRF_BZ_TCP_UDP
, is_udp
,
2247 FRF_BZ_RXQ_ID
, spec
->dmaq_id
,
2248 EFX_DWORD_2
, spec
->data
[2],
2249 EFX_DWORD_1
, spec
->data
[1],
2250 EFX_DWORD_0
, spec
->data
[0]);
2255 case EFX_FARCH_FILTER_TABLE_RX_MAC
: {
2256 bool is_wild
= spec
->type
== EFX_FARCH_FILTER_MAC_WILD
;
2257 EFX_POPULATE_OWORD_7(
2260 !!(spec
->flags
& EFX_FILTER_FLAG_RX_RSS
),
2261 FRF_CZ_RMFT_SCATTER_EN
,
2262 !!(spec
->flags
& EFX_FILTER_FLAG_RX_SCATTER
),
2263 FRF_CZ_RMFT_RXQ_ID
, spec
->dmaq_id
,
2264 FRF_CZ_RMFT_WILDCARD_MATCH
, is_wild
,
2265 FRF_CZ_RMFT_DEST_MAC_HI
, spec
->data
[2],
2266 FRF_CZ_RMFT_DEST_MAC_LO
, spec
->data
[1],
2267 FRF_CZ_RMFT_VLAN_ID
, spec
->data
[0]);
2272 case EFX_FARCH_FILTER_TABLE_TX_MAC
: {
2273 bool is_wild
= spec
->type
== EFX_FARCH_FILTER_MAC_WILD
;
2274 EFX_POPULATE_OWORD_5(*filter
,
2275 FRF_CZ_TMFT_TXQ_ID
, spec
->dmaq_id
,
2276 FRF_CZ_TMFT_WILDCARD_MATCH
, is_wild
,
2277 FRF_CZ_TMFT_SRC_MAC_HI
, spec
->data
[2],
2278 FRF_CZ_TMFT_SRC_MAC_LO
, spec
->data
[1],
2279 FRF_CZ_TMFT_VLAN_ID
, spec
->data
[0]);
2280 data3
= is_wild
| spec
->dmaq_id
<< 1;
2288 return spec
->data
[0] ^ spec
->data
[1] ^ spec
->data
[2] ^ data3
;
2291 static bool efx_farch_filter_equal(const struct efx_farch_filter_spec
*left
,
2292 const struct efx_farch_filter_spec
*right
)
2294 if (left
->type
!= right
->type
||
2295 memcmp(left
->data
, right
->data
, sizeof(left
->data
)))
2298 if (left
->flags
& EFX_FILTER_FLAG_TX
&&
2299 left
->dmaq_id
!= right
->dmaq_id
)
2306 * Construct/deconstruct external filter IDs. At least the RX filter
2307 * IDs must be ordered by matching priority, for RX NFC semantics.
2309 * Deconstruction needs to be robust against invalid IDs so that
2310 * efx_filter_remove_id_safe() and efx_filter_get_filter_safe() can
2311 * accept user-provided IDs.
