1 /****************************************************************************
2 * Driver for Solarflare network controllers and boards
3 * Copyright 2005-2006 Fen Systems Ltd.
4 * Copyright 2005-2013 Solarflare Communications Inc.
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published
8 * by the Free Software Foundation, incorporated herein by reference.
11 #include <linux/pci.h>
12 #include <linux/tcp.h>
15 #include <linux/ipv6.h>
16 #include <linux/slab.h>
18 #include <linux/if_ether.h>
19 #include <linux/highmem.h>
20 #include <linux/cache.h>
21 #include "net_driver.h"
26 #include "workarounds.h"
27 #include "ef10_regs.h"
31 #define EFX_PIOBUF_SIZE_DEF ALIGN(256, L1_CACHE_BYTES)
32 unsigned int efx_piobuf_size __read_mostly
= EFX_PIOBUF_SIZE_DEF
;
34 #endif /* EFX_USE_PIO */
36 static inline u8
*efx_tx_get_copy_buffer(struct efx_tx_queue
*tx_queue
,
37 struct efx_tx_buffer
*buffer
)
39 unsigned int index
= efx_tx_queue_get_insert_index(tx_queue
);
40 struct efx_buffer
*page_buf
=
41 &tx_queue
->cb_page
[index
>> (PAGE_SHIFT
- EFX_TX_CB_ORDER
)];
43 ((index
<< EFX_TX_CB_ORDER
) + NET_IP_ALIGN
) & (PAGE_SIZE
- 1);
45 if (unlikely(!page_buf
->addr
) &&
46 efx_nic_alloc_buffer(tx_queue
->efx
, page_buf
, PAGE_SIZE
,
49 buffer
->dma_addr
= page_buf
->dma_addr
+ offset
;
50 buffer
->unmap_len
= 0;
51 return (u8
*)page_buf
->addr
+ offset
;
54 u8
*efx_tx_get_copy_buffer_limited(struct efx_tx_queue
*tx_queue
,
55 struct efx_tx_buffer
*buffer
, size_t len
)
57 if (len
> EFX_TX_CB_SIZE
)
59 return efx_tx_get_copy_buffer(tx_queue
, buffer
);
62 static void efx_dequeue_buffer(struct efx_tx_queue
*tx_queue
,
63 struct efx_tx_buffer
*buffer
,
64 unsigned int *pkts_compl
,
65 unsigned int *bytes_compl
)
67 if (buffer
->unmap_len
) {
68 struct device
*dma_dev
= &tx_queue
->efx
->pci_dev
->dev
;
69 dma_addr_t unmap_addr
= buffer
->dma_addr
- buffer
->dma_offset
;
70 if (buffer
->flags
& EFX_TX_BUF_MAP_SINGLE
)
71 dma_unmap_single(dma_dev
, unmap_addr
, buffer
->unmap_len
,
74 dma_unmap_page(dma_dev
, unmap_addr
, buffer
->unmap_len
,
76 buffer
->unmap_len
= 0;
79 if (buffer
->flags
& EFX_TX_BUF_SKB
) {
80 struct sk_buff
*skb
= (struct sk_buff
*)buffer
->skb
;
82 EFX_WARN_ON_PARANOID(!pkts_compl
|| !bytes_compl
);
84 (*bytes_compl
) += skb
->len
;
85 if (tx_queue
->timestamping
&&
86 (tx_queue
->completed_timestamp_major
||
87 tx_queue
->completed_timestamp_minor
)) {
88 struct skb_shared_hwtstamps hwtstamp
;
91 efx_ptp_nic_to_kernel_time(tx_queue
);
92 skb_tstamp_tx(skb
, &hwtstamp
);
94 tx_queue
->completed_timestamp_major
= 0;
95 tx_queue
->completed_timestamp_minor
= 0;
97 dev_consume_skb_any((struct sk_buff
*)buffer
->skb
);
98 netif_vdbg(tx_queue
->efx
, tx_done
, tx_queue
->efx
->net_dev
,
99 "TX queue %d transmission id %x complete\n",
100 tx_queue
->queue
, tx_queue
->read_count
);
107 unsigned int efx_tx_max_skb_descs(struct efx_nic
*efx
)
109 /* Header and payload descriptor for each output segment, plus
110 * one for every input fragment boundary within a segment
112 unsigned int max_descs
= EFX_TSO_MAX_SEGS
* 2 + MAX_SKB_FRAGS
;
114 /* Possibly one more per segment for option descriptors */