2314 #define EFX_FARCH_FILTER_MATCH_PRI_COUNT 5
2316 static const u8 efx_farch_filter_type_match_pri
[EFX_FARCH_FILTER_TYPE_COUNT
] = {
2317 [EFX_FARCH_FILTER_TCP_FULL
] = 0,
2318 [EFX_FARCH_FILTER_UDP_FULL
] = 0,
2319 [EFX_FARCH_FILTER_TCP_WILD
] = 1,
2320 [EFX_FARCH_FILTER_UDP_WILD
] = 1,
2321 [EFX_FARCH_FILTER_MAC_FULL
] = 2,
2322 [EFX_FARCH_FILTER_MAC_WILD
] = 3,
2323 [EFX_FARCH_FILTER_UC_DEF
] = 4,
2324 [EFX_FARCH_FILTER_MC_DEF
] = 4,
2327 static const enum efx_farch_filter_table_id efx_farch_filter_range_table
[] = {
2328 EFX_FARCH_FILTER_TABLE_RX_IP
, /* RX match pri 0 */
2329 EFX_FARCH_FILTER_TABLE_RX_IP
,
2330 EFX_FARCH_FILTER_TABLE_RX_MAC
,
2331 EFX_FARCH_FILTER_TABLE_RX_MAC
,
2332 EFX_FARCH_FILTER_TABLE_RX_DEF
, /* RX match pri 4 */
2333 EFX_FARCH_FILTER_TABLE_TX_MAC
, /* TX match pri 0 */
2334 EFX_FARCH_FILTER_TABLE_TX_MAC
, /* TX match pri 1 */
2337 #define EFX_FARCH_FILTER_INDEX_WIDTH 13
2338 #define EFX_FARCH_FILTER_INDEX_MASK ((1 << EFX_FARCH_FILTER_INDEX_WIDTH) - 1)
2341 efx_farch_filter_make_id(const struct efx_farch_filter_spec
*spec
,
2346 range
= efx_farch_filter_type_match_pri
[spec
->type
];
2347 if (!(spec
->flags
& EFX_FILTER_FLAG_RX
))
2348 range
+= EFX_FARCH_FILTER_MATCH_PRI_COUNT
;
2350 return range
<< EFX_FARCH_FILTER_INDEX_WIDTH
| index
;
2353 static inline enum efx_farch_filter_table_id
2354 efx_farch_filter_id_table_id(u32 id
)
2356 unsigned int range
= id
>> EFX_FARCH_FILTER_INDEX_WIDTH
;
2358 if (range
< ARRAY_SIZE(efx_farch_filter_range_table
))
2359 return efx_farch_filter_range_table
[range
];
2361 return EFX_FARCH_FILTER_TABLE_COUNT
; /* invalid */
2364 static inline unsigned int efx_farch_filter_id_index(u32 id
)
2366 return id
& EFX_FARCH_FILTER_INDEX_MASK
;
2369 u32
efx_farch_filter_get_rx_id_limit(struct efx_nic
*efx
)
2371 struct efx_farch_filter_state
*state
= efx
->filter_state
;
2372 unsigned int range
= EFX_FARCH_FILTER_MATCH_PRI_COUNT
- 1;
2373 enum efx_farch_filter_table_id table_id
;
2376 table_id
= efx_farch_filter_range_table
[range
];
2377 if (state
->table
[table_id
].size
!= 0)
2378 return range
<< EFX_FARCH_FILTER_INDEX_WIDTH
|
2379 state
->table
[table_id
].size
;
2385 s32
efx_farch_filter_insert(struct efx_nic
*efx
,
2386 struct efx_filter_spec
*gen_spec
,
2389 struct efx_farch_filter_state
*state
= efx
->filter_state
;
2390 struct efx_farch_filter_table
*table
;
2391 struct efx_farch_filter_spec spec
;
2393 int rep_index
, ins_index
;
2394 unsigned int depth
= 0;
2397 rc
= efx_farch_filter_from_gen_spec(&spec
, gen_spec
);
2401 table
= &state
->table
[efx_farch_filter_spec_table_id(&spec
)];
2402 if (table
->size
== 0)
2405 netif_vdbg(efx
, hw
, efx
->net_dev
,
2406 "%s: type %d search_limit=%d", __func__
, spec
.type
,
2407 table
->search_limit
[spec
.type
]);
2409 if (table
->id
== EFX_FARCH_FILTER_TABLE_RX_DEF
) {
2410 /* One filter spec per type */
2411 BUILD_BUG_ON(EFX_FARCH_FILTER_INDEX_UC_DEF
!= 0);
2412 BUILD_BUG_ON(EFX_FARCH_FILTER_INDEX_MC_DEF
!=
2413 EFX_FARCH_FILTER_MC_DEF
- EFX_FARCH_FILTER_UC_DEF
);
2414 rep_index
= spec
.type
- EFX_FARCH_FILTER_UC_DEF
;
2415 ins_index
= rep_index
;
2417 spin_lock_bh(&efx
->filter_lock
);
2419 /* Search concurrently for
2420 * (1) a filter to be replaced (rep_index): any filter
2421 * with the same match values, up to the current
2422 * search depth for this type, and
2423 * (2) the insertion point (ins_index): (1) or any
2424 * free slot before it or up to the maximum search
2425 * depth for this priority
2426 * We fail if we cannot find (2).