115 if (efx_nic_rev(efx
) >= EFX_REV_HUNT_A0
)
116 max_descs
+= EFX_TSO_MAX_SEGS
;
118 /* Possibly more for PCIe page boundaries within input fragments */
119 if (PAGE_SIZE
> EFX_PAGE_SIZE
)
120 max_descs
+= max_t(unsigned int, MAX_SKB_FRAGS
,
121 DIV_ROUND_UP(GSO_MAX_SIZE
, EFX_PAGE_SIZE
));
126 static void efx_tx_maybe_stop_queue(struct efx_tx_queue
*txq1
)
128 /* We need to consider both queues that the net core sees as one */
129 struct efx_tx_queue
*txq2
= efx_tx_queue_partner(txq1
);
130 struct efx_nic
*efx
= txq1
->efx
;
131 unsigned int fill_level
;
133 fill_level
= max(txq1
->insert_count
- txq1
->old_read_count
,
134 txq2
->insert_count
- txq2
->old_read_count
);
135 if (likely(fill_level
< efx
->txq_stop_thresh
))
138 /* We used the stale old_read_count above, which gives us a
139 * pessimistic estimate of the fill level (which may even
140 * validly be >= efx->txq_entries). Now try again using
141 * read_count (more likely to be a cache miss).
143 * If we read read_count and then conditionally stop the
144 * queue, it is possible for the completion path to race with
145 * us and complete all outstanding descriptors in the middle,
146 * after which there will be no more completions to wake it.
147 * Therefore we stop the queue first, then read read_count
148 * (with a memory barrier to ensure the ordering), then
149 * restart the queue if the fill level turns out to be low
152 netif_tx_stop_queue(txq1
->core_txq
);
154 txq1
->old_read_count
= READ_ONCE(txq1
->read_count
);
155 txq2
->old_read_count
= READ_ONCE(txq2
->read_count
);
157 fill_level
= max(txq1
->insert_count
- txq1
->old_read_count
,
158 txq2
->insert_count
- txq2
->old_read_count
);
159 EFX_WARN_ON_ONCE_PARANOID(fill_level
>= efx
->txq_entries
);
160 if (likely(fill_level
< efx
->txq_stop_thresh
)) {
162 if (likely(!efx
->loopback_selftest
))
163 netif_tx_start_queue(txq1
->core_txq
);
167 static int efx_enqueue_skb_copy(struct efx_tx_queue
*tx_queue
,
170 unsigned int copy_len
= skb
->len
;
171 struct efx_tx_buffer
*buffer
;
175 EFX_WARN_ON_ONCE_PARANOID(copy_len
> EFX_TX_CB_SIZE
);
177 buffer
= efx_tx_queue_get_insert_buffer(tx_queue
);
179 copy_buffer
= efx_tx_get_copy_buffer(tx_queue
, buffer
);
180 if (unlikely(!copy_buffer
))
183 rc
= skb_copy_bits(skb
, 0, copy_buffer
, copy_len
);
184 EFX_WARN_ON_PARANOID(rc
);
185 buffer
->len
= copy_len
;
188 buffer
->flags
= EFX_TX_BUF_SKB
;
190 ++tx_queue
->insert_count
;
196 struct efx_short_copy_buffer
{
198 u8 buf
[L1_CACHE_BYTES
];
201 /* Copy to PIO, respecting that writes to PIO buffers must be dword aligned.
202 * Advances piobuf pointer. Leaves additional data in the copy buffer.
204 static void efx_memcpy_toio_aligned(struct efx_nic
*efx
, u8 __iomem
**piobuf
,
206 struct efx_short_copy_buffer
*copy_buf
)
208 int block_len
= len
& ~(sizeof(copy_buf
->buf
) - 1);
210 __iowrite64_copy(*piobuf
, data
, block_len
>> 3);
211 *piobuf
+= block_len
;
216 BUG_ON(copy_buf
->used
);
217 BUG_ON(len
> sizeof(copy_buf
->buf
));
218 memcpy(copy_buf
->buf
, data
, len
);
219 copy_buf
->used
= len
;
223 /* Copy to PIO, respecting dword alignment, popping data from copy buffer first.
224 * Advances piobuf pointer. Leaves additional data in the copy buffer.
226 static void efx_memcpy_toio_aligned_cb(struct efx_nic
*efx
, u8 __iomem
**piobuf
,
228 struct efx_short_copy_buffer
*copy_buf
)
230 if (copy_buf
->used
) {
231 /* if the copy buffer is partially full, fill it up and write */
233 min_t(int, sizeof(copy_buf
->buf
) - copy_buf
->used
, len
);
235 memcpy(copy_buf
->buf
+ copy_buf
->used
, data
, copy_to_buf
);
236 copy_buf
->used
+= copy_to_buf
;
238 /* if we didn't fill it up then we're done for now */
239 if (copy_buf
->used
< sizeof(copy_buf
->buf
))
242 __iowrite64_copy(*piobuf
, copy_buf
->buf
,
243 sizeof(copy_buf
->buf
) >> 3);
244 *piobuf
+= sizeof(copy_buf
->buf
);
250 efx_memcpy_toio_aligned(efx
, piobuf
, data
, len
, copy_buf
);
253 static void efx_flush_copy_buffer(struct efx_nic
*efx
, u8 __iomem
*piobuf
,
254 struct efx_short_copy_buffer
*copy_buf
)
256 /* if there's anything in it, write the whole buffer, including junk */
258 __iowrite64_copy(piobuf
, copy_buf
->buf
,
259 sizeof(copy_buf
->buf
) >> 3);
262 /* Traverse skb structure and copy fragments in to PIO buffer.
263 * Advances piobuf pointer.
265 static void efx_skb_copy_bits_to_pio(struct efx_nic
*efx
, struct sk_buff
*skb
,
267 struct efx_short_copy_buffer
*copy_buf
)
271 efx_memcpy_toio_aligned(efx
, piobuf
, skb
->data
, skb_headlen(skb
),
274 for (i
= 0; i
< skb_shinfo(skb
)->nr_frags
; ++i
) {
275 skb_frag_t
*f
= &skb_shinfo(skb
)->frags
[i
];
278 vaddr
= kmap_atomic(skb_frag_page(f
));
280 efx_memcpy_toio_aligned_cb(efx
, piobuf
, vaddr
+ f
->page_offset
,
281 skb_frag_size(f
), copy_buf
);
282 kunmap_atomic(vaddr
);
285 EFX_WARN_ON_ONCE_PARANOID(skb_shinfo(skb
)->frag_list
);
288 static int efx_enqueue_skb_pio(struct efx_tx_queue
*tx_queue
,
291 struct efx_tx_buffer
*buffer
=
292 efx_tx_queue_get_insert_buffer(tx_queue
);
293 u8 __iomem
*piobuf
= tx_queue
->piobuf
;
295 /* Copy to PIO buffer. Ensure the writes are padded to the end
296 * of a cache line, as this is required for write-combining to be
297 * effective on at least x86.
300 if (skb_shinfo(skb
)->nr_frags
) {
301 /* The size of the copy buffer will ensure all writes
302 * are the size of a cache line.
304 struct efx_short_copy_buffer copy_buf
;
308 efx_skb_copy_bits_to_pio(tx_queue
->efx
, skb
,
310 efx_flush_copy_buffer(tx_queue
->efx
, piobuf
, ©_buf
);
312 /* Pad the write to the size of a cache line.
313 * We can do this because we know the skb_shared_info struct is
314 * after the source, and the destination buffer is big enough.