2428 * We can stop once either
2429 * (a) we find (1), in which case we have definitely
2430 * found (2) as well; or
2431 * (b) we have searched exhaustively for (1), and have
2432 * either found (2) or searched exhaustively for it
2434 u32 key
= efx_farch_filter_build(&filter
, &spec
);
2435 unsigned int hash
= efx_farch_filter_hash(key
);
2436 unsigned int incr
= efx_farch_filter_increment(key
);
2437 unsigned int max_rep_depth
= table
->search_limit
[spec
.type
];
2438 unsigned int max_ins_depth
=
2439 spec
.priority
<= EFX_FILTER_PRI_HINT
?
2440 EFX_FARCH_FILTER_CTL_SRCH_HINT_MAX
:
2441 EFX_FARCH_FILTER_CTL_SRCH_MAX
;
2442 unsigned int i
= hash
& (table
->size
- 1);
2447 spin_lock_bh(&efx
->filter_lock
);
2450 if (!test_bit(i
, table
->used_bitmap
)) {
2453 } else if (efx_farch_filter_equal(&spec
,
2462 if (depth
>= max_rep_depth
&&
2463 (ins_index
>= 0 || depth
>= max_ins_depth
)) {
2465 if (ins_index
< 0) {
2473 i
= (i
+ incr
) & (table
->size
- 1);
2478 /* If we found a filter to be replaced, check whether we
2481 if (rep_index
>= 0) {
2482 struct efx_farch_filter_spec
*saved_spec
=
2483 &table
->spec
[rep_index
];
2485 if (spec
.priority
== saved_spec
->priority
&& !replace_equal
) {
2489 if (spec
.priority
< saved_spec
->priority
) {
2493 if (saved_spec
->priority
== EFX_FILTER_PRI_AUTO
||
2494 saved_spec
->flags
& EFX_FILTER_FLAG_RX_OVER_AUTO
)
2495 spec
.flags
|= EFX_FILTER_FLAG_RX_OVER_AUTO
;
2498 /* Insert the filter */
2499 if (ins_index
!= rep_index
) {
2500 __set_bit(ins_index
, table
->used_bitmap
);
2503 table
->spec
[ins_index
] = spec
;
2505 if (table
->id
== EFX_FARCH_FILTER_TABLE_RX_DEF
) {
2506 efx_farch_filter_push_rx_config(efx
);
2508 if (table
->search_limit
[spec
.type
] < depth
) {
2509 table
->search_limit
[spec
.type
] = depth
;
2510 if (spec
.flags
& EFX_FILTER_FLAG_TX
)
2511 efx_farch_filter_push_tx_limits(efx
);
2513 efx_farch_filter_push_rx_config(efx
);
2516 efx_writeo(efx
, &filter
,
2517 table
->offset
+ table
->step
* ins_index
);
2519 /* If we were able to replace a filter by inserting
2520 * at a lower depth, clear the replaced filter
2522 if (ins_index
!= rep_index
&& rep_index
>= 0)
2523 efx_farch_filter_table_clear_entry(efx
, table
,
2527 netif_vdbg(efx
, hw
, efx
->net_dev
,
2528 "%s: filter type %d index %d rxq %u set",
2529 __func__
, spec
.type
, ins_index
, spec
.dmaq_id
);
2530 rc
= efx_farch_filter_make_id(&spec
, ins_index
);
2533 spin_unlock_bh(&efx
->filter_lock
);
2538 efx_farch_filter_table_clear_entry(struct efx_nic
*efx
,
2539 struct efx_farch_filter_table
*table
,
2540 unsigned int filter_idx
)
2542 static efx_oword_t filter
;
2544 EFX_WARN_ON_PARANOID(!test_bit(filter_idx
, table
->used_bitmap
));
2545 BUG_ON(table
->offset
== 0); /* can't clear MAC default filters */
2547 __clear_bit(filter_idx
, table
->used_bitmap
);
2549 memset(&table
->spec
[filter_idx
], 0, sizeof(table
->spec
[0]));
2551 efx_writeo(efx
, &filter
, table
->offset
+ table
->step
* filter_idx
);
2553 /* If this filter required a greater search depth than
2554 * any other, the search limit for its type can now be
2555 * decreased. However, it is hard to determine that
2556 * unless the table has become completely empty - in
2557 * which case, all its search limits can be set to 0.