316 BUILD_BUG_ON(L1_CACHE_BYTES
>
317 SKB_DATA_ALIGN(sizeof(struct skb_shared_info
)));
318 __iowrite64_copy(tx_queue
->piobuf
, skb
->data
,
319 ALIGN(skb
->len
, L1_CACHE_BYTES
) >> 3);
323 buffer
->flags
= EFX_TX_BUF_SKB
| EFX_TX_BUF_OPTION
;
325 EFX_POPULATE_QWORD_5(buffer
->option
,
326 ESF_DZ_TX_DESC_IS_OPT
, 1,
327 ESF_DZ_TX_OPTION_TYPE
, ESE_DZ_TX_OPTION_DESC_PIO
,
328 ESF_DZ_TX_PIO_CONT
, 0,
329 ESF_DZ_TX_PIO_BYTE_CNT
, skb
->len
,
330 ESF_DZ_TX_PIO_BUF_ADDR
,
331 tx_queue
->piobuf_offset
);
332 ++tx_queue
->insert_count
;
335 #endif /* EFX_USE_PIO */
337 static struct efx_tx_buffer
*efx_tx_map_chunk(struct efx_tx_queue
*tx_queue
,
341 const struct efx_nic_type
*nic_type
= tx_queue
->efx
->type
;
342 struct efx_tx_buffer
*buffer
;
343 unsigned int dma_len
;
345 /* Map the fragment taking account of NIC-dependent DMA limits. */
347 buffer
= efx_tx_queue_get_insert_buffer(tx_queue
);
348 dma_len
= nic_type
->tx_limit_len(tx_queue
, dma_addr
, len
);
350 buffer
->len
= dma_len
;
351 buffer
->dma_addr
= dma_addr
;
352 buffer
->flags
= EFX_TX_BUF_CONT
;
355 ++tx_queue
->insert_count
;
361 /* Map all data from an SKB for DMA and create descriptors on the queue.
363 static int efx_tx_map_data(struct efx_tx_queue
*tx_queue
, struct sk_buff
*skb
,
364 unsigned int segment_count
)
366 struct efx_nic
*efx
= tx_queue
->efx
;
367 struct device
*dma_dev
= &efx
->pci_dev
->dev
;
368 unsigned int frag_index
, nr_frags
;
369 dma_addr_t dma_addr
, unmap_addr
;
370 unsigned short dma_flags
;
371 size_t len
, unmap_len
;
373 nr_frags
= skb_shinfo(skb
)->nr_frags
;
376 /* Map header data. */
377 len
= skb_headlen(skb
);
378 dma_addr
= dma_map_single(dma_dev
, skb
->data
, len
, DMA_TO_DEVICE
);
379 dma_flags
= EFX_TX_BUF_MAP_SINGLE
;
381 unmap_addr
= dma_addr
;
383 if (unlikely(dma_mapping_error(dma_dev
, dma_addr
)))
387 /* For TSO we need to put the header in to a separate
388 * descriptor. Map this separately if necessary.
390 size_t header_len
= skb_transport_header(skb
) - skb
->data
+
391 (tcp_hdr(skb
)->doff
<< 2u);
393 if (header_len
!= len
) {
394 tx_queue
->tso_long_headers
++;
395 efx_tx_map_chunk(tx_queue
, dma_addr
, header_len
);
397 dma_addr
+= header_len
;
401 /* Add descriptors for each fragment. */
403 struct efx_tx_buffer
*buffer
;
404 skb_frag_t
*fragment
;
406 buffer
= efx_tx_map_chunk(tx_queue
, dma_addr
, len
);
408 /* The final descriptor for a fragment is responsible for
409 * unmapping the whole fragment.
411 buffer
->flags
= EFX_TX_BUF_CONT
| dma_flags
;
412 buffer
->unmap_len
= unmap_len
;
413 buffer
->dma_offset
= buffer
->dma_addr
- unmap_addr
;
415 if (frag_index
>= nr_frags
) {
416 /* Store SKB details with the final buffer for
420 buffer
->flags
= EFX_TX_BUF_SKB
| dma_flags
;
424 /* Move on to the next fragment. */
425 fragment
= &skb_shinfo(skb
)->frags
[frag_index
++];
426 len
= skb_frag_size(fragment
);
427 dma_addr
= skb_frag_dma_map(dma_dev
, fragment
,
428 0, len
, DMA_TO_DEVICE
);
431 unmap_addr
= dma_addr
;
433 if (unlikely(dma_mapping_error(dma_dev
, dma_addr
)))
438 /* Remove buffers put into a tx_queue. None of the buffers must have
441 static void efx_enqueue_unwind(struct efx_tx_queue
*tx_queue
)
443 struct efx_tx_buffer
*buffer
;
444 unsigned int bytes_compl
= 0;
445 unsigned int pkts_compl
= 0;
447 /* Work backwards until we hit the original insert pointer value */
448 while (tx_queue
->insert_count
!= tx_queue
->write_count
) {
449 --tx_queue
->insert_count
;
450 buffer
= __efx_tx_queue_get_insert_buffer(tx_queue
);
451 efx_dequeue_buffer(tx_queue
, buffer
, &pkts_compl
, &bytes_compl
);
456 * Fallback to software TSO.
458 * This is used if we are unable to send a GSO packet through hardware TSO.
459 * This should only ever happen due to per-queue restrictions - unsupported
460 * packets should first be filtered by the feature flags.
462 * Returns 0 on success, error code otherwise.
464 static int efx_tx_tso_fallback(struct efx_tx_queue
*tx_queue
,
467 struct sk_buff
*segments
, *next
;
469 segments
= skb_gso_segment(skb
, 0);
470 if (IS_ERR(segments
))
471 return PTR_ERR(segments
);
473 dev_kfree_skb_any(skb
);
481 skb
->xmit_more
= true;
482 efx_enqueue_skb(tx_queue
, skb
);
490 * Add a socket buffer to a TX queue
492 * This maps all fragments of a socket buffer for DMA and adds them to
493 * the TX queue. The queue's insert pointer will be incremented by
494 * the number of fragments in the socket buffer.
496 * If any DMA mapping fails, any mapped fragments will be unmapped,
497 * the queue's insert pointer will be restored to its original value.
499 * This function is split out from efx_hard_start_xmit to allow the
500 * loopback test to direct packets via specific TX queues.
502 * Returns NETDEV_TX_OK.
503 * You must hold netif_tx_lock() to call this function.
505 netdev_tx_t
efx_enqueue_skb(struct efx_tx_queue
*tx_queue
, struct sk_buff
*skb
)
507 bool data_mapped
= false;
508 unsigned int segments
;
509 unsigned int skb_len
;
513 segments
= skb_is_gso(skb
) ? skb_shinfo(skb
)->gso_segs
: 0;
515 segments
= 0; /* Don't use TSO for a single segment. */
517 /* Handle TSO first - it's *possible* (although unlikely) that we might
518 * be passed a packet to segment that's smaller than the copybreak/PIO
522 EFX_WARN_ON_ONCE_PARANOID(!tx_queue
->handle_tso
);
523 rc
= tx_queue
->handle_tso(tx_queue
, skb
, &data_mapped
);
525 rc
= efx_tx_tso_fallback(tx_queue
, skb
);
526 tx_queue
->tso_fallbacks
++;
533 } else if (skb_len
<= efx_piobuf_size
&& !skb
->xmit_more
&&
534 efx_nic_may_tx_pio(tx_queue
)) {
535 /* Use PIO for short packets with an empty queue. */
536 if (efx_enqueue_skb_pio(tx_queue
, skb
))
538 tx_queue
->pio_packets
++;
541 } else if (skb
->data_len
&& skb_len
<= EFX_TX_CB_SIZE
) {
542 /* Pad short packets or coalesce short fragmented packets. */
543 if (efx_enqueue_skb_copy(tx_queue
, skb
))
545 tx_queue
->cb_packets
++;
549 /* Map for DMA and create descriptors if we haven't done so already. */
550 if (!data_mapped
&& (efx_tx_map_data(tx_queue
, skb
, segments
)))
554 netdev_tx_sent_queue(tx_queue
->core_txq
, skb_len
);
556 /* Pass off to hardware */
557 if (!skb
->xmit_more
|| netif_xmit_stopped(tx_queue
->core_txq
)) {
558 struct efx_tx_queue
*txq2
= efx_tx_queue_partner(tx_queue
);
560 /* There could be packets left on the partner queue if those
561 * SKBs had skb->xmit_more set. If we do not push those they
562 * could be left for a long time and cause a netdev watchdog.