2559 if (unlikely(table
->used
== 0)) {
2560 memset(table
->search_limit
, 0, sizeof(table
->search_limit
));
2561 if (table
->id
== EFX_FARCH_FILTER_TABLE_TX_MAC
)
2562 efx_farch_filter_push_tx_limits(efx
);
2564 efx_farch_filter_push_rx_config(efx
);
2568 static int efx_farch_filter_remove(struct efx_nic
*efx
,
2569 struct efx_farch_filter_table
*table
,
2570 unsigned int filter_idx
,
2571 enum efx_filter_priority priority
)
2573 struct efx_farch_filter_spec
*spec
= &table
->spec
[filter_idx
];
2575 if (!test_bit(filter_idx
, table
->used_bitmap
) ||
2576 spec
->priority
!= priority
)
2579 if (spec
->flags
& EFX_FILTER_FLAG_RX_OVER_AUTO
) {
2580 efx_farch_filter_init_rx_auto(efx
, spec
);
2581 efx_farch_filter_push_rx_config(efx
);
2583 efx_farch_filter_table_clear_entry(efx
, table
, filter_idx
);
2589 int efx_farch_filter_remove_safe(struct efx_nic
*efx
,
2590 enum efx_filter_priority priority
,
2593 struct efx_farch_filter_state
*state
= efx
->filter_state
;
2594 enum efx_farch_filter_table_id table_id
;
2595 struct efx_farch_filter_table
*table
;
2596 unsigned int filter_idx
;
2597 struct efx_farch_filter_spec
*spec
;
2600 table_id
= efx_farch_filter_id_table_id(filter_id
);
2601 if ((unsigned int)table_id
>= EFX_FARCH_FILTER_TABLE_COUNT
)
2603 table
= &state
->table
[table_id
];
2605 filter_idx
= efx_farch_filter_id_index(filter_id
);
2606 if (filter_idx
>= table
->size
)
2608 spec
= &table
->spec
[filter_idx
];
2610 spin_lock_bh(&efx
->filter_lock
);
2611 rc
= efx_farch_filter_remove(efx
, table
, filter_idx
, priority
);
2612 spin_unlock_bh(&efx
->filter_lock
);
2617 int efx_farch_filter_get_safe(struct efx_nic
*efx
,
2618 enum efx_filter_priority priority
,
2619 u32 filter_id
, struct efx_filter_spec
*spec_buf
)
2621 struct efx_farch_filter_state
*state
= efx
->filter_state
;
2622 enum efx_farch_filter_table_id table_id
;
2623 struct efx_farch_filter_table
*table
;
2624 struct efx_farch_filter_spec
*spec
;
2625 unsigned int filter_idx
;
2628 table_id
= efx_farch_filter_id_table_id(filter_id
);
2629 if ((unsigned int)table_id
>= EFX_FARCH_FILTER_TABLE_COUNT
)
2631 table
= &state
->table
[table_id
];
2633 filter_idx
= efx_farch_filter_id_index(filter_id
);
2634 if (filter_idx
>= table
->size
)
2636 spec
= &table
->spec
[filter_idx
];
2638 spin_lock_bh(&efx
->filter_lock
);
2640 if (test_bit(filter_idx
, table
->used_bitmap
) &&
2641 spec
->priority
== priority
) {
2642 efx_farch_filter_to_gen_spec(spec_buf
, spec
);
2648 spin_unlock_bh(&efx
->filter_lock
);
2654 efx_farch_filter_table_clear(struct efx_nic
*efx
,
2655 enum efx_farch_filter_table_id table_id
,
2656 enum efx_filter_priority priority
)
2658 struct efx_farch_filter_state
*state
= efx
->filter_state
;
2659 struct efx_farch_filter_table
*table
= &state
->table
[table_id