564 if (txq2
->xmit_more_available
)
565 efx_nic_push_buffers(txq2
);
567 efx_nic_push_buffers(tx_queue
);
569 tx_queue
->xmit_more_available
= skb
->xmit_more
;
573 tx_queue
->tso_bursts
++;
574 tx_queue
->tso_packets
+= segments
;
575 tx_queue
->tx_packets
+= segments
;
577 tx_queue
->tx_packets
++;
580 efx_tx_maybe_stop_queue(tx_queue
);
586 efx_enqueue_unwind(tx_queue
);
587 dev_kfree_skb_any(skb
);
591 /* Remove packets from the TX queue
593 * This removes packets from the TX queue, up to and including the
596 static void efx_dequeue_buffers(struct efx_tx_queue
*tx_queue
,
598 unsigned int *pkts_compl
,
599 unsigned int *bytes_compl
)
601 struct efx_nic
*efx
= tx_queue
->efx
;
602 unsigned int stop_index
, read_ptr
;
604 stop_index
= (index
+ 1) & tx_queue
->ptr_mask
;
605 read_ptr
= tx_queue
->read_count
& tx_queue
->ptr_mask
;
607 while (read_ptr
!= stop_index
) {
608 struct efx_tx_buffer
*buffer
= &tx_queue
->buffer
[read_ptr
];
610 if (!(buffer
->flags
& EFX_TX_BUF_OPTION
) &&
611 unlikely(buffer
->len
== 0)) {
612 netif_err(efx
, tx_err
, efx
->net_dev
,
613 "TX queue %d spurious TX completion id %x\n",
614 tx_queue
->queue
, read_ptr
);
615 efx_schedule_reset(efx
, RESET_TYPE_TX_SKIP
);
619 efx_dequeue_buffer(tx_queue
, buffer
, pkts_compl
, bytes_compl
);
621 ++tx_queue
->read_count
;
622 read_ptr
= tx_queue
->read_count
& tx_queue
->ptr_mask
;
626 /* Initiate a packet transmission. We use one channel per CPU
627 * (sharing when we have more CPUs than channels). On Falcon, the TX
628 * completion events will be directed back to the CPU that transmitted
629 * the packet, which should be cache-efficient.
631 * Context: non-blocking.
632 * Note that returning anything other than NETDEV_TX_OK will cause the
633 * OS to free the skb.
635 netdev_tx_t
efx_hard_start_xmit(struct sk_buff
*skb
,
636 struct net_device
*net_dev
)
638 struct efx_nic
*efx
= netdev_priv(net_dev
);
639 struct efx_tx_queue
*tx_queue
;
640 unsigned index
, type
;
642 EFX_WARN_ON_PARANOID(!netif_device_present(net_dev
));
644 /* PTP "event" packet */
645 if (unlikely(efx_xmit_with_hwtstamp(skb
)) &&
646 unlikely(efx_ptp_is_ptp_tx(efx
, skb
))) {
647 return efx_ptp_tx(efx
, skb
);
650 index
= skb_get_queue_mapping(skb
);
651 type
= skb
->ip_summed
== CHECKSUM_PARTIAL
? EFX_TXQ_TYPE_OFFLOAD
: 0;
652 if (index
>= efx
->n_tx_channels
) {
653 index
-= efx
->n_tx_channels
;
654 type
|= EFX_TXQ_TYPE_HIGHPRI
;
656 tx_queue
= efx_get_tx_queue(efx
, index
, type
);
658 return efx_enqueue_skb(tx_queue
, skb
);
661 void efx_init_tx_queue_core_txq(struct efx_tx_queue
*tx_queue
)
663 struct efx_nic
*efx
= tx_queue
->efx
;
665 /* Must be inverse of queue lookup in efx_hard_start_xmit() */
667 netdev_get_tx_queue(efx
->net_dev
,
668 tx_queue
->queue
/ EFX_TXQ_TYPES
+
669 ((tx_queue
->queue
& EFX_TXQ_TYPE_HIGHPRI
) ?
670 efx
->n_tx_channels
: 0));
673 int efx_setup_tc(struct net_device
*net_dev
, enum tc_setup_type type
,
676 struct efx_nic
*efx
= netdev_priv(net_dev
);
677 struct tc_mqprio_qopt
*mqprio
= type_data
;
678 struct efx_channel
*channel
;
679 struct efx_tx_queue
*tx_queue
;
683 if (type
!= TC_SETUP_QDISC_MQPRIO
)
686 num_tc
= mqprio
->num_tc
;
688 if (num_tc
> EFX_MAX_TX_TC
)
691 mqprio
->hw
= TC_MQPRIO_HW_OFFLOAD_TCS
;
693 if (num_tc
== net_dev
->num_tc
)
696 for (tc
= 0; tc
< num_tc
; tc
++) {
697 net_dev
->tc_to_txq
[tc
].offset
= tc
* efx
->n_tx_channels
;
698 net_dev
->tc_to_txq
[tc
].count
= efx
->n_tx_channels
;
701 if (num_tc
> net_dev
->num_tc
) {
702 /* Initialise high-priority queues as necessary */
703 efx_for_each_channel(channel
, efx
) {
704 efx_for_each_possible_channel_tx_queue(tx_queue
,
706 if (!(tx_queue
->queue
& EFX_TXQ_TYPE_HIGHPRI
))
708 if (!tx_queue
->buffer
) {
709 rc
= efx_probe_tx_queue(tx_queue
);
713 if (!tx_queue
->initialised
)
714 efx_init_tx_queue(tx_queue
);
715 efx_init_tx_queue_core_txq(tx_queue
);
719 /* Reduce number of classes before number of queues */
720 net_dev
->num_tc
= num_tc
;
723 rc
= netif_set_real_num_tx_queues(net_dev
,
724 max_t(int, num_tc
, 1) *
729 /* Do not destroy high-priority queues when they become
730 * unused. We would have to flush them first, and it is
731 * fairly difficult to flush a subset of TX queues. Leave
732 * it to efx_fini_channels().
735 net_dev
->num_tc
= num_tc
;
739 void efx_xmit_done(struct efx_tx_queue
*tx_queue
, unsigned int index
)
742 struct efx_nic
*efx
= tx_queue
->efx
;
743 struct efx_tx_queue
*txq2
;
744 unsigned int pkts_compl
= 0, bytes_compl
= 0;
746 EFX_WARN_ON_ONCE_PARANOID(index
> tx_queue
->ptr_mask
);
748 efx_dequeue_buffers(tx_queue
, index
, &pkts_compl
, &bytes_compl
);
749 tx_queue
->pkts_compl
+= pkts_compl
;
750 tx_queue
->bytes_compl
+= bytes_compl
;
753 ++tx_queue
->merge_events
;
755 /* See if we need to restart the netif queue. This memory
756 * barrier ensures that we write read_count (inside
757 * efx_dequeue_buffers()) before reading the queue status.
760 if (unlikely(netif_tx_queue_stopped(tx_queue
->core_txq
)) &&
761 likely(efx
->port_enabled
) &&
762 likely(netif_device_present(efx
->net_dev
))) {
763 txq2
= efx_tx_queue_partner(tx_queue
);
764 fill_level
= max(tx_queue
->insert_count
- tx_queue
->read_count
,
765 txq2
->insert_count
- txq2
->read_count
);
766 if (fill_level
<= efx
->txq_wake_thresh
)
767 netif_tx_wake_queue(tx_queue
->core_txq
);
770 /* Check whether the hardware queue is now empty */
771 if ((int)(tx_queue
->read_count
- tx_queue
->old_write_count
) >= 0) {
772 tx_queue
->old_write_count
= READ_ONCE(tx_queue
->write_count
);
773 if (tx_queue
->read_count
== tx_queue
->old_write_count
) {
775 tx_queue
->empty_read_count
=
776 tx_queue
->read_count
| EFX_EMPTY_COUNT_VALID
;
781 static unsigned int efx_tx_cb_page_count(struct efx_tx_queue
*tx_queue
)
783 return DIV_ROUND_UP(tx_queue
->ptr_mask
+ 1, PAGE_SIZE
>> EFX_TX_CB_ORDER
);
786 int efx_probe_tx_queue(struct efx_tx_queue
*tx_queue
)
788 struct efx_nic
*efx
= tx_queue
->efx
;
789 unsigned int entries