];
2660 unsigned int filter_idx
;
2662 spin_lock_bh(&efx
->filter_lock
);
2663 for (filter_idx
= 0; filter_idx
< table
->size
; ++filter_idx
) {
2664 if (table
->spec
[filter_idx
].priority
!= EFX_FILTER_PRI_AUTO
)
2665 efx_farch_filter_remove(efx
, table
,
2666 filter_idx
, priority
);
2668 spin_unlock_bh(&efx
->filter_lock
);
2671 int efx_farch_filter_clear_rx(struct efx_nic
*efx
,
2672 enum efx_filter_priority priority
)
2674 efx_farch_filter_table_clear(efx
, EFX_FARCH_FILTER_TABLE_RX_IP
,
2676 efx_farch_filter_table_clear(efx
, EFX_FARCH_FILTER_TABLE_RX_MAC
,
2678 efx_farch_filter_table_clear(efx
, EFX_FARCH_FILTER_TABLE_RX_DEF
,
2683 u32
efx_farch_filter_count_rx_used(struct efx_nic
*efx
,
2684 enum efx_filter_priority priority
)
2686 struct efx_farch_filter_state
*state
= efx
->filter_state
;
2687 enum efx_farch_filter_table_id table_id
;
2688 struct efx_farch_filter_table
*table
;
2689 unsigned int filter_idx
;
2692 spin_lock_bh(&efx
->filter_lock
);
2694 for (table_id
= EFX_FARCH_FILTER_TABLE_RX_IP
;
2695 table_id
<= EFX_FARCH_FILTER_TABLE_RX_DEF
;
2697 table
= &state
->table
[table_id
];
2698 for (filter_idx
= 0; filter_idx
< table
->size
; filter_idx
++) {
2699 if (test_bit(filter_idx
, table
->used_bitmap
) &&
2700 table
->spec
[filter_idx
].priority
== priority
)
2705 spin_unlock_bh(&efx
->filter_lock
);
2710 s32
efx_farch_filter_get_rx_ids(struct efx_nic
*efx
,
2711 enum efx_filter_priority priority
,
2714 struct efx_farch_filter_state
*state
= efx
->filter_state
;
2715 enum efx_farch_filter_table_id table_id
;
2716 struct efx_farch_filter_table
*table
;
2717 unsigned int filter_idx
;
2720 spin_lock_bh(&efx
->filter_lock
);
2722 for (table_id
= EFX_FARCH_FILTER_TABLE_RX_IP
;
2723 table_id
<= EFX_FARCH_FILTER_TABLE_RX_DEF
;
2725 table
= &state
->table
[table_id
];
2726 for (filter_idx
= 0; filter_idx
< table
->size
; filter_idx
++) {
2727 if (test_bit(filter_idx
, table
->used_bitmap
) &&
2728 table
->spec
[filter_idx
].priority
== priority
) {
2729 if (count
== size
) {
2733 buf
[count
++] = efx_farch_filter_make_id(
2734 &table
->spec
[filter_idx
], filter_idx
);
2739 spin_unlock_bh(&efx
->filter_lock
);
2744 /* Restore filter stater after reset */
2745 void efx_farch_filter_table_restore(struct efx_nic
*efx
)
2747 struct efx_farch_filter_state
*state
= efx
->filter_state
;
2748 enum efx_farch_filter_table_id table_id
;
2749 struct efx_farch_filter_table
*table
;
2751 unsigned int filter_idx
;
2753 spin_lock_bh(&efx
->filter_lock
);
2755 for (table_id
= 0; table_id
< EFX_FARCH_FILTER_TABLE_COUNT
; table_id
++) {
2756 table
= &state
->table
[table_id
];
2758 /* Check whether this is a regular register table */
2759 if (table
->step
== 0)
2762 for (filter_idx
= 0; filter_idx
< table
->size
; filter_idx
++) {
2763 if (!test_bit(filter_idx
, table
->used_bitmap
))
2765 efx_farch_filter_build(&filter
, &table
->spec
[filter_idx
]);
2766 efx_writeo(efx
, &filter
,
2767 table
->offset
+ table
->step
* filter_idx
);
2771 efx_farch_filter_push_rx_config(efx
);
2772 efx_farch_filter_push_tx_limits(efx
);
2774 spin_unlock_bh(&efx
->filter_lock
);
2777 void efx_farch_filter_table_remove(struct efx_nic
*efx
)
2779 struct efx_farch_filter_state
*state
= efx
->filter_state
;
2780 enum efx_farch_filter_table_id table_id
;
2782 for (table_id
= 0; table_id
< EFX_FARCH_FILTER_TABLE_COUNT
; table_id
++) {
2783 kfree(state
->table
[table_id
].used_bitmap
);
2784 vfree(state
->table
[table_id
].spec
);
2789 int efx_farch_filter_table_probe(struct efx_nic
*efx
)
2791 struct efx_farch_filter_state
*state
;
2792 struct efx_farch_filter_table
*table
;
2795 state
= kzalloc(sizeof(struct efx_farch_filter_state
), GFP_KERNEL
);
2798 efx
->filter_state
= state
;
2800 table
= &state
->table
[EFX_FARCH_FILTER_TABLE_RX_IP
];
2801 table
->id
= EFX_FARCH_FILTER_TABLE_RX_IP
;
2802 table
->offset
= FR_BZ_RX_FILTER_TBL0
;
2803 table
->size
= FR_BZ_RX_FILTER_TBL0_ROWS
;
2804 table
->step
= FR_BZ_RX_FILTER_TBL0_STEP
;
2806 table
= &state
->table
[EFX_FARCH_FILTER_TABLE_RX_MAC
];
2807 table
->id
= EFX_FARCH_FILTER_TABLE_RX_MAC
;
2808 table
->offset
= FR_CZ_RX_MAC_FILTER_TBL0
;
2809 table
->size
= FR_CZ_RX_MAC_FILTER_TBL0_ROWS
;
2810 table
->step
= FR_CZ_RX_MAC_FILTER_TBL0_STEP
;
2812 table
= &state
->table
[EFX_FARCH_FILTER_TABLE_RX_DEF
];
2813 table
->id
= EFX_FARCH_FILTER_TABLE_RX_DEF
;
2814 table
->size
= EFX_FARCH_FILTER_SIZE_RX_DEF
;
2816 table
= &state
->table
[EFX_FARCH_FILTER_TABLE_TX_MAC
];
2817 table
->id
= EFX_FARCH_FILTER_TABLE_TX_MAC
;
2818 table
->offset
= FR_CZ_TX_MAC_FILTER_TBL0
;
2819 table
->size
= FR_CZ_TX_MAC_FILTER_TBL0_ROWS
;
2820 table
->step
= FR_CZ_TX_MAC_FILTER_TBL0_STEP
;
2822 for (table_id
= 0; table_id
< EFX_FARCH_FILTER_TABLE_COUNT
; table_id
++) {
2823 table
= &state
->table
[table_id
];
2824 if (table
->size
== 0)
2826 table
->used_bitmap
= kcalloc(BITS_TO_LONGS(table
->size
),
2827 sizeof(unsigned long),
2829 if (!table
->used_bitmap
)
2831 table
->spec
= vzalloc(table
->size
* sizeof(*table
->spec
));
2836 table
= &state
->table
[EFX_FARCH_FILTER_TABLE_RX_DEF
];
2838 /* RX default filters must always exist */
2839 struct efx_farch_filter_spec
*spec
;
2842 for (i
= 0; i
< EFX_FARCH_FILTER_SIZE_RX_DEF
; i
++) {
2843 spec
= &table
->spec
[i
];
2844 spec
->type
= EFX_FARCH_FILTER_UC_DEF
+ i
;
2845 efx_farch_filter_init_rx_auto(efx
, spec
);
2846 __set_bit(i
, table
->used_bitmap
);
2850 efx_farch_filter_push_rx_config(efx
);
2855 efx_farch_filter_table_remove(efx
);
2859 /* Update scatter enable flags for filters pointing to our own RX queues */