;
792 /* Create the smallest power-of-two aligned ring */
793 entries
= max(roundup_pow_of_two(efx
->txq_entries
), EFX_MIN_DMAQ_SIZE
);
794 EFX_WARN_ON_PARANOID(entries
> EFX_MAX_DMAQ_SIZE
);
795 tx_queue
->ptr_mask
= entries
- 1;
797 netif_dbg(efx
, probe
, efx
->net_dev
,
798 "creating TX queue %d size %#x mask %#x\n",
799 tx_queue
->queue
, efx
->txq_entries
, tx_queue
->ptr_mask
);
801 /* Allocate software ring */
802 tx_queue
->buffer
= kcalloc(entries
, sizeof(*tx_queue
->buffer
),
804 if (!tx_queue
->buffer
)
807 tx_queue
->cb_page
= kcalloc(efx_tx_cb_page_count(tx_queue
),
808 sizeof(tx_queue
->cb_page
[0]), GFP_KERNEL
);
809 if (!tx_queue
->cb_page
) {
814 /* Allocate hardware ring */
815 rc
= efx_nic_probe_tx(tx_queue
);
822 kfree(tx_queue
->cb_page
);
823 tx_queue
->cb_page
= NULL
;
825 kfree(tx_queue
->buffer
);
826 tx_queue
->buffer
= NULL
;
830 void efx_init_tx_queue(struct efx_tx_queue
*tx_queue
)
832 struct efx_nic
*efx
= tx_queue
->efx
;
834 netif_dbg(efx
, drv
, efx
->net_dev
,
835 "initialising TX queue %d\n", tx_queue
->queue
);
837 tx_queue
->insert_count
= 0;
838 tx_queue
->write_count
= 0;
839 tx_queue
->packet_write_count
= 0;
840 tx_queue
->old_write_count
= 0;
841 tx_queue
->read_count
= 0;
842 tx_queue
->old_read_count
= 0;
843 tx_queue
->empty_read_count
= 0 | EFX_EMPTY_COUNT_VALID
;
844 tx_queue
->xmit_more_available
= false;
845 tx_queue
->timestamping
= (efx_ptp_use_mac_tx_timestamps(efx
) &&
846 tx_queue
->channel
== efx_ptp_channel(efx
));
847 tx_queue
->completed_desc_ptr
= tx_queue
->ptr_mask
;
848 tx_queue
->completed_timestamp_major
= 0;
849 tx_queue
->completed_timestamp_minor
= 0;
851 /* Set up default function pointers. These may get replaced by
852 * efx_nic_init_tx() based off NIC/queue capabilities.
854 tx_queue
->handle_tso
= efx_enqueue_skb_tso
;
856 /* Set up TX descriptor ring */
857 efx_nic_init_tx(tx_queue
);
859 tx_queue
->initialised
= true;
862 void efx_fini_tx_queue(struct efx_tx_queue
*tx_queue
)
864 struct efx_tx_buffer
*buffer
;
866 netif_dbg(tx_queue
->efx
, drv
, tx_queue
->efx
->net_dev
,
867 "shutting down TX queue %d\n", tx_queue
->queue
);
869 if (!tx_queue
->buffer
)
872 /* Free any buffers left in the ring */
873 while (tx_queue
->read_count
!= tx_queue
->write_count
) {
874 unsigned int pkts_compl
= 0, bytes_compl
= 0;
875 buffer
= &tx_queue
->buffer
[tx_queue
->read_count
& tx_queue
->ptr_mask
];
876 efx_dequeue_buffer(tx_queue
, buffer
, &pkts_compl
, &bytes_compl
);
878 ++tx_queue
->read_count
;
880 tx_queue
->xmit_more_available
= false;
881 netdev_tx_reset_queue(tx_queue
->core_txq
);
884 void efx_remove_tx_queue(struct efx_tx_queue
*tx_queue
)
888 if (!tx_queue
->buffer
)
891 netif_dbg(tx_queue
->efx
, drv
, tx_queue
->efx
->net_dev
,
892 "destroying TX queue %d\n", tx_queue
->queue
);
893 efx_nic_remove_tx(tx_queue
);
895 if (tx_queue
->cb_page
) {
896 for (i
= 0; i
< efx_tx_cb_page_count(tx_queue
); i
++)
897 efx_nic_free_buffer(tx_queue
->efx
,
898 &tx_queue
->cb_page
[i
]);
899 kfree(tx_queue
->cb_page
);
900 tx_queue
->cb_page
= NULL
;
903 kfree(tx_queue
->buffer
);
904 tx_queue
->buffer
= NULL
;