2860 void efx_farch_filter_update_rx_scatter(struct efx_nic
*efx
)
2862 struct efx_farch_filter_state
*state
= efx
->filter_state
;
2863 enum efx_farch_filter_table_id table_id
;
2864 struct efx_farch_filter_table
*table
;
2866 unsigned int filter_idx
;
2868 spin_lock_bh(&efx
->filter_lock
);
2870 for (table_id
= EFX_FARCH_FILTER_TABLE_RX_IP
;
2871 table_id
<= EFX_FARCH_FILTER_TABLE_RX_DEF
;
2873 table
= &state
->table
[table_id
];
2875 for (filter_idx
= 0; filter_idx
< table
->size
; filter_idx
++) {
2876 if (!test_bit(filter_idx
, table
->used_bitmap
) ||
2877 table
->spec
[filter_idx
].dmaq_id
>=
2881 if (efx
->rx_scatter
)
2882 table
->spec
[filter_idx
].flags
|=
2883 EFX_FILTER_FLAG_RX_SCATTER
;
2885 table
->spec
[filter_idx
].flags
&=
2886 ~EFX_FILTER_FLAG_RX_SCATTER
;
2888 if (table_id
== EFX_FARCH_FILTER_TABLE_RX_DEF
)
2889 /* Pushed by efx_farch_filter_push_rx_config() */
2892 efx_farch_filter_build(&filter
, &table
->spec
[filter_idx
]);
2893 efx_writeo(efx
, &filter
,
2894 table
->offset
+ table
->step
* filter_idx
);
2898 efx_farch_filter_push_rx_config(efx
);
2900 spin_unlock_bh(&efx
->filter_lock
);
2903 #ifdef CONFIG_RFS_ACCEL
2905 s32
efx_farch_filter_rfs_insert(struct efx_nic
*efx
,
2906 struct efx_filter_spec
*gen_spec
)
2908 return efx_farch_filter_insert(efx
, gen_spec
, true);
2911 bool efx_farch_filter_rfs_expire_one(struct efx_nic
*efx
, u32 flow_id
,
2914 struct efx_farch_filter_state
*state
= efx
->filter_state
;
2915 struct efx_farch_filter_table
*table
=
2916 &state
->table
[EFX_FARCH_FILTER_TABLE_RX_IP
];
2918 if (test_bit(index
, table
->used_bitmap
) &&
2919 table
->spec
[index
].priority
== EFX_FILTER_PRI_HINT
&&
2920 rps_may_expire_flow(efx
->net_dev
, table
->spec
[index
].dmaq_id
,
2922 efx_farch_filter_table_clear_entry(efx
, table
, index
);
2929 #endif /* CONFIG_RFS_ACCEL */
2931 void efx_farch_filter_sync_rx_mode(struct efx_nic
*efx
)
2933 struct net_device
*net_dev
= efx
->net_dev
;
2934 struct netdev_hw_addr
*ha
;
2935 union efx_multicast_hash
*mc_hash
= &efx
->multicast_hash
;
2939 if (!efx_dev_registered(efx
))
2942 netif_addr_lock_bh(net_dev
);
2944 efx
->unicast_filter
= !(net_dev
->flags
& IFF_PROMISC
);
2946 /* Build multicast hash table */
2947 if (net_dev
->flags
& (IFF_PROMISC
| IFF_ALLMULTI
)) {
2948 memset(mc_hash
, 0xff, sizeof(*mc_hash
));
2950 memset(mc_hash
, 0x00, sizeof(*mc_hash
));
2951 netdev_for_each_mc_addr(ha
, net_dev
) {
2952 crc
= ether_crc_le(ETH_ALEN
, ha
->addr
);
2953 bit
= crc
& (EFX_MCAST_HASH_ENTRIES
- 1);
2954 __set_bit_le(bit
, mc_hash
);
2957 /* Broadcast packets go through the multicast hash filter.
2958 * ether_crc_le() of the broadcast address is 0xbe2612ff
2959 * so we always add bit 0xff to the mask.
2961 __set_bit_le(0xff, mc_hash
);
2964 netif_addr_unlock_bh(net_dev
);